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ABSTRACT

This paper deals with one of the key issues of mod-
eling work: how model-based complex problem solving
can efficiently exploit huge amounts of knowledge avail-
able on a countless number of interconnected computers.
Solving complex problems requires comprehensive anal-
yses of relations between decisions and the consequences
resulting from their implementations.

This paper discusses how heterogeneous knowledge
coming from diverse fields of science and practice can
be effectively exploited to develop mathematical models.
In particular, selected problems related to integration of
heterogeneous knowledge through interdisciplinary col-
laborative work are discussed; such work is performed
by virtual modeling laboratories which are a combination
of two concepts: (1) modeling laboratory (which comes
from the concept of G. Dantzig, who stressed that mod-
els should be considered as representations of laboratory
world), and (2) virtual organizations.

Next, the requirements for the modeling process sup-
porting decision-making process are summarized. Then
the structured modeling technology is outlined and it is
explained how this technology responds to the summa-
rized requirements. Finally, opportunities of exploiting
models for knowledge creation are discussed.

Keywords: knowledge creation and integration, model-
based decision-making support, virtual laboratories,
knowledge civilization, structured modeling.

1. INTRODUCTION

Everybody solves many diverse problems and makes cor-
responding decisions everyday. Most of these processes
are rule-based or even performed subconsciously. How-
ever, rational solving of many other problems requires
a thorough analysis, which is conventionally called the
decision making process. Complex problems cannot be
rationally solved by intuition or experience supported by
relatively simple calculations. Even the types of prob-
lems that used to be easy to define and solve have become
complex because of the globalizationof the economy, and
a much greater awareness of its linkages with various en-
vironmental, social and political issues.

Rational decision making requires a comprehensive
analysis of the underlying problem. Comprehensive anal-
ysis implies exploitation of pertinent science, i.e. orga-
nized knowledge relevant to the decision problem. Thus,
knowledge should be a basis for rational decision mak-
ing. This is commonly agreed but the consequences of
this fact are not adequately understood.

For many complex problems a large part of pertinent
knowledge can be represented by mathematical models.
Model development requires collaboration of scientists
and professionals who contribute (typically interdisci-
plinary and heterogeneous) knowledge. Such a collab-
oration is organized through virtual organizations, which
for collaborative modeling can be called virtual model-
ing laboratories. In the final step of model development
knowledge is created by model analysis, and used for
supporting rational decision-making.

Thus this paper focuses on model-based support for
solving complex problems, and is organized according
to the above outlined process of knowledge integration
and creation in virtual modeling laboratories. Section 2
discusses model-based knowledge integration, which is
followed by a summary of key issues of collaborative
modeling in Section 3. Structured Modeling Technol-
ogy (SMT) is characterized in Section 4. The concepts
of virtual organizations and of laboratory world are sum-
marized in Sections 5 and 6, respectively. Section 7 deals
with issues of knowledge creation through various ele-
ments of modeling process. Finally, Section 8 concludes
the paper by summarizing main issues and outliningsome
open research challenges.

2. KNOWLEDGE INTEGRATION

Knowledge is typically understood as familiarity, aware-
ness, or understanding gained through experience or
study. The amount of knowledge is growing very quickly,
therefore even best scholars can master only a tiny frac-
tion of knowledge available in their professional area.
Consider, e.g. mathematical programming, which is on
the one hand a rather specialized area of mathematics,
but on the other hand it is a rather broad area from the
point of view of researchers working in a particular field
(e.g. interior point methods for optimization, or wavelet-
based approaches to analysis of time series).



Knowledge creation and integration is a rather com-
plex process, which requires careful management, see
e.g., [1, 2]. In this paper we focus on two specific issues:
(1) knowledge integration for the development of mathe-
matical models (discussed in this Section), and (2) knowl-
edge creation by model analysis (in Section 7).

