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ABSTRACT 
 

Solving complex decision problems requires the usage 
of information from different sources. Usually this 
information is uncertain and statistical or probabilistic 
methods are needed for its processing. However, in 
many cases a decision maker faces not only uncertainty 
of a random nature but also imprecision in the 
description of input data that is rather of linguistic 
nature. Therefore, there is a need to merge uncertainties 
of both types into one mathematical model. In the paper 
we present methodology of merging information from 
imprecisely reported statistical data and imprecisely 
formulated fuzzy prior information. Moreover, we also 
consider the case of imprecisely defined loss functions. 
The proposed methodology may be considered as the 
application of fuzzy statistical methods for the decision 
making in the systems analysis.  
 
Keywords: Bayes decision-making, imprecise 
information, fuzzy statistical data, possibilistic decisions 
 
 

1. INTRODUCTION 
 

Solving complex decision problems can be regarded as 
processing of information of a different kind coming 
from various sources. Objective information related to 
stochastic phenomena that describe the environment of 
the decision situation can be treated as statistical data. If 
only such information is available, then the complex 
decision problem may be reduced to a simpler problem 
of a statistical decision. However, existing statistical 
data are usually not sufficient enough to solve complex 
problems.  A decision-maker has to rely also on 
information from other, non-statistical, sources. That 
information is usually subjective in contrast to objective 
statistical data. Therefore, the decision-making process 
must contain a sub-process of merging information from 
different objective and subjective sources.  
 
The generally accepted framework for dealing with 
objective and subjective information is known under the 
title of “Bayes decision-making”. There exist numerous 

textbooks related to this problem, such as e.g. classical 
books of Raiffa and Schleifer [1] and De Groot [2]. 
However, in practically all popular textbooks it is 
assumed that both objective statistical data and 
additional subjective information are precisely 
described in terms of the theory of probability. This 
assumptions have been questioned by many authors 
who claim that epistemic vagueness of information  
(i.e. uncertainty due to the imprecise character of 
information expressed in terms of commonly used 
natural language) cannot be described using the same 
mathematical models as in the case of aleatoric 
uncertainty (i.e. risk due to the randomness of future 
events and existing statistical data). Therefore, there is a 
need to propose a more general approach that allows to 
merge information of a different type in mathematical 
models used for solving complex decision problems. 
 
In the paper we present the methodology that extends 
the classical Bayes decision-making to the case when 
both linguistic and aleatoric uncertainty may be merged 
in one mathematical model. In the second section of the 
paper we present the methods for modelling imprecise 
(i.e. vagually described) statistical data. In the third 
section we generalize the well known in decision 
making concept of the Bayes risk, and we propose its 
equivalent for the case of imprecise (fuzzy) statistical 
data, and imprecise prior information. Finally, in the 
fourth section of the paper we propose a possibilistic 
approach to decision making when the decision model is 
based on both random and imprecise information.    
 
 
2. MATHEMATICAL MODELS FOR IMPRECISE 

STATISTICAL DATA 
 
In the analysis of statistical data related to complex 
problems of system analysis we often face the problem 
of imprecise data. In many cases such data are provided 
by people who are not able to present precise numbers. 
There are many examples of cases where such imprecise 
data are very common in practice. For example, in the 
analysis of reliability data we often face imprecisely 
defined data, as it has been described in Grzegorzewski 

 



and Hryniewicz [3]. In this and many other cases data 
are reported by people who use imprecise expressions 
like “about 5”, “much larger than 5, but surely smaller 
than 10”, etc. The attempt do describe such lack of 
precision in terms of probability seems to be very 
questionable, as these imprecise notions do not have 
interpretation in terms of frequencies. However, it has 
been noted by many authors that the fuzzy sets theory 
proposed by Lotfi Zadeh is especially useful for the 
formal description of such imprecise data. Moreover, if 
the imprecise data are also of a random character, then 
the theory of fuzzy random variables can be used for the 
mathematical description of imprecise statistical data. 
 

In this paper we will use the notion of a fuzzy random 
variable for the description of imprecise statistical data. 
Before we describe this notion in a formal way, let us 
introduce the concept of a fuzzy number. In a more 
formal way, a fuzzy number can be defined as follows. 

