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ABSTRACT

When conceptualizing a complex system, especially a so-
called ’wicked system’, its designers have the problem to
make initial architectural decisions without having suf-
ficient in-depth information of the final consequences.
Such decisions usually entail a choice between basic al-
ternatives (called heredichotomic architectural patterns)
like "centralized versus decentralized architecture", "op-
timistic versus pessimistic system behavior", etc. The-
se decisions pre-define the basic system architecture and
are very difficult to reverse later. Identifying and isola-
ting these dichotomic architectural patterns and descri-
bing their basic properties allows to teach these princip-
les. This helps system designers to understand their op-
tions and the resulting consequences for the envisioned
system.

In this paper we describe essential dichotomic architec-
tural patterns and typical examples. We classify them ac-
cording to underlying principles and discuss their com-
monalities.

Keywords
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1. DICHOTOMIC ARCHITECTURAL PATTERNS

Today’s information systems show a continuous growth
in complexity, due to the need to solve what Hermann
Kopetz calls "wicked problems" [1], an extrapolation of
Lehman’s Environment Systems [2]. Besides being large,
complex, ill-defined and without clearly identified objec-
tive. These systems have the property thatthe problem
cannot be specified without some concept of its solution.

Starting from the wrong assumptions not only will lengt-
hen the development process. Under today’s pressing
economy of software development together with the
stringent time-to-market needs, this often will mean the
end for a project.

It is therefore necessary, even in the case of insufficient
information and badly understood interactions between
features to understand the effects of the a-priori basic

decisions:one needs to make some a-priori assumpti-
ons/decisions before even starting to conceptualize the
system’s specification. Designers have to rely on their
over-all knowledge, experience and intuition in order to
create a reasonable initial solution which will later be re-
fined and modified.

In this paper we suggest to identify ’dichotomic archi-
tectural pattern’ which are the basis for such decisions
[3][4]. The finally chosen decisions with respect to such
patterns can be seen as a point in a continuum between
two abstract, though extremal endpoints. A simplistic ex-
pression of such know-how is the popular saying"You
can’t keep the cake and eat it".

A typical (still simple) example is the design of a pro-
gramming language: one can either design a language
for being compiled or being interpreted. This has consi-
derable consequences on the syntax and semantics of the
constructs of the language.

In the field of engineering we often find trade-offs bet-
ween two opposite, often contradictory alternatives for a
design: e.g. you can design a system for extreme flexi-
bility or for extreme security. usage this decision is not
optimal any more Internet (based on the original DARPA-
network was designed for minimizing the effects of seve-
ring connections. This decision now causes today’s pro-
blem with security but this cannot be remedied easily.

Many of the dichotomic architectural patterns, however,
are not symmetric:you can keep the cake today and eat
it tomorrow, but not vice versa. Furthermore in real life a
compromise between the extreme positions can be taken:
e.g.you can eat half the cake and keep the other half.

The cake example is typical for a large class of such pat-
terns: one can perform some action now or later (someti-
mes only by using a different technology):"You can cross
the frozen lake now or you can cross it in half a year’s ti-
me" - but by some other means (e.g.swimming).

Each dichotomic pattern has certain characteristics atta-
ched to it: cost, implementation time, security, etc. and
thus implies the basic behavior of the system to be built.
Once such a decisions is made, it can be modified but ba-
sically not changed without redoing most of the design.
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Discussing the extreme endpoints of such a dichotomic
architectural pattern allows to teach their basic properties
and thus helps to develop a ’guts feeling’ for engineers
obliged to make such decisions.

We can make several observations with respect to these
patters:

1. The choice has strong, often irreversible influence
on the characteristics of the final system, e.g.once
eaten, the cake is gone!.

2. Many of the patterns are not symmetric, e.g.you
can keep the cake today and eat it tomorrow, but
not vice versa.

3. In the final system some compromise will have to
be chosen, e.g.eating half the cake and keeping the
other half.

4. If circumstances change, a different choice could
be better, e.g.keeping a cake if one is not hungry.

5. The wrong combination of several such choices
might result in a suboptimal system, e.g. keeping
a cake and many biscuits.

In chapter 2. we describe characteristic dimensions of
these choices. In chapter 3. we show that some of the
given examples can be classified into different patterns.
In chapter 4. we discuss the interdependence and con-
sequences of the choice of dichotomic architectural pat-
terns.

2. DIMENSIONS OF THE DICHOTOMIES

Several dimensions can be distinguished:

Enactment time WHEN should a foreseen action be
performed?