A common form of knowledge is a collection of facts
and rules about a subject. Consider as an example a very
simple subject, a cup of coffee. Very diversified knowl-
edge is suitable for studying various aspects, e.g., how
something (sugar, cream) is dissolved in the cup’s con-
tent, or under what conditions the cup might break from
thermal stresses, or what shape of cup is most suitable
for use in aircraft, or how a cup of coffee enhances dif-
ferent people’s productivity. An attempt to deal with all
these aspects at once, and to represent all the accumulated
knowledge pertinent to even such a simple topic would
not be rational. Therefore, analysis of a problem, even
when simple, typically exploits only a small fraction of
the accumulated knowledge about the subject.

Complex problems are typically composed of hetero-
geneous subjects. For example, analysis of cost-effective
measures of continental air pollution control aimed at im-
proving environment quality, see the description of the
RAINS model e.g., in [3], involves the following sub-
jects: several sectors of economy (industry, transporta-
tion, agriculture, etc), technology, atmospheric chem-
istry, ecology, health, operational research, negotiations,
policy making. Each of these subjects is rather complex,
and for each there existhuge amount of knowledgeaccu-
mulated in various fields of science and practice.

Although heterogeneity of subjects represented by the
RAINS model is far beyond a typical complex model, se-
lection of appropriate (for the problem at hand) elements
of knowledge remains a challenge also for rather homo-
geneous (in terms of the science disciplines) problems.

Thus the first challenge in science-based support for
solving complex problems is typically not the lack of
knowledge but the selection of appropriate (usually tiny)
fractions of knowledge from all relevant areas of science
and practice. The second challenge is a reliable integra-
tion of the selected (typically heterogeneous) knowledge
into a form in which it can be effectively used.

2.1. Requirement analysis

Actually, the two challenges summarized above are not
addressed by a sequential process, they are typically
solved in an iterative way driven by requirement analy-
sis of the model-based support for solving the problem at
hand. The role of requirement analysis is often underes-
timated although it is commonly known that a properly
done analysis is a key condition for any successful mod-
eling process. This topic is far beyond the scope of this

paper therefore we mention here only those key elements
of the requirement analysis which are directly related to
the process of knowledge integration and creation:
• what decisions are to be made,
• how the consequences of decisions are measured,
• what relations between the consequences and the deci-

sions should be considered,
• what data is available,
• how user preferences (for different decisions and the

corresponding consequences) can be represented.
Mathematical models are probably the best way to in-

tegrate knowledge for problem solving whenever it in-
volves analysis of large amounts of data and/or not-trivial
relations. In such cases the elements of the requirement
analysis correspond to the basic elements of a typical
structure (illustrated in Fig. 1) when using a mathemat-
ical model for problem solving.

M a t h e m a t i c a l  m o d e l
y  =  F  ( x , z )

U s e r

y
P ( x , y )

z

Figure 1: A typical structure when using a mathematical
model for problem solving.

A mathematical model describes the modeled problem
by means of variables, which are abstract representations
of these elements of the problem, which need to be con-
sidered for the evaluation of the consequences (measured
by outcome variablesy) of implementing a decision (typ-
ically represented by a vector composed of many vari-
ables). More precisely, such a model is typically devel-
oped using the following concepts:
• decisions (controls, inputs to the decision making pro-

cess)x , which are controlled by the user;
• external decisions (inputs)z , which are not controlled

by the user;
• outcomes (outputs)y , used for measuring the conse-

quences of implementation of decisions;
• relations between decisionsx andz , and outcomesy ;

such relations are typically presented in the form:

y = F(x , z ), (1)

where F(·) is a vector of functions (conventionally
called constraints);
• a representation of a preferential structureP (x , y) of

the user, used for selecting (out of typically an infinite
number of solutions) a manageable subset of solutions
correspond best to user’s preferences.



The compact form of (1) does not illustrate the
complexity of the underlying knowledge representation:
a large model may have several millions of variables and
constraints, even when the number of decision and out-
come variables is much smaller (say, several thousands).

