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ABSTRACT

Let G be a complete undirected graph with n vertices, e edges and m spanning trees. In this paper we give
an algorithm for finding explicitly all spanning trees of G. Our technique is based on the representation of
spanning trees by Prüfer numbers. To represent all Prüfer numbers with n − 2 digits we define what we call
base-n. The algorithm requires a time of O(nm) and space of O(n). For finding all spanning trees explicitly of
undirected graphs, the best known algorithm requires a time of O(e + n + nm) and space of O(e + n).
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1. INTRODUCTION

Let G be an undirected connected graph with n ver-
tices, e edges and m spanning trees. A spanning
tree is a connected sub-graph of G which contains
all the vertices, but no cycle. The problem of finding
all spanning trees of directed and undirected graphs
arises in many applications of network and telecom-
munication designs. This problem has been the in-
terest of many authors, and several algorithms have
been proposed [1, 2, 3, 4, 5]. We distinct two kinds
of algorithms to enumerate all spanning trees. The
first one outputs all spanning trees of the graph ex-
plicitly. In the second one, the spanning tree need
not be explicitly output and only a computational
tree which gives relative changes between spanning
trees is required.

Here we consider the problem of finding explicitly
all spanning trees of complete undirected graphs. In
1978, Gabow and Myers [2] employed a technique
called backtrack based on depth-first search method
to solve the problem. Their algorithm requires a time
complexity of O(e + n + nm) and space of O(e +
n). In 1997, Matsui [4] proposed an algorithm which
traverse a rooted spanning tree on its polytope and
generates all the spanning trees. This algorithm finds
a new spanning tree by exchanging two edges. It
requires the same time and space complexities as one
of Gabow and Myers. For outputting explicitly all
spanning trees, these algorithms are the best known
in term of time and space complexities.

In this paper we introduce a new technique for out-
putting explicitly all spanning trees of complete undi-
rected graphs, which improve the above time and
space complexities. Our approach is based on the
representation of spanning trees by Prüfer numbers.
One of the classical theorems in enumeration is Cay-
ley’s theorem [6], which says that in a complete undi-
rected graph with n vertices there are nn−2 distinct
labeled trees. Prüfer provided a constructive proof
of Cayley’s theorem by establishing a one to one cor-
respondence between such spanning trees and the set
of all permutations of n − 2 digits [7]. Prüfer num-
bers are an n − 2 digit sequences, where the digits
are n different numbers.

First, we construct a new algorithm to decode
a Prüfer number into a spanning tree in a time of
O(n). The known decoding algorithm requires a time
of O(n log n) with the aid of a heap (see [8, 9], for in-
stance). In order to list all possible Prüfer numbers
and each one must be represented in the list exactly
once, we define what we call base-n. This base con-
tains n digits (numbers): 0, 1, · · · , n − 1. Similarly
to the decimal base, we define an addition and order
operators. Then we may see a Prüfer number not
as a code but as a number of the base-n . Hence,
to find all spanning trees, we simply increment in
base-n 0 by 1 for nn−2 − 1 times. Then each number
corresponds to a Prüfer number which is decoded to
output a unique spanning tree.

We show that our algorithm requires a time com-
plexity of O(nm) and space of O(n). For outputting



explicitly all spanning trees in complete undirected
graphs our algorithm is optimal.

In section 2 we describe Prüfer numbers and its
relationship with spanning trees. In section 3 we in-
troduce the definition of base-n. Section 4 is devoted
to the description and the analysis of the algorithm
for finding all spanning trees. Finally, we present
some numerical results in section 6.

2. PRÜFER NUMBERS

Let G be a complete undirected graph with n ver-
tices, and let d be a positive integer. In what follows
we need the following definitions.

- A vertex v in G is called of degree d if it is a com-
mon vertex of d edges.

- A vertex of degree 1 is called a leaf vertex.

- A Prüfer number, P , is an n − 2 digit sequence:
P = [p0, p1, · · · , pn−3], where the digits pi, 0 ≤
i ≤ n − 3, are numbers in {0, 1, · · · , n − 1}.