Definition 1 (Dubois and Prade [5]) 
The fuzzy subset A of the real line R, with the 
membership function ]1,0[: →Rµ , is a fuzzy number if 

• is normal, i.e. there exists an element R∈0x  

such that 1)( 0 =xµ ; 

• is fuzzy convex, i.e. 
)()())1(( yxyx µµλλµ ∧≥−+  R∈∀ yx,  

and 10 ≤≤∀ λ ; 

• is upper semicontinuous; 
• )(psup µ is bounded. 

A useful concept used for the description of fuzzy 
numbers is the α-cut. The α-cut, αA , of a fuzzy  

number A is a non-fuzzy set defined as 

})( :{ αµα ≥∈= xRxA . 

The family ]}1,0[ :{ ∈ααA  is a set representation of 

the fuzzy number A. Basing on the resolution identity, 
we have the alternative description of fuzzy numbers: 

)}({sup)(
]1,0[

xIx Aα
αµ

α∈
= , 

where )(xI Aα
 denotes the characteristic function of 

Aα . Definition 1 implies that every α-cut of a fuzzy 

number is a closed interval. Hence, we have  

],[ UL AAA ααα = ,  

where  

}.)( :{sup

},)( :{inf

αµ

αµ

α

α

≥∈=

≥∈=

xxA

xxA
U

L

R

R
 

The space of all fuzzy numbers will be denoted by 
)(RF . 

 
A fuzzy random variable may be defined by analogy to 
the definition of a real-valued random variable as a 
mapping that assigns to a random event an imprecise 
fuzzy number. The notion of a fuzzy random variable 
has been defined independently by many authors (see 
[3]). In general, a fuzzy random variable X is considered 
as a perception of an unknown usual random 
variable R→Ω :V , called an original of X. 

 
Formally, a fuzzy random variable can be defined using 
the following definition: 

Definition 2 (Grzegorzewski and Hryniewicz [3]) 
a mapping )( : RF→ΩX  is called a fuzzy random 

variable if it satisfies the following properties: 
 (1) { }]1,0[ :)( ∈αωαX  is a set representation of 

)(ωX  for all Ω∈ω , 

 (2)  for each ]1,0[∈α  both LXα  and UXα  defined 

as 

,sup)(

,inf)(

ααα

ααα

ω

ω

XXX

XXX
UU

LL

==

==
 

are real-valued random variables on ( )P , ,FΩ .  Let χ 

denotes a set of all possible originals of X. If only vague 
data are available, it is of course impossible to show 
which of the possible originals is true. Therefore, we 
can define a fuzzy set of χ, with a membership function 

)( : RF→χν  given as follows: 

{ }Ω∈= ωωωµν  :))(()(inf)( VXV  

which corresponds to the grade of acceptability that a 
fixed random variable V is the original of the fuzzy 
random variable in question. 
 
Fuzzy random variables have been used for the 
description of many practical problems where stochastic 
randomness is present together with fuzzy imprecision. 
Classical statistical methods have been also generalized 
to the case of the analysis of fuzzy random data. 
 
 

3. BAYES RISK IN CASE OF IMPRECISE 
INFORMATION 

 
There exist different methods for modeling 

decisions in case of imprecise data. In this paper we 
present a generalization of the general model proposed 
by Raiffa and Schlaifer [6]. The model proposed by 
Raiffa and Schlaifer consists of two parts: one part is 



dedicated to the choice of the final decision, and the 
second part is dedicated to the choice of the experiment 
whose ultimate goal is to provide the decision maker 
with some information about the actual state of nature. 
According to this model the decision maker can specify 
the following data defining his decision problem. 

1. Space of terminal decisions (acts): { }aA = . 

2. State space: { }θΘ = . 

3. Family of experiments: { }eE = . 

4. Sample space: { }xX = . 

5. Utility function: ( ),,,,u ⋅⋅⋅⋅  on Θ××× AXE . 

The decision maker evaluates a utility ( )θ,,, axeu  of 

making a particular experiment e, obtaining the result of 
this experiment x, taking a decision a in case when the 
true state of nature is θ. In order to find appropriate 
(hopefully optimal) decisions the decision maker has 
also to specify a joint probability measure ( )eP x |,, ⋅⋅θ  

for a Cartesian product X×Θ . The knowledge of this 
probability measure means that we know the joint 
probability distribution of observing in an experiment e 
the result z when the random state of nature is described 
by θ. Knowing this joint probability distribution we can 
calculate some important marginal and conditional 
probability distributions. In particular, for a given 
experiment e we are usually interested in three 
distributions. 

