JAIST Repository

https://dspace.jaist.ac.jp/

Title VQ Compression Algorithms| on A Mul ti
System

Author(s) Wakatani, Akiyoshi

Citation

Issue Date 2005-11

Type Conference Paper

Text version publ i sher

URL http://hdl . handle.net/ 101119/ 3879

Rights 02005 JAI ST Press
The original publication s avail abl
Press http://www. jaist.ac|ljp/librar)
press/index. html, | FSR 20p5 : Proce:q
First World Congress of the Internat

Description Federation for Systems Repearch : TI
of Systems Sciences For a|l Knowl edge-

Nov. 14-17, 2089, Kobe, Japan, Sy

Session 3 : Intelligent I pformation
and Applications Net wor kp and Agent

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

VQ Compression Algorithmson A Multiprocessor System

Akiyoshi Wakatani
Faculty of Science and Engineering, Konan University
8-9-1, Okamoto, Higashinada, Kobe, 658-8501, Japan
email: wakatani@konan-u.ac.jp

ABSTRACT

A variety of parallel processing technologies have been
implemented in a processor, and thus a cutting edge algo-
rithm for multimedia applications should be aware of par-
allel processing features. We implemented parallel algo-
rithms for VQ compression on two parallel environments
and evaluated the effectiveness of the parallel algorithms.

On a multiprocessor system with distributed memories,
we evaluate two parallel algorithms for the codebook gen-
eration of the VQ compression: parallel LBG and aggres-
sive PNN. We measured the speedups and elapsed times
of both algorithms on a PC cluster system and find that
both algorithms can achieve scalable parallelisms for the
case with a large number of training vectors.

On the other hand, for a codeword search on a sys-
tem with a shared memory, the p-dist approach and the
c-dist approach with the aggregation of synchronizations
are suitable for a small codebook, and the c-dist approach
and the p-dist approach with the ADM or the strip-mining
method are suitable for a large codebook. However, since
the aggregation of synchronizations and the strip-mining
method increases the space complexity of the algorithm,
the p-dist approach and the c-dist approach are more suit-
able for a small codebook and for a large codebook, re-
spectively.

Keywords: vector quantization, parallel processing,
compression, LBG, codebook generation

1. INTRODUCTION

A variety of parallel processing technologies have been
implemented in a processor, such as an execution pipeline
and a super scalar architecture[1]. A recent “hyper-
threading” processor emulates two virtual processors in
order to enhance the utilization of pipeline phases and plu-
ral execution units by executing two different threads si-
multaneously[2] and some processors have plural process-
ing cores in a chip (“dual core”) to execute plural threads

in a parallel way[3]. Thus, a cutting edge algorithm for
multimedia applications must be aware of parallel pro-
cessing features and should be parallelized easily and ef-
ficiently.

Multimedia applications include communicating, sav-
ing and retrieving still and motion pictures and audio data,
mostly, through a high-speed network such as Internet.
For such an environment, advanced compression tech-
nologies are key issues. Among several compression algo-
rithms, VQ (vector quantization) is one of the most promi-
nent methods for compressing multimedia data at a high
compression rate. A key to the high compression rate is to
build an efficient codebook that represents the source data
with the least quantity of bit stream. The VQ compres-
sion consists of two parts: 1) codebook generation, and
2) codeword search[4]. Two major methods of generat-
ing a codebook for the VQ compression are PNN(Pairwise
Nearest Neighbor)[5] and LBG[4] algorithms. Both meth-
ods require vast computing resources to determine an effi-
cient codebook. In the codeword search, each vector of the
image should be assigned to the most appropriate code-
word to minimize the quantity of the bit stream.