- Let P be Prüfer number. The set of numbers in
{0, 1, · · · , n−1} which are not digits part of P ,
is called child of P and denoted by R.

The relationship between Prüfer numbers and span-
ning trees are given by the following algorithms.

Algorithm 1 shows how to construct (or decode)
a Prüfer number from a given spanning tree T . For
the algorithm to be non trivial, the tree T should
have at least two edges, n ≥ 3.

Algorithm 1:

(1) Construct P by appending digits to the right;
thus, P is constructed from left to right. Let i
be the smallest labeled vertex of degree 1 in T ,
and let p be the vertex antecedent of i. Then
we set p to the end of P .

(2) Remove the edge (i, p) from the tree T , and up-
date T to T \{(i, p)}.

(3) While the tree T has two or more edges return
to step (1).

As an example on how this algorithm works, we con-
sider the tree shown in figure 1. The smallest labeled
vertex with degree 1, is the vertex numbered 3. We
therefore select 1 as the first digit of P , P = [1].
We then remove the edge (1, 3) from T , and vertex 1

becomes the smallest labeled vertex of degree 1. So
the next digit of P is 6, P = [1, 6]. We continue the
process until there are two vertices left, {2, 6}. Then
we stop with P = [1, 6, 0, 0, 2] is the Prüfer number
corresponding to the tree in figure 1.
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Figure 1: Graph of T

Conversely, it is also possible to construct (or
decode) a unique spanning tree corresponding to a
Prüfer number P , by using the following algorithm.

Algorithm 2:

(1) Let P be a given Prüfer number with n−2 digits,
and let R be its child. The tree T is initialized
to an empty set, T = ∅.

(2) Let i be the left-most digit in P , and let k be
the smallest element of R. Add the edge (i, k)
to the tree T . Then remove the left-most digit
from P , and also remove k from R. If i does
not occur anymore in what remains in P , put
it into the set R.

(3) Repeat step (2) until no digits remain in P .

(4) Add the last edge, with the two remaining nodes
in the set R, to the tree T .

To illustrate this algorithm, let us consider Prüfer
number of the previous example, P = [1, 6, 0, 0, 2].
Then numbers in the set {0, 1, 2, 3, 4, 5, 6} which are
not digits part of P consist of the following set R =
{3, 4, 5}. Let T be an empty set, T = ∅, then we add
the edge (1, 3) to T and remove 3 from R and 1 from
P . The digit 1 is no longer in P , then 1 is added to
the set R. We get P = [6, 0, 0, 2] and R = {1, 4, 5}.
Vertex 1 now is the smallest labeled element in R.
Thus we add (6, 1) to the tree T . Next, we remove 6
from P and 1 from R. The digit 6 is no longer in P ,
then it is added to the set R. We get P = [0, 0, 2] and



R = {6, 4, 5}. Vertex 4 now is the smallest labeled
element in R, then we add (0, 4) to the tree T . Next,
we remove 0 from P and 4 from R, the digit 0 is still
in P . Hence we obtain P = [0, 2] and R = {5, 6}.
We repeat the process until no digits remain in P .

This decoding algorithm can be carried out in
time of O(n log n) with the aid of a heap. In order
to decrease the time complexity to be of O(n), we
define the following decoding algorithm.

Algorithm 3:

(1) Let P be a given Prüfer number with n−2 digits,
and let R be its child. Elements in R are put
in decreasing order from left to right. The tree
T is initialized to an empty set, T = ∅.

(2) Let i be the left-most digit in P , and let k be
the left-most element in R. Add the edge (i, k)
to the tree T , and then remove the left-most
digit from P . If i does not occur anymore in
what remains in P , then replace k by i in R;
otherwise delete k from R.

(3) Repeat step (2) until no digits remain in P .

(4) Add the last edge, with the two remaining nodes
in the set R, to the tree T .

Remark 1:

(i) Let T be a tree and PT its corresponding Prüfer
number encoded by Algorithm 1. If PT is de-
code by Algorithm 2 it will produce the same
tree T , and conversely.

