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ABSTRACT

In this paper we define a concept of weak equi-
librium for vector network equilibrium problems.
We obtain sufficient conditions of weak equilib-
rium points and establish relation with vector net-
work equilibrium problems and vector variational
inequalities.

Keyword: Network Equilibrium Problem, Vector
Variational Inequality, Weak Equilibrium.

1 INTRODUCTION

The earliest network equilibrium model was pro-
posed by Wardrop [1] for a transportation network.
Since then, many other equilibrium models have
also been proposed in the economics literature (see
Nagurney [2]). Until only recently, all these equi-
librium models are based on single cost or utility
function. Recently, equilibrium models based on
multicriteria consideration or vector-valued cost
functions have been proposed. In Chen and Yen
[3], a multicriteria traffic equilibrium model was
proposed and the relationship between this model
and the vector variational inequality problem was
considered under a singleton assumption. Other pa-
pers that consider multicriteria equilibrium models
can be found in Brenninger-Göthe et al [4], Chen,
Goh and Yang [5], Dial [6], Goh and Yang [10],
Leurent [8], and Yang and Goh [9]. In particular,
the multicriteria network equilibrium model was
formulated as a vector variational inequality prob-
lem in Goh and Yang [10] via a vector optimization
approach, but without the singleton assumption.

In this paper, we consider weak vector net-
work equilibrium, vector network equilibrium and
dynamic vector equilibrium problems. We establish
their relations with vector variational inequalities
and vector optimization problems.

2 WEAK VECTOR EQUILIBRIUM
PROBLEM

Consider a transportation network G = (N ,A)
where N denotes the set of nodes and A denotes the

set of arcs. Let I be the set of origin-destination (O-
D) pair and Pi, i ∈ I be the set of paths joining O-D
pair i. For a given path k ∈ Pi, let hk denote the
traffic flow on this path and h = (h1, h2, · · · , hM ) ∈
IRM , where M =

∑
i∈I |Pi|. The path flow vector

h induces a flow va on each arc a ∈ A given by

va =
∑

i∈I

∑

k∈Pi

δakhk,

where ∆ = [δak] ∈ IR|A|×M is the arc path incidence
matrix with δak = 1 if the arc belongs to path k and
0 otherwise. Let v = [va : a ∈ A] ∈ IR|A| be the
vector of arc flow. Succinctly

v = ∆h. (1)

We will assume that the demand of traffic flow is
fixed for each O-D pair, i.e.,

∑
k∈Pi

hk = di, where
di is a given demand of each O-D pair i. A flow
h ≥ 0 satisfying the demand is called a feasible
flow. Let H = {h : h ≥ 0,

∑
k∈Pi

hk = di,∀i ∈ I}
be the set of feasible flows. H is clearly a closed
and convex set. Let ta : IR|A| → R` be a vector-
valued cost function for the arc a and it is in gen-
eral a function of all the arc flows, and let metric
t(v) = [ta(v) : a ∈ A] ∈ IR`×|A|. The vector-
valued cost function along the path k, we denote
τk, τk : IRM → IR` is assumed to be the sum of all
the arc cost along this path, thus

τk(h) =
∑

a∈A
δakta(v).

Let T (h) = [τk(h) : k ∈ Pi, i ∈ I] ∈ IR`×M. Suc-
cinctly

T (h) = t(v)∆. (2)

In this section, we consider an equilibrium
problem defined on transportation network with
vector-valued cost functions. In this model, the cost
space is `-dimensional Euclidean space IR`, with the
ordering cone C, a pointed, closed and convex cone
with nonempty interior intC.

Definition 1 Given a flow h, we say that a path
p ∈ Pi for an O-D pair i is a weakly minimal one if
there does not exist another path p′ ∈ Pi such that
τp′(h)− τp(h) ≤intC 0.
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Let Γi(h) = {τp(h) : p ∈ Pi} denote the (dis-
crete) set of vector costs for all paths for O-D pair
i, and

Ii(h) = {k ∈ Pi | τk(h)−τp(h) 6≥intC 0, ∀p ∈ Pi} ⊆ Pi

denote the set of all weakly minimal paths for O-D
pair i.