2.2. Knowledge integration in models

In order to outline the knowledge integration let us con-
sider a mathematical model as composed of entities and
relations between them. Entities are of two types: (1) pa-
rameters, values of which represent pertinent information
(i.e. a collection of data), and (2) variables, values of
which are assigned during the model analysis. The model
relations (conventionally called constraints or functions)
represent knowledge about the relationships among the
model entities.

A model therefore integrates knowledge pertinent to
solving a particular problem on two levels:
• symbolic model specification,
•model instance (called alsosubstantive modelor core

model) composed of model specification and a selected
set of data used for instantiation of relations (through
assigning values to parameters of the relations),
In many situations symbolic model specification can

be based on commonly known rules of science. How-
ever, in other situations knowledge pertinent to a partic-
ular relation is so diversified that a definition of the rela-
tion requires a dedicated study. To illustrate this problem
let us recall that the relation between trophosperic ozone
and its two precursors (nitrogen oxides and volatile or-
ganic compound) can be defined in very different ways,
each having the corresponding diversified advantages and
disadvantages depending on the content in which the re-
lation is applied (see e.g., [4]).

For large scale models relations for each subject (repre-
sented by a submodel) are defined in a close cooperation
between specialists in the corresponding area and a team
of modelers capable to:
• assess the consequences of the considered relation

types on numerical complexity of the resulting compu-
tational tasks,
• assure consistency of the whole model to which the re-

lation will be included.
Thus the development of symbolic model specification

requires:
• analysis of a relevant (for the purpose of the model)

knowledge abouteach modeled subject (submodel),
and a selection of these elements of the knowledge
which will be represented in the model,
• representation of the selected knowledge in a mathe-

matical form consistent with relations defined for all
other submodels,
• integration of all submodels into a consistent model

that possibly best (in terms of both required accuracy
and computational efficiency) represent the relations
between the decisions and outcomes.
We should stress an important feature of a properly

developed model: it integrates knowledge in a reliable
way thus provides an objective and justifiable way of an-
alyzing the relations between the decisions and the con-
sequences of their implementation. This objectivity can
be assured only if:
• all model relations are actually based on knowledge,

i.e. on verifiable facts and rules;
• the assumptions for these facts and rules are consistent

with the assumptions agreed for the model;
• semantic correctness is enforced not only for each rela-

tion but also for the set of all relations (e.g., the units
and the accuracy/precision of all entities are consis-
tent);
• no representation of the preferential structure is in-

cluded in the substantive model;
• data used for model instantiation is consistent with the

model specification.
A more detailed discussion on development of models

for decision making support is available e.g., in [5, 6],
and a general presentation of knowledge integration and
creation on knowledge Web is available in [7].

Although a proper symbolic model specification is cer-
tainly the most challenging part of model building from
the knowledge integration point of view, we have to stress
that the data used for model instantiation also represents
a necessary part of knowledge which needs to be inte-
grated into the modeling process in a robust and efficient
way. We comment on this issue in Section 3.2.

3. COLLABORATIVE MODELING

Mathematical modeling of a complex problem is actually
a network of activities involving interdisciplinary teams
collaborating closely with experts in modeling methods
and tools. Dantzig summarized in [8] the opportunities
and limitations of using large-scale models for policy
making. Thanks to the development of algorithms and
computing power today’s large-scale models are at least
1000-times larger; thus, large-scale models of the 1970s
are classified as rather small today. This, however, makes
the Dantzig’s message relevant to practically all models
used today, not only for policy-making but also in science
and management.

Today’s models are not only much larger, but the mod-
eled problems are more complex (e.g., by including rep-
resentation of knowledge coming from various fields of
science and technology), and many models are devel-
oped by interdisciplinary teams. Moreover, the mod-
eling processes supporting policy making have to meet
strict requirements of: credibility, transparency, replica-



bility of results, integrated model analysis, controllability
(modification of model specification and data, and vari-
ous views on, and interactive analysis of, results), quality
assurance, documentation, controllable sharing of mod-
eling resources through the Internet, and efficient use of
resources on computational Grids.