(ii) Let T be a tree and PT its corresponding Prüfer
number encoded by Algorithm 1. If PT is de-
coded by Algorithm 3 it may not give the same
tree T . However, in the algorithm of finding all
spanning trees we only need a decoding algo-
rithm.

Theorem 1 Let G be a complete undirected
graph with n vertices and let P be an n − 2 dig-
its Prüfer number. Then Algorithm 3 constructs
one and only one spanning tree corresponding to P .
Moreover, for two different Prüfer numbers the algo-
rithm produces two different spanning trees. Hence
Algorithm 3 constructs a one to one correspondence
between n − 2 digits Prüfer numbers and spanning
trees of the graph G. This algorithm requires a time
complexity of O(n).

Proof. It is easy to see that Algorithm 3 we con-
structs a unique tree with n−1 different edges, which

spans the n vertices. Consequently T is a spanning
tree.

Now, we show that for two different Prüfer num-
bers the algorithm constructs two different spanning
trees. Let us consider two different Prüfer numbers
P1 = [p1

0, p
1
1, · · · , p1

n−3] and P2 = [p2
0, p

2
1, · · · , p2

n−3],
and let R1 and R2 be their corresponding children,
respectively. Algorithm 3 decodes P1 and P2 to pro-
duce two spanning trees T1 and T2, respectively. We
distinct the two following cases:

First case. Assume that R1 and R2 are different.
Then there exists an element, vertex label, r in (R1∪
R2)\(R1 ∩ R2). Assume that r ∈ R1\R2, hence the
vertex r is of degree 1 in T1 and is at least of degree
2 in T2. Consequently, trees T1 and T2 are different.
The same argument can be applied if r ∈ R2\R1.

Second case. Assume that R1 and R2 are same. If
p1
0 and p2

0 are different digits, then (p1
0, r) and (p2

0, r)
consist of two different edges of T1 and T2, respec-
tively, where r denotes the left-most digit in the orig-
inal child R1 = R2. Since r is a label vertex of degree
1, then trees T1 and T2 are different. We now assume
that p1

0 and p2
0 are equal. Let i be the smallest index

such that p1
i �= p2

i . Then at the (i− 1)th iteration of
Algorithm 3, trees T1 and T2 have the same edges.
In the ith iteration of Algorithm 3, we add to the
tree T1 the edge (p1

i , r), and to the tree T2 the edge
(p2

i , r), where is the left-most digit in R1 and R2. The
element r is either equal to p1

i−1 = p2
i−1, if p1

i−1 is no
longer in the remain digits of P1, or r is a vertex of
degree 1. In both cases the edge (p1

i , r) is an element
of T1 and not an element of T2, also the edge (p2

i , r)
is an element of T2 and not an element of T1, which
means that T1 and T2 are different trees. Hence, for
a Prüfer number P , Algorithm 3 constructs one and
only one spanning tree.

Now, we show that Algorithm 3 can be performed
in time of O(n). Indeed, let Q be an n vector such
that Q(i) stores the degree of the vertex labeled i.
We note that if a vertex is of degree 1 it belongs to
R, otherwise it belongs to P . The pseudo code for
step (1) of Algorithm 3 is outlined as follows: At
first, each component of the vector Q is initialized to
1, then
for i = 1 to n − 2 do
begin

p := P (i);
Q(p) := Q(p) + 1;

end



for i = 1 to n do
begin

if (Q(i) = 1) then
begin

R(r) := i; (r is initialized to 0)
r := r + 1;

end
end

Now it is clear that step (1) of Algorithm 3 is of
O(n). Steps (2) and (3) are also of O(n). Hence Al-
gorithm 3 is of O(n). The proof is complete.

3. DEFINITION OF BASE-n

Let n be the number of vertices in a complete
undirected graph G. In section 1 we have seen that
there is a one to one correspondence between the set
of all spanning trees in a complete undirected graph
and all Prüfer numbers with n − 2 digits. In this
section we will give an algorithm for representing all
Prüfer numbers with n − 2 digits, and each Prüfer
number is represented in the list exactly once. To do
that, we define what we call base-n.