1. The marginal distribution on the state space Θ  
describing our prior information about possible 
states of nature. We assume that this 
distribution does not depend on e. 

2. The conditional distribution on the sample 
space X for given state of nature θ. 

3. The conditional distribution on the state space 
Θ  for given result of the experiment x 
describing our posterior information about 
possible states of nature. 

Note, that we may know only these particular 
distributions as their knowledge is equivalent to the 
knowledge of the joint probability distribution on 

X×Θ .  
 
Let us consider the simplest case of the general model. 
when there is no experiment e. In such a case the only 
information we need is the probability distribution 

( )θπ  defined on the state space Θ .  We call this 

distribution the prior distribution of the parameter 
(parameters) describing the unknown state of nature. 
If we know the utility function ( )θ,au  defined on 

Θ×A  we may calculate the expected utility assigned 
to a particular action (decision) a. 

The basic notion used in the decision theory is the risk 
defined as 

( ) ( ) ( )∫=
Θ

θθπθρ d,aLa    (1) 

where L(a,θ) is the loss related to the decision (action) a 
when the state of a system is θ, and π(θ) is the 
probability distribution defined on the space of the all 
possible states that reflects our prior knowledge about 
the system. Optimal decision (action) can be found by 
the minimization of this risk. When the decision maker 
has an additional information about the state of nature in 
a form of observations ( )nxxx ,,, 21 K=x  of a random 

vector described by a probability distribution ( )θ,xf  

we may calculate the expected risk assigned to a 
particular action (decision) a from a formula 

( ) ( ) ( )∫
Θ

= θθθρ dgaLa xx |,|          (2) 

where 

( ) ( ) ( )
( ) ( )∫

Θ

=
θθπθ

θπθθ
df

f
g

|

|
|

x

x
x   (3) 

is the posterior distribution of the parameter θ  which 
describes the state of nature. The procedure of finding 
the optimal decision is exactly the same as in the case 
without statistical data. 
 
Suppose now that the prior distribution ( )ζθπ ;  and 

the loss ( )ψθ ,;aL  are functions of parameters ζ  and 

ψ, respectively, and that these parameters are known 
only imprecisely. Let us assume that our imprecise 
knowledge about possible values of ζ and ψ  is 

represented by fuzzy sets ζ~ and ψ~ , respectively. A 

fuzzy set X
~

 is defined using the membership function 
( )x

X
~µ  which in the considered in this paper context 

describes the grade of possibility that a fuzzy parameter, 

say X
~

, has a specified value of x. Each fuzzy set may 
be also represented by its α-cuts defined as ordinary sets 
 

( ){ }10,: ~ ≤≤≥∈= ααµα xxX XR   

From the representation theorem for fuzzy sets we know 
that each membership function may be equivalently 
represented as 
 

( ) ( ) [ ]{ }10,:xIsupx
X
~X

~ ∈= ααµ α .  

 
Now let us assume that imprecisely known parameters 



ζ  and ψ (possibly vectors)  are represented by their 
α-contours (Cartesian products of the α-cuts), and that 
these α -contours are given in a form of multivariate 

closed intervals [ ]αα ζζ UL ,  and [ ]αα ψψ UL , , 

respectively. The knowledge of these α -contours let us 
calculate fuzzy equivalents of the expected loss (risk). 
To make the presentation simple we assume that 
decision are based exclusively on the knowledge of the 
prior distribution ( )ζθπ ;  and the loss function 

( )ψθ ,;aL .  As these function are the function of 

imprecise fuzzy parameters, they are also fuzzy, and 

may be denoted as ( )ζθπ ~
;~  and ( )ψθ ~;;

~
aL , 

respectively. 
 
Now, let us rewrite the formula for the expected risk as 

( ) ( ) ( )∫
Θ

= θζθπψθψζρ daLa
~

;~~,;
~

,|~ . (4)  

The risk calculated from this formula is now an 
imprecisely defined fuzzy number whose membership 
function may be calculated using Zadeh’s extension 
principle.  
 