We define the weakly minimal frontier for O-D
pair i to be the set of weakly minimal points in the
cost-space of O-D pair i:

MinintC(Γi(h)) = {ξ ∈ IR` | ξ = τp(h) where p ∈ Ii(h)}.
Note that MinintC(Γi(h)) is a discrete set because
it is a subset of the discrete set Ii(h).

The following weak vector equilibrium princi-
ple is a generalization of the well-known Wardrop’s
equilibrium principle (see Wardrop [1]):

Definition 2 A flow h ∈ H is said to be in weak
vector equilibrium if

∀i ∈ I,∀k, l ∈ Pi, τk(h) ≥intC τl(h) =⇒ hk = 0.
(3)

A flow h in weak vector equilibrium is often referred
to as a weak vector equilibrium flow.

In terms of the weakly minimal frontier for O-
D pair i, the weak vector equilibrium principle can
be stated in an equivalent form:

Definition 3 [Equivalent weak vector equilibrium
principle] The path flow vector h is in weak vector
equilibrium if

∀i ∈ I,∀p ∈ Pi, hp = 0
whenever τp(h) /∈ MinintC(Γi(h)). (4)

These definitions are natural generalizations
of the Wardrop equilibrium principle for a scalar
valued cost, in which case, a strict inequality > is
used in (3). The motivation for both the scalar and
the vector cost cases is provided by the fact that
an user will not choose to travel on a path if it is
cheaper (both in the scalar and the vector sense) to
travel on another path that links the same origin
and destination.

We shall investigate weak vector equilibrium
flows by virtue of linear scalarization function and
nonlinear scalarization function, respectively.

Linear Scalarization Approach

Let us first introduce the concept of a para-
metric equilibrium flow.

Definition 4 (Weak parametric equilibrium prin-
ciple) Let a parameter λ ∈ C∗ be given. A path flow
vector h is in weak λ-equilibrium if ∀i ∈ I, ∀p ∈
Pi, hp = 0 whenever ∃ ei ∈ MinintC(Γi(h)),
such that λ>τp(h) > λ>ei.

Note that a parametric equilibrium flow is
based on a scalar cost, as in the case of Wardrop’s
equilibria. In the case of scalarization for vector
optimization, it is known that certain convexity as-
sumption is necessary before the scalar optimal so-
lution is necessarily a weakly minimal solution for
the vector problem. In the present context, how-
ever, the set of concern Γi(h) is discrete and hence
convexity has no meaning. To get around this, we
make the following assumption.

Assumption 1

MinintC(Γi(h)) ⊆ MinintC(co(Γi(h))),

where co(Γi(h)) is the convex hull of the discrete set
Γi(h).

The following result establishes relationships
between a weak vector equilibrium flow and a para-
metric equilibrium flow.

We need the following scalarization result.

Lemma 1 Let A ⊂ IR` be a nonempty and con-
vex set and a∗ ∈ MinintCA. Then, there exists
λ ∈ C∗\{0} such that

λ>a∗ = min
a∈A

λ>a.

Theorem 1 (i) If h is in weak vector equilib-
rium and Assumption 1 holds, then there ex-
ists λ ∈ C∗ \ {0} such that the path flow h is
in weak λ-equilibrium;

(ii) If h is in weak λ-equilibrium for some λ ∈
C∗\{0}, then h is in weak vector equilibrium.

For λ ∈ C∗, we define the minimum scalarized
cost for O-D pair i as:

ui(λ) = min
p∈Pi

λ>τp(h). (5)

Lemma 2 If λ ∈ C∗\{0}, then ui(λ) = λ>ei for
some ei ∈ MinintC(Γi(h)).

Theorem 2 (i) Let λ ∈ C∗. Then h is in weak
λ-equilibrium if the following condition holds:

∀i ∈ I,∀p ∈ Pi, hp = 0 whenever λ>τp(h) > ui(λ);
(6)
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(ii) If λ ∈ C∗\{0} and h is in weak λ-equilibrium,
then condition (6) holds.

Next, necessary and sufficient optimality con-
ditions of weak vector traffic equilibrium in terms
of vector variational inequalities are given.

Theorem 3 Let Assumption 1 hold , the cost func-
tion ta be integrable and the cost matrix t(v) be C-
monotone. If h is in weak vector equilibrium, then
h is a solution of the following (WVVI) of finding
h ∈ H:

T (h)(g − h) 6≤intC 0, ∀g ∈ H.