We introduce the definition of a base-n as an ex-
tension of the notion of the known numerical bases,
base 10 (decimal), base 2 (binary), for instance. In
base 10 we use the numerals 0, 1, · · · , 9 to represent
all numbers. Each column is a power of 10; the first
(right-most) column is used for ones 1s, and the next
for 10s, and so on. With n columns we can represent
numbers from 0 to 10n − 1.

For understanding, we may see a number P in
base-n not as a number, but as a code for a number.
Using the rules found in base 10, we can describe the
base-n as follows:

(i) The numerals (digits) used in base-n are
0, 1, 2, · · · , n − 1.

(ii) The columns are power of n: n0, n1, n2, · · ·, and
so on.

(iii) With r columns we can represent numbers from
0 to nr − 1.

Then each number P in base-n can be written as:
P = pr−1pr−2 · · · p0, where r is the number of columns
and pi, 0 ≤ i ≤ r − 1, are decimal numbers of the
set {0, 1, · · · , n − 1}. In order to distinct columns of
a number in base-n, the columns are separated by
a space or a comma. For example, the following are

numbers in base-25:

P1 = [20, 0, 1, 3, 5, 6] or P1 = 20 0 1 3 5 6.

P2 = [24, 7, 13] or P2 = 24 7 13.

Let P = pr−1pr−2 · · · p0 be a number in base-n,
then P can be converted into a decimal number as
follows:

(P )10 =
r−1∑

i=0

pin
i.

The addition operation in the base-n uses the same
rule as in the decimal base. Let
P = pr−1pr−2 · · · p0 and Q = qr−1qr−2 · · · q0, be two
numbers in base-n. The algorithm for calculating
the base-n representation of the sum, S = P + Q, is
given as follow:

Algorithm 4:
At the first step, we add (in base 10) p0 and q0,
s = p0 + q0. Then s can be represented in base-n
by,

(s)n = c0n
1 + d0n

0.

Take s0 = d0, and curry c0. In the second step, we
calculate the sum p1 + q1 and add c0,

s = p1 + q1 + c0,

which can be represented in base-n by

(s)n = c1n
1 + d1n

0.

Take s1 = d1 and curry c1. We continue in this way,
calculating for each i in the range 0 ≤ i ≤ r − 1, the
digits

s = pi + qi + ci−1, (s)n = cin
1 + din

0.

Then we take si = di and ci will be carried to the
next step. Finally we have sr = cr, and the repre-
sentation of the sum, S = P + Q, in base-n is given
by

S = srsr−1 · · · so.

As an example, let P1 = [24, 22], P2 = [15, 10, 20]
and P3 = [8] be numbers in base-25. Then we have
P1 + P3 = [1, 0, 5] and P2 + P3 = [15, 11, 3].

Definition 1 Let P = pmpm−1 · · · p0 and
Q = qmqm−1 · · · q0 be two numbers in base-n. Then
we say:

- P and Q are equal “P = Q” if pi = qi, for every i,
0 ≤ i ≤ m.



- P is greater than Q “P > Q” if there exists an
index j ≤ m such that pi > qi for any i, j ≤
i ≤ m.

- P is less than Q “P < Q” if Q > P .

Now, we can represent Prüfer numbers with n −
2 digits as numbers in base-n with n − 2 digits.
Then to list all possible Prüfer numbers it suffices to
increment in base−n 0 by 1 for nn−2−1 times. Then
we get a list of all Prüfer numbers with n − 2 digits
where each Prüfer number is represented in the list
exactly once. This list is expressed as follows:

P0 < P1 < · · · < Pm−2 < Pm−1, Pi+1 = Pi + 1,
(1)

where the sing + denotes the addition operator in
base-n, P0 = [0, 0, · · · , 0], P1 = [0, 0, · · · , 1], · · · ,
Pm−1 = [n − 1, n − 1, · · · , n − 1] and m = nn−2.