Definition 3. Extension principle (Dubois and Prade 
[7]) 
Let X be a Cartesian product of universe 

rXXXX ×××= L21 , and rAA ,,1 K be r fuzzy sets 

in rXX ,,1 K , respectively. Let f be a mapping from 

rXXXX ×××= L21 to a universe Y such 

that ( )rxxfy ,,1 K= . The extension principle allows us 

to induce from r fuzzy sets Ai a fuzzy set B on Y through 
f such that 

( )
( )

( ) ( )[ ]rAA
xxfyxx

B xxy
r

rr

µµµ ,,minsup 1
,,;,,

1
11

K

KK =
=  

 ( ) ( ) ∅== − yfyB
1  if  0µ  

When the formula (1) for the expected risk is given 
explicitly, then its fuzzy version (4) can be obtained by 
the "fuzzification" of the original non-fuzzy formula 
using the extension principle given above.  In a general 
case, however, the α-cuts 

( ) ( )( )ψζρψζρ αα ,|,,| ,, aa UL  of the fuzzy expected 

risk ( )ψζρ ,|~ a  are given by the following formulae: 

( )

( ) ( )( ) ( ) ( )∫
Θ

×∈

=

θζθπψθ

ψζρ

αα ψζψζ

α

daL

a

CC

L

~
;~~,;

~
min

,|

~~
,

,

  (5) 

( )

( ) ( )( ) ( ) ( )∫
Θ

×∈

=

θζθπψθ

ψζρ

αα ψζψζ

α

daL

a

CC

U

~
;~~,;

~
max

,|

~~
,

,

  (6) 

where ( )αζ~C  and ( )αψ~C  are the α-contours of the 

fuzzy parameters ζ~ of the prior distribution ( )ζθπ ;  

and fuzzy parameters ψ~  of the loss function 

( )ψθ ,;aL , respectively. 

 
Now, let us consider the case when the statistical data 
are fuzzy, and the remaining parameters of the decision 
model are crisp (i.e. precisely defined). In the presence 
of fuzzy statistical data the posterior distribution of the 
state variable θ can be obtained by the application of  
the defined above Zadeh's extension principle to the 
formula that describes this distribution. Let 

( ) ( )( ) njxxx UiLii ,...,1,~,~~ == ααα  be the α-cuts of the 

fuzzy observations nxxx ~,...,~,~
21 . Applying the notation 

proposed by Fruehwirth-Schnatter [8] we denote by 
( )αxC ~ the α-contour of the fuzzy sample which is equal 

to the Cartesian product of the α-cuts njxi ,...,1,~ =α  

of individual fuzzy observations. The fuzzy posterior 
distribution ( )xg ~|~ θ  is, according to Viertl and Hule 

[9] given by α-contours 

( )
( )

( ) ( )
( ) ,

;|
min,|

~ x
x

x
x η

ζθπθζθ
α

α
f

g
xC

L

∈
=   (7) 

( )
( )

( ) ( )
( ) ,

;|
max,|

~ x
x

x
x η

ζθπθζθ
α

α
f

g
xC

U

∈
=   (8) 

where η(x) is a normalizing constant equal to the 
denominator of the right hand side of (3). Now, we can 
compute the fuzzy risk using the general methodology 
for integrating fuzzy functions presented in [7]. 
 
Let us denote by 

 ( ) ( ) ( )( )ζρζρρ αα
α ,|~,,|~~ ,, xx aaC UL=   

the α-cut of the fuzzy risk ( )x|~ aρ . The lower and 

upper bounds of this α-cut are calculated from the 
following formulae: 

( ) ( ) ( )∫
Θ

= θζθθζρ α
α dgaLa LL ,|;,|~ , xx   (9) 

 

( ) ( ) ( )∫
Θ

= θζθθζρ α
α dgaLa UU ,|;,|~ , xx   (10) 



Thus, we can calculate the respective fuzzy risks for all 
considered decisions a. 
 
