JAIST Repository

https://dspace.jaist.ac.jp/

Title Collision Avoiding Motion| Pl anni
Robots with MANETS

Author(s) oo, O

Citation

Issue Date 2007-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101119/ 3616

Rights

Description Supervisor: ggooo, oooooono, 00

AIST

JAPAN

ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

ng

(

Collision Avoiding Motion Planning of Autonomous
Robots with MANET's

By Takashi Okada

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Yasuo Tan

March, 2007

Collision Avoiding Motion Planning of Autonomous
Robots with MANET's

By Takashi Okada (510021)

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Yasuo Tan

and approved by
Associate Professor Yasuo Tan

Professor Yoichi Shinoda
Associate Professor Mikifumi Shikida

February, 2007 (Submitted)

Copyright (©) 2007 by Takashi Okada

Abstract

In the research topic of large scale autonomous networked mobile robots, the experiment
is difficult in various aspects. On the purpose of constructing above system, at first this
research mentions the experiment platform which supports above condistions. Next it
mentions the mothion planning algorithm which suits these case.

Contents

1 Introduction
2 Related Works
2.1 Motion Planning oo
2.2 Robot Implementation, .
3 Motion Planning
3.1 Path Planning in Expansive Configuration Spaces
3.1.1 Expansion
3.1.2 Connection
3.2 Proposed approach o
3.2.1 Definitionso
3.2.2 New Expansion
3.2.3 New Connection
3.2.4 Prioritized Planning 000000
3.2.5 Algorithm
4 Experiment Platform
4.1 Overall Architecture
4.2 Hardware Emulation
4.3 Network Emulation
4.4 WLAN Emulation : QOMET
4.5 Experiment Integration : RUNE
5 Robot Applications
5.1 Application Messageso
5.2 Application Flows
6 Experiment
6.1 Experiment Definitions o 0L
6.1.1 Emulated Environment Definition
6.1.2 Emulated Robot Definition.
6.1.3 Scenario Definitions L.
6.2 Experiment Results o

10

11
11
11
12
13
13
13
15
16
17

18
18
20
20
22
23

25
25
25

6.2.1 Simple Scenarios Lo
6.2.2 Scenario 3 : 10 Robots Scenario
6.2.3 Large Scale Scenario L.

Discussions

7.1 Motion Planningo

7.2 Experiment Platform o
7.2.1 Evaluation of the Experiment Platform

Future Works

8.1 Implementation of MANET protocols

8.2 Experiment Frameworko
8.2.1 StarBED2

Conclusions

Communication between Map Manager and Robots
A.1 Initialization of Map Manager,
A.2 Initialization of Robots

Configure dummynet

B.1 Making a new pipe
B.2 Configure a pipe
B.3 Remove a pipe L

Integration with RUNE

41
41
44
44

46
46
48
48

52

54
54
95

56
56
o7
o7

58

List of Tables

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Map Manager Messageo 26
Robot Management Message 26
Robot Application Message 27
the parameters of setting of roboto 27
the parameters of QOMET 33
the connection ranges from QOMET 33
the parameters definition of the robot 34
Scenario 1 : One robot and one obstacle 35
Scenario 2 : Two robots 35
Scenario 3 : Ten robots and six obstacles 36
Scenario 4 and 5 : Fifty and a hundred robots 36
Comparison Experiment platform 45

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4

6.5

6.6
6.7

7.1
7.2
7.3

8.1
8.2
8.3

Find a path from Roadmap 8
Expansion 12
Connection 13
New Expansion e 14
New Connection 16
Emulation on StarBED oo 19
Hardware Emulation Architecture 20
Map Manager Architecture 21
General System Overview 22
Two-state WLAN emulation 22
Structure of experiments using RUNE 24
Flowchart of General Applications 28
Flowchart of Map Manager 29
Flowchart of Robot 30
Flowchart of Planning 31
Scenario 3 : Ten robots and six obstacles 35
Robot trajectory of Scenario 1 : One robot and one obstacle 37
Robot trajectories of Scenario 2 : Two robots 38
Robot trajectories of Scenario 3 : Ten robots and six obstacles with Algo-

rithm 1. 39
Robot trajectories of Scenario 3 : Ten robots and six obstacles with Algo-

rithm 2. 39
Robot trajectories of Scenario 4 : Fifty robots and twenty obstacles 40
Robot trajectories of Scenario 5 : A hundred robots and forty obstacles . . 40
Total time from src to dst each Algorithm 42
Waiting time and turning number of Algorithm 1 43
Waiting time and turning number of Algorithm 2 44
The problem of MANET emulation 47
The problem of MANET emulation 48
Application forwards messages 49

8.4
8.5

C.1
C.2

Apply configurations at once 50

Town emulation by StarBED2 51
Logical structure of RUNE 60
Logical structure of RUNE 61

Chapter 1

Introduction

In disaster area or office building, autonomous robots act instead of human beings. Rescue
robots are able to accomplish many tasks in dangerous places where humans cannot enter,
such as sites where harmful gases or high temperature are present, the hard environment
for human. Cleaning robots can also work automatically and save costs by performing
various routine tasks. In all these examples robots have to move to their destination in
order to perform their function. For this purpose they need to be able to recognize the
changes of environment around them and equip a motion planning method in order to
avoid obstacles which have probability making collision with them.

In this research topic, the experiments for evaluating such researches are difficult, since
the cost of these real autonomous robots is high. This is particularly true if researchers
want to experiment more than a few robots, and need to test systems with tens or even
hundreds of robots. Then many researchers try to make experiments or evaluate their
algorithms or methods on software simulators. But the results from these simulators are
not really precise. The difference between real system and simulators is much big. In
real environment, many kinds of noise affect conditions. For example, the connection on
real environment is affected by electric waves and magnetic field and so on. Researchers
can not always obtain good results on real system, even if they have once obtained good
results from experiments on simulators. Then the system needs some solutions on purpose
of covering this difference.

In this paper, I propose an experiment platform which large number of autonomous
mobile networked robots are executed. And to fulfill it, I propose an new algorithm of
motion-planning as an application.

Chapter 2

Related Works

In this chapter, at first one of popular motion-planning method is introduced. Next is the
experiment platform which enables researchers to perform and evaluate their researches.

2.1 Motion Planning

In the situation that multiple robots act in same environment, they need navigation in
order to move to their destination on purpose of accomplishing their tasks and avoid
possible collisions with other robots or obstacles. Multiple robot motion planning are
usually classified as centralized or decentralized method. Centralized planners construct
plans by one robot and this robot distributes the plan. In Decentralized method, each
robot plans independently.

One of traditional way is sampling based motion-planning [2]. In this approach, sam-
ples are organized into regular grids or hierarchical ones. These grids express the location
of the free space. And the planner remember these locations where robots already vis-
ited. But the size of these grids increases exponentially according to the dimension of the
configuration space, for example the number of degrees of freedom of the robot. Then the
calculating the free configuration space takes high cost, if the dimension of the configu-
ration space is more than four or five.

A probabilistic roadmap (PRM) planner has become popular method in these planning
case because of the speed of calculation. Many of PRM planner of multiple robot are
decentralized. Basic PRM executes the following steps :

PRM planner method

Roadmap Generation

At first the planner selects some milestones from configuration space at random.
And next the planner tries to joint each neighborhood if the path between each
neighborhood is collision-free.

Roadmap Extension

The planner tries to joint each roadmap created. If the roadmaps could not joint
with them, it tries random-walk between each roadmaps which could not joint.

Route Search

If the planner can joint the constructed roadmap with the source and the destination,
then searches a shortest path using Dijkstra’s algorithm.

Figure 2.1 describes one simple example of constructing a roadmap. As described in
the figure, S is a source of a robot and D is a destination, triangles of dark grey color
are shape of obstacles and light colors means the space where a robot makes collision
if it enters the range. Then at first of path-planning the entire map is divided into
trapeziums. This rule of divisions draws perpendicular lines from vertices of all obstacles.
Next it puts milestones on the center of these perpendicular lines and on the center of
the trapeziums, and connects these milestones. Finally S and D connects the milestones
in same trapeziums and a path is found.

