
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
ON SCALABILITY IN SIMULATION AND OPTIMIZATION OF

COMPLEX SYSTEMS

Author(s) Manfred, Grauer; Frank, Thilo

Citation

Issue Date 2005-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/3878

Rights ⓒ2005 JAIST Press

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, IFSR 2005 : Proceedings of the

First World Congress of the International

Federation for Systems Research : The New Roles

of Systems Sciences For a Knowledge-based Society

: Nov. 14-17, 2088, Kobe, Japan, Symposium 3,

Session 3 : Intelligent Information Technology

and Applications Networks and Agents

ON SCALABILITY IN SIMULATION AND OPTIMIZATION OF COMPLEX SYSTEMS

Manfred Grauer and Frank Thilo
Information Systems Institute, University of Siegen

Hölderlinstr. 3, D-57068 Siegen, Germany

ABSTRACT

Advances in processing power of modern computer
hardware allow the analysis of increasingly complex
systems by means of simulation. However, many
engineering problems such as design optimization
problems in the aircraft industry, facility management in
the water industry or design problems in the automotive
industry have extremely high computational demands.
To solve these problems in reasonable time, parallel
computing must be utilized. The availability of
affordable parallel computing systems in the form of
network of workstations or compute clusters as well as
the dawn of grid computing and servcice-oriented
architectures is beginning to make parallel computing
accessable to a broader community.

To exploit the total processing power of many CPUs,
intelligent, scalable algorithms are required. In this
paper, the concept of scalability is examined in the
context of parallel simulation software systems and the
distributed solution of simulation-based optimization
problems.

Keywords: computational engineering, direct search,
evolutionary algorithm, scalability, parallel optimization

1. INTRODUCTION

Most optimization problems in the field of
computational engineering cannot be formulated
analytically but are instead modeled by using simulation
software systems like NASTRAN, ANSYS, ABAQUS,
and many others. These systems provide an accurate
simulation of a single design with respect to a given set
of parameters. The task of an optimization algorithm is
to find the best set of these parameters (decision
variables) with respect to an objective function while
not violating existing constraints. For each set of
decision variables, the corresponding model must be
computed, which in turn involves performing a costly
simulation run. The simulation-based approach often
implicates that the objective function is highly
non-linear, and the region of feasible solutions is
non-convex or even disjointed.

A suitable optimization algorithm must take these
characteristics into account. Firstly, it must be able to
deal with the excessive computation times by evaluating
several possible solutions in parallel. Secondly, since no
assumptions on convexity and smoothness of the
objective and constraint functions can be made,
gradient-based algorithms are not reliable.

The cost of parallel supercomputers, particularly in the
form of compute clusters, has dropped significantly
during the last decade, making them available to a wider
range of institutions and companies. Furthermore,
advances in the area of service-oriented architectures [1]
make it easier to use resources beyond geographical and
organizational boundaries. The problem of licensing
often still prohibits the use of commercial simulation
software in these environments, however. Thus, while
most of the observations will also apply to large scale
computing, the focus in this contribution is on single
cluster environments.

The availability of a high degree of parallelism (more
than 100 CPUs) helps to reduce the computation time
only if the algorithms are able to exploit this larger
number of CPUs, i. e. if they are scalable. In this paper,
the meaning of this term is examined in the context of
simulation-based optimization. The general notion of
scalability is discussed and a way to compare the
parallel performance of heuristic optimization
algorithms is described. Three such direct search
algorithms are briefly presented and their performance
for both a benchmark and a real-world problem from
groundwater management is analyzed over a range of 1
to 200 CPUs.

The paper is organized as follows: Section 2 introduces
the concept of scalability and particularly focuses on the
area of computational engineering. The next section
introduces simulation-based optimization, describes
three algorithms which are suited for distributed
optimization, and presents scalability results for a test
problem. In section 4, the findings are validated by
experimental results from industrial applications.
Section 5 then concludes the paper.

