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Estimation of fundamental frequency of reverberant speech by

utilizing complex cepstrum analysis

Masashi Unoki and Toshihiro Hosorogiya

School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan

E-mail: {unoki, t-hosoro}@jaist.ac.jp

Abstract This paper reports the comparative evaluations of twelve typical methods of estimating fun-

damental frequency (F0) over huge speech-sound datasets in artificial reverberant environments. They in-

volve several classic algorithms such as Cepstrum, AMDF, LPC, and modified autocorrelation algorithms.

Other methods involve a few modern instantaneous amplitude- and/or frequency-based algorithms, such as

TEMPO, IFHC, and PHIA. The comparative results revealed that the percentage correct rates and SNRs

of the estimated F0s were reduced drastically as reverberation time increased. They also demonstrated

that homomorphic (complex cepstrum) analysis and the concept of the source-filter model were relatively

effective for estimating F0 from reverberant speech. This paper thus proposes a new method of robustly and

accurately F0 estimating in reverberant environments, by utilizing the MTF concept and the source-filter

model on the complex cepstrum analysis. The MTF concept is used in this method to eliminate dominant

reverberant characteristics from observed reverberant speech. The source-filter model (liftering) is used

to extract source information from the processed cepstrum. Finally, F0s are estimated from them by using

the comb-filtering method. Additive-comparative evaluation was carried out on the proposed method with

other typical methods. The results demonstrated that it was better than the previously reported methods

in terms of robustness and providing accurate F0 estimates in reverberant environments.

Keywords: Fundamental frequency (F0), F0 estimation, reverberant speech, complex cepstrum analysis, MTF concept,

source-filter model

1. Introduction

The fundamental frequency (F0) as well as the
fundamental period (T0) of speech can be utilized
as significant features to represent the source infor-
mation (glottal waveform or vocal-fold vibrations)
of speech sound in various speech-signal processes.
These are in speech analysis/synthesis systems, auto-
matic speech recognition (ASR) systems, and speech
emphasis methods. Therefore, estimating the F0 of
target speech in real environments, which is the same
as extracting the F0 of noiseless speech, is a partic-
ularly important issue in these applications. This is
because accurate F0 information can be used to resolve
serious problems that occur in realistic speech-signal
processing.

It is well known that noise and reverberation smear
significant features of speech so that the recognition
rates of ASR systems are drastically reduced as the
SNR of noise increases and/or reverberation time in-
creases [1, 2, 3]. This is because accurately estimated

F0 can be used for spectrum normalization [4], noise
reduction [5], feature extraction [6], speech emphasis
[7, 8], and speech dereverberation [9] to improve the
ability of ASR systems. Hence, robust and accurate
estimates of F0s from target speech in real environ-
ments is the ultimate goal in this research field.

Many studies on extracting or estimating the F0

of target speech have been done in the literature on
speech signal processing, and many methods have
been proposed [10, 11, 12, 13] over the last half cen-
tury. The traditional extraction/estimation methods
can be divided into processing in the time and fre-
quency domains, or both domains. Most of these
have made use of the periodic features of speech
in the time domain (zero-cross [14, 15], periodgram
[16], peak-picking [14, 17], autocorrelation [14, 18],
AMDF [19], and maximum likelihood [20, 21]) or har-
monic features in the frequency domain (comb filtering
[22, 23, 24, 25], autocorrelation [26, 27], sub-harmonic
summation [28], and cepstrum [29, 34]).

The aim of all these methods has been to extract
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the periodicity or harmonicity of source information
from observed speech. However, this still seems to be
incompletely resolved because three main issues re-
main, i.e., (1) observability: the observed speech is an
emission sound passing through the mouth/nose so
that it is impossible to directly observe glottal vibra-
tions from it without eliminating the effects of the vo-
cal tract, (2) flexibility and irregularity: glottal vibra-
tions are not complete periodic signals and the range
of variations in the periods is relatively wide, and (3)
robustness: the observed speech signals are affected
by noise and reverberation so that significant features
for estimating F0 are also smeared.

Most studies have focused on the first two issues
so that they have implicitly assumed all speech sig-
nals are observed in clean environments or all ob-
servations are only noiseless speech sounds. Various
methods of estimating F0 have been proposed under
this assumption to solve the first issue by suppressing
the effects of filter characteristics (vocal tract), based
on the source-filter model, from the observed speech
sounds. For example, typical approaches based on
this idea have been homomorphic analysis (cepstrum)
methods [29, 30, 31, 32, 33, 34] and LPC-methods
[35, 36, 37, 38, 39]. A few examples of inverse filter-
ing methods are moving average with band-limitation
[40], Lag-windowing [41], SIFT [42], and compen-
sation by temporal continuity [43]. Center-clipping
and band-limitation [44, 45], and multi-windowing [46]
techniques have also been used in approaches based on
the autocorrelation function.

A few approaches to precisely estimating the F0

of target noiseless speech have been established (e.g.,
STRAIGHT-TEMPO [47] and YIN [48]) by compar-
ing electro-glottal-graph (EGG) information. The sta-
bility of the instantaneous frequency of speech has also
been used in the STRAIGHT-TEMPO method (re-
ferred to as “TEMPO” after this) to accurately esti-
mate F0s as significant features to resolve the first two
issues. This method plays an important role in con-
trolling “pitch” related features in STRAIGHT anal-
ysis/synthesis tools [49]. YIN has also been proposed
that combines autocorrelation functions and AMDF
to resolve these. It has been reported that both meth-
ods can be used to estimate the F0 of target noiseless
speech extremely precisely so that the first two issues
seem to be resolved. However, it has not yet been
clarified whether these methods can precisely estimate
F0 in real (noisy and/or reverberant) environments.
Hence, we need to investigate the last issue for realis-
tic applications.