Figure 2.1: Find a path from Roadmap

A PRM planner randomly samples the configuration space of robots and register the
collision free samples as milestones. And the planner tries to connect pairs of these mile-
stones and saves this collision free connections as the trajectories of robots. Probabilistic

roadmap means this graph, the edges are the trajectories of robots, the nodes are the mile-
stones, and the undirected graph jointing the trajectories is the probabilistic roadmap.
And the planner finds the optimal path from the graph, for example it may set some
weights on these edge and use Dijkstra’s algorithm.

PRM planners are not complete in the traditional sense. But they are probabilistically
complete under certain assumptions. It means that the probability of failure decreases
exponentially to zero with iterations [3].

Now I mention two types of PRM, one is single-query planners. It computes a new
roadmap from scratch for each new query [3]. Second one is multi-query. It precomputes
the roadmap and re-use the roadmap for answering queries [9]. It has been proven that,
under reasonable assumptions about the geometry of the robot’s configuration space, a
relatively small number of milestones picked uniformly at random are sufficient to capture
the connectivity of the configuration space with high probability.

In addition to PRM method, robots need technique which avoid collisions of each robot.
Simply if robots exchange their trajectories and start to plan, this method does not care
about the trajectories of each other. ” Velocity turning” [13] method computes the relative
velocities of the robots to avoid inter-robot collision. Another way to solve this problem
is 7 Prioritized Planning” [14]. The robots avoid possible collisions depending on their
priority.

2.2 Robot Implementation

When researchers are implementing or evaluating something related to autonomous robots,
for example path planning algorithm or dynamic network construction and so on, one of
the choices is simulation, by using a product such as Webots [10], co-developed by the
Swiss Federal Institute of Technology in Lausanne, Switzerland. Software simulator mod-
els robot components, networks and motions and time scheduling and surrounding envi-
ronment. If researchers select to use such simulators, they have to implement simulator-
specific modules by themselves. Surely these software simulators can test various kinds
of environment that it is hard to implement in a real system. But the results from these
software simulators may differ with respect to those that would be observed in a real
system. It means that the difference between the results from software simulator and
results of a real system is maybe much larger.

The second one is to implement on real environment. RoboCup [5] involves teams of
five small robots, each up to 18cm in diameter and 15cm in height. The robot teams
are entered into a competition to play soccer against opponent teams fielded by other
research groups. Hsu [7] made experiments on his research team testbed. This robots
move frictionlessly on an air bearing on a 3 m x 4 m table. ARL (Stanford Aerospace
Robotics Laboratory) citeStanford makes various experiments of real robots. These real
environment systems take much cost for real robots and sensing. If researchers want to
test large number of robots, it is hard to make the ready all robot hardware equipping an
ability to compute and connect wireless network.

Third one is emulation. The difference between simulation and emulation is like the
difference between modeling and emulation. A simulation is a modeling system out of
approximations or inferences. An emulation is emulating or imitating a different environ-
ment of hardware or software. This method can not only get reliable experiment results
but also not take much cost. If researchers can emulate robots and other environment on
computers, the const is only computers. And this approach covers the gap between real
implementation and software simulation. StarBED [8] is a large scale, realistic and real
time network testbed, using hundreds of PCs, and switched networks. StarBED2 [18]
expands StarBED so as to be suitable for emulating ubiquitous networks.

10

Chapter 3

Motion Planning

As mentioned already, one of the essential feature of autonomous mobile robots is a
motion-planning algorithm. Autonomous robots need some path-finding algorithm to
avoid probability which cause collisions with robots or obstacles.

Many path-planning algorithms have been proposed to date. The performance of
motion-planning algorithm can be characterized by the following properties: speed, com-
pleteness, and optimality. In dynamic and unknown environment, robots must plan and
re-plan their motion many times, because the environment dynamically changes in time.
Therefore in the case when robots need to continuously plan on-the-fly their trajectory,
the algorithm speed is one of the most important properties.

3.1 Path Planning in Expansive Configuration Spaces

In proposed system, robots equip a kind of PRM method that base on ”Path Planning in
Expansive Configuration Spaces” [3]. The definitions of this algorithm are the following.
For example, a configuration can be specified by d parameters ¢ = (qo, q1, - -, qa—1), Where
d is the number of defined degrees of freedom of a robot. The set of all configurations
forms the robot’s configuration space C'. A configuration ¢ is free if the robot placed at
q does not collide with obstacles. The basic idea of this paper is using single-query path
planning methods, there are given two configurations qsource and Guestination- 1Lhey sample
at random from configuration space C' and register only ¢ that have collision-free path
from Gsource OF Qaestination- Lhen they grow two trees from @source O Qaestination- 1hese two
trees keep on building till accomplishing the connection both ¢ of these two trees with
collision-free.

This algorithm iteratively executes two basic steps, expansion and connection until
either a path is found or the maximum number of iterations is counted.

3.1.1 Expansion

Expansion is the first step of this planner, by which the planning method build two trees
Tsou’r‘ce - (‘/sourceu Esou’r‘ce) and Tdestination = (Vdestinationu Edestination)'

11

Expansion
Range

(@) Candidates

Dst

Figure 3.1: Expansion

Figure 3.1 describes this appearance. These two operations of trees are identical, and
extend tree T" = (V, E) starting from the robot initial position (source) and the robot
destination, respectively. When building each of these trees, the planner picks up a node
z from existing milestones , which is chosen with a probability proportional to 1/w(z).
The value 1/w(zx) represents the weight of node x , and it is equal to the number of
neighbors of z plus 1 (the node z itself). The larger the number of neighborhood of the
node z is, the more the node z is selected. After the planner selected a node z, it tries
to pick some candidates of milestones to expand the tree. And the planner adds them to
the tree, if those candidates are effectively reachable from .

3.1.2 Connection

Connection is the second step of the algorithm, in which this planner tries to connect the
two previously built trees, Tsouree and Tyg.

Figure 3.2 describes the situation which two trees connect to each other. This con-
nection method is simple. For every nodes in the set of vertices of the corresponding
trees , Viource and Viyestination, for example x is picked from Vi,.... and y is picked from
Vigestination, the planner checks whether these vertices can see each other or not and check
whether the distance that it is smaller than distance(x,y) or not, and if the planner find
two milestones which satisfy the above conditions from every tree and the edge is collision
free, the planner terminates successfully.

12

Expand
.......... Connect

7 N

Source CONNECT N
/////AwMMHHHMW mw - \\\\\
O\\\\\\// -

S

Destination

@)

Figure 3.2: Connection

3.2 Proposed approach

In the case study of this paper, robots are considered to be placed in environment that are
unknown or change in a dynamic manner. The motion-planning method described above
does not suite such a case. For example, the previous planner can not predict whether
there are any collisions or not in the tree built from destination, T.stination. It means that
the planner has no way to know the time when the robot will reach the milestones in the
tree, Tyestination. Hence the planner cannot expand the tree, Tyesination, I these cases.

In order to adapt the planner to these conditions of unknown and dynamic environment,
the notion of the time is important in these cases. Because even if the planner found some
path to destination, the path might be inefficient with much calculating time. In dynamic
environment, robots have to plan their path in real time, it is important that the time
keeps on running during planning new path. And I adapted the motion-planning method
discussed in the following sections.

3.2.1 Definitions

At first the parameters of this motion-planning method should be defined. The definitions
of ¢ and C' are similar to Section 3.1. The parameter ¢ is the element of degrees which
robots can move free. C' is the configuration space, means all the set of this ¢. A
configurations q is free if the robot placed at ¢ does not collide with obstacles. The set of
all free configurations are defined the free space F.

3.2.2 New Expansion

As mentioned above, in unknown and dynamic environment, introduced path-planning
[3] does not work well. Then my algorithm uses following method :

13

Expansion
Range

© Candidates

) Configuration
time space

Obstacle

Figure 3.3: New Expansion

Grows only source tree

This means that the planner grows only one tree (Tsource), this is why the planner
cannot check the collisions of Tyestination- This method is discussed in [3], but they
recommend this way only when the robot is highly constrained around g¢soyree OF
Qdestination, then avoid to grow the tree from this constrained q.

Adapt time parameter

The milestones have the time parameter when the robots reach to the milestone.
If milestones do not include this value, the planner cannot predict the collision
with other autonomous mobile networked robots or obstacles. This is fulfilled by
Configuration time space. It is a kind of configuration space but including the time
parameter. Figure 3.3 describes this. This configuration space covers the other
moving robots as moving obstacles, and the robots avoid to pick this configuration.

Then I adapt above conditions to ” Ezpansion” method.

