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ABSTRACT 
 

Advances in processing power of modern computer 
hardware allow the analysis of increasingly complex 
systems by means of simulation. However, many 
engineering problems such as design optimization 
problems in the aircraft industry, facility management in 
the water industry or design problems in the automotive 
industry have extremely high computational demands. 
To solve these problems in reasonable time, parallel 
computing must be utilized. The availability of 
affordable parallel computing systems in the form of 
network of workstations or compute clusters as well as 
the dawn of grid computing and servcice-oriented 
architectures is beginning to make parallel computing 
accessable to a broader community. 
 
To exploit the total processing power of many CPUs, 
intelligent, scalable algorithms are required. In this 
paper, the concept of scalability is examined in the 
context of parallel simulation software systems and the 
distributed solution of simulation-based optimization 
problems. 
 
Keywords: computational engineering, direct search, 
evolutionary algorithm, scalability, parallel optimization 
 
 

1. INTRODUCTION 
 
Most optimization problems in the field of 
computational engineering cannot be formulated 
analytically but are instead modeled by using simulation 
software systems like NASTRAN, ANSYS, ABAQUS, 
and many others. These systems provide an accurate 
simulation of a single design with respect to a given set 
of parameters. The task of an optimization algorithm is 
to find the best set of these parameters (decision 
variables) with respect to an objective function while 
not violating existing constraints. For each set of 
decision variables, the corresponding model must be 
computed, which in turn involves performing a costly 
simulation run. The simulation-based approach often 
implicates that the objective function is highly 
non-linear, and the region of feasible solutions is 
non-convex or even disjointed. 
 

A suitable optimization algorithm must take these 
characteristics into account. Firstly, it must be able to 
deal with the excessive computation times by evaluating 
several possible solutions in parallel. Secondly, since no 
assumptions on convexity and smoothness of the 
objective and constraint functions can be made, 
gradient-based algorithms are not reliable. 
 
The cost of parallel supercomputers, particularly in the 
form of compute clusters, has dropped significantly 
during the last decade, making them available to a wider 
range of institutions and companies. Furthermore, 
advances in the area of service-oriented architectures [1] 
make it easier to use resources beyond geographical and 
organizational boundaries. The problem of licensing 
often still prohibits the use of  commercial simulation 
software in these environments, however. Thus, while 
most of the observations will also apply to large scale 
computing, the focus in this contribution is on single 
cluster environments. 
 
The availability of a high degree of parallelism (more 
than 100 CPUs) helps to reduce the computation time 
only if the algorithms are able to exploit this larger 
number of CPUs, i. e. if they are scalable. In this paper, 
the meaning of this term is examined in the context of 
simulation-based optimization. The general notion of 
scalability is discussed and a way to compare the 
parallel performance of heuristic optimization 
algorithms is described. Three such direct search 
algorithms are briefly presented and their performance 
for both a benchmark and a real-world problem from 
groundwater management is analyzed over a range of 1 
to 200 CPUs. 
 
The paper is organized as follows: Section 2 introduces 
the concept of scalability and particularly focuses on the 
area of computational engineering. The next section  
introduces simulation-based optimization, describes 
three algorithms which are suited for distributed 
optimization, and presents scalability results for a test 
problem. In section 4, the findings are validated by 
experimental results from industrial applications. 
Section 5 then concludes the paper. 



2. THE SCALABILITY CONCEPT 
 

The term scalability is often used in different contexts to 
express that a computer system or an algorithm can 
cope with an increased workload or is able to solve a 
given problem faster when resources are added. Adding 
resources can refer to replacing components like CPUs 
by faster versions, increasing the main memory, or 
adding more components, e.g. additonal nodes to a 
compute cluster. The e-business community has coined 
the terms scale up (or scale vertically) and scale out (or 
scale horizontally) to denote these [2]. 
 