It is generally known that the method of estimat-
ing F0 using periodic and/or harmonic features (e.g.,
autocorrelation functions and comb filtering) is rela-
tively robust against background noise, but the esti-
mated F0 is not relatively accurate [12, 50, 51, 52]. It
has also been reported that the comb-filtering-based
method is more robust against background noise than
the autocorrelation-based one [52, 53]. The cepstrum-

based method is not as robust against background
noise as either of these because it is composed of ho-
momorphic analysis so that noise components are not
clearly separated in the quefrency domain [52, 53].

The time-frequency representation of speech ob-
tained by time-frequency analysis can also ade-
quately represent the periodic/harmonic components
of speech [54]. The instantaneous amplitude of speech
signals has fine harmonic features that are robust
against background noise so that comb-filtering of
instantaneous amplitude has been proposed [59, 60]
to construct a sound segregation model. The in-
stantaneous frequency of speech has also been used
to accurately estimate F0s [55] but their stability as
used in TEMPO is sensitive to noise. More robust
methods using instantaneous amplitude and frequency
have been proposed by using post-processing (dy-
namic programming) [56] and bandwidth equations re-
lated to instantaneous amplitude and frequency with
harmonicity [50, 51, 57, 58]. Other robust techniques
using instantaneous amplitude and frequency-related
approaches have been proposed by using periodicity
and harmonicity [52]. It has been reported that these
are more robust than TEMPO and can precisely esti-
mate the F0 in noisy environments.

All these methods have focused on noiseless to
noise conditions to estimate sufficiently accurate F0s
of target speech. Thus, methods using instantaneous
amplitude and frequency or those with robust features
against noise such as periodicity and harmonicity have
been regarded as accurately being able to estimate F0s
from noisy speech. The last issue seems to be have
been solved at this time; however, there have been no
studies on robustness in reverberant environments.

It can easily be predicted that no typical methods
will work as well and their percentage correct rates for
F0s are reduced drastically as reverberation time in-
creases. If our prediction is correct, the last issue has
not yet been completely solved and needs to be consid-
ered in reverberant environments and in noisy rever-
berant environments. We evaluate traditional meth-
ods of estimating F0 in terms of robustness and ac-
curacy in reverberant environments in this paper to
investigate this issue. We then propose a method of
estimating F0 from reverberant speech by taking the
characteristics of reverberation into consideration.

This paper is organized as follows. Section 2 de-
scribes the mathematical setup and then defines the
problem of estimating F0 from reverberant speech. We
evaluate most typical methods of estimating F0 in re-
verberant environments in Section 3 and investigate
what the best model is. Section 4 introduces complex
cepstrum analysis and investigates what the signifi-
cant features for robust estimates are. We then intro-
duce the model concept (complex cepstrum analysis,
the modulation transfer function (MTF) concept, and
source-filter model (liftering)). We finally propose a
method of estimating F0 in reverberant environments.
We evaluate our proposed method in Section 5 by com-



3

paring it with other methods using the same simula-
tions. Section 6 gives our conclusions and perspectives
regarding further work.

2. Mathematical setup

2.1 Signal representation and STFT

A time-varying harmonic signal, x(t), can be rep-
resented as the analytic signal:

x(t) =
∑
k∈K

ak(t) exp(jωk(t)t + θk(t)), (1)

where ak(t) is the instantaneous amplitude and θk(t)
is the phase. Here, k denotes the harmonic index and
K is the number of harmonics so that ωk(t) can be
expressed as 2πkF0(t). Fundamental frequency, F0(t),
is an instantaneous frequency so that this should be
extracted from x(t) using instantaneous cues.

The short-term Fourier transform (STFT) is usu-
ally used to analyze x(t) in any given short term seg-
ment (windowing processing): [61]

X(ω, τ) =
∫

x(t)w(t − τ) exp(−jωt)dt, (2)

= A(ω, τ) exp(j arg φ(ω, τ)), (3)
A(ω, τ) = |X(ω, τ)|, (4)

φ(ω, τ) = arctan
(�[X(ω, τ)]
�[X(ω, τ)]

)
, (5)

where w(t) is a window function and a short-term sig-
nal, x(t, τ), is defined as w(t−τ)x(t) for mathematical
convenience. A(ω, τ) is the amplitude spectrum and
φ(ω, τ) is the phase spectrum of X(ω, τ).

The task of extracting/estimating the fundamen-
tal frequency F0(t) in this formulation is, therefore,
to estimate the F0 in each short-term segment using
the harmonicity of X(ω, τ) or to estimate segmental
T0 = 1/F0 by using the periodicity of x(t, τ). Thus,
traditional methods based on waveform processing
(e.g., zero-cross [14, 15], periodgram [16], peak-picking
[14, 17], autocorrelation [14, 18], AMDF [19], maxi-
mum likelihood [20, 21], STFT-based processes, and
sub-harmonic summation (SHS) [28]) estimate F0(t)
from x(t, τ) or X(ω, τ) by using periodicity or har-
monicity. These are listed in the first two row in Table
1.