We consider two types of multiprocessor systems: a
system with distributed memories and a system with a
shared memory. In a system with distributed memories,
each processor has its own main memory and address
space, and then has to exchange a message explicitly be-
tween processors to get the data of other processor. Since
the communication cost is relatively higher than the com-
putational cost, it is required that the number of the mes-
sages and the quantity of the communication must be min-
imized. On the other hand, in a system with a shared
memory, every processor can reach any memory location
without message exchanges, so it is easy to write a par-
allel program on that because users concentrate only on a
task distribution over processors. However, since a syn-
chronization between processors creates an overhead time
and the increase of the cache miss rate results in the con-
gestion of the access to the shared main memory, it seems
that the effective parallelism falls easily without careful

examination by users.

In this paper, we focus on a system with distributed
memories and a system with a shared memory, and con-
sider the availability and efficiency of the VQ compres-
sion algorithm on the environments. The remainder of this
paper is organized as follows: Section 2 provides the de-
scription of algorithms for codebook generation on a dis-
tributed memory system and its evaluation. In Section 3,
algorithms for optimal codeword search on a shared mem-
ory system and its implementation are described and some
improvements are also presented. Finally, Section 4 con-
cludes the paper with a summary.

2. CODEBOOK GENERATION ON A
DISTRIBUTED MEMORY SYSTEM

2.1. Parallel LBG

The LBG algorithm generates a codebook by clustering
initial training vectors with the K-mean method. Dhillon
et al. realized a parallel version of the K-mean method
with the MPI library on distributed memory multiproces-
sors[6]. The MPI is de facto standard library for commu-
nicating messages on distributed memory multicomputers
and has been implemented on many platforms. The paral-
lel version of the LBG algorithm (Parallel LBG) is based
on Dhillon’s K-mean algorithm.

On this parallel algorithm, the training vectors are dis-
tributed over processors and the centroid of the clusters are
shared and updated locally and then globally. The LBG
mainly has two steps: the distance calculation and mini-
mum determination step and the centroid update step. The
calculations of the first step can be carried out in parallel
because the training vectors are distributed. However the
second step consists of three stages. On the sequential
LBG, the new centroid of the k-th cluster is calculated as

follows:
Ny
_onk,i/ M
i=

where Tkl is the i-th training vector which belongs to the
k-th cluster and ny is the number of training vectors which
belong to the k-th cluster. Instead, on the parallel LBG,
each processor calculates local centroids first and broad-
casts the local centroids to others after that. Then the new
centroids should be calculated independently as follows:

nnk
-ZaT ki Mpk
i=

local centroid,
P olocal _centroid,, x n
zip=onp,k

centroid,

local centroid,, =
broadcast

: k
centroid, =

where T, bki and n_, are the i-th training vector which be-
longs to the k-th ci) ster on processor p and the number of
training vectors which belong to the k-th cluster on pro-
cessor p, respectively. Note that the computation of the
third stage is duplicated over processors.

The cost of the parallel LBG mainly consists of a) the
computation part (the first step and the first stage of the
second step), b) the communication part (the second stage
of the second step) and c) the update part (the third stage
of the second step). The complexity of the first step of the
parallel LBG is O(ITR* T xK/P) and the first stage of
the second step is O(I TRx T /P) where I TR is the number
of iterations until the codebook is converged and T and K
are the number of training vectors and codebook, respec-
tively. The second stage of the second step is a broad-
cast communication of K local centroids which requires
the complexity of O(ITR* K x PxlogP) by using Van de
Geijn’s broadcast algorithm[7]. Finally the complexity of
the third stage of the second step is O(I TR K x P). Note
that the second and third stages are overheads which the
sequential LBG does not contain and are proportional to
the number of processors, thus these stages may degrade
the effective parallelism.

2.2. Aggressive PNN

In order to improve the performance of the PNN al-
gorithm further, we should parallelize the Lazy PNN al-
gorithm without any loss of scalability to the problem size
and suitability for a high compression rate. The Lazy PNN
consists of five steps: 1) determine the nearest neighbor of
vector (NN) of each training vector and the distance be-
tween the training vector and its NN, 2) sort the distances,
3) merge the pair of training vectors with the minimum
distance into one vector, 4) stop if the total number of the
vectors equals the size of codebook (K), and 5) recalculate
the NNs and distances if necessary and goto 2.