We may now establish a sufficient condition
for a flow h to be in weak vector equilibrium.

Theorem 4 h ∈ H is in weak vector equilibrium if
h solves the (WVVI) of finding h ∈ H:

T (h)(h̄− h) 6≤intC 0, ∀h̄ ∈ H. (7)

Proof. Let h satisfy (7). Choose h̄ to be such that

h̄j =





hj , if j 6= k or j,
0, if j = k,
hk + hj , if j = j.

(8)

Clearly, h̄ ∈ H since ∀i ∈ I,
∑

j∈Pi
hj =∑

j∈Pi
h̄j = di. Now

T (h)(h̄− h) =
∑

i∈I

∑

j∈Pi

(h̄j − hj)τj(h)

= (h̄k − hk)τk(h) + (h̄j − hj)τj(h)
= hk(τj(h)− τk(h)) 6≤intC 0. (9)

If
τk(h)− τj(h) ≥intC 0, (10)

then (9) and (10) together imply that hk = 0 since
C is a pointed cone. ¥

3 NONLINEAR SCALARIZATION
APPROACH

In this subsection, we assume that C = IR`
+.

Choose any a ∈ IR` and e ∈ intIR`
+. By using the

nonlinear scalarization function ξea, define a func-
tion ξk

ea : IRM → IR by:

ξk
ea(h) = ξea(τk(h)), k ∈ Pi, i ∈ I.

The vector-valued function ξ̄ea : H → IRM

and the scalar-valued function ui
ea : H → IR, i ∈ I

are defined, respectively, by

ξ̄ea(h) = [ξk
ea(h) : k ∈ Pi, i ∈ I] (11)

and
ui

ea(h) = min
k∈Pi

ξea(τk(h)), i ∈ I. (12)

Definition 5 The path flow h ∈ H is said to be in
ξea-equilibrium if there exist e ∈ intIR`

+ and a ∈ IR`

such that

∀i ∈ I,∀k, l ∈ Pi, ξea(τk(h)) > ξea(τl(h)) =⇒ hk = 0.
(13)

Consider the following vector optimization
problem (VO):

(V O) MinC
x∈X

f(x),

where f : IRM → IR`, X ⊂ IRM is a possibly finite
set. Note that neither f nor X is required to be
convex.

We have the following non-convex scalariza-
tion theorem.

Theorem 5 (Non-convex Scalarization Theorem)
Let
A ⊂ IR` be a IR`

+ order lower bounded subset. Then
y∗ ∈ Min

intIR`

+
A if and only if, for some a ∈ IR`

and e ∈ intR`
+,

ξea(y∗) = min ξea(A).

We may now use Theorem 5 to establish an
equivalent condition for a weak vector equilibrium
in terms of a scalar variational inequality.

Theorem 6 The path flow h ∈ H is in weak vector
equilibrium if and only if h is in ξea-equilibrium for
some e ∈ intIR`

+ and a ∈ IR`.

Remark 1 It is important to note that the set Ki

in the above proof is a discrete set, in which convex-
ity has no meaning. The converse proof would not
have worked if we had used the linear scalarization
instead, since this would have required the set Ki to
be infinite and cone convex.

The problem of finding a ξea-equilibrium for
given e ∈ IR`

+ and a ∈ IR` is still not directly solv-
able. We now reduce the ξea- equilibrium to a scalar
variational inequality and consequently well-known
techniques for solving variational inequalities can
be applied accordingly.

3



Theorem 7 The path flow h ∈ H is in ξea-
equilibrium if and only if there exist e ∈ intIR`

+ and
a ∈ IR` such that h solves the following (scalar)
variational inequality:

ξ̄ea(h)>(h̄− h) ≥ 0, ∀h̄ ∈ H, (14)

where ξ̄ea(h) = [ξk
ea(h) : k ∈ Pi, i ∈ I] and

ξk
ea(h) = ξea(τk(h)).