2.2 Source-filter model

The source-filter model is a well-known concept
to separately represent glottal (source information)
and vocal-tract (filter information) characteristics for
speech production (or speech synthesis). Based on this
concept, the observed clean speech signal x(t) can be
represented as

x(t) = e(t) ∗ vτ (t), (6)

Amplitude cepstrum

quefrencyCepstrum component 
of filter characteristics

(vocal tract) Cepstrum component of 
source (glottal vibration)

Liftering

CA(q,τ)

l(q)

Csrc(q,τ)

Cflt(q,τ)

Csrc(q,τ)

Fig. 1 Separated representations of source (glottal)
and filter (vocal tract) characteristics in quefrency do-
main.

where e(t) is the source signal related to glottal in-
formation and vτ (t) is the impulse response of the fil-
ter related to the vocal-tract at time τ . “∗” denotes
convolution. Note that the emission effect has been
omitted from this formulation. Thus, Eq. (2) can also
be represented as

X(ω, τ) = S(ω, τ) · V (ω, τ), (7)

where S(ω, τ) is the STFT of s(t, τ) = w(t − τ)e(t)
and V (ω, τ) is that of v(t, τ) = vτ (t). V (ω, τ) rep-
resents filter characteristics so that the separation ef-
fect of V (ω, τ) is usually used to estimate F0(t) from
X(ω, τ). Some traditional methods of estimation are
inverse filtering V −1(ω, τ) [42], whitening of X(ω, τ)
by |V (ω, τ)| (or lag windowing) [41], and subtraction
on logarithmic processing log X(ω, τ) = log S(ω, τ) +
log V (ω, τ) [44, 45]. These are listed in the second row
in Table 1.

The linear prediction (LP) method is also one of
the most powerful techniques of analyzing speech sig-
nals [35]. LP coefficients have filter characteristics
(all-pole type) and LP residue has source informa-
tion. The LP coefficients of x(t, τ) can thus be used
as inverse filtering V −1(ω, τ) in the source-filter model
[36, 37, 42]. LP residue can also be used as a short-
term signal s(t, τ) [39]. Waveform processing and
AMDF have also been incorporated [38]. These are
listed in the third row in Table 1.

2.3 Cepstrum representation

Cepstrum is also a well-known method of homo-
morphic analysis. The complex cepstrum of X(ω, τ)
in Eq. (2) can be represented as

C(q, τ) = F−1 [log X(ω, τ)]
= F−1 [log {|X(ω, τ)| exp(jφ(ω, τ))}]
= F−1

[
log A(ω, τ)

]
+ F−1

[
jφ(ω, τ)

]
= CA(q, τ) + Cφ(q, τ), (8)
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Table 1 Characteristics of typical methods of estimating F0.

Algorithm domain periodicity harmonicity filter shape Features

Waveform processing
(1) zero-cross [14, 15] time o x x x(t, τ)
(2) peak detection [14, 17] time o x x x(t, τ)
(3) autocorrelation [18] time o x x x(t, τ)
(4) maximum likelihood [20, 21] time o x x x(t, τ)
(5) ACMWL [46] time o x x x(t, τ)

AMDF [19] time o x x x(t, τ)
YIN [48] time o x o s(t, τ)

STFT
(1) auto-correlation [44, 45, 26] freq. x o x log |X(ω, τ)|
(2) Lag windowing [41] freq. x o o |S(ω, τ)|
(3) Comb filtering method [22, 23, 25] freq. x o x |S(ω, τ)|

SHS [28] freq. x o x log |X(ω, τ)|
LPC

(1) Residue [39] time o x o s(t, τ)
(2) SIFT [42] freq. x o o |S(ω, τ)|

Cepstrum
(1) Noll’s method [29, 31] quef. o x o CA(q, τ)
(2) Clipstrum [32] quef. o x o CA(q, τ)
(3) Improved cepstrum [40] quef. o x o CA(q, τ)
(4) liftering method (this paper) quef. x o o CS(ω, τ)|

F0 filtering [64] time o o x s(t, τ)

IF-based method Instant. freq. (IF)
(1) TEMPO [47] freq. x x x Fixed point analysis
(2) IFHC [50, 51] freq. x o x Harmonicity of IFs
(3) DASH [57, 58] freq. x o x Degree of dominance

IA-based method Instant. amp. (IA)
(1) Abe et al .’s method [56] freq. o o x post-processing (DP)
(2) PHIA [52] time/freq. o o x Dempster’s law

Proposed method time/freq./quef. o o o s(t, τ)

where CA(q, τ) is the amplitude cepstrum and Cφ(q, τ)
is the phase cepstrum of C(q, τ). q denotes quefrency
(time domain). The complex cepstrum of X(ω, τ) in
Eq. (7) can also be represented as

C(q, τ) = F−1 [log S(ω, τ)] + F−1 [log V (ω, τ)]
= Csrc(q, τ) + Cflt(q, τ), (9)

where Csrc(q, τ) is the complex cepstrum of source
S(ω, τ) and Cflt(q, τ) is that of filter V (ω, τ).

The amplitude cepstrum, CA(q, τ), is generally
used in the traditional method so that CA,src(q, τ) and
CA,flt(q, τ) are separately used for estimating F0(t)
from CA(q, τ). Figure 1 outlines the concept underly-
ing the source-filter model in the quefrency domain.
CA,flt(q, τ) represents the dominant spectrum enve-
lope of X(ω, τ) (lower Fourier component in quefrency
domain) so that they are compactly located in the
lower quefrency. In contrast, CA,src(q, τ) represents
dominant fine structure of X(ω, τ) so that they are
compactly located in the higher quefrency domain.
Therefore, the task of estimating F0 with this concept
is to find the dominant quefrency from CA,src(q, τ) or
to detect periodicity or harmonicity from CA,src(q, τ)
by eliminating CA,flt(q, τ) from CA(q, τ). The last
processing is referred to as “liftering”. Typical ap-
proaches are Noll’s original method [29, 31], his clip-
strum method [32], and Kato and Miwa’s improved

method [40]. These are listed in the fourth row in
Table 1.