2. THE SCALABILITY CONCEPT

The term scalability is often used in different contexts to
express that a computer system or an algorithm can
cope with an increased workload or is able to solve a
given problem faster when resources are added. Adding
resources can refer to replacing components like CPUs
by faster versions, increasing the main memory, or
adding more components, e.g. additonal nodes to a
compute cluster. The e-business community has coined
the terms scale up (or scale vertically) and scale out (or
scale horizontally) to denote these [2].

Scalability analysis can be divided into algorithmic and
architectural scalability [3]. While the first focuses on
attributes of an algorithm, i.e. the algorithm’s sequential
portion, its inherit concurrency limits and
synchronization costs, the latter examines hardware
related aspects as processing capacity, information
capacity and connectivity. To predict real runtimes of a
prallel algorithm on a given hardware architecture, both
kinds or analyses must be taken into account, in
particular whenever the communication costs are
significant

Different applications have different scalability goals.
For online transaction systems or web servers, the
performance is often measured in transactions per
second or the number of concurrent users that the
system can handle before performance degrades. Here,
the workload consists of many small tasks which have
to be processed in real-time within a given acceptable
time. Storage performance is often more important than
CPU speed. On the other hand, the field or parallel
computing or computational engineering is mostly
concerned with a single long-running task whose
sequential runtime would be so great that it is
imperative to process it in parallel on several CPUs.
This is the case for simulation-based optimization.

The classical metric to quantify scalability behavior is
speedup, which compares the computation times of a
parallel algorithm for different numbers of CPUs p,
where the related metric efficiency is speedup divided
by p (s. [4]). In the case of heuristic, parallel
optimization algorithms, there is no clearly defined goal
for which each algorithm’s elapsed time could simply be
compared. Instead, both the time needed and the quality
of the solution must be considered, e.g. by examining
the progress of the achieved solution quality over time.
To still be able to use the notion of speedup, a target
solution quality can be defined and the time needed to
reach this level be used as the basis to calculate speedup
and efficiency values.

3. SCALABILITY IN DISTRIBUTED
OPTIMIZATION

In this section, the general concept of simulation-based
optimization is introduced. Some characteristics of this
kind of optimization problems are identified which
leads to a group of algorithms which can be applied to
the problem. Three such algorithms are briefly
described and their scalability is analyzed for solving a
test problem.

3. 1. Simulation-based Optimization

Optimization problems which arise in the field of
computational engineering usually cannot be formulated
analytically because of their complexity. Instead, a
model of the real problem is created, typically in the
form of a data set for a simulation software package.
The computational demands of these simulations can be
very high, ranging from a few minutes to several days
for a single simulation. For optimization, the model is
parametrized by some variables which can be chosen
within lower and upper bounds. The goal is to find the
best set of variables as defined by the objective function
which has to be minimized. Possible objective functions
are the weight of a constructional element (such as an
aircraft wing), the electrical power consumption of a
pumping well, the aerodynamic resistance of a car
chassis and many more. Furthermore, the set of possible
solutions is limited by constraints, e.g. a given
ascending force for a plane, the level of groundwater at
certain locations or the minimum measures and volume
of a car's passenger compartment.

During the course of the optimization, hundreds or
thousands of solution candidates must be evaluated,
requiring a costly simulation run each time. While the
time for a single simulation is significant (typically
ranging from a few minutes to several hours or even
days), the amount of processing within the optimization
algorithm itself is several orders of magnitude lower.
Also, the amount of data that must be exchanged
between the search method and the simulations is very
low. Thus, communication costs are not the defining
factor which limits the scalability of the algorithms, but
rather their inherent concurrency limits, their
synchronisation points and their change in internal
parameters in order to adapt to the number of available
resources which can cause a drop in effectiveness. The
findings are that for this type of simulation-based
optimization problems the relation of computation costs
to the communication costs are at least 1000 to 1.

The simulation-based nature of the problem means that
in general no derivative information is available and no

assumptions can be made about the nature of the search
space. This prohibits the use of linear programming
techniques or gradient-based optimization algorithms.
One class of algorithms which can be applied are
so-called direct search methods [5, 6]. There is no
excact definition of direct search, but important
characteristics are, that these methods do not explicitly
use derivative information nor build a model of the
objective function. Instead, the basic operation relies on
direct comparison of objective function values. To
utilize parallel computing resources, parallel direct
search methods are needed, which can evaluate several
solution candidates simultaneously. Below, three such
methods are evaluated.