Algorithm Fzxpansion

1. Pick a node z from V' with probability 1/w(z).

2. Sample K points from Npy(z, time) = {q € C(time)|dminimum < diste.(q,) < Dmazimum}
where dist,. is some distance metric of C(time). (K and dinimum Dmazimum are pa-
rameters.

14

3. for each configuration y that has been picked do

4. calculate w(y) and register y with probability 1/w(y)
5. if y is registered, clearance(y) > 0 and link(x,y) return YES
6. then put y in V and place an edge between x and y.

In step 1, the meaning of probability 1/w(x) is same as based method.

In step 2, K is the number which the planner tries to pick the milestones from above
conditions. dinimum aNd Dpazimum are the minimum and maximum distance which the
planner can set the candidates of milestones. Then by Ny4(z), the planner picks the
milestones which are plotted in the above range and are collision-free in predicted current
time. C(time) is ” Configuration time space”, it is the configuration space in time.

In step 5, clearance(y) is the minimum distance, which is defined as its minimal distance
to the boundary of F. And link(x,y) is the checking whether x can ”"see” y without any
obstacles on its sight.

In this Fxpansion phase, the constant numbers, K, dyinimums Dmazimum affect the ability
of this planner. If the planner increases K, the optimality also increases but the calcu-
lation costs increase too. No less than the number K, if it increase the range between
Apinimum aNA D, gzimum, same situation causes. Then the definition of K and d,inimum
and Dyazimum 18 much important for this motion-planning.

3.2.3 New Connection

As expressed in Ezrpansion method, the planner tries to connect only newly added mile-
stones last step.

Algorithm Connectionl

1. for every newly added x € V,yypee do
2. if dst, (T, Qaestination) < I (I is a parameter.)
3. then lan(l', Qdestination)-

In step 1, the newly added x are the milestones which the planner added last Expansion
step. In step 2, [is some constant distance. This [also influence the planning time and
the ability of this planner. If link(x, questination returns YES for some z, then a path is
found between ¢source and Qgestination through .

But there is a possibility which the algorithm run faster. Basically the robots can not
know the entire map at once, but the robot use PRM planning for avoiding collisions in
some complicated area. Then the idea is going straight trajectory after passing through
this complicated area. This is simply realized by taking away the step2 above algorithm

15

— Expand
.......... Connect
Q
./ O o []

Obstacle
Destination
N

s

Figure 3.4: New Connection

O CONNECT

as follows :

Algorithm Connection?2

1. for every newly added x € V,yyree do

2. ?3%%.&.“ Qmmmiﬁgiozv .

3.2.4 Prioritized Planning

In addition to these two methods, the system needs to correspond to large-scale multiple
robots. Every robot has to communicate and avoid possible collisions with each other
if robots detect the collision in their current trajectory. Then these robots avoid the
collision according to the priority, for example there are two robots A and B, and assume
the priority of A is higher than the priority of B. Now their trajectories make collision if
they keep on moving their trajectories. Then robot A keep on its trajectory and robot B
needs to find a trajectory which avoid possible collision.

This prioritized planning means that the lower priority robot regards the higher priority
robot as a moving obstacle. Then the configuration space of this lower priority robot is
limited. This limited configuration space is ” Configuration time space”, and all of robots
have to consider their trajectory on attention of this limitation. This means that the
lower the priority of robot is, the more the configuration space of the robot decreases.

16

3.2.5 Algorithm

By using above Ezxpansion and Connection algorithm and Prioritized Planning, 1 adapt
PRM planner to multiple robot in real time on unknown and dynamic environment as
follows :

Algorithm1

1. If time < t (t is a parameter.)

2. then Fxpansion
3. If Connectionl returns YES
4. then register new found path

5. Compare all found paths and return fastest path

Algorithm2

1. If time < t (t is a parameter.)

2. then FEzpansion
3. If Connection? returns YES
4. then register new found path

5. Compare all found paths and return fastest path

In step 1, time is current time, and ¢ is a parameter when limit the steps which the
planner executes.

In step 4, if the planner found a path between ¢gource a0d Guestination -

In step 5, the planner returns the path which the time when a robot reaches to qgestination
is earliest from all found paths.

The difference between Algorithm 1 and Algorithm 2 is only selecting which Connection
method.

In this chapter, at first I introduce the based motion-planning algorithm and next,
represent the problems of this algorithm in unknown and dynamic environment. After
that, I propose a new algorithm which suite in these cases.

17

Chapter 4

Experiment Platform

Researchers need to confirm and evaluate the effects of their proposed research. When
they implement large-scale autonomous mobile networked robots, this is very difficult
phase by many reasons as follows.

If they try to evaluate their contents of researches on software simulator, there may
appear big gaps when they implement on real system in next step. If they try to create
real mobile multiple robots system, the costs of the various hardware are much expensive
and they may encounter unexpected problems to control them.

Then emulation is one of the effective and appropriate method to implement these
system. In this chapter, I propose a new experiment platform to emulate large-scale
autonomous mobile networked robots.

4.1 Overall Architecture

The robots in the proposed system cooperate in order to reach a destination while avoiding
collisions and accomplish some given tasks. To express these large-scale robots, a suitable
network testbed is needed. For this purpose I use StarBED [8]. StarBED is large-
scale network testbed which has a large number of PCs (more than 700) and network
interfaces. These all experiment PCs are equipped with at least two network cards (100
Mbps or 1Gbps type). These PC can easily construct large-scale networks by changing
switches. All of robots are emulated on StarBED PCs and communicate through Ethernet
configurations. Figure 4.1 describes the entire architecture of the system.

To fulfill executing emulated robots on StarBED, following contraptions are needed :

Hardware emulation

For the system assumes real PCs to be autonomous mobile networked robots, the
modeling and emulations are needed. This is given in Section 4.2

Network emulation

18

‘ Intelligent Switch

Experiment
Network

Experiment
Nodes

Management
Network

Management
8§§§ Nodes

Figure 4.1: Emulation on StarBED

The networks of StarBED are Ethernet or 802.3 networks, these this networks also
need some method to emulate WLAN communication. This is given in Section 4.3
and 4.4.

Expand into large-scale
This system executes large-scale networked robots, and to fulfill this, it needs some
experiment integration method. This is given Section 4.5.

Robot application

Finally of course these robots execute applications to communicate to each other.
In this system, robots equip motion-planning (proposed in Section 3.2) application.

19

4.2 Hardware Emulation

For emulating robots on StarBED PCs, the system needs some modeling to represent
the hardware of robots, for example motors or some sensors and so on. In unknown
and dynamic environment the system needs to know dynamic changes of environment
and some structure which synchronize the events which happens on every robots in same
time. In this system, Map Manager administrates all these hardware information. Figure
4.2 describes the general overview of controlling hardware messages in this system.

Visual Sensor _- WLAN card

GPS - Shock Sensor

Figure 4.2: Hardware Emulation Architecture

Each robots is able to know what happens on their hardware from the emulated hard-
ware information, for example images from ” Visual sensor” or detection of WLAN radio
signal or some alarm messages from " Shock sensor” and so on. These hardware infor-
mation is treated by the application of robots from the messages of ” Map Manager”, it
means that this system consider these emulated hardware information to be the messages
from device driver. Figure 4.3 describes the architecture of ” Map Manager”.

4.3 Network Emulation

The mobile networked robots communicate on wireless network, then the system has
to emulate this network system. Figure 4.4 shows the overall network architecture of
this system. These two networks are separated by switching and creating VLAN, and
there are two types of streams on each different networks. On ” Management Network”,

20

Map Manager

: H/W information

WLAN radio | RS
GPS Info

-
-

1
Shock Alarm Visual Image

Vs

Robot 1 Robot 2 Robot N

Figure 4.3: Map Manager Architecture

the messages of emulated hardware information which are shown in the previous section
are sent. This network is Ethernet network without any limitations, and these emulated
hardware messages are immediately received by emulated robot PCs and ” Map Manager”.
” Experiment Network” is the network which is assumed as real WLAN network at disaster
area or office building or home. The robots communicate and cooperate by sending the
motion-planning messages through Fxperiment Network.