Now, let us consider the calculation of fuzzy risks when 
all quantities involved, i.e., loss function, prior 
distribution, and statistical data may be imprecisely 
defined. The α-cuts of the fuzzy posterior probability 
distribution of the parameter θ are given by the 
following formulae: 

( )
( ) ( )( )

( ) ( )
( )ζη

ζθπθθ
αα ζζ

α ,

,|
min ~~, x

x
x

f
g

CxC

L

×∈
=    (11) 

( )
( ) ( )( )

( ) ( )
( )ζη

ζθπθθ
αα ζζ

α ,

,|
max ~~, x

x
x

f
g

CxC

U

×∈
=    (12) 

where ( )ζη ,x  is the normalizing constant. The fuzzy 

expected risk, ( )ψζρ ,,|~ xa , is now defined by its 

α-cuts calculated from the following formulae: 
 

( ) ( ) ( )∫
Θ

= θζθψθψζρ α
αα dgaLa LLL ,|,;,,|~ ,, xx  (13) 

( ) ( ) ( )∫
Θ

= θζθψθψζρ α
αα dgaLa UUU ,|,;,,|~ ,, xx  (14) 

where 

( )
( )

( )ψθψθ
αψψ

α ,;min,;
~

, aLaL
C

L

∈
= ,  (15) 

( )
( )

( )ψθψθ
αψψ

α ,;max,;
~

, aLaL
C

U

∈
=   (16) 

are the α-cuts of the fuzzy loss function ( )ψθ ~;;
~

aL . 

 
 

4. MAKING DECISIONS WIH IMPRECISE 
INFORMATION – A POSSIBILISTIC APPROACH 
 
In a classical approach a decision-maker chooses the 
action with the minimal expected risk. This approach 
cannot be directly used in the case of fuzzy risks, as 
there is no natural method for ordering fuzzy numbers. 
There exist two general ways of dealing with the 
problem of choosing the best solution: either to 
defuzzify the risks or to introduce additional measures 
that allow to order considered options. If the first 
approach is preferred we claim that the λ-average 
ranking method proposed by Campos and Gonzalez [4] 

is especially useful in decision making. Let X
~

 be a 
fuzzy number (fuzzy set) described by the set of its 

α-cuts [ ]αα
UL X,X , and S be an additive measure on 

[0,1]. Moreover, assume that the support of X
~

 is a 
closed interval. The λ-average value of such a fuzzy 

numberX
~

 is defined by Campos and Gonzalez [4] as 

( ) ( )[ ] ( ) [ ]∫ ∈−+=
1

0

1,0,1
~ λαλλ ααλ dSXXXV LUS . (17) 

In the case of continuous membership functions this 
integral is calculated with respect to dα. Thus, the 

λ-average value ofX
~

 can be viewed as its defuzzified 
value. The parameter λ in the above integral is a 
subjective degree of the decision-maker’s optimism 
(pessimism). In the case of fuzzy risks 0=λ  reflects 
his highest optimism as the minimal values of all a-cuts 
(representing the lowest possible risks) are taken into 
consideration. On the other hand, by taking1=λ the 
decision-maker demonstrates his total pessimism, as 
only the maximal values of all α-cuts (representing the 
highest possible risks) are considered.  If the decision 
maker takes 50,=λ  his attitude may described as 

neutral. Thus, by varying the value of λ the decision 
maker is able to take into account the level of his 
optimism (pessimism) which may arise e.g. from having 
some additional information that has not been reflected 
in the prior distribution. 
 
When the second approach is preferred we propose to 
use the methodology known from the theory of 
possibility, namely the Possibility of Dominance and 
Necessity of Strict Dominance indices proposed by 
Dubois and Prade [5].  

 

For two fuzzy numbers A
~

 and B
~

 the Possibility of 
Dominance (PD) index is calculated from the formula 

( ) ( ) ( ){ }yxBAPossPD BA
yxyx

~~

:,
,minsup

~~ µµ
≥

=≥= . (18) 

The PD index gives the measure of possibility that the 

fuzzy numberA
~

is not smaller than the fuzzy number 

B
~

. Positive value of this index tells the decision maker 
that there exists even slightly evidence that the relation 

B
~

A
~ ≥  is true. The degree of conviction that the 

relation B
~

A
~ >  is true is reflected by the Necessity of 

Strict Dominance (NSD) index defined as 
 

( ) ( ) ( ){ }
( ).~~

1

,minsup1
~~

~~
:,

ABPoss

yxBANessNSD BA
yxyx

≥−=

−=>=
≤

µµ
 (19) 

The NSD index gives the measure of necessity that the 

fuzzy numberA
~

 is greater than the fuzzy numberB
~

. 
Positive value of this index tells the decision maker that 
there exists rather strong evidence that the relation 

B
~

A
~ >  is true. This possibilistic index, and other 



similar indices, may be used for choosing the best 
option while solving complex decision problems. 
 