3. 2. Optimization Algorithms

Three parallel direct search methods are compared: The
Distributed Polytyope algorithm (DPA) [7], a parallel
implementation (PSS) of the meta-heuristic scatter
search [8, 9], and asynchronous parallel pattern search
(APPS) [10].

DPA belongs to the class of simplex-based search
methods. It generates new solution candidates by
applying geometrical operations to a set of previously
calculated solutions. This set typically contains 2n
points (where n is the number of decision variables) and
is called the polytope. The initial set of feasible
solutions is generated by a simple parallel random
search strategy. During the main exploration phase, new
points are generated by reflecting or contracting existing
solutions relative to the weighted center of gravity. The
number of operations that is performed in each
operation depends on some parameters which can be
adjusted to utilize the available number of CPUs.
Infeasible points (i.e. points which violate the
constraints) are modified by a binary search repair
strategy (see Fig. 1). At the end of each iteration, the
best of the old and new solutions are selected for the
new polytope. After some iterations, the polytope will
converge and the optimization is concluded with a
parallel local search within the neighborhood of the best
known solution.

Figure 1: Repair of the infeasible solution vInfeasible in
a search space with disjoint feasible regions; a
binary search towards the weighted center of gravity
vCOG produces the points v1, v2 and v3

PSS can be viewed as an evolutionary approach, but it
has some attributes in which it differs from most
algorithms of this class. At the heart of the algorithm is
the so-called reference set which is initially built by a
diversification algorithm which semi-randomly creates
at least 100 points and tries to spread them evenly
among the range defined by the bounds for each
decision variable. The size of the reference set is fixed
and typically in the range of 10 - 20. In each iteration,
all possible pairs and 3-tuples which contain at least one
new solution are combined to create new candidate
solutions. The combination is performed as a simple
linear combination with a random factor, independently
for each component (decision variable) of the solutions.
This typcally results in several hundred new points
which are then evaluated simultaneously. The new
reference set is then built, choosing both the best and
most diverse of the newly created and old solutions.
Infeasible solutions are moved towards a known
feasible solution in a step called path relinking and are
added to the evaluation queue for the next iteration.
Whenever the standard deviation of the objective
function values in the reference set drops below a given
threshold, new random solutions are created to increase
diversity. After a fixed number of these steps, the
algorithm terminates.

The third algorithm, APPS, belongs to the group of
pattern search optimization algorithms which use a set
of search directions to create new points based on the
best known solution so far. By default, APPS uses two
search directions for each decision variable, namely the
set of plus and minus unit vectors. Thus, 2n new points
are created and evaluated in parallel and infeasible
points are discarded. The best of the new points is then
chosen as the new starting point for the next iteration. If
no better point could be found, the step length is
decreased. The algorithm terminates when the step
length drops below a given threshold. However, APPS
does not work iteratively, but instead works
asynchronously, i.e. it does not wait for all points to be

evaluated before it creates new candidate solutions, but
can instead continue as soon as one evaluation has
finished and has resulted in a new best solution. In this
respect, it differs from the synchronous approaches of
both DPA and PSS.

3. 3. A Test Problem

To allow an extensive scalability analysis over a wide
range of problem dimensions and numbers of CPUs, a
mathematical test problem is defined based on the
well-known Rosenbrock function (s. [11]). The
evaluation of this function is trivial and takes no
significant amount of time. To mimic the temporal
behaviour of a real, simulation-based problem, an
event-based simulation is used which keeps track of
virtual wall clock time. Each evaluation of the objective
function is assigned a fixed amount of virtual time. To
validate the results, a subset was compared with those of
a real distributed optimization on a compute cluster. For
times of 10s per evaluation, the average error in wall
clock times is already below 0.5% and is even lower for
the more typical simulation times of at least several
minutes.