Proof. (⇐=)
Assume that h solves the variational inequal-

ity (14). Choose the special h̄ defined by (8), then

ξ̄ea(h)>(h̄− h) =
∑

i∈I

∑

j∈Pi

(h̄j − hj)ξj
ea(h)

= (h̄k − hk)ξk
ea(h) + (h̄l − hl)ξl

ea(h)
= hk(ξl

ea(h)− ξk
ea(h))

= hk(ξea(τl(h))− ξea(τk(h)))
≥ 0. (15)

Thus if ξea(τk(h))− ξea(τl(h)) > 0, (15) and hk ≥ 0
implies that hk = 0, i.e., h is in weak vector equi-
librium.

(=⇒)
Conversely, we assume that h ∈ H is in ξea-

equilibrium and define,

P 1
i := {k ∈ Pi : ξea ◦ τk(h) = ui

ea(h)},

P 2
i := {k ∈ Pi : ξea ◦ τk(h) > ui

ea(h)}.
(16)

Then for any h̄ ∈ H, we have

ξ̄ea(h)>(h̄− h)

=
∑

i∈I

∑

k∈Pi

ξk
ea ◦ τk(h)(h̄k − hk)

=
∑

i∈I





∑

k∈P 1
i

ui
ea(h)(h̄k − hk) +

∑

k∈P 2
i

ui
ea(h)h̄k





=
∑

i∈I
ui

ea(h)
∑

k∈Pi

(h̄k − hk)

=
∑

i∈I
ui

ea(h)(di − di)

= 0,

i.e., h solves the variational inequality (14). ¥

Corollary 1 Let D ⊂ IR` be a base of IR`
+. Then

the path flow h ∈ H is in weak vector equilibrium if
and only if there exists a d ∈ D ∩ intIR`

+ such that
h solves

ξ̄d0(h)>(h̄− h) ≥ 0, ∀h̄ ∈ H. (17)

Proof. Since ξe0(y) is positively homogeneous for
α > 0 we have ξe0(αy) = αξe0(y). Since D is a
base, for e ∈ intIR`

+, there exist α1 > 0 and d ∈ D

such that e = α1d, and we have ξe0(y) =
1
α1

ξd0(y).

Thus, by Theorem 6 and Theorem 7, the result of
this Corollary holds. ¥

4 VECTOR EQUILIBRIUM PROBLEM

In this section, we consider an equilibrium problem
defined on transportation networks with vector-
valued cost functions. In this model, the cost space
is again `-dimensional Euclidean space IR`, with
the ordering cone C, a pointed, closed and convex
cone with nonempty interior intC.

Definition 6 Given a flow h, we say that a path
p ∈ Pi for an O-D pair i is a minimal one if
there does not exist another path p′ ∈ Pi such that
τp′(h)− τp(h) ≤C\{0} 0.

Let Γi(h) = {τp(h) : p ∈ Pi} denote the (dis-
crete) set of vector costs for all paths for O-D pair
i, and

I ′i(h) = {k ∈ Pi | τk(h)−τp(h) 6≥C\{0} 0, ∀p ∈ Pi} ⊆ Pi

denote the set of all minimal paths for O-D pair i.

We define the minimal frontier for O-D pair i
to be the set of minimal points in the cost-space of
O-D pair i:

MinC(Γi(h)) = {ξ ∈ IR` | ξ = τp(h) where p ∈ I ′i(h)}.

Note that MinC(Γi(h)) is a discrete set because it
is a subset of I ′i(h) and I ′i(h) is a discrete set.

The following vector equilibrium principle is a
generalization of the well-known Wardrop’s equilib-
rium principle (see Wardrop [1]):

Definition 7 A flow h ∈ H is said to be in vector
equilibrium if

∀i ∈ I,∀k, l ∈ Pi, τk(h) ≥C\{0} τl(h) =⇒ hk = 0.

A flow h in vector equilibrium is often referred to
as a vector equilibrium flow.

In terms of the minimal frontier for O-D pair
i, the vector equilibrium principle can be stated in
an equivalent form:
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Definition 8 (Equivalent vector equilibrium prin-
ciple) The path flow vector h is in vector equilibrium
if:

∀i ∈ I, ∀p ∈ Pi, hp = 0 whenever τp(h) /∈ MinC(Γi(h)).
(18)

Definition 9 (Parametric equilibrium principle)
Let a parameter λ ∈ C∗ be given. A path flow vector
h is in λ-equilibrium if

∀i ∈ I, ∀p ∈ Pi, hp = 0 whenever ∃ ei ∈ MinC(Γi(h)),
such that λ>τp(h) > λ>ei.