We proposed the safe PNN algorithm and the aggres-
sive PNN algorithm[8]. The safe PNN algorithm gener-
ates the same codebook as the sequential PNN does, but
cannot provide enough effective parallelism. On the other
hand, the codebook generated by the aggressive PNN is
slightly different from that by the sequential PNN, but
the aggressive PNN outperforms the safe PNN in terms of
scalability and parallelism. Thus we focus on the aggres-
sive PNN in this paper. The aggressive PNN consists of
eight steps: 1) share all training vectors over processors,
but divide them into sub vector groups which are assigned
to different processors, 2) determine the nearest neighbor
of vector (NN) of each training vector in the sub vector
group and the distance between the training vector and its
NN, 3) sort the distances locally (sort list A), 4) broadcast
the first B pairs in the sort list A to others, 5) sort the B« P
broadcasted pairs (sort list B), 6) merge the first B pairs

in the sort list B, 7) stop if the total number of the vec-
tors equals the size of codebook (K), and 8) recalculate
the NNs and distances if necessary, sort them again and
goto 4. Note that if B is 1, the aggressive PNN generates
the same codebook as the sequential PNN does. The main
concept of the aggressive PNN is that each processor has
its own sort list, broadcasts the block of pairs to others
and merges them aggregately. Since the most costly part
of the aggressive PNN is the communication overhead of
the broadcast in the step 4, the aggregate merge is imple-
mented to reduce the number of the broadcast communi-
cations.

The cost of the aggressive PNN mainly consists of a)
the computation part (steps 2 and 3), b) the communica-
tion part (step 4) and c) the merge part (steps 5, 6, 7 and
8). The complexities of the steps 2 and 3 of the aggres-
sive PNN are O(T =T /P) and O((T /P) % (T /P)), respec-
tively, but the steps 2 and 3 are carried out only once. The
complexity of the step 4 is O(((T — K)/B) x P« logP) be-
cause B is not large, so the communication cost is deter-
mined by the number of the communications and the cost
of a broadcast with P processors is O(logP). Note that
the cost of the step 4 can be reduced by increasing B, but
the difference of codebooks generated by the aggressive
PNN and the sequential PNN algorithms increases and it
may degrade the quality of the codebook generated by the
aggressive PNN. The complexity of the steps 5 and 6 is
O(((T —K)/B) % ((BxP) % B)) because the dominant part
of these two steps is selecting the first B pairs among Bx P
pairs. Finally, the cost of the step 8 is slight because the
number of recalculations is small compared with T and K
according to the result of our preliminary experiments, so
it can be ignored.

2.3. Experiment and Discussion

2.3.1. Degradation of Image Quality for Aggressive
PNN

T=1024, K=256, ctl.pgm

33 " -
experiment 1 —&—
L experiment 2 —#—— |
825 experiment 3 -
experiment 3 e

& 32t
=
@
P4
[%2]
o
305 |
30 ‘
1 10 100

Block size

Figure 1. Degradation of image quality

In order to evaluate the quality of an image compressed
by using the aggressive PNN algorithm, we considered
several images including a CT scan image with the size
of 512 x 512 and the gray level of 8 bit. For the image,
1024 training vectors are randomly chosen to determine a
codebook of 256 vectors. Four experiments are carried out
with varying initial training vectors. Figure 1 shows the
relation of the block size and PSNR (Peak Signal Noise
Ratio) for each experiment. The block size (B) means
the number of vector pairs that are aggressively merged
in concurrent. As mentioned earlier, the aggressive PNN
with the block size of 1 generates the same codebook as
the sequential PNN does.

As shown in Figure 1, by increasing the block size,
PSNR is slightly degraded. For example, for the exper-
iment 1, the sequential PNN algorithm generates a code-
book at PSNR of 31.5dB, while the aggressive PNN algo-
rithm with the block size of 10 generates a codebook at
PSNR of 31.0dB. It is concluded that the aggressive PNN
algorithm can be applicable to the codebook generation
for the VQ compression because the degradation of image
quality is slight.