2.4 Problem with estimating F0

The task of estimating F0 in reverberant environ-
ments is to extract F0(t) from reverberant speech sig-
nal y(t) or respective STFT Y (ω, τ):

y(t) = x(t) ∗ h(t) = e(t) ∗ vτ (t) ∗ h(t), (10)
Y (ω, τ) = X(ω, τ)H(ω, τ)

= S(ω, τ)V (ω, τ)H(ω, τ), (11)

where h(t) is the impulse response and H(ω, τ) is the
STFT of h(t) in room acoustics (reverberation). Note
that, H(ω, τ) is actually required to present all charac-
teristics (H(ω) = H(ω, τ)) by using long-term Fourier
transform (LTFT) so that the length of analysis (at
each τ) should be over the reverberation time.

The task of estimating F0 in reverberant environ-
ments is thus to select periodicity and harmonicity
from the convolved source signal, e(t), while that in
noisy environments is to select them from the noisy
(additive) source signal, e(t). If h(t) is simplified echo
or minimum phase impulse response, the cepstrum-
based method can be used to adequately estimate F0

from the reverberant speech signal, y(t), because ho-
momorphic analysis is a powerful tool for dealing with
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simplified echos. Realistic impulse responses in room
acoustics generally have non-minimum phase charac-
teristics and we therefore predicted that estimating F0

robustly and accurately would be more difficult than
in noisy environments.

3. Evaluation of typical methods

3.1 Typical methods of estimating F0

Many methods of estimating F0 have been pro-
posed in the literature on speech signal process-
ing, as described in Section 1. The most com-
prehensive review remains that of Hess (1983) [11]
and more recent reviews are those of Suzuki (1997),
Hess (1992), and Cheveigné and Kawahara (2001)
[10, 12, 13]. A few examples of recent approaches are
instantaneous-amplitude [56, 59, 60], instantaneous-
frequency [50, 51, 57, 58], fundamental wave-filtering
[64], and wavelet methods [65], as well as auditory
models [66, 67]. There are also comparative eval-
uations in Atake et al.’s (2000), Ishimoto et al.’s
(2001, 2005), and Nakatani and Irino (2002, 2004)
[12, 50, 51, 52, 13, 57, 58, 53].

We evaluated twelve typical methods to investigate
how robust estimates of F0 were in reverberant envi-
ronments:

1. ACMWL (AutoCorrelation through Multiple
Window-Length) [46]

2. AMDF (Averaged Magnitude Difference Func-
tion) [19]

3. STFT-ACorrLog (AutoCorrelation of Log-
amplitude spectrum on STFT) [44, 45, 26]

4. STFT-ACorrLag (Lag-windowing of amplitude
spectrum on STFT) [41]

5. STFT-Comb (Comb filtering of amplitude spec-
trum on STFT) [22, 23, 25]

6. SHS (Sub-Harmonic Summation) [28]

7. Cepstrum (Improved cepstrum) [29, 31]

8. LPC-residue (autocorrelation on LPC residue)
[39]

9. VFWFF (Voice Fundamental Wave Filtering
(Feed forward type)) [64]

10. TEMPO [47]

11. IFHC (Instantaneous Frequency of Harmonic
Components) [50, 51]

12. PHIA (Periodicity/Harmonicity using Instanta-
neous Amplitude) [52]

All these methods are listed in Table 1. Although
other methods have been proposed, we choose these
twelve because they are commonly used in compara-
tive evaluations and the others are just modifications
or heavy revisions of them.

3.2 Sound dataset and evaluation measures

The sound dataset we used in this evaluation was
the speech database of simultaneous recordings of
speech and EGG by Atake et al. [50, 51]. This dataset
consisted of 30 short Japanese sentences uttered by 14
males and 14 females with voiced-unvoiced labels (to-
tal of 840 utterances, total duration of 40 min, sam-
pling frequency of 16 kHz, and quantization of 16-
bits).

The reverberant speech sentences we used were cre-
ated by convolving the original signals, x(t)s, with the
following reverberant impulse responses, h(t)s, as a
function of the reverberation time.

h(t) = a exp
(−6.9t

TR

)
n(t), (12)

a =

[
1
/∫ T

0

exp
(−13.8t

TR

)
dt

]1/2

, (13)

where a is a constant gain factor as the normalized
power of h(t), TR is reverberation time, and n(t)
is white noise. This is a formulation for the im-
pulse response of artificial reverberation and has non-
minimum phase components [62, 63]. Six reverbera-
tion conditions (TR = 0.0, 0.1, 0.3, 0.5, 1.0, and 2.0 s)
were used in this study. There were a total of 5, 040
stimuli.

Fine F0 error and gross F0 error have been used as
measures for some comparative evaluations in noisy
environments [12, 50, 52, 58], These have been con-
centrated into error analysis. Since we concentrated
on evaluating robustness and the accuracy of F0 es-
timates, we used two similar measures for evaluation
but not the same measures. The first was the percent
correct rate (expressed as %) and the second was SNR
(in dB).