Scalability analysis can be divided into algorithmic and 
architectural scalability [3]. While the first focuses on 
attributes of an algorithm, i.e. the algorithm’s sequential 
portion, its inherit concurrency limits and 
synchronization costs, the latter examines hardware 
related aspects as processing capacity, information 
capacity and connectivity. To predict real runtimes of a 
prallel algorithm on a given hardware architecture, both 
kinds or analyses must be taken into account, in 
particular whenever the communication costs are 
significant  

Different applications have different scalability goals. 
For online transaction systems or web servers, the 
performance is often measured in transactions per 
second or the number of concurrent users that the 
system can handle before performance degrades. Here, 
the workload consists of many small tasks which have 
to be processed in real-time within a given acceptable 
time. Storage performance is often more important than 
CPU speed. On the other hand, the field or parallel 
computing or computational engineering is mostly 
concerned with a single long-running task whose 
sequential runtime would be so great that it is 
imperative to process it in parallel on several CPUs. 
This is the case for simulation-based optimization. 

The classical metric to quantify scalability behavior is 
speedup, which compares the computation times of a 
parallel algorithm for different numbers of CPUs p, 
where the related metric efficiency is speedup divided 
by p (s. [4]). In the case of heuristic, parallel 
optimization algorithms, there is no clearly defined goal 
for which each algorithm’s elapsed time could simply be 
compared. Instead, both the time needed and the quality 
of the solution must be considered, e.g. by examining 
the progress of the achieved solution quality over time. 
To still be able to use the notion of speedup, a target 
solution quality can be defined and the time needed to 
reach this level be used as the basis to calculate speedup 
and efficiency values. 
 

3. SCALABILITY IN DISTRIBUTED 
OPTIMIZATION 

 
In this section, the general concept of simulation-based 
optimization is introduced. Some characteristics of this 
kind of optimization problems are identified which 
leads to a group of algorithms which can be applied to 
the problem. Three such algorithms are briefly 
described and their scalability is analyzed for solving a 
test problem. 
 
3. 1. Simulation-based Optimization 
 
Optimization problems which arise in the field of 
computational engineering usually cannot be formulated 
analytically because of their complexity. Instead, a 
model of the real problem is created, typically in the 
form of a data set for a simulation software package. 
The computational demands of these simulations can be 
very high, ranging from a few minutes to several days 
for a single simulation. For optimization, the model is 
parametrized by some variables which can be chosen 
within lower and upper bounds. The goal is to find the 
best set of variables as defined by the objective function 
which has to be minimized. Possible objective functions 
are the weight of a constructional element (such as an 
aircraft wing), the electrical power consumption of a 
pumping well, the aerodynamic resistance of a car 
chassis and many more. Furthermore, the set of possible 
solutions is limited by constraints, e.g. a given 
ascending force for a plane, the level of groundwater at 
certain locations or the minimum measures and volume 
of a car's passenger compartment. 
 
During the course of the optimization, hundreds or 
thousands of solution candidates must be evaluated, 
requiring a costly simulation run each time. While the 
time for a single simulation is significant (typically 
ranging from a few minutes to several hours or even 
days), the amount of processing within the optimization 
algorithm itself is several orders of magnitude lower. 
Also, the amount of data that must be exchanged 
between the search method and the simulations is very 
low. Thus, communication costs are not the defining 
factor which limits the scalability of the algorithms, but 
rather their inherent concurrency limits, their 
synchronisation points and their change in internal 
parameters in order to adapt to the number of available 
resources which can cause a drop in effectiveness. The 
findings are that for this type of simulation-based 
optimization problems the relation of computation costs 
to the communication costs are at least 1000 to 1. 
 
The simulation-based nature of the problem means that 
in general no derivative information is available and no 



assumptions can be made about the nature of the search 
space. This prohibits the use of linear programming 
techniques or gradient-based optimization algorithms. 
One class of algorithms which can be applied are 
so-called direct search methods [5, 6]. There is no 
excact definition of direct search, but important 
characteristics are, that these methods do not explicitly 
use derivative information nor build a model of the 
objective function. Instead, the basic operation relies on 
direct comparison of objective function values. To 
utilize parallel computing resources, parallel direct 
search methods are needed, which can evaluate several 
solution candidates simultaneously. Below, three such 
methods are evaluated. 
 
3. 2. Optimization Algorithms 
 
Three parallel direct search methods are compared: The 
Distributed Polytyope algorithm (DPA) [7], a parallel 
implementation (PSS) of the meta-heuristic scatter 
search [8, 9], and asynchronous parallel pattern search 
(APPS) [10]. 
 