Synchronicity WHAT TEMPORAL RELATIONS do
actions have?

Physical Location : WHERE should needed data and
programs be placed?

Granularity of Access : HOW MANY/MUCH should
be accessed/handled in one step?

Communication Control : WHERE should control be
located?

Risk expectancy : HOW PROBABLE is a certain event?

The above dimensions seem to be the most important
ones in current information systems, but a closer research
will probably reveal more.

2.1. Enactment Time

One of the essential decisions for an action is as towhen
it should be enacted, assuming that it has to be enacted -
sometime. Two extremes points can be identified:

anticipative The action is performed as early as possi-
ble, as soon as it is identified as necessary, or at
least probable. We speak of "work ahead"[5]. This
usually provides more time to devote to the acti-
on, allowing a more thorough work, with the un-
certainty that the work might be unnecessary.

just-in-time The actions has to be performed immedia-
tely in order not to risk some other problems of
performance (e.g. real-time constraints).

We know that not every action has to be performed im-
mediately after its identification. It may be more advan-
tageous todelayit. some Major reasons for delay can be:

• During a time-critical action no time should be
"wasted" for lower-priority tasks, especially if the-
re will be some slack time later to do the work.

• At a later time there might be more accurate infor-
mation available to perform the task.

• Resources might be cheaper later.

We can distinguish two variants of delay:

• The actions can be performed later using the same
means and methods

• The delayed action needs different means and me-
thods.

2.1.1. using the same method

Prefetching versus just-in-time fetching of values
High-speed computers prefetch data e.g. in or-
der to avoid costly page faults later. This entails
the risk of being sometimes wrong and having to
throw away some work.

Binding of Variables Memory space has to be allocated
to a program’s variables (’binding of variables’).
Allocation can be donebeforethe program starts
(’statically’), using considerable memory space,
even for variables which might not be used at all.
Alternatively binding can be done ’dynamically’
when storage for the variable is actually needed at
the price of perhaps valuable (perhaps critical) time
to be lost.. Binding can also be done at several con-
venient points in time: at compile time, when the



programm is linked together with other programs
or when the program is loaded into the computer
system [6].

Compilation/Interpretation Computer programm writ-
ten in problem-oriented programming languages
have to betranslated into the primitive control
statements of the hardware. This can be performed
in two ways:

• translate thecomplete programmat once and
execute it later (’compilation’ [7][8]) or

• translateone statement(a ’minimally mea-
ningful expression of the language’) at a time,
execute it and then translate the next state-
ment (’interpretation’) [9] [10].

Both compilation and interpretation have their spe-
cific advantages. The basic trade-off is whether one
invests considerable effort beforehand (writing a
compiler and executing the compiler to translate
the programs) or one is willing to expend some
small amount of effort each time a higher-level lan-
guage statements is executed.

2.1.2. using a different method

Computation of functions versus table look-up In or-
der to compute mathematical values (e.g. trigono-
metric functions) one can pre-compute and store all
necessary values in a table (needing considerable
memory) or compute the requested value whene-
ver needed - using considerable ad-hoc time.

Storage Management versus Garbage Collection
During operation the computer system has to pro-
vide storage space for data. Data not needed any
more and occupying memory can in many cases
be removed immediately when they have ceased
their useful existence or they can be collectively
removed at a later time [11].

Systematic archiving versus searchRetrieval of archi-
ved information and documents is one of the ma-
jor problem of bureaucracies. One can either per-
form elaborate, time consuming indexing operati-
ons aforehand or store the data essentially unor-
dered and un-indexed, but develop elaborate (and
fast!) search engines.

Formal specification and verification versus testing
When trying to establish the correctness of a pro-
gram basically two approaches are (within limits)
available: At the time of writing a program one
can attempt to ascertain its correctness by formally
defining and verifying it (which is very expensive
and theoretically not fully solved) [12][13]. Alter-
natively one can try to find and eliminate errors in

a program by validation and verificationafter the
production of the code, by inspections [14] and/or
testing (which is very expensive and theoretically
not fully possible).

2.2. Synchronicity

With respect to the time relation between several parts of
a process also a basic distinction can be made.

Parallel versus linear A task can be executed in a line-
ar fashion or alternatively split into several parallel
streams to be executed in parallel [15], often in a
networked fashion. Its advantage is a major increa-
se in speed, permitting larger computation tasks in
reasonable time (e.g. ’grid computing’ [16]) but at
the cost of increased complexity and cost of syn-
chronization [17].

2.3. Physical Location

The placement of data or work is a critical decision which
has strong impact of in future performance of information
systems, but often without having good data on amount
and access requirements of future data.