Correct rateE =
NF0,Est(E)

NF0,Ref

× 100, (14)

SNR = 20 log10

∫
(F0,Ref(t) − F0,Est(t))2dt∫

F0,Ref(t)2dt
, (15)

where F0,Ref(t) and F0,Est(t) are reference (correct) F0

and estimated F0. NF0,Est(E) is the size of the correct
region that satisfies

|F0,Ref(t) − F0,Est(t))|
F0,Ref(t)

≤ E, (%)

within the voiced section (t) where E is the error mar-
gin (%). NF0,Ref is the size of region F0,Ref(t) in the
voiced section. In this paper, the F0 estimated by
TEMPO from the EGG signal is used as the correct
F0 (reference F0, F0,Ref(t)). F0,Est(t) was used to es-
timate F0 with the twelve methods from reverberant
(or noiseless) speech signals. Two values for E (er-
ror margins of 5% and 10%) were used in the percent
correct rate.
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Since gross F0 error is the ratio of the number of
frames giving “incorrect” F0 values to the total num-
ber of frames, the percent correct rate indicates ap-
proximately gross F0 error. Since fine F0 error is the
normalized room mean square error between F0,Ref(t)
and F0,Est(t), SNR indicates a similar measure in dB.

3.3 Results

Figure 2 plots the results of comparative evalua-
tions for the twelve typical methods of estimating F0

from reverberant speech as a function of the reverber-
ation time. The left panels (a), (c), and (e) plot the
results for the first six methods and the right pan-
els (b), (d), and (f) plot them for the last six. The
top panel plots the percent correct rates (expressed
as percentages) for F0 estimates within an error mar-
gin of 5% and the middle panel plots these within
an error margin of 10%. The bottom panel plots the
SNRs. The correct rates and SNRs of all 12 meth-
ods are drastically reduced as the reverberation time
increases. The correct rates within the 5% error mar-
gin for all methods were less than 50% and the SNRs
were less than about 15 dB, especially when reverber-
ation time TR was 2.0 s. Moreover, the correct rates
within the 10% error margin as an approximate eval-
uation were also less than 70%. We hence concluded
that none of these methods worked as well as robust
and accurate F0 estimates and they had drawbacks in
estimating F0 from reverberant speech.

However, we found a few clues in this evaluation
for improving these methods. We can see from Fig.
2 that the cepstrum method is the most accurate ex-
cluding the clean condition (TR = 0.0). Cepstrum
analysis is homomorphic and this can deal with con-
volution processing as additive (subtractive) process-
ing. Although the impulse responses we used in eval-
uations were not minimum-phase characteristics, the
cepstrum method seemed to reduce the effect of re-
verberation for estimating F0 since this can treat a
direct sound and a reflected sound as the same signal.
Therefore, the cepstrum method has the possibility of
estimating F0 from reverberant speech if it is not af-
fected too much by reverberation. The comb-filtering
method is slightly robust a reverberation as we can
see from Figs. 2(c) and (e). Maximization of matched
harmonicity may have the effect of tracking stationary
fluctuations of harmonics that are not often affected
by reverberation.

4. Proposed method

4.1 Complex cepstrum analysis

Let us overview the results in Subsection 3.3 by
reconsidering the complex cepstrum representation of
the reverberant speech y(t). From Eqs. (9)-(11), the
complex cepstrum of y(t) can be represented as

CY (q, τ) = CX(q, τ) + CH(q, τ)

= Csrc(q, τ) + Cflt(q, τ) + CH(q, τ),
(16)

where CH(q, τ) is the complex cepstrum of the rever-
berant impulse response, h(t). These cepstra can also
be represented as all amplitude and phase cepstra (de-
noted by subscripts “A” and “φ”).

The complex cepstrum analysis, on the other
hand, is usually used to separate minimum and non-
minimum (all-pass) phase characteristics. The com-
plex cepstrum, C(q, τ), can also be separately repre-
sented as

C(q, τ) = Cmin(ω, τ) + Call(ω, τ)
= CA,min(q, τ) + Cφ,min(q, τ)

+CA,all(q, τ) + Cφ,all(q, τ), (17)

where the subscripts “min” and “all” indicate mini-
mum and non-minimum (all-pass) phase characteris-
tics. Figure 3 is a schematic of the complex cepstrum.
Here, as respective spectra can be represented as

X(ω, τ) = Xmin(ω, τ) · Xall(ω, τ)
= |Xmin(ω, τ)| exp(jφmin(ω, τ))

×|Xall(ω, τ)| exp(jφall(ω, τ)),(18)

the amplitude spectrum |Xall(ω, τ)| = 1 and
CA,all(q, τ) = 0. Figure 4 plots the transform rela-
tions between short-term waveforms and the complex
cepstrum via the complex spectrum.

Hence, a complete representation of CY (q, τ) can
be separately represented as

CY,A,min(q, τ) + CY,φ,min(q, τ) + CY,φ,all(q, τ)
= Csrc,A,min(q, τ) + Csrc,φ,min(q, τ) + Csrc,φ,all(q, τ)

+Cflt,A,min(q, τ) + Cflt,φ,min(q, τ) + Cflt,φ,all(q, τ)
+CH,A,min(q, τ) + CH,φ,min(q, τ) + CH,φ,all(q, τ).

(19)

Note that the amplitude cepstrum of all-pass phase
characteristics have been omitted from this equation.