To fulfill the WLAN communication, the system apply some emulated WLAN con-
figuration values (for example, the bandwidth or the delay or the jitter and so on) to
Ethernet cable network. This emulation can be realized by WLAN emulator : QOMET
[15] (see Section 4.4 more details). The WLAN communication emulation engine QOMET
is deployed in the emulated robots to allow recreating network conditions similar to those
occurring in a real WLAN environment. In order to adapt these WLAN configuration
value to Ethernet cable network, dummynet [16] is effective in every constant steps.
Dummynet supplies various conditions of network through IP queues. Emulated robots
manages these queues for every robots other than itself. And these queues limit the
communication according to WLAN configuration values, as it will be detailed in next
section.

In order to implement such complex experiment system, the system includes an experiment-
support software, called RUNE (Real-time Ubiquitous Network Emulation environment)
[?]. It provides additional functionality which supports large-scale emulation system. Fig-
ure 4.6 shows the integration with RUNE of this system. The Rune Master manages the
entire system (see Section 4.5 for more details).

21

Experiment network

Emulated application

messages E

_ _ o
dummynet dummynet Map m
pipe pipe Manager G

b b cenans b b 2
Robot1{ Robot 2 Robot N | m.
=)

~

H/W messages H/W messages

S S T L

Management network
VLAN

Figure 4.4: General System Overview

4.4 WLAN Emulation : QOMET

The scenario-driven architecture for WLAN emulation has two stages. In the first stage,
from a real-world scenario representation QOMET create a network quality degradation
(AQ) description which corresponds to the real-world events (see Figure 4.5).

Physical - network Emulator
layer effects specific

Scenario A Emulator
—- Q —-

representation description configuration

Figure 4.5: Two-state WLAN emulation

By quality degradation QOMET mean the change in network service quality between
two measuring points; QOMET denote this degradation by the shorthand AQ. Since the
AQ description represents the varying effects of the network on application traffic, the
WLAN emulator’s function is to reproduce it. The AQ description calculated in the first
stage is therefore converted into an emulator configuration that is used during the effective
emulation process to replicate the user-defined scenario in a wired network. This makes
it possible to study the effects of the scenario on the real application under test. This

22

WLAN emulation model is an aggregation of several models used at the various steps
of the conversion of the scenario representation to the network A Q description which
is needed to recreate those scenario conditions. The following steps describe the these
models at each level of the conversion: real world scenario to physical layer, physical layer
to data link layer, and, finally, data link layer to network layer. Modeling stops at network
layer because it is at this level that QOMET introduce the quality degradation using a
wired network emulator.

4.5 Experiment Integration : RUNE

Rune (Real-time Ubiquitous Network Emulation environment) provides an API set which
controls experiment environments. The fundamental function of Rune is to implement a
test environment in which a number of "spaces” that emulate each experiment target can
work on either single or multiple nodes. Rune provides a reasonably abstracted interface
for easily implementing emulation targets as spaces without much concern about the
interaction between emulation nodes. Rune has the following roles:

e experiment environment setup/cleanup and progress management;

e procedure invocation;

interaction between spaces;

time synchronization;

mutual exclusion.

Figure 4.6 shows the structure of an experiment implemented using Rune. The ” Rune
Master” module manages the configuration of each experiment, and controls the progress
of the experiment. The execution of all spaces deployed on multiple nodes is initiated
by Rune master via modules called Rune Manager. The Rune manager is deployed on
every emulation node and mediates communication between them through objects called
”conduits”. Spaces implementing emulation targets exist on emulation nodes in the form
of shared objects, loaded dynamically by the Rune manager.

23

Rune
Master
Rune
Manager\
77 X X Rune

U/

I \ Manager
I 3 \
l |‘\ ’fkk . Rune
I 1 1 / \ \ Mana er
\ o /" Y /f\g\
\ [Bracq | F{STEEEE T AE N
\ I I | \ /I | \
: / e
= = = \
PPace / \ [Spacd | 12Pacq
'I \‘ ’l | ;\
1 1
Space PPacy / \ [Bpacq |
'I \ I
Node A l
)
v
Node
Node

Figure 4.6: Structure of experiments using RUNFE

24

Chapter 5

Robot Applications

When researchers implement a system of autonomous mobile networked robots on their
own environment, they also have to describe behaviors of robots. The robots in the system
equip proposed motion-planning algorithm (see Section 3.2 details). The main objects of
this system are ” Map Manager” and Robots. These objects execute cooperatively and
communicate to each other. Then at first next subsection shows the messages which send
in this system, and next the flow of each application is given.

5.1 Application Messages

The messages which are managed in this system are three types as follows :

Map Manager Message

These messages are sent from Map Manager to Robots through Management Net-
work. The details of the contents of this messages are shown Table 5.1.

Robot Management Message

These messages are sent from Robots to Map Manager through Management Net-
work. The details of the contents of this messages are shown Table 5.1.

Robot Application Message

These messages are sent from Robots to Robots through Ezperiment Network. The
details of the contents of this messages are shown Table 5.1.

5.2 Application Flows

Figure 5.1 describes the flowchart common to the applications Map Manager and Robots.
The transactions of these applications can be divided into following simple transactions.

Flowchart of general applications

25

type name

‘ sub type

‘ definition

message type

detect neighbor-
hood

WLAN card detect new radio
wave

disappear neigh-
borhood

disappear radio wave

detect obstacle

Visual sensor detect obstacle

management unexpected events
node type Robot the message about robot
Obstacle the message about obstacle
ID none the number identifies the object
IP address none the IP address of neighborhood is
set if message type is detect neigh-
borhood
trajectory none the trajectory of the objects

Table 5.1: Map Manager Message

type name | definition |
ID the number identifies the robot
trajectory the trajectory of the objects

Initialize

In this phase, Map Manager and Robots initialize their objects and connections
through Management Network (see Figure 4.4). At that time Map Manager send
the settings (see Table 5.2 more details) to every robot and thereafter start at one

time.

Update

These applications are known the time when the system finishes, and if current time
is not time up, executes Update. This loop phase is divided by short time steps, and
in every Update phase they also have similar structure. This transaction is difference

between Map Manager and Robot.

Finalize

Finally the applications know the time over, they finalize their objects and finish
the applications.

Flowchart of Map Manager

Check updates of environment

26

Table 5.2: Robot Management Message

type name | definition |

ID the number to identify the robots
priority the priority of the robots
trajectory the trajectory of the robots

Table 5.3: Robot Application Message

setting name ‘ description ‘

ID the number to identify every robot
radius the radius of the robot

priority the priority used planning

source the coordinate of source
destination the coordinate of destination
velocity the maximum velocity value

Table 5.4: the parameters of setting of robot

Map Manager checks that all of robots detest any hardware messages in current
time, for example some robots detect new neighbor robot from the WLAN card or
new obstacle from Visual sensor and so on.

Send H/W messages

If the robots detect any emulated hardware messages, Map Manager informs this.

Get messages

Map Manager waits the messages from robots till finishing current step.
Flowchart of Robots

Check updates of environment
The robots check the changes of their environment from the messages from Map
Manager and the other robots.

Planning

If the changes of their environment make collision in their trajectory, they start to
plan (execute the algorithm Section 3.2). This flow is divided Figure 5.4. The im-
plementation of this system, the robots wait constant time and keep on re-planning
if they cannot find a trajectory.

Update myself

The robots update their objects, for example the trajectory (if they planned), the
WLAN configuration.

27

Initialize

H

Update

; End

Figure 5.1: Flowchart of General Applications

Get messages

Finally the robots wait the messages from Map Manager or the other robots till
finishing current step.

In this chapter, the method which emulates autonomous mobile networked robots on
PCs is proposed and mention about details of these modeling and emulations.

28

Check updates of environment

W detect somethin

N

A

Send H/W message

\\v\mmﬁ BMmmm@mm\

_“Finalize

_ End g

Figure 5.2: Flowchart of Map Manager

29

Check updates of environment

Detect collision?

»

N [Planning

A\ 4

Update myself

\ 4

Figure 5.3: Flowchart of Robot

30

Execute planner
with time t

%

N

Find a path? 1
Y \ Create waiting
) trajectory
Register the
trajectory
End

Figure 5.4: Flowchart of Planning

Chapter 6

Experiment

In this chapter, how to experiment this system and the definitions of the system environ-
ment and emulated descriptions are mentioned. After that the results from this system
are shown every different scenario. The experiment which implements the system includes
two meanings. First is to evaluate the proposed algorithm. The system enables to con-
firm the performance of the algorithm and practicability on real environment. Second are
about the system. It make sure whether large-scale mobile networked robots correctly
work and communicate each other, the results are compared and evaluated.