Local versus remote computing In computer networks
programs can be stored anywhere. Execution of
such programs can either be done in the remote
environment (’remote job entry’) or programs can
first be fetched in order to be execute them local-
ly (Fig. 1). The advantage of local access has to be
compared to the effort to fetch programs and keep
redundant copies. Remote data can be made acces-
sible either by having a pointer or a link to the re-
mote location or by bringing the data physically to
the user (imbedding or copying) [18].

Fig. 1: Remote function call versus programm fetch

Vertical migration In a modern computer system with
its multiple architectural levels of functionality (cf.
ISO’s Open Systems Interconnection Reference
Model of ISO/IEC Standard 9834) actions (pro-
grams) can be performed on different levels. Trans-
ferring a function from one level to another is cal-
led ’Vertical migration’ [19], cf. Fig. 2. This offers



certain trade-offs: programs near to the hardware
level execute very fast, are safe from many secu-
rity attacks but are difficult to implement and to
change. On the user-oriented levels programs can
be written, understood and changed much easier at
the price of vulnerability and (comparative) slow-
ness.

Fig. 2: Vertical Migration

2.4. Granularity of Access

One can fetch (from some storage medium) either exactly
the needed items or also some ’neighboring’ items in the
hope to need them later (Fig. 3).

Fig. 3: Granularity

Accessing multiple remote dataWhen operating on re-
mote data one can copy/transfer the complete data
set or a large portion of it from the remote location
to the location of processing, knowing that only a
fraction of the data will actually be used and at the
same time perhaps excluding other users from use.
Alternatively one can only fetch the needed mini-
mum, knowing that more re-fetches will be neces-
sary later resulting in over-all higher effort. Paging
systems are based on the former strategy.

CISC versus RISC In the past considerable speed dif-
ferences existed between the circuitry of the cen-
tral processing unit (then in semiconductor tech-
nology) and main memories (then still using con-
siderably slower technology like magnetic core
and discs). The appropriate strategy was to fet-
ching/store a large amount of data during each
computer step in order to conserve fetch time.
As a consequence powerful and complex instruc-
tion sets were needed for handling the large
amount of data ("C(omplex) I (instruction) S(et)
C(omputer)"[20][21]). When memory technology
achieved the same technology and speed as the
central processing unit one resorted to "R(educed)
I (instruction)S(et) C(omputers)" with simple, less
powerful instructions. RISC imply complex, time-
consuming compilers due to more a larger semantic
difference between the instructions of the problem-
oriented programming languages and the (less po-
werful) instructions of the RISC hardware [22].

Modularization For dividing systems into components
two opposite strategies can be adopted: division
into the smallest possible modules, which usual-
ly are easy to implement and handle, but entail
the problem of resulting in numerous modules and
therefore many interfaces, increasing the cost of
communication. Alternatively dividing the system
into a few large subsystems which in themselves
are complex but provide simple, easy interfaces.
Usually the complexity of a module grows over-
proportionally with its size, inducing a small mo-
dules, but the overproportional connection comple-
xity consuming the gain from small module size
(Fig. 4) arises.

Fig. 4: Tradeoff between number of modules and size of
modules



Locking Granting unique access rights to a collection of
data [23] can either be done in a coarse-grained
fashion, easing administration, but creating a bott-
leneck situation and preventing many other from
access. Alternatively one can provide access rights
to single elements, making both administration and
simultaneous access to several elements more com-
plicating and increasing the danger of deadlocks
(cf. the transaction concept [23]).

2.5. Communication Control

Actors in a multi-actor environment usually need com-
munication and coordination. A key decision is about
who is in control of this communication.

Centralized versus Distributed In today’s networks
control can either be located in a single location
or distributed over many (Fig. 5). Different pro-
perties are associated with these choices, typically
ease and speed of control and update. Lower ac-
cess costs favor distribution, while questions of
consistency and networking costs favor centralized
solutions

Fig. 5: Work Principles related to Space

Polling versus interrupt A classic decision with respect
to a communication protocols is who should be the
initiator of a communication. The requester(s) can
periodicallypoll the supplier(s) about the availabi-
lity of data or the supplier(s) can offer this informa-
tion via interrupt (Fig. 6). Polling is easier to pro-
gram and - seen from the requestor - allows for mo-
re control, but cannot cater for preemption of tasks.
This is necessary in real-time systems and in sy-
stems with an arbitrary large number of suppliers.
Interrupting another process causes more admini-
strative work, is more difficult to program and mo-
re error-prone.