DPA belongs to the class of simplex-based search 
methods. It generates new solution candidates by 
applying geometrical operations to a set of previously 
calculated solutions. This set typically contains 2n 
points (where n is the number of decision variables) and 
is called the polytope. The initial set of feasible 
solutions is generated by a simple parallel random 
search strategy. During the main exploration phase, new 
points are generated by reflecting or contracting existing 
solutions relative to the weighted center of gravity. The 
number of operations that is performed in each 
operation depends on some parameters which can be 
adjusted to utilize the available number of CPUs. 
Infeasible points (i.e. points which violate the 
constraints) are modified by a binary search repair 
strategy (see Fig. 1). At the end of each iteration, the 
best of the old and new solutions are selected for the 
new polytope. After some iterations, the polytope will 
converge and the optimization is concluded with a 
parallel local search within the neighborhood of the best 
known solution. 
 

 

Figure 1: Repair of the infeasible solution vInfeasible in 
a search space with disjoint feasible regions; a 
binary search towards the weighted center of gravity 
vCOG produces the points v1, v2 and v3 

PSS can be viewed as an evolutionary approach, but it 
has some attributes in which it differs from most 
algorithms of this class. At the heart of the algorithm is 
the so-called reference set which is initially built by a 
diversification algorithm which semi-randomly creates 
at least 100 points and tries to spread them evenly 
among the range defined by the bounds for each 
decision variable. The size of the reference set is fixed 
and typically in the range of 10 - 20. In each iteration, 
all possible pairs and 3-tuples which contain at least one 
new solution are combined to create new candidate 
solutions. The combination is performed as a simple 
linear combination with a random factor, independently 
for each component (decision variable) of the solutions. 
This typcally results in several hundred new points 
which are then evaluated simultaneously. The new 
reference set is then built, choosing both the best and 
most diverse of the newly created and old solutions. 
Infeasible solutions are moved towards a known 
feasible solution in a step called path relinking and are 
added to the evaluation queue for the next iteration. 
Whenever the standard deviation of the objective 
function values in the reference set drops below a given 
threshold, new random solutions are created to increase 
diversity. After a fixed number of these steps, the 
algorithm terminates. 
 
The third algorithm, APPS, belongs to the group of 
pattern search optimization algorithms which use a set 
of search directions to create new points based on the 
best known solution so far. By default, APPS uses two 
search directions for each decision variable, namely the 
set of plus and minus unit vectors. Thus, 2n new points 
are created and evaluated in parallel and infeasible 
points are discarded. The best of the new points is then 
chosen as the new starting point for the next iteration. If 
no better point could be found, the step length is 
decreased. The algorithm terminates when the step 
length drops below a given threshold. However, APPS 
does not work iteratively, but instead works 
asynchronously, i.e. it does not wait for all points to be 



evaluated before it creates new candidate solutions, but 
can instead continue as soon as one evaluation has 
finished and has resulted in a new best solution. In this 
respect, it differs from the synchronous approaches of 
both DPA and PSS. 
 
3. 3. A Test Problem 
 
To allow an extensive scalability analysis over a wide 
range of problem dimensions and numbers of CPUs, a 
mathematical test problem is defined based on the 
well-known Rosenbrock function (s. [11]). The 
evaluation of this function is trivial and takes no 
significant amount of time. To mimic the temporal 
behaviour of a real, simulation-based problem, an 
event-based simulation is used which keeps track of 
virtual wall clock time. Each evaluation of the objective 
function is assigned a fixed amount of virtual time. To 
validate the results, a subset was compared with those of 
a real distributed optimization on a compute cluster. For 
times of 10s per evaluation, the average error in wall 
clock times is already below 0.5% and is even lower for 
the more typical simulation times of at least several 
minutes. 
 
As explained in Section 2, speedup is defined as the 
ratio of the time needed to reach a given solution quality 
on one CPU and the corresponding time for p CPUs. 
Figures 2, 3, and 4 depict the speedup of DPA, PPS, and 
APPS for solving several high-dimensional (n = 10 … 
100) Rosenbrock problems. Up to 200 (virtual) CPUs 
have been used and each point is the average of 200 
optimization runs with different pseudo random number 
generator seeds. For DPA it can be seen, that the 
speedup is good up to about 30 CPUs for all problem 
sizes. However, the efficiency drops significantly for 
higher numbers of CPUs and small dimensins of the 
problem. The 100-dimensional problem scales well 
beyond a CPU count of 100. 