Traditional approach to modeling is based on the as-
sumption that a small team can organize and document
a modeling process. However, this approach is neither
reliable nor efficient for complex models developed by
several (or more) teams working intensively1 at distant
locations. To illustrate this statement let us character-
ize collaborative work for the selected stages of modeling
process discussed below.

3.1. Model specification

As discussed in Section 2, model specification is com-
posed of specifications of submodels (built for distinct
subjects), and each submodel requires selection of per-
tinent knowledge and its mathematical representation.
Thus each submodel is typically developed and tested by
a small team composed of specialists in the modeled sub-
ject and at least one specialist in mathematical model-
ing. Provided that the requirements for knowledge inte-
gration summarized in Section 2 are met, the submodels
can be gradually (i.e., not all submodels are combined at
the same time) integrated in the whole model.

A representation of the model specification should:
• allow to use a single source for all remaining elements

of the modeling process (creation of model instances,
generation of computational tasks, interpretation of re-
sults, and documentation);
• provide meta-data necessary for:
? creating data structures for all model parameters;
? semantic check of data correctness; and
? creating data structures for results of various analysis.
These requirements are implied by heterogeneity and

size of complex models, which in turn call for partici-
pation in the modeling process of many persons with di-
versified backgrounds playing different roles at various
stages of model development.

It is the qualitative increase of model size and hetero-
geneity that requires different (from the traditional) way
of collaborative modeling. This impact is illustrated in
the discussion of data handling problems.

3.2. Data

Data maintenance for a large complex model is by far the
most risky element of any modeling process. The popu-
lar saying“garbage in, garbage out”for large amounts

1This implies that diversified elements of the model are devel-
oped/modified practically at random times.

of data implies that incorrectness of even a tiny fraction
of all data may lead to very misleading results from the
model analysis. The problem may be difficult to trace
because, for some analyses, even “very wrong” data el-
ements may not have any practical impact on the corre-
sponding solutions (even if a sensitivity analysis would
indicate it should), while in other situations even a rela-
tively small mistake may result in a dramatic difference
between two sets of solutions (for wrong, and correct
data, respectively). Collecting and verifying data needed
for a small model is a relatively simple process as com-
pared to data management of large models. To illustrate
this let us assume that one needs only one minute to col-
lect and verify one data item (which is certainly an un-
derestimation). A typical model used in text books has
fewer than 20 elements of the Jacobian, therefore its data
can be collected in less than an hour and can be presented
in a fraction of a page (either printed or displayed) for
relatively easy verification. However, the Jacobian of the
new version of the RAINS model will have over1011 el-
ements. Therefore assuming a working year composed
of 1800 hours, collection and verification of1011 data
elements would require about106 person-years. Fortu-
nately, large models have sparse Jacobian, but human re-
sources needed for collection and verification of nonzero
elements still amounts to a large number of person-years.

Data for large models comes from different sources
(also as results from analysis of various models), and
larger subsets of data are maintained by teams. For-
tunately, there is a natural division of data into sub-
sets, which are maintained by individual persons or small
teams. Persons working with well-defined subsets of data
are experienced in collecting, cleansing, verifying, and
maintaining the data they are responsible for. There-
fore the “only” problem is how to structure the process
of aggregating the subsets of data maintained by various
teams (typically also using different hardware and soft-
ware) into a data collection that can be used for model
instantiation and analysis. To achieve this, a structured
approach based on DBMSs is a must.

3.3. Model analysis

Knowledge about the modeled problem is actually cre-
ated by model analysis. This topic is discussed in Sec-
tion 7.