2.3.2. Comparison of Parallel LBG and Aggressive
PNN

We measured an elapsed time of each part of both
algorithms on a PC cluster which consists of 8 CPUs
(Celeron 1GHz) and LAN (100Mbps) under MPICH1.2.4
and Linux 2.4. Our experiments generate a codebook of
2048 beginning with training vectors of 3000, 4096 and
8000. The parallel LBG iterates the procedure until the
total difference of the calculated and previous centroids
is under 0.01/K. Note that the number of iterations is
((T —K)/B) for the aggressive PNN and we choose 64
as B for our experiments. For the parallel LBG, several
experiments were carried out with varying the initial con-
ditions and the best results are plotted in the graphs.

As mentioned in the previous section, the costs of
the three parts of the parallel LBG are 1) the compu-
tation part of O(ITR=T xK/P), 2) the communication
part of O(ITRxK xPxlogP) and 3) the update part of
O(ITRxK = P) and those of the three parts of the aggres-
sive PNN are 1) the computation part of O(T = T/P), 2)
the communication part of O(((T —K)/B) xPxlogP) and
3) the merge part of O(((T — K)/B) * ((BxP) xB)). Thus
it is expected that the part 1 of both algorithms can be car-
ried out in parallel, but the elapsed times of the rest parts
increase as the number of processors increases.

The results of the experiments are shown in Figure. 2
and 3. The speedups of both algorithms are almost same
except for an 8 CPU case: as the size of training vectors
increases, the speedups increase, say, the speedups of the
aggressive PNN with 3000 and 8000 training vectors on

! T=3000 —=—
6 T=4096 @
T=8000 -0
5 L
o
=)
34
o 8
@ 3t . e
2 L

No of Processors

() Parallel LBG

Speedup

No of Processors

Figure 2. Speedup (lenna)

Co‘mputation‘ —B—
32| Update = |
Communication -

o
3 4f
(4] L
g2
= 1}
0.5 A o
0.25 - 5
0.125 ST ‘
1 2 4 8 16

No of Processors

(a) Parallel LBG (T=8000, 32.460B)

(b) Aggressive PNN
32 ‘ Co‘mputation‘ —8—
Merge -
16 ¢ Communication -

Time(sec)

16

No of Processors

(b) Aggressive PNN (T=3000, 32.10dB)

Figure 3. Case where the image quality is same

an 8 CPU cluster are 4.16 and 5.94, respectively. How-
ever, the speedups of the parallel LBG are degraded on
an 8 CPU cluster, because the costs of the communica-
tion and update parts exceed the parallelization merit of
the computation part, namely, the former are proportional
to PxlogP and P and the latter is inversely proportional to
P. The costs of the update part are nearly equal to or more
than that of the computation part for all the cases on an 8
CPU cluster and that of the communication is in a similar
situation. Therefore, the scalability of the parallel LBG is
not so good.

When the qualities of images compressed by both algo-
rithms are same, the number of training vectors required
by the aggressive PNN is much less than that by the par-
allel LBG, and the aggressive PNN is superior in terms of
the elapsed time. For example, the quality of images com-
pressed by the parallel LBG with 8000 training vectors
and the aggressive PNN with 3000 training vectors are al-

most same (32.46dB and 32.10dB), but the total elapsed
times on an 8 CPU cluster are 5.4 sec and 0.78 sec for the
parallel LBG and the aggressive PNN, respectively. The
reason is partially the difference of the hit rate of cache
memories because the aggressive PNN requires a smaller
memory area for the smaller number of training vectors.

As shown above, the parallel algorithm for the VQ
codebook generation using the PNN method requires that
the first several data elements of a locally-sorted list on
each processor should be broadcasted and then sorted
later, but MPI does not provide any collectives for this
procedure, called “Allsort”. The Allsort procedure consist
of several steps as follows: 1) sort B data locally and gen-
erates a locally-sorted list, 2) collect all the locally-sorted
lists of the size of P- B and 3) sort them and select the first
C data of the globally-sorted list. Note that C is between B
and P-B and C is B for the aggressive PNN. We will pro-
pose the implementation of this collective in the future[9].