 

5. EXAMPLES OF APPLICATIONS 
 
To illustrate possible applications of the proposed 
methodology let us consider two typical decision 
problems: estimation of the parameter of a probability 
distribution, and choosing the best from among two 
competing options. Both examples are simplified and 
have rather an illustration character. 
 
Consider the problem of the estimation of the mean 
value ν  of a random variable X  that is distributed 
according to the normal distribution N(ν,σ) with the 
known value of the standard deviation σ. Let us assume 
that we have the following additional information: 
  a) a sample nxxx ,...,, 21 of the random variable X is 

observed; 
  b) there exists some prior information about possible 
values of the parameter ν which is summarized in the 
form of the normal prior distribution N(γ,δ), where γ 
and δ are known parameters; 
  c) the loss function L is quadratic, i.e. proportional to 
the squared difference between the estimated and actual 
value of the parameter ν. 
 
The considered problem has a very well known 
solution, see for example [1], and the Bayes decision 
(Bayes estimator of ν) which minimizes the posterior 
risk is given by a simple formula: 

X
n

n

n
B 22

2

22

2

ˆ
δσ

δγ
δσ

σν
+

+
+

=   (20) 

Now, let us consider that we observe imprecise values of 
the random variable X, and each observation is 
described by a fuzzy number nixi ,...,1,~ = , denoted by 

( )iiii xxxx ,4,3,2,1 ,,, , and described by a trapezoidal 

membership function given by the following expression: 

( )
( ) ( )

( ) ( )













≤
<≤−−
<≤
<≤−−

<

=

xx

xxxxxxx

xxx

xxxxxxx

xx

x

i

iiiii

ii

iiiii

i

xi

,4

,4,3,3,4,4

,3,2

,2,1,1,2,1

,1

~

0

/

1

/

0

if

if

if

if

if

µ  (21) 

Moreover, let us assume that the parameter δ  of the 
prior distribution is known exactly, but the parameter 
γ  is also imprecisely defined, and is described by the 
following trapezoidal function: 

( )
( ) ( )

( ) ( )













≤
<≤−−
<≤
<≤−−

<

=

γ
γγ
γ
γγ

γ

γµγ

4

43344

32

21121

1

~

if0

if/

if1

if/

if0

g

ggggg

gg

ggggg

g

    (22) 

The fuzzy Bayes estimator of the parameter ν can be 
found by fuzzification of (20). Simple application of the 
Zadeh's extension principle leads to the following result: 
the observed fuzzy valueν~ of the estimator of the mean 
value ν  is also a trapezoidal fuzzy number described by 
the membership function 

 ( )
( ) ( )

( ) ( )













≤
<≤−−
<≤
<≤−−

<

=

νν
ϑννννγν
ννν
νννννγ

νν

νµν

4

43344

32

21121

1

~

if0

if/

if1

if/

if0

g

    (23) 

where 

∑
=+

+
+

=
n

i
ix

n
g

n 1
,122

2

122

2

1 δσ
δ

δσ
σν ,     (24) 

∑
=+

+
+

=
n

i
ix

n
g

n 1
,222

2

222

2

2 δσ
δ

δσ
σν ,     (25) 

∑
=+

+
+

=
n

i
ix

n
g

n 1
,322

2

322

2

3 δσ
δ

δσ
σν ,     (26) 

∑
=+

+
+

=
n

i
ix

n
g

n 1
,422

2

422

2

4 δσ
δ

δσ
σν .     (27) 

It is worthy to note that in the case of imprecise values of 
other parameters, such as σ and δ, the result of 
fuzzification is not so simple, as the membership 
function of ν~  is no longer a trapezoidal one. However, 
the application of the concept of α-cuts and the extension 
principle let us calculate its approximation (for a finite 
set of  α-cuts) without serious problems. 
 
Now, let us consider the second example: the choice of 
the best action from among two possible actions {a1,a2}. 
Potential losses connected with the choice of both actions 
depend upon the value of the state variable θ. In the 
simplest case we may consider only two values of the 
state variable θ, namely θ1 and θ2. Suppose that there 



exists the following prior probability distribution over 
the set {θ1,θ2}: ( ) ( ) pPpP −==== 1, 21 θθθθ .  