4. MODELING TECHNOLOGY

The complexity of problems, and the corresponding mod-
eling process are precisely the two main factors that de-
termine requirements for modeling technology that sub-
stantially differs from the technologies successfully ap-
plied for modeling well-structured and relatively simple



problems. In most publications that deal with modeling,
small problems are used as an illustration of the presented
modeling methods and tools. Often, they can also be ap-
plied to large problems. However, as discussed above, the
complexity is characterized not primarily by the size, but
rather by: the requirements of integrating heterogeneous
knowledge, the structure of the problem, and the require-
ments for the corresponding modeling process. More-
over, efficient solving of complex problems requires the
use of a variety of models and modeling tools; this in turn
will require even more reliable, re-usable, and shareable
modeling resources (models, data, modeling tools). The
complexity, size, model development process, and the re-
quirements for integrated model analysis form main argu-
ments justifying the needs for the new modeling method-
ology.

Structured Modeling Technology(SMT) described
in [3] has been developed for meeting such requirements.
SMT supports distributed modeling activities for models
with a complex structure using large amounts of diversi-
fied data, possibly from different sources. A description
of SMT is beyond the scope of this paper, therefore we
only summarize here its main features:
• SMT is Web-based, thus supportingany-where, any-

timecollaborative modeling.
• It follows the principles of Structured Modeling pro-

posed by Geoffrion, see e.g., [9]; thus it has a modular
structure supporting developments of various elements
of the modeling process (model specification, (subset
of) data, model analysis) by different teams.
• It provides automatic documentation of all modeling

activities.
• It uses a DBMS for all persistent elements of mod-

eling process, which results in efficiency and robust-
ness; moreover, the capabilities of DBMSs serve effi-
cient handling of also huge amounts of data.
• It assures the consistency of: model specification, meta-

data, data, model instances, computational tasks, and
results of model analysis.
• It automatically generates a Data Warehouse with effi-

cient (also for large amounts of data) structure for:
? data, and tree-structure of data updates,
? definitions of instances,
? definitions of of preferences for diversified methods

of model analysis,
? results of model results,
? logs of all operations operations during modeling pro-

cess.
This conforms to the requirement for persistency of all
elements of modeling process.
• It exploits computational grids for large amounts of cal-

culations.
• It also provides users with easy and context sensitive

problem reporting.

More detailed arguments (including overview of the
standard modeling methods and tools) supporting this
statement are available in [3].

5. VIRTUAL ORGANIZATIONS

The fast development of the Internet calls for its more
advanced use, i.e. for jumping from passive access to
distributed information to collaborative integration and
creation of knowledge contained in models. This re-
quires dynamic management of interdisciplinary teams
contributing the needed disciplinary knowledge (typi-
cally available at different organizations).

A more advanced use of the Internet has been rec-
ommended already in [10]. The concept ofVirtual Or-
ganization(VO) in the context of the Grid is presented
in [11] together with basic characteristics of VOs (such as
authentication, authorization, resource access, resource
discovery) that are also typical for collaborative mod-
eling activities. A vision of a semantic grid for future
e-science infrastructure in a service-oriented view is dis-
cussed in [12]. It is built around knowledge services,
which support management and application of scientific
knowledge in order to respond to growing needs of col-
laboration between large scientific teams.

Unfortunately, the modeling community is far behind
other scientific communities, which exploit the Internet
capabilities for Computer Supported Collaborative Work
(CSCW) more efficiently. One of the most advanced and
innovative developments in CSCW are the so-calledcol-
laboratories.2 The dramatic increase of the power of
diversified communication and computational technolo-
gies during the last two decades has resulted in the cre-
ation of thousands of virtual laboratories, which facili-
tate the long-distance CSCW of multidisciplinary teams,
often using complex instrumentation in real-time mode.
Collaboratories are a rather small subset of virtual labo-
ratories that are organized as a problem specific, hand-
crafted projects supporting three types of communica-
tions: (1) people-to-people communication, (2) long-
distance real-time control of complex instrumentation,
and (3) remote access to information. The reliability and
efficiency requirements of the second element call for ex-
ploiting the most advanced technology for collaborato-
ries.

