JAIST Repository

https://dspace.jaist.ac.jp/

Title

dddddJavalUlUUOUOUOUOUooooouooggy

ood
Author(s) oo, 00
Citation
Issue Date 2007-03
Type Thesis or Dissertation

Text version

aut hor

.net/101p9/3611

URL http:/7/7 hdl handl
Rights
Description Supervisor: goooag, ooooooo oo

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Verification support environment for Real-Time Java verification

SOGA Tetsunori(510057)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 8, 2007

Keyword: Real-Time Java, Verification Support Environment, Parametric Model
Checking, Program Structure.

In this reseach, we present a verification support environment for real-time Java, which
we consider as a promising platform for embedded software development.

As far as the reliability is concern, embedded software, while running under restricted
resources, needs the guarantee to meet real-time property. The problems about software
reliability arise in most embedded software projects, because the software scale has become
larger and more complex, however, the development time frame is still the same. This
results in high development cost and put more burden on the developers.

In order to solve this problem, formal methods, especially model checking, have recently
get a lot of focus. Model checking requires less technical knowledge, and the application
of model checking in the software industry is considered more practical compare with
other techniques. Additionally, writing programs that deal with real-time property under
restricted resource needs a lot of consideration. This craftman task demands highly
skilled programmers and inherently causes the problems on development cost and software
quality. Employing the real-time Java development platform is a solution to help reducing
programmer’s tasks.

The goal of this research is to provide a supporting tool for software verification to be
used in embedded software development. The verification support environment presented
in this research is intended for the embedded software developed by real-time Java. An
experiment on a part of the tool and the evaluation are presented.

In the process of model checking real-time Java program, the first step is to construct
the corresponding program structure from the program which will be used to create a state
transition model. The program structure we mention here is a graph resulted from the
analysis of real-time Java program’s class file. The graph is constructed by analyzing the
bytecode instructions in class file, taking the branching, method invocation, and return

Copyright © 2007 by SOGA Tetsunori



instructions as nodes; other instructions that get executed sequentially are taken as edges.
In other words, the program structure divides the real-time Java program into segments
where each segment represents a straight execution path of the program. This allows us
to estimate the execution cost of each segment by measuring the execution time of each
bytecode instruction on the real-time Java execution environment.

The overview of real-time Java program verification using the proposed verification sup-
port environment is explaned as follow. The real-time Java program class file is taken as
the input, and the the corresponding program structure is constructed by analysing the
program’s bytecode instructions. We use the bytecode engineering library (BCEL) for
dealing with the bytecode analysis. The execution cost table is created by measuring the
execution time of each bytecode on the target executing environment. Then, a paramet-
ric time structure is created from the program structure with execution cost information.
The parametric time structure is a state transition model used in this research for para-
metric verification. Parametric verification is a verification technique with abstraction
by representing undecided values, such as execution time, in variables. Then, we write
the property to be verified and apply a parametric verification tool on the parametric
model. The result obtained from parametric verification is inequalities. We can use the
inequalities to decide optimum values of parameters and fix the program accordingly.

We implement a tool for experimenting on the program structure construction from a
Java class file. This experiment is a success of a part in the first step of the verification
support environment discussed so far. The problems we have found in this research is that
there is a part in the Java program that contains invocations of native code which could
not be handled by BCEL. The invocations of native code is simply ignored. The other tools
may be necessary for dealing the native code. Finally, the program structure created by
the tool is not complete for constructing the parametric time structure. More sophisticated
program structure is required to construct the parametric model for verification.