Fig. 6: Polling versus Interrupt

Master/slave or democratic Assigning control to one
communication partner is usually simpler and
straightforward, but entails potentially a bottleneck
and makes the system more vulnerable to failure or
unfairness. The democratic case is more difficult to
program due to certain anomalies [24].

2.6. Risk expectancy

Error prevention versus error detection The expected
probability of an error to take place (e.g. 2 users
updating the same element, a hardware error to oc-
cur) can be evaluated in an optimistic or pessimi-
stic fashion. Assuming everything to run well will
induce to rely on ex-post repair (at unknown cost)
while the pessimistic view (e.g. assuming Moore’s
Law) will invest a-priori in an attempt to unearthen
and prevent problems (cf. ’foolproofing’ [25]).

Check-out/check-in versus consolidationWhen wor-
king on some common objects (e.g. individual mo-
dule designs within a larger development project)
parallel changes of the same detail cannot be ac-
cepted (cf. the transaction concept of data bases).

One can either use a locking mechanism and give
access only to one user at a time (’check-out/check
in’) or all users can access the data base at the sa-
me time. In a subsequent ’consolidation process’
potential inconsistencies are detected and a clean-
up is initiated. Commercial databases prefer the
first approach, while software engineering environ-
ments often apply the second approach in order to
avoid the bottleneck at check-out time, optimisti-
cally assuming a low probability of truly conflic-
ting changes [26].

3. OVERLAPPING PATTERNS

Many of the dichotomies presented above can - if loo-
ked at from different view point - also be classified into
other categories: typically ’Local versus remote compu-
ting section 2.3. could also be seen as a distinction bet-
ween different ways of communication control. The table
in Fig. 7 shows some of these overlaps.



dichotomy Enact.
time
(same
m.)

Enact.
time
(diff.
m.)

Syn-
chron.

Phys.
Loc.

Gran.
Access

Comm.
Ctl

Risk
exp.

Prefetching vs. just-in-time fetching of values X x
Binding of Variables X
Compilation/Interpretation X x
Computation of functions vs. table look-up X x
Explicit Storage Management vs. Garbage Collection X x
Systematic archiving vs. search x X
Formal specification and verification vs. testing X x
Parallel vs. linear X x
Local vs. remote computing X x
Vertical migration X x
Accessing multiple remote data x X
CISC vs. RISC X
Modularization X x
Locking X x
Centralized vs. Distributed x X
Polling vs. interrupt x X x
Master/slave or democratic x X
Error prevention vs. error detection X
Check-out/check-in vs. consolidation x X

Fig. 7: Relationships between dichotomies: ’X’ major category, ’x’ minor category

4. SYSTEMIC INTERDEPENDENCIES

In a real system several of above dichotomic architectural
patterns come into interplay. The following observations
can be made:

• The individual choices are not independent from
one another but have considerable cross-influences,
impacting other choices.

• Each of these dichotomic choices directly or indi-
rectly influences several cost drivers (development
time, execution time, development cost, future ori-
entation, sustainability, etc.) and their totality the-
refore has to be chosen in the light of optimization
of the total system.

• The totality of the chosen dichotomic architectu-
ral patterns contribute to the ’next higher’ func-
tion (cost, complexity, implementation effort, ...).
In systems design one has to optimize these ’hig-
her’ functions. A typical example is the division of
a system into components and the resulting com-
plexity, cf. ’modularity’ in section 2.4. and Fig. 4.
Reducing the size of the components reduces the
complexity of the individual module at the price
of increasing the complexity of interconnections.
Due to the overproportionality of the influences a
picture as in Fig. 4 results, which has an optimum
somewhere between the extrems.

• Any optimization has always to consider thewhole
system and avoid suboptimization.

5. Summary and Outlook

In this paper we have introduced the concept ofdicho-
tomic architectural patternsof systems design. They are
important in the very early conceptual phases of systems
design, especially for so-called wicked systems. For the
designing engineers it is important to intuitively grasp
the consequences of these basic tradeoffs in order to be
able to make stable and sustainable initial assumptions
for the design to be created and avoiding any crucial mi-
stake. These dichotomies are seen as choices on a one-
dimensional scale between two extremes. The final choi-
ce will be a compromise between the extremes.

One can teach these dichotomic architectural patterns and
their properties and thus improve choices at the initial sta-
ge of system design.

Returning to the proverb"you can’t keep a cake and eat
it" , it is of help to know how to make choices with respect
to keeping/eating in such a way to get the most out of it,
whatever the situation and your preferences are.
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