The need to exploit rich resources of knowledge for
model-based decision support is widely recognized. So-
lutions to various elements needed to achieve this have
been discussed in e.g., [13, 14, 15]. However, these par-
tial solutions have never been used to provide an inte-

2The term “collaboratory” was coined in 1989 by W. Wulf to refer
to the use of diversified technologies available for long-distance collab-
oration, see e.g.,http://www.scienceofcollaboratories.
org .



grated and comprehensive modeling environment to ef-
ficiently utilize the resources available on the Internet.
Thus, despite the unquestionable progress in the mod-
eling and Grid technologies, there is still a lot of work
to be done in exploiting available technology, knowledge
and experience.

6. LABORATORY WORLD

The requirements of complex problem modeling demand
a qualitative jump in modeling methodology: from sup-
porting individual modeling paradigms to supporting a
Laboratory World3 in which various models are devel-
oped and used to learn about the modeled problem in a
comprehensive way. The truth is that there are no sim-
ple solutions for complex problems. Thus, learning about
complex problems by modeling is in fact more important
than finding an“optimal” solution.

Laboratory World requires integration of various es-
tablished methods with new (either to be developed to
properly address new challenges, or not yet supported by
any standard modeling environment) approaches needed
for appropriate (in respect to the decision-making pro-
cess, and available data) mathematical representation of
the problem and ways of its diversified analyses. There-
fore, to be able to adequately meet the demand for ad-
vanced modeling support one indeed needs to develop
and apply novel modeling methodologies.

Such a laboratory world is actually supported by the
SMT outlined in Section 4. SMT is being gradually en-
hanced to fully meet the following requirements:
1. The demand for integrated model analysis, which

should combine different methods of model analysis
for supporting a comprehensive examination of the un-
derlying problem and its alternative solutions.

2. Stricter requirements for the whole modeling process,
including quality assurance, replicability of results of
diversified analyses, and automatic documentation of
modeling activities.

3. The requirement of controlled access through the Inter-
net to modeling resources (composed of model speci-
fications, data, documented results of model analysis,
and modeling tools).

4. The demand for large computing resources (e.g. large
number of computational tasks, or large-scale opti-
mization problems, or large amounts of data).

7. KNOWLEDGE CREATION

Diversified knowledge is created during model-based
problem-solving processes. Such knowledge is either

3Originally proposed by Dantzig, see e.g. [8].

tacit (thus, usually not documented) or explicit. We out-
line in this Section the main processes contributing to
knowledge creation.

7.1. Model development and analysis

In fact, the primary goal of modeling is to create knowl-
edge about the modeled problem. Actually, model-based
learning about the problem is typically even more impor-
tant than findingthe bestsolution, see e.g., [6]. Thus,
a huge amount of knowledge has been created by vari-
ous types of analyses of a countless number of models.
Unfortunately, this knowledge is often difficult to use be-
yond the modeling process. The main reason for it is
insufficient semantic description of model results. These
are typically consumed for the analysis of the decision
problem at hand, and not documented sufficiently for re-
use in different contents.

We should stress that a truly integrated model analy-
sis should exploit diversified paradigms of model analy-
sis, see e.g., [6]. Moreover, some problems require rather
specific methods of model analysis, see e.g., [4, 16].

A lot of knowledge has been created during various
modeling activities in response to the needs that could
not be met by then available methods. In fact knowledge
had to be created for each topic discussed in Section 2
before it was integrated into a modeling process.

Thus there is a cycle of knowledge creation, integration
with other knowledge for various modeling activities, and
subsequent creation of new knowledge in response to the
recognized limitations of the available knowledge.

7.2. Model-based problem solving

A lot of knowledge has been created while coping with
limitations of existing methods serving model-based sup-
port for problem solving. Many break-through develop-
ments have been necessary to move from the traditional
OR (Operations Research) approach to a diversified set of
methods and tools available today for decision-making
support for problems of different types to be solved by
DMs with different habitual domains.4 As examples of
this type of knowledge we mention four methodologies:
• Shinayakana system approach, see e.g., [18, 19]. Shi-

nayakana methodology is based on Japanese intellec-
tual tradition, which takes into account limitations of
our abilities to understand and analyze problems, and
provides constructive methods for model-based prob-
lem solving.