3. CODEWORD SEARCH ON A SHARED
MEMORY SYSTEM

3.1. Two Approaches

The key to the enhancement of the effective parallelism
is to decompose a task evenly over processors and reduce
the number of synchronizations. We have two alternatives
to search an optimal codeword for each vector of the im-
age: 1) p-dist: the image is divided into sub images and
each processor is in charge of finding the optimal code-
word for the vectors of one of the sub images, and 2)
c-dist: the codebook is divided into sub codebooks and
each processor is in charge of finding the locally-optimal
codeword for the vector with one of the sub codebooks
and then finds the globally-optimal codeword among all
the local-optimal codewords. Figure 4 shows the outline
of the codeword search where |, D and K are the number
of pixels, the size of a vector and the number of code-
words in the codebook. Note that '5 is the number of vec-
tors. Namely the p-dist approach distributes the outer loop
(“A”) of the code in the Figure over processors and the c-
dist approach distributes the inner loop (“B”) instead.

for(i=0;i < 1/D;i++){ I* (A) */
Xmin=C; jmin=-1;
for(=0;j < K;j++){ /* (B) */
x=distance(image[i], codebook]j]);
if(xmin > x){xmin=x; jmin=j;}

cluster[i]=jmin;

Figure 4. Optimal codeword search

In the p-dist approach, each processor takes a look at
the whole codebook for each vector. Thus, if the size of
the codebook is larger than the size of the cache mem-
ory of the processor, the elapsed time of the codebook
access increases due to the increase of the main mem-
ory access. However, when the codebook is less than
the size of the cache memory, this approach can be com-
pletely parallelized because of no synchronizations re-
quired. Moreover, in order to reduce the cache miss rate
for a large codebook, we have two alternatives. One is
“strip-mining” method and another is “alternating direc-
tion memory-access” method (ADM). The strip-mining
method divides the inner loop into sub loops and places
a new loop out of the outer loop. Then it enhances the
cache hit rate of the codebook accesses in the new most-
inner loop by keeping the intermediate search results for
all the vectors on a buffer. In the ADM method, the cache

hit rate of the early part of the codebook accesses can be
improved by changing the direction of the inner loop as in
Figure 5.

startl=(1 /D)*myID; endl=(l /D)*(myID+1);
for(i=startl;i < endl ;i++){
Xmin=C; jmin=-1;
if(i%2==0)
for(j=0;j < K;j++){
x=distance(image[i], codebook[j]);
if(xmin > x){xmin=x; jmin=j;}

else
for(j=K — 1;j >= 0;j-){
x=distance(image[i], codebook([j]);
if(xmin > x){xmin=x; jmin=j;}

cluster[i]=jmin;

Figure 5. P-dist with ADM method

On the other hand, it seems natural that the c-dist
approach require a synchronization after all the proces-
sors decides the locally-optimal codeword to decide the
globally-optimal codeword. However, the number of syn-
chronizations can be easily reduced by keeping several
locally-optimal codewords for several vectors on a buffer,
LOC buffer(Locally Optimal Codeword buffer), and find-
ing the globally-optimal codewords aggregately. The size
of the LOC buffer depends on the size of globally-optimal
codewords to be determined aggregately, which is called
“synchronization period”. Note that as the size of the
buffer grows, the number of synchronization decreases
but the space complexity increases. Moreover, since the
codebook is divided, the c-dist approach works well for
a large codebook compared with the p-dist approach in
terms of cache hit rate. The complexity of the synchro-
nization (Tgync) is O("’%P) and the complexity of the c-
dist with the LOC buffer (T,..) is O(%) where P is the
number of processors and S is the synchronization pe-
riod. Thus, since Tync : T,oe = O(2%P) : O(1), the iso-
efficiency parallelism can be achieved if B is directly pro-
portion to Plog P.