As explained in Section 2, speedup is defined as the
ratio of the time needed to reach a given solution quality
on one CPU and the corresponding time for p CPUs.
Figures 2, 3, and 4 depict the speedup of DPA, PPS, and
APPS for solving several high-dimensional (n = 10 …
100) Rosenbrock problems. Up to 200 (virtual) CPUs
have been used and each point is the average of 200
optimization runs with different pseudo random number
generator seeds. For DPA it can be seen, that the
speedup is good up to about 30 CPUs for all problem
sizes. However, the efficiency drops significantly for
higher numbers of CPUs and small dimensins of the
problem. The 100-dimensional problem scales well
beyond a CPU count of 100.

Figure 2: Relative speedup of DPA for solving 10- to
100-dimensional Rosenbrock problems on 1 to 200
CPUs (average of 200 runs)

In contrast, PSS exhibits almost linear speedup over the
full range of problem sizes and numbers of CPUs. The
efficiency only drops slightly as the degree of
parallelism is increased. As with DPA, the algorithm
scales better for higher number of decision variables,
although the effect is much less visible.

Figure 3: Relative speedup of PSS for solving 10- to
100-dimensional Rosenbrock problems on 1 to 200
CPUs (average of 200 runs)

For APPS, the picture is not so clear. The achieved
speedups are worse than those of PSS and the
correlation between problem dimension and efficiency
is much weaker than for DPA. For some numbers of
CPUs, the speedup is actually lower than with a smaller
number of CPUs. A possible explanation is that because
of the asynchronous nature of the algorithm, the
resulting search path can strongly depend on the number
of available CPUs.

Figure 4: Relative speedup of APPS for solving 10-
to 100-dimensional Rosenbrock problems on 1 to 200
CPUs (average of 200 runs)

Of the three algorithms, PSS has by far the highest
efficiency when the number of CPUs is much higher
than the dimension of the search space. This does not
necessarily imply that the optimization process is faster
when comparing the absolute time to reach the same
solution quality. Fig. 5 and 6 compare the absolute

performance by displaying the algorithms’ progress over
time. In Fig. 6, with n = 10 and p = 100, PSS operates at
a much higher parallel efficiency than both DPA and
APPS. However, DPA is able to reach objective function
values of 60 or higher faster than APPS and reach better
values after about the same time. For a CPU count of 10
in Fig. 5, DPA outperforms both PSS and APPS
significantly over the whole spectrum (note that both
axes are logarithmic).
For example, it takes DPA an average of about 25s to
find a solution with an objective function value of 100,
whereas PSS and APPS need 90s and 80s, respectively.

The results indicate that each algorithm exhibits
different scalability characteristics. Scatter search has
the highest efficiency for large numbers of CPUs, in
particular for problems with few decision variables.
However, it takes more absolute time to reach a given
solution quality than the other two algorithms when
using only a small number of CPUs.

Figure 5: Comparison of the solution quality over
vcirtual time; 10-dimensional Rosenbrock problem,
solved using 10 CPUs (average of 200 runs)

Figure 6: Comparison of the solution quality over
virtual time; 10-dimensional Rosenbrock problem,
solved using 100 CPUs (average of 200 runs)

4. SCALABILITY IN INDUSTRIAL

APPLICATIONS

The aforementioned algorithms have been used to solve
several real-world optimization problems. To achieve
this, they have been integrated into the OpTiX
optimization environment which presents a common
abstract interface of the problem to the algorithms and
handles the distribution and scheduling of the
distributed simulation runs (s. [12]). All computations
have been performed on the Rubens cluster at the
University of Siegen which consists of 128
Dual-Opteron nodes at 2 GHz with 2GB of RAM and
running SuSE SLES 8.1 operating system.

The past and current problems include a design problem
of an aircraft wing, several design and hybrid control
problems in groundwater and pollution management, a
multi-stage problem in metal-sheet forming and
optimization of casting processes of automotive parts. In
the following, the algorithms’ performance for solving
one of the groundwater problems is analyzed.