6.1 Experiment Definitions

At first the definitions of the experiments every scenarios are defined. The environments
are related to the WLAN communication conditions. The definitions of robots set the
parameters of the robots. And finally the scenarios define how the robots and obstacles
are located and set the destinations.

6.1.1 Emulated Environment Definition

In this paper, the autonomous mobile networked robots are assumed to avoid endangering
human life or to reduce cost of repetitive activities. In a disaster or dangerous area,
autonomous rescue robots can accomplish various tasks instead of human rescue team.
And in office buildings or homes, autonomous robots assist many kinds of human living,
for example it can automatically clean the rooms or hallway. The environment usually
classify into indoor and outdoor.

indoor

The WLAN communication conditions of the ”indoor” environment are hard. For
example at a office building or home, there exist desks and walls and various obsta-
cles interfering communications.

outdoor

32

The ” outdoor” environment enables to communicate easier than indoor environment.
But the WLAN communication conditions of outdoor environment depend on the
affections of "Walls”. If there are many obstacles interfering the communication,
the conditions are limited.

The conditions of WLAN communication given above are realized by the configuration
values from QOMET. The table 6.1.1 describes the parameters of every environment.

‘ environment ‘ « ‘ o ‘
indoor 56 | 2.0
outdoor 3.32 1 2.0

Table 6.1: the parameters of QOMET

« is the "path-loss exponent”, and o is used take into account the shadowing component.
From the WLAN emulator QOMET, the connection ranges between robots are calculated
as follows :

‘ environment ‘ connection range ‘

indoor ~ 18.3(m)
outdoor ~ 100.0(m)

Table 6.2: the connection ranges from QOMET

In addition to mentioned hereinbefore, the scenarios describes these whole settings, the
number of robots and obstacles and the coordinates of robots and obstacles and of course
environments.

6.1.2 Emulated Robot Definition

In this system only the hardware of robots is modeled and simulated. As given previous
chapter, these autonomous mobile networked robots rustle in disaster or dangerous area
like rescue robots and in office building or home like cleaning or assisting robots. These
robots equip motors which move around to accomplish their tasks. These motors are
assumed which enable them to turn onmidirectional. And they also have various sensors,
a GPS makes them know their absolute coordinate in real time, and a ” Visual sensor”
informs a visual map to them. The autonomous robots of this system equips ” Visual
sensor” and detect obstacles around them. The range of this ” Visual sensor” is limited.
The autonomous robots detect the obstacles at first time they are closed to them enough
sensing them. These robots communicate each other through WLAN card, this radio wave
is sensed by ” Map Manager” on ” Management Network” and after that, robots start to
communicate emulated WLAN communication on ” Ezperiment Network”.

33

parameter ‘ value ‘ meaning ‘

shape circle the shape of the robot

radius 1.0(m) the radius length of the robot
velocity 0.5(m/sec) the maximum speed of the robot
visual sensor | 10.0(m) the visual sensor range

WLAN sensor | depending on environment | (see previous section)

degree onmidirectional the degree the robots can move
time step 250(msec) the step of execution

Table 6.3: the parameters definition of the robot

The table 6.1.2 describes the parameter definitions of the hardware of autonomous
robots of this system.

Basically this system allow various shapes of robots, but both robots and obstacles have
a circular shape so that their size can be described by the radius. The system assumes
the longest arm of robots, which is the radius of the smallest circle which can cover the
object (they have the same center point), the radius of the robots.

The maximum velocity of the robots of this system are set 0.5(m/sec) which is slower
than walking velocity of humans.

The range of the ” Visual sensor” equipped can see 10.0(m), this sensor is assumed
onmidirectional sensor, for example the camera which the robots equip turn around on-
midirection.

WLAN card senses the WLAN communication radio in the range which depend on the
environment and the distance between the robots who communicates (see Table 6.1.1).

The system regards the motors of these robots as onmidirectional motors like caterpillar
or warm or spider type.

The time step is the limitation of time when Map Manager and Robots execute one
main ”Update” phase (see Section 5.2).

6.1.3 Scenario Definitions

In this section, the five Scenarios which is defined the source and destination of every
robots and the coordination of obstacles and its size are described. At first as simple
case, two Scenario is defined, to confirm the basic flow of this application. Next is more
complex Scenario which includes ten 10 robots and 6 obstacles in environment. And
finally as large-scale Scenarios are drawn.

Simple Scenarios

The ”Scenario 1”7 (Table 6.1.3) defines one robot and one obstacle in environment. The
initial trajectory of the robot goes through the obstacle.

34

‘ object ‘ ID ‘ priority ‘ radius ‘ source ‘ destination ‘
robot rb01 | 10 1.0(m) | (—20.0,20.0) | (20.0,—20.0)
obstacle | obs01 | 20 1.0(m) | (0.0,0.0) none

Table 6.4: Scenario 1 : One robot and one obstacle

The ”Scenario 2” (Table 6.1.3) defines two robots in environment. The initial trajec-
tories also cross each other.

‘ object ‘ ID ‘ radius ‘ source ‘ destination ‘

robot | rb01 | 1.0(m) | (—20.0,20.0) | (20.0,—20.0)
robot | rb02 | 1.0(m) | (20.0,—20.0) | (—20.0,20.0)

Table 6.5: Scenario 2 : Two robots

Ten Robots Scenario

This Scenario plots much complicated both robots and obstacles. It confirms two angles,
first is to check the motion-planning method to execute correct. Second are to make them
send lots of messages not only Management Network but Fxperiment Network.

Table 6.1.3 and figure 6.1 describes the coordinates of robots and obstacles.

Src & Dst
S#1, D#5 S#2, D#10 S#3, D#9 of robots

Obstacle

(0,30

S#4, D#2

(0,15)

S#7, D#6 9, DY 0, D#3

(0,0) (15,0) (30,0) (45,0)

Figure 6.1: Scenario 3 : Ten robots and six obstacles

35

‘ object ‘ ID ‘ radius ‘ source ‘ destination ‘

robot [tb0l | 1.0(m) | (0.0,30.0) | (15.0,0.0)
robot [tb02 | 1.0(m) | (15.0,30.0) | (0.0, 15.0)
robot rb03 | 1.0(m) | (30.0,30.0) | (45.0,0.0)
robot rb04 | 1.0(m) | (0.0,15.0) | (30.0,0.0)
robot rb05 | 1.0(m) | (15.0,15.0) | (0.0,30.0)
robot rb06 | 1.0(m) | (30.0,15.0) | (0.0,0.0)
robot | th07 | 1.0(m) | (0.0,0.0) | (30.0,15.0)
robot | th08 | 1.0(m) | (15.0,0.0) | (30.0,15.0)
robot [tb09 | 1.0(m) | (30.0,0.0) | (30.0,30.0)
robot rb10 | 1.0(m) | (45.0,0.0) | (15.0,30.0)
obstacle | obs01 | 1.0(m) | (10.0,10.0) | none
obstacle | obs02 | 1.0(m) | (10.0,20.0) | none
obstacle | obs03 | 1.0(m) | (20.0,10.0) | none
obstacle | obs04 | 1.0(m) | (20.0,20.0) | none
obstacle | obs05 | 1.0(m) | (40.0,10.0) | none
obstacle | obs06 | 1.0(m) | (40.0,20.0) | none

Table 6.6: Scenario 3 : Ten robots and six obstacles

Large-Scale Scenario

This large-scale Scenario set fifty and a hundred number of robots. Every coordinate of
robots and obstacles are defined by Map Manager at random in the range.

‘ Scenario ‘ number of robots ‘ number of obstacles ‘ initial range ‘

Scenario4 50 20 100(m)
Scenariob 100 40 200(m)

Table 6.7: Scenario 4 and 5 : Fifty and a hundred robots

6.2 Experiment Results

Based on above conditions and definitions, the results of every Scenario are shown in this
section.

6.2.1 Simple Scenarios
Scenario 1 : One robot and one obstacle

Figure 6.2 draws the trajectory of the robot. This Scenario is confirming simply the
detection of the obstacle. The robot rb01 starts from its source and approach the Visual

36

sensor range. The robot re-plans its trajectory and avoids the obstacle after detecting it
about the coordinate (—8,8).