According to Eq. (16), an optimal F0 estimate is
only used to extract Csrc(q, τ) from CY (q, τ) to deal
with the periodicity/harmonicity of the source infor-
mation as a filter and the reverberation characteris-
tics are eliminated. It is too difficult only to deal with
Csrc(q, τ) in this task of estimation, without measur-
ing h(t) or CH(q, τ). In addition, long-term CH(q, τ)
(on LTFT), in which the length of analysis is over
the reverberation time, is needed to accurately extract
Csrc(q, τ).

We did a preliminary investigation into which com-
ponent, CH,min(q, τ) or CH,all(q, τ), affected dealing
with Csrc(q, τ) for estimating F0, using Eq. (19). Fig-
ure 5 shows the process for estimating one of the re-
verberant speech signals (/Tokushima-To-Ieba-Awa-
Odori-Ga-Yuumei-Desu/, female speaker, reverbera-
tion time TR of 2.0 s) we used in the evaluations.
Clean speech signals (x(t) and reverberant y(t)) are
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Fig. 2 Estimation results: (a)-(b) percent correct rate within error margin of 5% and (c)-(d) SNR (s: original, n:
error between original and estimated F0) of F0 estimates from reverberant speech using twelve typical methods as
function of reverberation time, TR.
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x(t, τ) = xmin(t, τ) ∗ xall(t, τ)
(Periodic) (Minimum-Phase (All-Pass

Component) Component)

(Time domain)

⇓ F ⇑ F−1

X(ω, τ) = Xmin(ω, τ) × Xall(ω, τ)
(Complex) (Complex) (Complex)

|| || ||
|X(ω, τ)| = |Xmin(ω, τ)| × |Xall(ω, τ)|
(Real) (Real) (Real)

× × ×
ejφ(ω,τ) = ejφmin(ω,τ) × ejφall(ω,τ)

(Complex) (Complex) (Complex)

(Frequency domain)

⇓ log ⇑ exp

log X(ω, τ) = log Xmin(ω, τ) + log Xall(ω, τ)
(Complex) (Complex) (Complex)

|| || ||
log |X(ω, τ)| = log |Xmin(ω, τ)| + log |Xall(ω, τ)|

(Real) (Real) (Real)
+ + +

jφ(ω, τ) = jφmin(ω, τ) + jφall(ω, τ)
(Imaginary) (Imaginary) (Imaginary)

(Frequency domain)

⇓ F−1 ⇑ F
C(ω, τ) = Cmin(ω, τ) + Call(ω, τ)

(Asymmetric) (Asymmetric) (Asymmetric)
|| || ||

CA(ω, τ) = CA,min(ω, τ) + CA,all(ω, τ)
(Even func.) (Even func.) (Even func.)

+ + +
Cφ(ω, τ) = Cφ,min(ω, τ) + Cφ,all(ω, τ)

(Odd func.) (Odd func.) (Odd func.)

(Quefrency (time) domain)

Fig. 3 Transform relations between waveform and
complex cepstrum via complex spectrum. F means
Fourier transform and F−1 means inverse Fourier
transforms.

.

shown in Figs. 5(a) and (b). The reference F0

(F0,Ref(t) by TEMPO from the EGG signal) and the
F0 (F0,Est(t)) estimated by the cepstrum method from
y(t) are indicated in Fig. 5(c) by the dashed and solid
lines. As can be seen, the estimated F0 was not close
to the reference. This method, however, can accu-
rately estimate F0 from y(t) by eliminating the effect
of h(t) from y(t) on the complex cepstrum in the long-
term Fourier transform (LTFT), as plotted in Fig.
5(d). At the same time, two comparative F0s were
obtained as plotted in Figs. 5(e) and (f) by estimat-
ing F0 from y(t) by eliminating minimum phase or the
all-pass phase component from y(t).

The all-pass phase component of the reverberant
impulse response h(t) we used seems to have a domi-
nant effect from these comparisons on robust and ac-
curate F0 estimates. Although the same comparisons
for all the other stimuli are not presented in this paper,
the same trends were observed. Hence, we concluded
that eliminating the all-pass phase characteristics of
h(t) would enable effective estimates of F0 from rever-
berant speech y(t). In addition, the cepstrum method

Complex cepstrum Minimum phase All-pass phase

Amplitude 
 cepstrum

Phase 
 cepstrum

= +

= +

+=

+ +

= ==

+

q q q

qqq

q q q

Cφ,all(q,τ)Cφ,min(q,τ)Cφ(q,τ)

CA,min(q,τ) CA,all(q,τ)CA(q,τ)

Cmin(q,τ) Call(q,τ)C(q,τ)

Fig. 4 Schematic of complex cepstrum relations: am-
plitude/phase cepstrum and minimum-phase/allpass-
phase cepstrum.

with the all-pass component eliminated raises the pos-
sibility of achieving robust and accurate estimates of
F0 since we know homomorphic analysis can easily
deal with minimum phase characteristics such as sim-
plified echos.

4.2 Estimates of h(t) based on MTF concept

The MTF concept was proposed by Houtgast and
Steeneken [63] to account for the relation between the
transfer function of frequency in an enclosure in terms
of the envelopes of input and output signals (x(t) and
y(t)), and characteristics of the enclosure such as re-
verberation. This concept was introduced as a mea-
sure in room acoustics to assess what effect enclosure
had on the intelligibility of speech [63]. The complex
modulation transfer function, m(ω), is defined as

m(ω) =

∫∞
0 h(t)2 exp(jωt)dt∫∞

0 h(t)2dt
. (20)

This means the Fourier transform of the squared im-
pulse response is divided by its total energy.