Assumption 2 MinC(Γi(h)) ⊆ MinC(co(Γi(h))).

We need the following scalarization result.

Lemma 3 Let A ⊂ IR` be a nonempty and convex
set and a∗ ∈ MinCA. Then, there exists λ ∈ intC∗

such that
λ>a∗ = min

a∈A
λ>a.

The following result establishes relationships
between a vector equilibrium flow and a parametric
equilibrium flow.

Theorem 8 (i) If h is in vector equilibrium and
Assumption 2 holds, then there exists λ ∈
C∗ \ {0} such that the path flow h is in λ-
equilibrium;

(ii) If h is in λ-equilibrium for some λ ∈ intC∗,
then h is in vector equilibrium.

Proof. (i) Similar to the proof of Theorem 1 (i), but
using Lemma 3 instead.

(ii) Let λ ∈ int C∗ and let h be in λ-
equilibrium. Suppose that h is not in vector equilib-
rium, then by Definition 7, there exists i ∈ I, p ∈ Pi

such that,

hp > 0 and τp(h) /∈ MinC(Γi(h)).

Thus

hp > 0 and λ>τp(h) > λ>ei, for some ei ∈ MinC(Γi(h)).

Hence h is not in λ-equilibrium, a contradiction. ¥

Lemma 4 Let ui(λ) be defined. If λ ∈ int C∗,
then ui(λ) = λ>ei for some ei ∈ MinC(Γi(h)).

Proof. From (5), let p ∈ Pi be such that ui(λ) =
λ>τp(h). Choose ei := τp(h). Suppose now that
ei /∈ MinC(Γi(h)), then there exists p̄ ∈ Pi,
such that τp(h) ≥C\{0} τp̄(h). Since λ ∈ intC∗,
λ>τp(h) > λ>τp̄(h), a contradiction. Therefore
ei ∈ MinC(Γi(h)). ¥

Theorem 9 (i) Let λ ∈ C∗. Then h is in λ-
equilibrium if the following condition holds:

∀i ∈ I,∀p ∈ Pi, hp = 0 whenever λ>τp(h) > ui(λ);
(19)

(ii) If λ ∈ int C∗ and h is in λ-equilibrium, then
condition (19) holds.

Proof. (i) If there exists ei ∈ MinC(Γi(h)) such that
λ>τp(h) > λ>ei, say ei = τq(h) for some q ∈ Pi,
then λ>τp(h) > λ>τq(h), q ∈ Pi. Thus, clearly,

λ>τp(h) > ui(λ) = min
p∈Pi

λ>τp(h),

by (19), hp = 0, so h is in λ-equilibrium.

(ii) Let h be a λ-equilibrium flow. By Lemma
4, there exists ei ∈ minC (Γi(h)) such that ui(λ) =
λ>ei. Suppose that λ>τp(h) > ui(λ). Then

λ>τp(h) > λ>ei.

By Definition 9, hp = 0 and hence (19) holds. ¥

We may now establish a sufficient condition
for a flow h to be in vector equilibrium.

Theorem 10 h ∈ H is in vector equilibrium if h
solves the (VVI) of finding h ∈ H such that

T (h)(h̄− h) 6≤C\{0} 0, ∀h̄ ∈ H. (20)

Proof. Let h satisfy (20). Choose h̄ to be such that

h̄j =





hj , if j 6= k or j,
0, if j = k,
hk + hj , if j = j.

Clearly, h̄ ∈ H since ∀i ∈ I,
∑

j∈Pi
h̄j =∑

j∈Pi
hj = di. Now

T (h)(h̄− h) =
∑

i∈I

∑

j∈Pi

(h̄j − hj)τj(h)

= (h̄k − hk)τk(h) + (h̄j − hj)τj(h)
= hk(τj(h)− τk(h)) 6≤C\{0} 0. (21)

If
τk(h)− τj(h) ≥C\{0} 0, (22)

then (21) and (22) together imply that hk = 0 since
C is a pointed cone. Thus, h is in vector equilib-
rium. ¥
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