3.2. Experiments and Discussion

We implemented two algorithms for the codeword
search on a SMP system with four AMD Opteron 846
processors (2.0GHz, L2 cache: 1M Byte, L1-D cache:
64K Byte) and 2G Byte main memory under SUSE-Linux
Ver9.0 (kernel 2.4.21) and created programs with C lan-
guage and POSIX thread library, which were compiled by
gcc 3.3.21. We measured the elapsed time and speedup for

p-dist
5
4t
3 L
2 L
l L
0 L
0 1 2 3 4 5
No. of proc.
(a) Distributed pixel
c-dist
5 T T
K=2"10 —8— .
K=2/12 —a P
41 K=2M4 o °
K=2716 —e o= °
3 | K=2M18 - o
. -
l L
0 L L L L
0 1 2 3 4 5

No. of proc.

(b) Distributed codebook

Figure 6. Speedup of codeword search

encoding of a graymap image with the size of 1024 x 1024
using the size of a vector of 16 pixels.

Figure 6-(a) shows the speedup of the p-dist approach
with the codebook size of 210 to 218, A linear speedup
cannot be achieved for the cases where the codebook size
is 210 and 212 because the overhead of thread creation
is relatively large. Although a linear speedup can be
achieved for a large codebook, the elapsed time increases
due to the cache miss penalty of the codebook access. We
will describe the detail of this phenomena later.

As mentioned earlier, the c-dist approach requires
a synchronization between processors to determine the
globally-optimal codeword, so the overhead of the syn-
chronization degrades the effective parallelism. As shown
in Figure 6-(b), a linear speedup cannot be achieved for
the case of the codebook of 210 to 24, but the speedup is
getting close to a linear speedup as the size of the code-
book increases because the overhead cost of the synchro-
nization is amortized.

3.3. Reduction of Synchronizations

By aggregating several synchronization points, the ef-
fective parallelism can be improved for the c-dist ap-
proach. Thus, each processor has to keep several local-
optimal codewords on the LOC buffer and synchronize
with other processors to decide globally-optimal code-
words aggregately.

Reduction of sync. points (K=2"10)

6 ! T T

1 block sync —*—
5+t 8 block sync 8-

64 block sync =
4 128 block sync —©
512 block sync ---e--- a
3 [-
2 L
1 L
0 L
0 1 2 3 4 5

No. of proc.

Figure 7. Reduction of synchronizations

Figure 7 shows the results for the size of the codebook
of 219, For 4 processor case, the speedup is just 0.98 when
synchronized every vector, but the speedup is 2.93 when
synchronized every 8 vectors and the speedup goes up to
3.66 when synchronized every 64 vectors. However, the
speedup goes down to 3.54 when synchronized every 128
vectors and the speedup is reduced to 3.00 when synchro-
nized every 512 vectors. The reason is that the overhead of
the synchronization is still large for a small synchroniza-
tion period and the cache hit rate is worse due to the in-
crease of the LOC buffer area for a large synchronization
period. Therefore the key to the efficient c-dist approach
is to determine the synchronization period appropriately
and optimally.

3.4. Cache Effect for A Large Codebook

Since all the codewords of the codebook are accessed
sequentially for the p-dist approach, the access latency
easily increases when the size of codebook exceeds the
size of the cache memory of the processor.

Figure 8 shows the relative performance of several
methods when the elapsed time of the c-dist is 1. When
K = 218, the size of the codebook is 222 Byte, that is, larger
than the size of the L2 cache memory (1M Byte), so the
elapsed time of the p-dist is larger than that of the c-dist by
about 10% for the 4 processor case. However, by applying
the ADM to the p-dist, the cache hit rate is improved and
its relative performance almost reaches the performance
of the c-dist (1.01). Then the strip-mining is applied to

cache effect (K=2"18)

1.4 :
c-dist. —=—
() -dict -
1.3} p-dist —=
g p-dist ADM e
- 12t p-dist,B=2"14 e
g p-dist,B=2/12 &
< 11 ¢
o P n
.g 1+ = T -8 3]
E o O . .
o 09 o S
o o 9 4
0.8 L ‘ ‘ \
0 1 2 3 4 5
No. of proc.