When reverberant impulse response h(t) as defined
in Eq. (12) is substituted into the equation above, the
MTF, m(ω), can be obtained as

m(ω) = |m(ω)| =

[
1 +

(
ω

TR

13.8

)2
]−1/2

. (21)

This means that CH,A(q, τ) can be obtained from
log |m(ω)| with the power factor on the LTFT. There-
fore, if TR can be known without measuring h(t), am-



9

−2

−1

0

1

2
x 10

4

x(
t)

(a)

−2

−1

0

1

2
x 10

4

y(
t)

(b)

100

200

300

400

500

F
0(

t)
 (

H
z)

(c)

100

200

300

400

500

F
0(

t)
 (

H
z)

(d)

100

200

300

400

500

F
0(

t)
 (

H
z)

(e)

0 0.5 1 1.5 2 2.5 3

100

200

300

400

500

Time (s)

F
0(

t)
 (

H
z)

(f)

Fig. 5 Example: (a) original speech x(t), (b) rever-
berant speech y(t) (reverberation time of 2.0 s), (c)
reference F0 using TEMPO from EGG of x(t) indi-
cated by dashed-line and the estimated F0 using cep-
strum method from y(t) indicated by solid line, (d)
estimated F0 from the dereverbed y(t) using h−1(t),
(e) F̂0 from y(t) eliminated by minimum phase char-
acteristics, and (f) F̂0 from y(t) eliminated by all-pass
phase characteristics.

plitude cepstrum CH,A(q, τ) can be predicted by uti-
lizing the MTF concept. The temporal envelope of the
reverberant impulse response, a exp(−6.9t/TR), can
be also predicted with them.

MTF-based speech dereverberation methods, on
the other hand, have been proposed by the present
authors [68, 69]. A method of obtaining TR estimates
from reverberant speech y(t) have also been proposed
for blind-speech dereverberation. Fortunately, the
method of obtaining TR estimates can be applied to
predicting CH,A(q, τ) as well as the temporal envelope
of h(t) by using:

T̂R = max

(
arg min

TR,min≤TR≤TR,max

∫ T

0

∣∣min
(
êx,TR(t)2, 0

)∣∣ dt

)
,

(22)

where T is the signal duration and êx,TR(t)2 is the
set of candidates for the restored power envelope via
inverse MTF [68] as a function of TR. Note that
the operation of “max(arg min{·})” means the max-
imum argument of TR needs to be determined from a
timing point where the negative area of êx,TR(t)2 ap-
proximately equals zero or a particular minimum area.
Here, TR,min and TR,max are the lower and upper lim-
ited regions of TR [68, 69].

According to Eqs. (12) and (22), h(t) can be es-
timated by utilizing â exp(−6.9t/T̂R) with simulated
white noise n̂(t). This is referred to as ĥ(t). In this
case, long-term CH(q, τ) can be obtained from ĥ(t).
Although this does not correspond to the original h(t)
we used in the evaluation, long-term amplitude cep-
strum CH,A(q, τ) can only be matched to the origi-
nal. Although it is difficult to obtain a complete value
with regard to phase cepstrum CH,φ(q, τ), long-term
CH,φ,all(q, τ) can be estimated from them by using
Eqs. (17) and (19). As shown in Sec. 4.1, using
estimated CH,φ,all(q, τ) from ĥ(t) to eliminate the all-
pass phase component from reverberant speech y(t) on
the LTFT basis should be done to estimating F0. Al-
though the estimated CH,A,min(q, τ) can also be can-
celed out in Eq. (19) on LTFT, the elimination of
minimum-phase characteristics in Eq. (19) on LTFT
is not as effective for eliminating all-pass phase char-
acteristics so that this is not used in this paper. Short-
term CH,A,min(q, τ) and CH,φ,min(q, τ) to be canceled
out in Eq. (19) on STFT will be considered in the
next section.

4.3 Liftering on complex cepstrum

CH,φ,all(q, τ) is canceled out in Eq. (19) on LTFT
as explained in the previous section, so that the re-
maining terms are Cflt(q, τ) and CH,min(q, τ) to ex-
tract Csrc(q, τ). Complex cepstrum analysis and the
source-filter model are used to cancel the remaining
terms in Eq. (19) on STFT to take the best advan-
tage of homomorphic processing.

There is a Hilbert transform relationship between
CA,min(q, τ) and Cφ,min(q, τ), and CH,φ,min(q, τ) has
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the same characteristics in the positive quefrency do-
main based on the minimum phase characteristics.
However, short-term CH,A,min(q, τ) and CH,φ,min(q, τ)
are not the same as the long-term versions when the
length of STFT analysis is shorter than the reverbera-
tion time. However, amplitude cepstrum CH,min(q, τ)
in the lower quefrency parts is generally larger than
those in the higher parts and this attenuates exponen-
tially as the quefrency increases. Therefore, the mini-
mum phase characteristics, CH,min(q, τ), are assumed
to concentrate on lower quefrency parts.

The cepstrum components of the source character-
istics are separately concentrated on the higher que-
frency parts and those of filter are separately concen-
trated on the lower based on the advantage of the
source-filter model, as shown in Fig. 1. Therefore, if
a component on the low quefrency part can only be
removed by liftering, the filter characteristics as well
as the dominant components of the minimum phase
characteristics of reverberation can be canceled out in
Eq. (19). Thus, the following lifter, l(q), is used in
this paper to cancel them out in Eq. (19).

l(q) =
{

0, q ≤ qlif

1, q > qlif
(23)

where qlif = 1.25 ms. This means the upper limited
estimated F0 is 800 Hz.