 
Let us now define the loss function of the considered 
problem in a form of a following table: 
 
Table 1. Loss function in a tabular form 
 
Decision/State θ1 θ2 

a1 0 w1 

a2 w2 0 
 
In this simple case losses (w1>0, w2>0) are generated 
only in the case of wrong decisions.  
 
The solution to this problem is well known in literature 
(for this and more complicated models see, e.g., DeGroot 
[2]). The expected loss (risk) connected with decision a1 
is, according to (1), equal to ( ) ( )pwa −= 111ρ , and the 

risk connected with decision a2 is equal to 
( ) pwa 22 =ρ . For given values of p, w1, and w2 we 

calculate both risks, and we choose the action connected 
with the smaller one. 
 
Suppose now that the parameters p, w1, and w2 are known 
only imprecisely, and that they are described by fuzzy 
triangular numbers that have the membership function of 
the following general form: 

( ) ( ) ( )
( ) ( )
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Let us denote this fuzzy number by a triple ( )321 ,, yyy . 

For a given value of 10, ≤< αα , the lower limit of the 

respective α-cut is given as 

( )121 yyyyL −+= αα  (29) 

and the upper limit is given by 

( )233 yyyyu −−= αα  (30) 

The fuzzy risks connected with the considered decisions 
are not described by triangular fuzzy numbers. However, 
the limits of their α-cuts are still easy to calculate from 
the following formulae: 

( ) ( )αααρ ULL pwa −= 1,11  , (31) 

( ) ( )αααρ LUU pwa −= 1,11  , (32) 

( ) αααρ LLL pwa ,22 = , (33) 

( ) αααρ UUU pwa ,22 = . (34) 

Suppose now that the actions are numbered in such a way 
that the following relation holds:  

( ) ( )2
1
,21

1
,1 aa LU ρρ ≤ . 

In such a case the risk connected with action a2 is likely 
to be greater than the risk connected with action a1. 
Otherwise, either the risk connected with action a1 is 
greater than the risk connected with action a2 or both risk 
are similar, and undistinguishable due to their fuzziness.  
 
The NSD index that measures the dominance of the fuzzy 
risk ( )2

~ aρ  over the fuzzy risk ( )1
~ aρ  can be now 

calculated from the following expression: 

( ) ( )( )
( ) ( ) ( )
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 (35) 

where 

( ) ( ) ( )
( ) ( )( ) ( ) ( )( )12132122

2113
21 1,

aaaa

aa
aaRD

ρρρρ
ρρ

−+−
−−= , (36) 

and 

( ) ( ) 2,1,0
1 == iaa iLi ρρ , (37) 

( ) ( ) 2,1,1
2 == iaa iLi ρρ , (38) 

( ) ( ) 2,1,0
3 == iaa iUi ρρ . (39) 

If this value is greater than 0, we are entitled to say that 
the action a1 is, to some extent, preferable to action a2. 
Otherwise, there is a possibility that the action a2 is 
preferable to the action a1. 
 
To give a numerical example let us assume that 1

~w  is 

described by a triangular fuzzy number (1 , 2 , 3), 2
~w  by 

(2 , 3 , 4), and p~  by (0,4 , 0,5 , 0,6). From  (31) – (34) 

and (37) – (39) we have ( ) 112 =aρ , ( ) 8,113 =aρ  , 

( ) 8,021 =aρ  , and ( ) 5,122 =aρ . The NSD for the 

dominance of the risk connected with the action a2 over 
the risk connected with the action a1, calculated from 
(35) is equal to 0,41. Thus, there is significant evidence 
that the action a1 should be preferred over the action a2. 
 
 

6. CONCLUSIONS 
 

In the paper we have presented a general methodology 
for making Bayes optimal decisions when input data, 



i.e. parameters of the loss function, parameters of the 
prior distribution of the state variable, and statistical 
data, may be imprecisely defined. This situation 
frequently happens in the systems analysis of complex 
systems where the input information is expressed by 
people (experts) who use a common language. For the 
description of that lack of precision we use the 
formalism of the fuzzy sets. Therefore, the risks that are 
calculated in order to find optimal decisions are fuzzy. 
We present algorithms that are useful for the calculation 
of these fuzzy risks. Moreover, we present the 
methodology for the comparison of fuzzy risks. The 
theory presented in the paper is illustrated with some 
simple examples. 
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