The FEM-based software package FEFLOW [13] has
been used for modeling and simulation of the
Binsheimer Feld problem [14]. Mining activities at the
lower Rhine cause massive subsidence in nearby areas.
To prevent surface water logging, extensive draining
measures must be performed. Several pumping stations
are controlled by an adaptive strategy that changes the
current pumping rate in dependence of the measured
water level in a control point as depicted in Fig. 7. The
strategy for each pump is defined by 6 to 9 switch levels.
For optimization, three pumps are considered, resulting
in a total of 22 switch levels which constitute the
decision variables. The objective function to be
minimized is the sum of energy costs of the pumps over
the course of 5 years of operation. As constraints, a
minimum depth to water table must be maintained at 11
critical observation points at all times. This is a problem
of optimal design of a hybrid control system [15] with
an additional non-linear cost function.

constraint

Off1

On1

Off3

pumping station

switch level

groundwater level

Off2

On2

On3

control point

constraint

Off1

On1

Off3

pumping station

switch level

groundwater level

Off2

On2

On3

control point

Figure 7: Adaptive pumping station control,
depending on switch levels and groundwater level in
control observation point

A single simulation of this problem on a 2GHz Opteron
system takes about 170s to 350s, depending on how
often and how strongly the pumping strategy changes
the pumping rates. Fig. 8 depicts the distribution of the
simulation times as a histogram. The spread in
evaluation times can be expected to reduce the
performance of the synchronous algorithms DPA and
PSS because they have to wait for all of the simulations
to finish at the end of each iteration before they can
continue. The CPUs on which the simulations finished
early are thus idle for a fraction of the time. In contrast,
the asynchronous pattern search should not suffer from
this problem.

Figure 8: Distribution of the time needed for one
simulation of the Binsheimer Feld problem

Table 1 shows the average CPU utilization for the three
algorithms while solving the Binsheimer Feld problem.
The effect is visible, but not very strong, because most
of the simulations will be performed close to the best
found solution and the difference in evaluation times
within such a small region of the search space is not so
big.

algorithm avg. CPU
utilization

DPA 91.5%
PSS 95.7%
APPS 98.5%

Table 1: CPU utilization while solving the Bins-
heimer Feld problem (average of 5 runs, 40 CPUs)

In Fig. 9 and 10, the average solution quality while
solving the Binsheimer Feld problem with 10 and 80
CPUs is shown. The starting solution which is passed to
the optimization algorithms as an initial guide has a cost
of 992765 €. With 10 CPUs, DPA is by far the fastest to
find a good solution which has a cost value of less than
800000 €. At 80 CPUs, the performance of PSS
becomes similar to that of DPA. In addition, PSS is able
to reach the best objective function values of the three
algorithms when given enough time. APPS is only able
to find solutions of moderate quality, but the solution
quality improves when it is given more CPUs. However,
even with 80 CPUs, it is not able to get below 810000 €.

Figure 9: Comparison of the solution quality over
wall clock time; 22-dimensional Binsheimer Feld
water management problem, solved using 10 CPUs
(average of 20 runs)

Figure 10: Comparison of the solution quality over
wall clock time; 22-dimensional Binsheimer Feld
water management problem, solved using 80 CPUs
(average of 20 runs)

One way to further enhance the speedup and efficiently
utilize larger number of CPUs is multi-level parallelism:
The simulation packages that are used for the casting
processes and the metal-sheet forming can be run in
parallel on several CPUs themselves. This introduces a
second level of parallelism into the optimization process:
The search algorithm evaluates a set of solution
candidates in parallel by starting a simulation per
solution, and each of these simulations itself can be run
data-parallel on more than one CPU. The resulting
degree of parallelism is thus the product of the two. The
scalability characteristics of both the optimization
algorithm and the parallel simulation software must be
taken into account to find the best allocation of
resources. The performance of the parallelized
simulation is often limited by the latency and bandwidth
of the network and thus high-performance network
hardware like Myrinet [16] might be required. If both
levels of parallelism are combined intelligently, the
approach promises to yield significantly higher parallel
efficiencies for large numbers of CPUs as would be
possible otherwise.