4.4 Proposed method of estimating F0

The algorithm for estimating F0 based on complex
cepstrum analysis, the MTF concept, and the source-
filter model are explained in Fig. 6. This method is
composed of three main processes: (1) estimating the
MTF-based reverberation impulse responses and elim-
inating them from reverberant speech, (2) extracting
Xsrc(ω, τ) from the processed reverberant speech by
using liftering on the complex cepstrum based on the
source-filter model, and (3) estimating F0 from them
by using a final decision block.

Comb filtering was employed in the final two blocks
in Fig. 6. As these are commonly used in clas-
sical methods of estimation, such as comb filtering
and autocorrelation functions, they can be replaced
by the autocorrelation function. In addition, since
the proposed method treats a complex cepstrum, the
restored short-term waveform s(t, τ) from Csrc(q, τ)
can be used to estimate F0 with the autocorrelation
function and/or AMDF. The aim of this paper was to
propose a model concept for robustly estimating F0

in reverberant environments. Therefore, these kinds
of considerations with regard to the modification of
processing are beyond the scope of this paper.

5. Evaluation of the proposed method

5.1 Method

We evaluated the proposed method with (la-
beled “Proposed(Est)”) and without (labeled “Pro-

Liftering based on 
source-filter model

F0 estimation

FFT

y(t)Reverberant speech

Long-term Fourier
 Transform (LTFT)

TR estimation

Complex cepstrum
  analysis (CCA)

Y(ω)

CY(q)

Estimation of MTF
 based imp. response

TR

Elimination CH,φ,all(q)
 from CY(q)

Inversed LTFT

Sort-term Fourier 
 Transform (STFT)

LTFT & CCA

CCA

CH(q)

Comb filtering

Fundamental frequency

F0(t)

y(t)

l(q)

Csrc(q,t)

logXsrc(ω,t)

Fig. 6 Algorithm for proposed method.

posed(Org)”) TR estimates by using the same proce-
dure and sound dataset described in Section 3. With
and without comparisons of the proposed method
were done to find how accurate the TR estimates
were. We compared them with TEMPO, the cepstrum
method, and a modified complex cepstrum method
based on the source-filter model (labeled “SrcFlt”).
The SrcFlt method was used to find how effectively
CH,φ,all(q, τ) was eliminated on the LTFT with the
proposed method.

5.2 Results and discussion

Figure 7 plots the results for the comparative eval-
uations. The correct rates within error margins of 5%
and 10% for the proposed and the other methods are
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plotted in Figs. 7(a) and (b). Their SNRs are plotted
in Fig. 7(c). The results for the cepstrum method in-
dicate the baselines in the evaluations while those for
TEMPO (dashed-line) indicates the lower limits.

Although the overall accuracy of F0 estimates
tended to be reduced as reverberation time increased,
about a 10% improvement in the correct rates and
about a 5 dB improvement in the SNR could be ob-
tained with the new method. There is less difference
in the results for both the proposed methods with
and without TR estimates. This means the TR esti-
mates can work as well. Since the correct rate of 60%
within an error margin of 5%, the correct rate of 75%
within an error margin 10%, and the SNR of 17 dB
at TR = 2.0 s, were achieved the method we propose,
we concluded that MTF-based impulse responses can
be precisely estimated by utilizing TR estimates. For
example, the results for extracting F0 at TR = 2.0
with the proposed method with and without TR esti-
mates from the same reverberant speech (Fig. 5(b))
are plotted in Figs. 7(d) and (e).

The SrcFlt method results indicate a small im-
provement (about 3% in the correct rate) to that with
the cepstrum method. In contrast, there were about
7% and 5 dB improvments in the percent correct rate
and in SNR by using the new method. We concluded
that the use of complex cepstrum analysis with regard
to non-minimum phase characteristics was effective for
estimating F0 in reverberant environments.

6. Conclusion

We evaluated the robustness and accuracy of
twelve typical methods of estimating F0 (i.e., clas-
sic ACMWL, AMDF, STFT-based, cepstrum, LPC,
and SHS algorithms, and modern IFHC, PHIA, and
TEMPO algorithms) in artificial reverberant environ-
ments using huge speech datasets. The results re-
vealed that none of these methods could accurately es-
timate F0 in reverberant environments and that their
accuracies drastically decreased as reverberation time
increased. The results also demonstrated that the best
method was cepstrum-based and that the worst was
the instantaneous frequency-based model. We found
that periodicity and/or harmonicity on the complex
cepstrum were effective for estimating F0 in reverber-
ant environments.

We proposed a robust and accurate method of
estimating F0 that was based on the source-filter
model concept and the MTF concept in complex cep-
strum analysis. This method included (1) eliminat-
ing the dominant reverberation effect from observed
speech by estimating MTF-based reverberant impulse
responses and (2) extracting source information from
them by subtracting the remaining cepstrum related
to filter characteristics and the remaining reverbera-
tion through liftering. We demonstrated that our new
method is robust against reverberation and can accu-
rately estimate F0 from observed reverberant speech,

using the same comparative evaluations.
Additional improvements may be possible by mod-

ifying the F0 determination block. Further evalua-
tions using real reverberant impulse responses in room
acoustics are required for real applications, but this is
beyond the scope of this paper.
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Fig. 7 Evaluation results: (a) percent correct rate within error margin of 5%, (b) percent correct rate within
error margin of 10%, (c) SNR of F0 estimation from reverberant speech using proposed method, and examples of
extracted F0 using proposed model (d) without TR estimation and (e) with TR estimation.
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