 

Figure 2: Relative speedup of DPA for solving 10- to 
100-dimensional Rosenbrock problems on 1 to 200 
CPUs (average of 200 runs) 

In contrast, PSS exhibits almost linear speedup over the 
full range of problem sizes and numbers of CPUs. The 
efficiency only drops slightly as the degree of 
parallelism is increased. As with DPA, the algorithm 
scales better for higher number of decision variables, 
although the effect is much less visible. 

 

Figure 3: Relative speedup of PSS for solving 10- to 
100-dimensional Rosenbrock problems on 1 to 200 
CPUs (average of 200 runs) 

For APPS, the picture is not so clear. The achieved 
speedups are worse than those of PSS and the 
correlation between problem dimension and efficiency 
is much weaker than for DPA. For some numbers of 
CPUs, the speedup is actually lower than with a smaller 
number of CPUs. A possible explanation is that because 
of the asynchronous nature of the algorithm, the 
resulting search path can strongly depend on the number 
of available CPUs. 
 
 

 

Figure 4: Relative speedup of APPS for solving 10- 
to 100-dimensional Rosenbrock problems on 1 to 200 
CPUs (average of 200 runs) 

Of the three algorithms, PSS has by far the highest 
efficiency when the number of CPUs is much higher 
than the dimension of the search space. This does not 
necessarily imply that the optimization process is faster 
when comparing the absolute time to reach the same 
solution quality. Fig. 5 and 6 compare the absolute 



performance by displaying the algorithms’ progress over 
time. In Fig. 6, with n = 10 and p = 100, PSS operates at 
a much higher parallel efficiency than both DPA and 
APPS. However, DPA is able to reach objective function 
values of 60 or higher faster than APPS and reach better 
values after about the same time. For a CPU count of 10 
in Fig. 5, DPA outperforms both PSS and APPS 
significantly over the whole spectrum (note that both 
axes are logarithmic). 
For example, it takes DPA an average of about 25s to 
find a solution with an objective function value of 100, 
whereas PSS and APPS need 90s and 80s, respectively. 
 
The results indicate that each algorithm exhibits 
different scalability characteristics. Scatter search has 
the highest efficiency for large numbers of CPUs, in 
particular for problems with few decision variables. 
However, it takes more absolute time to reach a given 
solution quality than the other two algorithms when 
using only a small number of CPUs. 
 
 

 

Figure 5: Comparison of the solution quality over 
vcirtual time; 10-dimensional Rosenbrock problem, 
solved using 10 CPUs (average of 200 runs) 

 

 

Figure 6: Comparison of the solution quality over 
virtual time; 10-dimensional Rosenbrock problem, 
solved using 100 CPUs (average of 200 runs) 

 
4. SCALABILITY IN INDUSTRIAL 

APPLICATIONS 
 
The aforementioned algorithms have been used to solve 
several real-world optimization problems. To achieve 
this, they have been integrated into the OpTiX 
optimization environment which presents a common 
abstract interface of the problem to the algorithms and 
handles the distribution and scheduling of the 
distributed simulation runs (s. [12]). All computations 
have been performed on the Rubens cluster at the 
University of Siegen which consists of 128 
Dual-Opteron nodes at 2 GHz with 2GB of RAM and 
running SuSE SLES 8.1 operating system. 
 
The past and current problems include a design problem 
of an aircraft wing, several design and hybrid control 
problems in groundwater and pollution management, a 
multi-stage problem in metal-sheet forming and 
optimization of casting processes of automotive parts. In 
the following, the algorithms’ performance for solving 
one of the groundwater problems is analyzed. 
 
The FEM-based software package FEFLOW [13] has 
been used for modeling and simulation of the 
Binsheimer Feld problem [14]. Mining activities at the 
lower Rhine cause massive subsidence in nearby areas. 
To prevent surface water logging, extensive draining 
measures must be performed. Several pumping stations 
are controlled by an adaptive strategy that changes the 
current pumping rate in dependence of the measured 
water level in a control point as depicted in Fig. 7. The 
strategy for each pump is defined by 6 to 9 switch levels. 
For optimization, three pumps are considered, resulting 
in a total of 22 switch levels which constitute the 
decision variables. The objective function to be 
minimized is the sum of energy costs of the pumps over 
the course of 5 years of operation. As constraints, a 
minimum depth to water table must be maintained at 11 
critical observation points at all times. This is a problem 
of optimal design of a hybrid control system [15] with 
an additional non-linear cost function. 
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Figure 7: Adaptive pumping station control, 
depending on switch levels and groundwater level in 
control observation point 