5. CONCLUSIONS

In this contribution, three different scalable distributed
algorithms (distributed polytope, a parallel imple-
mentation of scatter search and an asynchronous parallel
pattern search) were tested and results from compu-
tational experiments with different dimensions (n =
1, … , 100) of the optimization problem and different
numbers of available processors (p = 1, …, 200)
reported. The analysis was made along the two
contradictory objectives of the efficiency of the use of
the available processors and the quality of the solution.
The experiments were made with an academic problem
to test the distributed solution concepts and with an
industrial problem from groundwater engineering. In
both cases the distributed polytope method showed
good results. The intelligent design of scalable
algorithms in optimization seems to be an important
contribution to deal with future problems which are
multidisciplinary, multi-agent, multi-scale and
collaborative (s. [17]).

REFERENCES

[1] I. Foster: Service-Oriented Science, Science, 308,
pp. 814-817, 2005.

[2] B. Devlin, J. Gray, B. Laing, G. Spix: Scalability
Terminology: Farm, Clones, Partitions, and Packs:
RACS and RAPS, Technical Report MS-TR-9985,
Microsoft Research, 1999.

[3] G. Brataas, P. Hughes: Exploring Architectural
Scalability, Proc. 4th Intern. Workshop on Software and
Performance, pp. 125-129, 2004.

[4] V. Kumar, A. Grama, A. Gupta and G. Karpysis:
Introduction to Parallel Computing, Benjamin
Cummings, 1994.

[5] T.G. Kolda, M.R. Lewis and V. Torczon:
“Optimization by Direct Search: New Perspectives on
Some Classical and Modern Methods”, SIAM Review,
Vol. 45, Number 3, pp. 385-482., 2003.

[6] M. Wright: “Direct search methods: Once scorned,
now respectable“, Proc. Dundee Biennial Conf. In
Numerical Analysis, Addison Wesley, pp. 191-208,
1995.

[7] T. Barth, B. Freisleben, M. Grauer, and F. Thilo: “A
Scalable Algorithm for the Solution of Simulation-based
Optimization Problems”, Proc. PDPTA 2000, Las
Vegas, pp. 469-475, 2000.

[8] M. Laguna and R. Marti: Scatter Search -
Methodology and Implementations in C, Kluwer, 2003.

[9] R. Marti, M. Laguna, F. Glover: Principles of
Scatter Search, European Journal of Operational
Research, Vol. 169, Issue 2, Pages 359-372, 2006.

[10] P. Hough, T.G. Kolda, and V. Torczon:
“Asynchronous Parallel Pattern Search for Nonlinear
Optimization”, SIAM Journal of Scientific Computing,
23(1), pp. 134-156, 2001.

[11] K. Schittkowski: Nonlinear Programming Codes,
Springer, 1980.

[12] M. Grauer, T. Barth and F. Thilo: “Grid-based
Computing for Multidisciplinary Analysis and
Optimization” in Proc. of the 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conf.,
Albany, 2004.

[13] H.-J. Diersch: FEFLOW 5.1 – Finite Element
Subsurface Flow & Transportation System, User’s
Manual, WASY GmbH, Berlin, 2005.

[14] F. Thilo, U. Junghans, M. Grauer, S. Kaden, J.
Hillebrandt: “Reducing Groundwater Management
Costs by Parallel Simulation-based optimization”, Proc.

Computing and Control in the Water Industry, CCWI
2005, Exeter, 2005.

[15] P. Antsaklus, X. Koutsoukos, J. Zaytoon: “On
Hybrid Control of Complex Systems: A Survey”, Proc.
Intern. Conf. on Automation of Mixed Processes:
Dynamic Hybrid Systems, pp. 1-8, Reims, 1998.

[16] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
C. Seitz, J. Seizovic, W. Su: Myrinet: A
Gigabit-per-Second Local Area Network, IEEE Micro,
v.15 n.1, p.29-36, 1995.

[17] Report to the President: Computational Science:
Ensuring Americas´s Competitiveness, President´s
Information Technology Advisory Committee, June
2005.