4. MAIN ALGORITHM

In section 2 we have seen that there is a one to
one correspondence between the set of all spanning
trees in a complete undirected graph with n vertices
and the set of all Prüfer numbers with n − 2 digits.
To represent all spanning trees it suffices to cross all
Prüfer numbers with n − 2 digits, as described in
the previous section, and then decode each one to its
unique corresponding spanning tree. A Prüfer num-
ber can be decoded by Algorithm 2 or Algorithm 3.
In order to minimize the time complexity we will use
our algorithm, Algorithm 3 (see section 2), to de-
code a Prüfer number into its unique corresponding
spanning tree. Let G be completed undirected graph
with n vertices and m spanning trees. The main al-
gorithm for outputting explicitly all spanning trees
of G is described in the following steps.

Algorithm Main:

(1) Initialize P to the value 0, P = [0, 0, · · · , 0].

(2) Decode P by Algorithm 3, then get its corre-
sponding spanning tree.

(3) Set P = P + 1, where the plus sing ”+” stands
for the addition operator of the base−n.

(4) Decode P by Algorithm 3, then get its corre-
sponding spanning tree.

(5) Iterate steps (3) and (4) m − 1 times.

Remark 2: This algorithm is easy to parallelize. In-
deed, since Prüfer numbers can be ordered in base-n,
see relation (1), then we can partition the list of all
Prüfer numbers as follows: P1 = {P1, P2, · · · , Pi1},
P2 = {Pi1+1, Pi1+2, · · · , Pi2}, · · · ,Pk = {Pik−1+1,
Pik−1+2, · · · , Pik

}, where k is the number of parti-
tions and ik = m− 1. Each partition Pi corresponds
to a task to be sent to a processor or to a computer,
which will be processed independently from the oth-
ers.

Theorem 2 Let G be a complete undirected graph
with n vertices. Then Algorithm Main outputs all
spanning trees explicitly in a time of O(mn) and
space of O(n), where m = nn−2 is the number of
all possible spanning trees in the graph G.

Proof. It is clear that the time complexity of
step (3) in Algorithm Main is of O(n) (see Algo-
rithm 4). Theorem 1 shows that the time complex-
ity of step (4) is of O(n). Since steps (3) and (4) are
iterated m − 1 times, then Algorithm Main requires
a time of O(mn). It is easy to see that steps (1)
through (4) require a space memory of O(n). Hence
the proof is complete.

5. COMPUTATIONAL EXPERIMENT

Experiments on Algorithm Main, were conducted on
undirected complete graphs with number of vertices,
n, from 8 through 11. The run time of the program
for outputting explicitly all possible spanning trees
of the graph, in seconds, is denoted by T (n). The
number of all spanning trees in the graph is denoted
by m, m = nn−2. This algorithm was coded in C++
programming language and implemented on a com-
puter with a CPU Celeron 1.7GHz. The following
table illustrates the computational results:

n 8 9 10 11
T (n) 0.06 1.23 28.22 672.41
T

nm108 2.86 2.85 2.82 2.59

Table 1. Computation time.

We remark that the ratio T (n)/mn decreases while
n increases. Hence the time T (n) is bounded by nm
as it was shown in Theorem 2, i.e., there exists a
positive constant k such that T (n) ≤ kmn. In this
example we may take k = 2.86 × 10−8 for graphs
with number of vertices greater or equal to 8.



6. CONCLUSION

This paper presents a new algorithm “Algorithm Main”
for outputting explicitly all spanning trees in com-
plete undirected graphs. The algorithm is based
on the representation of spanning trees by Prüfer
numbers. To list all possible Prüfer number with
n − 2 digits we define what we call base-n. Then
each Prüfer number corresponds to a unique span-
ning tree. The algorithm requires a time of O(nm)
and space of O(n). For finding all spanning trees
explicitly of complete undirected graphs, the best
known algorithm requires a time of O(e + n + nm)
and space of O(e + n), where the parameters n, e,
m denote, respectively, number of nodes, number of
edges and number of spanning trees in the graph.
The analysis of the algorithm and numerical exam-
ples are given.
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