20

o
[0}
fury

®
C

10

uuuuu

-10

-20 Dst rb01

-30 -20 -10 0 10 20 30

Figure 6.2: Robot trajectory of Scenario 1 : One robot and one obstacle

Scenario 2 : Two robots

This Scenario also tests another simple detection which the robots receive the WLAN
radio wave. Figure 6.3 shows this situation, the robot 7001 and rb02 sense each other
about (—8,). As the robot rb01 has lower priority than rb02 and it re-plans and avoids
possible collision.

6.2.2 Scenario 3 : 10 Robots Scenario

This Scenario is very complicated in small range, ten robots and six obstacles. The radius
of robots and obstacles is 1.0(m), the priority is the higher the id of robot is, the more
the priority is also.

Figure 6.4 describes Scenario 3 with algorithm 1, and figure 6.5 is algorithm 2’s. The
trajectories of algorithm 2 tend to go through linear. At first robot10 goes straight to
its destination, and the other robots avoid it depending on the priority (the priority of
robot10 is highest). Now from figure 6.5, some interesting results can be shown. For
example robot8 go straight till sensing robot10 (about at (22,8)), but it detects the
collision on its trajectory and change it a little. The trajectory of robot3 and robotb are

37

20 < h01 Det-rh0?2
SIC-rouL DSt Uz

10

-10

-20

[¢2]
=
o
[}
N

Dstrb0L-— 1

-30 -20 -10 0 10 20 30

Figure 6.3: Robot trajectories of Scenario 2 : Two robots

same as the situation of Scenario 1, but robot3 did not choose the confusion area, this is
why the proposed planning algorithm tends to expand the milestones more free area.

6.2.3 Large Scale Scenario

Following figure 6.6 and 6.7 describes large-scale environments. The radius of robots is
1.0(m) and the obstacle’s is at random from 1.0(m) to 2.0(m). Accurate numbers of the
robots are fifty-five and a hundred and ten. The lines are the trajectory of each robot,
and + is the coordinate of the obstacles. These figures show collision avoidance which
every robot does not cross with obstacles.

In this chapter, the definitions of the experiment environments and the Scenario every
situation (simple and complicated and large-scale) are defined. Finally the results every
Scenario are described.

38

40

30 OS#1-D#5

(=]
&
J
i
©

7

20

/%
g

10

o
a
57
&
¢
©
G
&
g
%;/
5
&

Figure 6.4: Robot trajectories of Scenario 3 : Ten robots and six obstacles with Algorithm
1

40

/

DQH3 DAY
o LTI

30 5#1-DH5

()

20

10

Figure 6.5: Robot trajectories of Scenario 3 : Ten robots and six obstacles with Algorithm
2

39

40

| A
L=
T

-40 / \

IN

=
=
Ve
VS

-60 -40 -20

o
N
o
B
(=]

60

Figure 6.6: Robot trajectories of Scenario 4 : Fifty robots and twenty obstacles

100 - -
+
+
+
L
+
+ 7
50 T & + b
" +
0 Tl % + f 5 <
-50 o .
I
+
+
-100

-100 -50

Figure 6.7: Robot trajectories of Scenario 5 : A hundred robots and forty obstacles

40

Chapter 7

Discussions

In this chapter, at first the evaluations of the proposed methods are shown and make it
clear that what is improved and what is solved by them. Moreover the considerations
about these proposed methods is mentioned.

7.1 Motion Planning

The proposed algorithms are adopted to the conditions which are large-scale autonomous
mobile networked robots and are needed to find a path as soon as possible. These are came
from the unknown and dynamic environment. Even if the motion-planning algorithm find
optimal path, there may change the environment soon. On the basis of above conditions,
I proposed new motion-panning algorithms.

The experiment results of figure 6.4 showed a possibility which improve the proposed
algorithms. Actually proposed algorithm 1 grows the tree from near current coordinate,
and it does not care about far range meaning unknown or not detecting area. Moreover
for reducing the time when the robots reach the destination, the algorithm shall avoid
only possible collision using PRM method and if the robot can see the destination without
collisions, simply the robots go straight trajectory. This result is described in figure 6.5.

Figure 7.1 describes the comparison of total time when take from source to destination
of algorithm 1 and 2 and ideal time when the robots go through straight trajectory to the
destinations with maximum velocity. Some of robots of the graph go through very similar
trajectory with ideal one. The results of robot number 1 and 3 and 5 with algorithm 1
are faster than algorithm 2’s a little, but robot 4 and 6 and 8 take much time to reach
their destinations.

41

Total time from src to dst each Algorithm

200

180 |

160 |

140 | O Algorithm1
° 1201 W Algorithm2
E 100 |
N Oldeal time

60 |

40 |

20 |

o U i

1 2 3 4 5 6 7 8 9 10
Robot #

Figure 7.1: Total time from src to dst each Algorithm

Figure 7.2 and 7.3 describe the total waiting time and the total number which robots
turn around every algorithm. These results clearly shows the difference of the each
amount.

42

Waiting time and turn # of Algorithm 1

40

35

25

;_E

Figure 7.2: Waiting time and turning number of Algorithm 1

W Waiting time
O Number of turn

4 5 6 7 8 9 10

Robot #

The total time when robots reach their destinations increase if they choose indirect
paths or stay same position and try to re-plan a trajectory of collision-free. Then if the
system increases the orders of the motion-planning, for example the number of milestones
or the distances which pick up the milestones or the maximum time of re-planning, the
robots do not tend to wait and re-plan same position. But it means that the planner
has to takes longer time to re-plan and the robots need to allocate more memory storage.
This relationship is tradeoff, the researchers shall choose the suitable orders to every
scenarios. In this experiment, the robots shall equip the algorithm 2. If the conditions
of the environment are more complicated, the algorithm 1 may return better result. For
example ” Narrow passage” [17] case, the possible trajectory of this case is limited by
obstacles as very narrow chink. But in these case, the planner shall be equipped a different
kind of sampling strategy.

43

Wait time and turn# of Algorithm 2

40

30

25 |

B Waiting time
O Number of turn

OE:DDD

Robot #

Figure 7.3: Waiting time and turning number of Algorithm 2

7.2 Experiment Platform

Various experiment methods of autonomous mobile networked robots (given Section 2)
were tested before, but these method does not fulfill the scale and the accuracy and the
cost problems at once. This system adopt large-scale experiments of them and emulations
of environments.

7.2.1 Evaluation of the Experiment Platform

Scale

In this experiment, the most essential result is to accomplish the execution which
a hundred and ten emulated autonomous mobile networked robots run successful.
They communicate and cooperate each other and avoid possible collisions. And they
fulfill to reach to their destinations. These numbers are much larger than previous
researches.

There may exists problems which can not find in experiments with small number
of robots, for example the intersections or delays caused by huge network traffic.
These unexpected problems enable to be ready for experiment on real environment.
And the bugs of the applications also tend to be found.

Next, important outcome is the experiments executed in real time, though large scale
robots run. If the system executes more than hundreds robots, it should distribute

44

the network packets,

especially Map Manager is.

And if it try to execute more

than 700 (the number of limitation of PCs of StarBED), the applications should be
executed more than two processes on one PC.

Accuracy

The conditions of this experiment are emulated upon real environment, the mes-
sages from device driver are supported by Map Manager. Map Manager and robots
share these conditions, they are able to receive the hardware messages in real time.
In network emulation point, every robots communicate using real packets. These
communication conditions are limited by WLAN emulation, and this limitations
are depending on emulated parameters. Then the robots cannot transmit packets
if they are in the connection range upon the environment. And this system is also

running in real time.

Cost

This system especially saves costs on various points. At first these real autonomous
mobile networked robots which equip motors and PC and WLAN card and more
are expensive. If researchers try to experiment large scale robots, these cost ex-
pand huge. Next are the costs of the time. Some experiments on real environment

take much time to prepare the system environment.

And other view point, the

software simulators also execute much times longer than the running time of real
experiment. And if they implement their method on software simulators, they have
to create modules or codes depending on software simulators. These methods and
programming languages are many different kinds, and they have to do this with
not accustoming way. When they use the proposed system, they just run their

application on PCs.

Table 7.2.1 describes the

above results of comparison.