4A fairly stable set of ways of thinking, evaluating, judging and
making decisions. Yu [17] presents all aspects of habitual domains:
their foundations, expansions, dynamics and applications to various im-
portant problems in people’s lives, including effective decision making.
The concept of habitual domain is based on an integration of psychol-
ogy, system science, management, common sense, and wisdom.



• i-System, see e.g., [20, 21], is a systems methodology
composed of five subsystems: scientific approach, in-
formation science, social sciences, knowledge science,
and systems science used to manage these four different
but complementary approaches.
•Meta-synthesis approach, see e.g., [22]. The essential

idea of this approach is to unite an expert group, all
sorts of information, computing technology, as well as
interdisciplinary knowledge for proposing and validat-
ing hypothesis.
•Model-based decision support. One of several Euro-

pean approaches to develop analytical models, and ap-
ply multicriteria model analysis (which includes tradi-
tional simulation and single-criterion optimization) for
effective decision-making support is presented in [5].
The approach combines knowledge from technical
fields (control theory, optimization) with concepts of
knowledge in humanities and social sciences, and with
lessons from actual applications of model-based sup-
port for decision-making.
Actually, all four methodologies have more in com-

mon than can be seen from this short summary. This is
yet another example of knowledge integration, which has
resulted from long-term contacts between scientists orig-
inally coming from very different cultures and scientific
schools.

7.3. Modeling technology

SMT has been developed in response to the modeling
needs of the RAINS model, which could not be met by
the available modeling tools. Although SMT exploits a
great deal of modeling legacy, a number of challenging
problems had to be solved to provide the needed func-
tionality. This includes the SMT features summarized in
Section 4.

7.4. Computational tasks

Sometimes a simple modification of a model specifica-
tion results in a dramatic decrease of the computing re-
sources needed to solve the underlying computational
task, or in providing a stable solution, or even makes it
possible to solve the optimization task. Several examples
illustrating this point can be found in [7].

8. VIRTUAL MODELING LABORATORIES

Mathematical modeling has been playing an important
role in knowledge integration (during the model devel-
opment) and creation (primarily during model analysis).
However, there are still many possibilities for a qualita-
tive improvement of knowledge management during the
modeling process, see e.g., [23]. To achieve this one

needs to exploit the synergy of three fields: advanced
modeling methods, knowledge science, and modern net-
working technology.

Thousands of organizations worldwide develop and
work with models. These models store huge amounts of
knowledge and expertise. Models integrate knowledge in
two forms: analytical relations between entities (param-
eters and variables) used to represent the modeled prob-
lem, and data used for defining parameters of these rela-
tions. Models are typically also used for creating knowl-
edge about the modeled problem: not only by knowledge
discovery methods using data provided by various model
analyses, but also during the model verification and test-
ing. Moreover, modeling knowledge is also often en-
hanced while coping with development and analysis of
complex models.

This paper presents opportunities of combining the re-
sults of recent developments in knowledge science with
capabilities of structured modeling, and of modern com-
puting technology in order to efficiently support knowl-
edge integration and creation by collaborations of inter-
disciplinary teams working in distant locations.

In addition to the challenges discussed in this paper we
should stress the importance of a proper treatment of un-
certainty. This topic is far beyond the scope of this paper,
thus we can only suggest to consult [24, 25] for a sum-
mary of experience and open research problems related
to effective treatment of endogenous uncertainty for sup-
porting policy making.

We conclude with an obvious observation: complex
problems can be solved only if data, knowledge, and in-
formation are not only available, but can be efficiently
analyzed and shared, which in turn requires mathemati-
cal modeling; this typically requires reliable integration
of knowledge from various areas of science and practice.
This paper shows that meeting the resulting requirements
calls for a closer collaboration of researchers working in
various fields, but especially in knowledge science, op-
erational research, mathematics, and control. Experience
has shown that interdisciplinary approach to addressing
challenging problems has often produced qualitative im-
provements in solving complex problems.
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