Figure 8. Effect of cache miss for a large
codebook

the p-dist and we carry out two cases where the size of the
most inner loop is 214 and 2%2. For both cases, the relative
performance is about 0.9, so it is confirmed that the p-dist
with the strip-mining method outperforms the c-dist even
for a large codebook, however the strip-mining method re-
quires a buffer area to keep the intermediate results of the
whole vectors of O('ﬁ), thus the space complexity of the
main memory increases dramatically.

4. CONCLUSION

On a multiprocessor system with distributed memo-
ries, we evaluate two parallel algorithms for the code-
book generation of the VQ compression. We measured
the speedups and elapsed times of both algorithms ona PC
cluster system and find that both algorithms can achieve
scalable parallelisms for the case with a large number of
training vectors. However, as the the number of proces-
sors increases, the parallelism of the parallel LBG is de-
graded. In addition, it is found that when the qualities of
images compressed by both algorithms are same, the ag-
gressive PNN is superior to the paralle LBG in terms of
the total elapsed time.

For a codeword search on a system with a shared mem-
ory, the p-dist approach and the c-dist approach with the
aggregation of synchronizations are suitable for a small
codebook, and the c-dist approach and the p-dist approach
with the ADM or the strip-mining method are suitable for
a large codebook. However, since the aggregation of syn-
chronizations and the strip-mining method increases the
space complexity of the algorithm, the p-dist approach and
the c-dist approach are more suitable for a small codebook
and for a large codebook, respectively.

In the near future, we will evaluates the codebook gen-
eration algorithms on shared memory systems and the

codeword search algorithms on distributed memory sys-
tems. Also we will confirm the effectiveness of our algo-
rithm for a system with a shared memory on a large SMP
system, a dual-core processor and a hyper-threading sys-
tem and so on.

ACKNOWLEDGMENTS

This work was supported by MEXT ORC (2004-2008),
Japan.

REFERENCES

[1] Culler D., Singh J. and Gupta A.: “Parallel Computer
Architecture: A Hardware/Software Approach”m
Morgan Kaufmann Pub., (1998)

[2] Marr D. et. al.,: “Hyper-Threading Technology Ar-
chitecture and Mlcroarchitecture”, Intel Technology
Journal, Vol.6, http://www.intel.com/technology/
itj/2002/volume06issue01/
vol6iss1_hyper_threading_technology.pdf (2002)

[3] “Smash the Hourglass with the AMD Athlon? 64 X2
Dual-Core Processor”,
http://www.amd.com/us-en/Processors/
Productinformation/0,,30_.118_9485_13041,00.html

[4] Gersho A. and Gray R.: ”Vector Quantization and
Signal Compression”, Kluwer Academic Publishers,
Boston (1992)

[5] Equitz W.: A new vector quantization clustering al-
gorithm”, IEEE trans. on Acoustics, Speech and Sig-
nal Processing, Vol.37, N0.10, pp.1568-1575 (1980)

[6] Dhillon I. and Modha D.: “A data-clustering al-
gorithm on distributed-memory multiprocessors”,
Large-Scale Parallel Data Mining, pp.245-260
(1999)

[7] Thakur R. and Gropp W.: “Improving the perfor-
mance of collective operations in MPICH”, Proc. of
Euro PVM/MPI 2003, pp.259-267 (2003)

[8] Wakatani A.: “Parallelization of VQ Codebook Gen-
eration using Lazy PNN Algorithm”, Parallel Com-
puting: Software Technology, Algorithms, Architec-
tures & Applications, Editors; G. Joubert et al., Else-
vier Science, pp.415-422, (2004)

[9] Wakatani A.: “A VQ compression algorithm on a
multiprocessor system with a global sort collective
function”, IEEE ISSPIT 2005 (submitted) (2005)