‘ Experiment platform ‘ Scale ‘ Accuracy ‘ Cost
Software simulators depending on | modeling | creat the modules or scenar-
performance of ios depending on each simu-
H/W lators, executing time
Real hardware more less then real (i.e) the cost of one real
10 robots is hundreds thousand
yen
Proposed platform currently 100 emulated | using testbed and integra-
tion

Table 7.1: Comparison Experiment platform

45

Chapter 8

Future Works

In this chapter, makes it clear that what accomplish to and what cannot realize, mentions
the works from now on.

8.1 Implementation of MANET protocols

A mobile ad hoc networks (MANET) is a collection of mobile nodes that can communicate
with one another without using any fixed networking infrastructure. It can be used in
tactical operations, rescue missions, national security or sensor networks and so on. Mobile
ad hoc networks consist of many kinds of devices that can autonomously self-organize
in networks. Recently, this technology has been used for robot coordination in fields.
In a dynamic robot networks equipped with MANET, some mechanisms for collision
avoidance are necessary. These robots can act as routers in the network and transfer the
information to each other. For example, N robots equipped with MANET can be assigned
different individual tasks. To fulfill their tasks, they have to move to different locations
and implement their missions, step-by-step. Based on this information, the trajectories
are pre-planned. And robots can also respond to the updated information each time by
new trajectories to ensure the robot motion is free of collision. Some routing protocols
have already been proposed, but hey either cannot be really collision-free or will incur
deadlocks. Therefore, we need to provide a deadlock-free collision avoidance method for
coordinating a dynamic robot network.

By equipping MANET protocols, the robots can predict larger range than current sys-
tem. The similar function can realize on current system, but the messages exchanged by
the robots are just forwarded. If robots create MANETS, It is easy to equip ” centralized’
motion-planning. The emulation of MANET protocols is not equipped in current system,
that is why cannot solve the problems between dummynet and MANET routing imple-
mentation. The dummynet applies the various configuration values between Layer 2 and
Layer 3, it makes a pipe and set ip address from and to, but MANET protocols check
messages Layer 2 by MAC address. Figure 8.1 describes this situation. This assumes all
of nodes to constructing MANET and connecting each other. If node A want to transmit
a data to node C, the packets are bound for node C through node B.

46

Node A Node C

Figure 8.1: The problem of MANET emulation

But the packets can be received directly by node C and node C receives the messages
twice. (see Figure 8.2).

Then this system needs some method to solve this problem.

Now there are temporal methods to fulfill applying MANET protocols. First is that
treat the messages Application Layer, the messages includes the address which want to
send and the application forward these messages. Figure 8.3 describes this situation.

But this cannot be said emulation, because there exists overhead which be caused when
transmit upper Layer 2.

Another method is that the application pre-computes the route to a destination. There-
after it applies the summation of the configuration value and sends messages directly.
Figure 8.4 describes this situation.

But this method also don’t care about the affection which cause when the nodes forward
messages. But if the configuration parameters include this affection, this method can have
reality.

47

[dummynet pipe

Node A Node B Node C
Application Application Application
1P 1P 1P
m m m
MAC MAC MAC
, Y
Physical v:@m_,ﬁm_ v:@mmm_
m m m m m Ethernet
v I I
Y] i

Figure 8.2: The problem of MANET emulation

8.2 Experiment Framework

This experiment platform supports various large-scale mobile networked nodes and enable
to tests the proposals of researchers. It currently supports only WLAN networks and
simple ad-hoc network, but the other various networks will be included in future.

If the number of nodes increases, it needs some integration functionalities, for example
time synchronization or clustering or load balance. The time synchronization especially
affects all of the conditions of this system. If the time difference between Map Manager
and Robots causes, it means that the time when robots receive the hardware messages
late or fast, this is critical. An experiment of large-scale nodes with hundreds or more
has to include some structure which solve these problems.

Finally the system has demands how it can use clearly and easily, then the emulated
objects should be defined to re-use simply and the system also has intelligible interfaces.

8.2.1 StarBED2

The proposed experiment platform aims to multipurpose platform supporting various
networks, this needs generalization to suit various conditions. StarBED2 (mentioned in
section 2) is one of the goal of these platform, it covers ubiquitous networks. Figure 8.5
describes a town emulation which is realized by StarBED2. Ubiquitous networks have
various aspects, for example network, IEEE802 family and wireless networks and sensor
networks, and telephone lines are used as access network for home networks. The figure

48

[dummynet pipe

Node A Node B Node C
Application Application Application
I \\ / A
, i b
! a -
IP IP| P
o —i I —
MAC MAC MAC
Physical v:,v\m_wm_ Physical
| | | ‘|| Ethernet
22— I)
v

Figure 8.3: Application forwards messages

49

shows the emulation of entire of a town. By advancing this research, we drive for realizing
StarBED2.

[dummynet pipe

Node A Node B Node C
Application Application Application
] 4
Ip 1P i
“ = T
MAC MAC MAC
Physical Physical Physical
| '| Ethernet
Yo]

Figure 8.4: Apply configurations at once

20

Network

Emulation

Home Networks (Real)

c = = & B I'I‘--I
7 Diqital AV - F—k \
_‘, Piane
- Telgghone -FAX-Plane ﬁ

Lmng =Environment Plane \ E)(ternal Connect|0n

lrtual Internet
> 4ulat|0h 0f \Iarmas

/I'u‘ledla Services

Emulatl gif e

Reqmnal Sgrwces

StarBED2 |

Figure 8.5: Town emulation by StarBED2

ol

Chapter 9

Conclusions

This research focus on two main themes, first is the experiment platform of large scale
autonomous mobile networked robots on unknown and dynamic environment. Second one
is the motion-planning algorithms of above robots.

In above conditions, the motion-planner needs especially speed, and I improve PRM
planner and propose new algorithms for executing our system. The planner is divided
two phases, first phase expand the roadmap in direction which are low density. This
roadmap expansion includes the time parameter and cover the configuration time space.
The second phases are connection which try to connect between the roadmap and the
destination. At that time proposed algorithm 1 tries to connect between only the mile-
stones in constant range and the destination. Another algorithm 2 tries to connect the
newly added milestones and the destination every step.

Next I proposed the experiment platform of above system. This method uses real PCs
and assumes them to be autonomous mobile networked robots. Various objects are em-
ulated depending on every modeling. The hardware of the robots is emulated by Map
Manager. Map Manager controls all of the hardware messages of robots. The WLAN
network emulation is realized by applying the configuration values to dummynet pipes,
and this configuration values are given by WLAN emulator QOMET. The integration of
entire system is managed by RUNE.

The experiment on this system enabled to accomplish more than a hundred numbers
of the robots. And on our way to test the system, some new aspects about the algorithm
can be found.

02

Acknowledgements

I would like to thank my superviosr, Associate Professor Yasuo Tan, for giving me various
suggestions. I would also like to thank Research Associate Dr. Razvan Beuran, Mr.
Junya Nakata for assists and useful discussion, and thank also Associate Ken-ichi Chinen,
Research Associate Dr. Chao Peng and StarBED members and Tan-laboratory.

23

Appendix A

Communication between Map
Manager and Robots

Map Manager emulates the hardware messages of robots, then a part of source code of
Map Manager and robots are described as follows :

A.1 Initialization of Map Manager

Following is a part of source code of initializing connections with robots and sending
setting parameters.

/* definitions */

struct robot_info robots[MAX_NODES]; /* structure of robots */

struct map_manager_message msg; /* message structure from Map Manager */
struct pollfd client [OPEN_MAX];

struct sockaddr_in cliaddr;

/* loop number of client times */

client[i] .fd = socket(AF_INET, SOCK_STREAM, O0);

bzero(&cliaddr, sizeof(cliaddr));

cliaddr.sin_family = AF_INET;

cliaddr.sin_port = htons(MAP_MANAGER_PORT) ;

inet_pton(AF_INET, robots[i].ipaddr, &cliaddr.sin_addr);
connect(client[i] .fd, (struct sockaddr *) &cliaddr, sizeof(cliaddr)));
client[i] .events = POLLRDNORM;

/* send the initial configurations to robots */
write(client[i].fd, é&msg, sizeof(msg));

o4

A.2 Initialization of Robots

Following is a part of source code of initializing connections with Map Manager and re-
ceiving setting parameters.