 
A single simulation of this problem on a 2GHz Opteron 
system takes about 170s to 350s, depending on how 
often and how strongly the pumping strategy changes 
the pumping rates. Fig. 8 depicts the distribution of the 
simulation times as a histogram. The spread in 
evaluation times can be expected to reduce the 
performance of the synchronous algorithms DPA and 
PSS because they have to wait for all of the simulations 
to finish at the end of each iteration before they can 
continue. The CPUs on which the simulations finished 
early are thus idle for a fraction of the time. In contrast, 
the asynchronous pattern search should not suffer from 
this problem. 
 

 

Figure 8: Distribution of the time needed for one 
simulation of the Binsheimer Feld problem 

Table 1 shows the average CPU utilization for the three 
algorithms while solving the Binsheimer Feld problem. 
The effect is visible, but not very strong, because most 
of the simulations will be performed close to the best 
found solution and the difference in evaluation times 
within such a small region of the search space is not so 
big. 
 

algorithm avg. CPU 
utilization 

DPA 91.5% 
PSS 95.7% 
APPS 98.5% 

Table 1: CPU utilization while solving the Bins-
heimer Feld problem (average of 5 runs, 40 CPUs) 

In Fig. 9 and 10, the average solution quality while 
solving the Binsheimer Feld problem with 10 and 80 
CPUs is shown. The starting solution which is passed to 
the optimization algorithms as an initial guide has a cost 
of 992765 €. With 10 CPUs, DPA is by far the fastest to 
find a good solution which has a cost value of less than 
800000 €. At 80 CPUs, the performance of PSS 
becomes similar to that of DPA. In addition, PSS is able 
to reach the best objective function values of the three 
algorithms when given enough time. APPS is only able 
to find solutions of moderate quality, but the solution 
quality improves when it is given more CPUs. However, 
even with 80 CPUs, it is not able to get below 810000 €. 

 

Figure 9: Comparison of the solution quality over 
wall clock time; 22-dimensional Binsheimer Feld 
water management problem, solved using 10 CPUs 
(average of 20 runs) 

 
Figure 10: Comparison of the solution quality over 
wall clock time; 22-dimensional Binsheimer Feld 
water management problem, solved using 80 CPUs 
(average of 20 runs) 



One way to further enhance the speedup and efficiently 
utilize larger number of CPUs is multi-level parallelism: 
The simulation packages that are used for the casting 
processes and the metal-sheet forming can be run in 
parallel on several CPUs themselves. This introduces a 
second level of parallelism into the optimization process: 
The search algorithm evaluates a set of solution 
candidates in parallel by starting a simulation per 
solution, and each of these simulations itself can be run 
data-parallel on more than one CPU. The resulting 
degree of parallelism is thus the product of the two. The 
scalability characteristics of both the optimization 
algorithm and the parallel simulation software must be 
taken into account to find the best allocation of 
resources.  The performance of the parallelized 
simulation is often limited by the latency and bandwidth 
of the network and thus high-performance network 
hardware like Myrinet [16] might be required. If both 
levels of parallelism are combined intelligently, the 
approach promises to yield significantly higher parallel 
efficiencies for large numbers of CPUs as would be 
possible otherwise. 

 
 

5. CONCLUSIONS 
 
In this contribution, three different scalable distributed 
algorithms (distributed polytope, a parallel imple-
mentation of scatter search and an asynchronous parallel 
pattern search) were tested and results from compu-
tational experiments with different dimensions (n = 
1, … , 100) of the optimization problem and different 
numbers of available processors (p = 1, …, 200) 
reported. The analysis was made along the two 
contradictory objectives of the efficiency of the use of 
the available processors and the quality of the solution. 
The experiments were made with an academic problem 
to test the distributed solution concepts and with an 
industrial problem from groundwater engineering. In 
both cases the distributed polytope method showed 
good results. The intelligent design of scalable 
algorithms in optimization seems to be an important 
contribution to deal with future problems which are 
multidisciplinary, multi-agent, multi-scale and 
collaborative (s. [17]). 
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