/* definitions */

struct pollfd map_manager[2];

struct map_manager_message msg; /* message structure from Map Manager */
int listenfd, mmlen;

struct sockaddr_in servaddr, mmaddr;

listenfd = socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof (servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl (INADDR_ANY);
servaddr.sin_port = htons(MAP_MANAGER_PORT) ;
bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));
listen(listenfd, LISTENQ);

map_manager [0] .fd = listenfd;
map_manager [0] .events = POLLRDNORM;

nready = poll(&map_manager[0], 1, INFTIM);

/* loop till connecting with Map Manager */

if (map_manager[0].revents & POLLRDNORM) <{
map_manager [1] .fd = accept(listenfd, (struct sockaddr *) &mmaddr, &mmlen);
map_manager [1] .events = POLLRDNORM;

/* receive the initial configurations from Map Manager */

nready = poll(&map_managr([1], 1, INFTIM);

if (map_manager[1].revents & (POLLRDNORM POLLERR)) —
read (map_manager[1] .fd, &msg, sizeof (msg));

95

Appendix B

Configure dummynet

dummynet simulates and enforces queue and bandwidth limitations, delays, packet losses,
and multipath effects on FreeBSD. These limitations are applied to IP Firewall. And the
method how to apply these on IP Firewall is given as follows :

B.1 Making a new pipe

Following is a part of an example to make a new pipe of dummynet. These codes set a
pipe from source address to destination address with pipe number.

fucntion_name(in4_addr #*src_addr, in4_addr *dst_addr, int pipe_nr)

int clen = 0;

ipfw_sn cmd[];

struct ip_fw *p;

/* apply src address */

cmd [clen] .opcode = 0_IP_SRC;
cmd[clen] .len = 2;

cmd[clen] .argl = 0;
((uint32_t *)cmd) [clen + 1]
clen += 2;

/* apply dst address */
cmd[clen] .opcode = 0_IP_DST;
cmd[clen] .len = 2;

cmd[clen] .argl = 0;
((uint32_t *)cmd) [clen + 1]
clen += 2;

/* set pipe with pipe number */
cmd [clen] .opcode = O_PIPE;

src_addr.word;

dst_addr.word;

o6

cmd[clen] .len = 2;

cmd[clen] .argl = pipe_nr;

((uint32_t *)cmd) [clen + 1] = O;

clen += 1;

p = (struct ip_fw *)malloc(sizeof (struct ip_fw) + clen * 4);
bzero(p, sizeof (struct ip_fw));

p—>act_ofs = clen -1;

p—>cmd_len clen + 1;

p—>rulenum = rulenum;

bcopy(cmd, &p->cmd, clen * 4);

getsockopt (s, IPPROTO_IP, IP_FW_ADD, p, sizeof(struct ip_fw));

B.2 Configure a pipe

Following is a part of an example to configure a pipe of dummynet. And the parameters
of bandwidth and delay are applied to the pipe suiting pipe number.

struct dn_pipe p;
bzero(&p, sizeof(p));
p.pipe_nr = pipe_nr;
p.bandwidth = bandwidth;

p.delay = delay;
setsockopt (s, IPPROTO_IP, IP_DUMMYNET_CONFIGURE, &p, sizeof(p));

B.3 Remove a pipe

Following is a part of an example to remove a pipe with pipe number pipe number of

dummynet.

struct dn_pipe p;

bzero(&p, sizeof (p));

p.pipe_nr = pipe_nr;

setsockopt (s, IPPROTO_IP, IP_FW_DEL, &p, sizeof(p));

57

Appendix C

Integration with RUNE

The proposed experiment platform uses RUNFE for the experiment integration, the inte-
gration process with RUNE is menthioned in this appendix.

Figure C.1 describes logical structure of RUNE. As it is mentioned in section 4.5,
"space” that emulates each experiment target can communicate through ”conduits” with-
out any extra operations. These are fulfilled by RUNE-read and RUNE-write (figure C.2).

The integration with RUNE is following :

Define the Spaces
"spaces” is divided into ”initialize” and ”iteration” and ”finalize”. RUNFE-read and
RUNE-write are call-back function which is called when RUNE manager inform
these function calling. These also should be defined.

Write the experiment definition file
The experiment definition file should be written. It describes the ”spaces” and
”conduits” in the experiment (an example is given folloing).

Compile and execute the system
RUNE master is compiled with the definition file and sends the instruction ”attach
process” to the RUNE manager executed on each node.

o8

The experiment definition file of RUNE

BGNSPACELIST
SPACE (map_manager, 172.16.3.1, map_manager.so.l)
SPACE(robotl, 172.16.3.2, robot.so.1)
SPACE(robot2, 172.16.3.3,robot.so.1)
ENDSPACELIST

BGNCONDUITLIST

CONDUIT (robotl, map_manager)
CONDUIT (robot2, map_manager)
CONDUIT (map_manager, robotl)
CONDUIT (map_manager, robot2)
CONDUIT (robotl, robot2)
CONDUIT (robot2, robotl)

ENDCONDUITLIST

29

Environment Space

Conduit

Node Space Node Space

Network Space

Figure C.1: Logical structure of RUNE

60

init

Initialize

eHHH%HEHH
step

v / read

-->

Process /
T ProcessO

, Operation

\
Process | v Reaq
p=--- Process] Operation
Read/Write
y Operation write
-=->
Process \

y //______

i Process?2
Read/Write Write |e---
Operation

Write
Operation

Iteration

Finalize

final

P

Finalize

Figure C.2: Logical structure of RUNE

61

Bibliography

1]

[10]

[11]
[12]

Chao Peng Coordination and Collision Avoiding in MANET. Japan Advanced In-
stitute of Science and Technology.

B.R. Donald. A search algorithm for motion planning with sixz degrees of freedom.
Artificial Intelligence, 31(3):295-353, 1987

D. Hsu, J.C. Latombe, and R. Motowani Path Planning in Fxpansive Configuration
Spaces. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 2719-2726,
1997

L. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars Probabilistic roadmaps
for path planning in high-dimensional configuration space. TEEE Transactions on
Robotics and Automation, 12(4):566-580, 1996.

RoboCup The Robot World Cup Soccer Games and Conferences.
http://www.robocup.org/

C.M. Clark, S.M. Rock, J.C. Latombe Dynamic Networks for Motion Planning in
Multi-Robot Space Systems.

D. Hsu, R. Kindel, J.C. Latombe, S.M. Rock Randomized Kinodynamic Motion
Planning with Moving Obstacles.

StarBED A Large Scale Experiment Network Environment. http://www.starbed.org/

L. Kavraki, J.C. Latombe, R. Motwani, and P.Raghavan. Randomized query pro-
cessing in robot path planning. In Proc. ACM Symposium on Theory of Computing,
pages 353-362, 1995.

Webots Fast Prototyping and Simulation of Mobile Robots.
http://www.cyberbotics.com

Stanford Aerospace Robotics Laboratory http://arl.stanford.edu

Chaimowicz, L., et al. Deploying Air-Ground Multi-Robot Teams in Urban Environ-
ments. Proc. of the 2005 International Workshop on Multi-Robot Systems, Wash-
ington DC, U.S.A, pp. 223-234. (March 2005)

62

[13]

[14]

[15]

[16]

[17]

[18]

K.Kant and S.Zucker. Toward efficient trajecotry planning: The path-velocity decom-
position. International Journal of Robotics Research, 5(39:72-89, 1986.

Taixiong Zheng, D.K. Liu, Ping Wang Priority based Dynamic Multiple Robot Path
Planning 2nd International Conference on Autonomous Robots and Agents December
13-15, 2004 Palmerston North, New Zealand

R. Beuran, L.T. Nguyen, K.T. Latt, J. Nakata, Y. Shinoda QOMET: A Versatile
WLAN Emulator IEEE International Conference on Advanced Information Net-
working and Applications (AINA-07), Niagara Falls, Ontario, Canada, May 21-23,
2007

Rizzo, L Dummynet FreeBSD network emulator.
http://info.iet.unipi.it/ luigi/ip_dummynet.

D.Hsu, T. Jiang, J. Reif and Z. Sun The Bridge Test for Sampling Narrow Pas-
sages with Probabilistic Roadmap Planners. Proceedings of the IEEE International
Conference on Robotics and Automation, Taipei, 2003.

J. Nakata, T. Miyachi, R. Beuran, K. Chinen, S. Uda, K. Masui, Y. Tan, Y. Shin-
oda StarBEDZ2: Large-scale, Realistic and Real-time Testbed for Ubiquitous Networks
TridentCom 2007, Orlando, Florida, U.S.A., May 21-23, 2007.

63

