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ABSTRACT 

 
In this paper we discuss a framework for weighted 

combination of classifiers in which each individual 

classifier uses a distinct representation of objects to be 

classified. This framework is essentially based on 

Dempster-Shafer theory of evidence (Dempster, 1967; 

Shafer, 1976) and OWA operators (Yager, 1988). It is 

of interest to see that this framework not only yields 

many commonly used decision rules without some 

strong assumptions made in the work by Kittler et al. 

(1998), but also provides other new decision rules. As 

an application, we apply the proposed framework of 

classifier combination to the problem of word sense 

disambiguation (shortly, WSD). To this end, we 

experimentally design a set of individual classifiers, 

each of which corresponds to a distinct representation 

type of context considered in the WSD literature, and 

then the discussed combination strategies are tested on 

the datasets for four polysemous words, namely interest, 

line, serve, and hard. The experiment conducted for 

these four polysemous words shows significantly better 

results in comparison with previous studies on the same 

datasets.  

 

Keywords: Computational linguistics, Classifier 

combination, Word sense disambiguation, OWA 

operator, Evidential reasoning.  

 

 

1. INTRODUCTION 

 

The ultimate goal of constructing classification systems 

is to achieve the best possible classification 

performance for the task at hand. This objective 

traditionally led to the development of different 

classification methods for any given pattern recognition 

problem. As observed in studies of pattern recognition 

systems, although one could choose one of learning 

systems available based on the analysis of an 

experimental assessment of these to hopefully achieve 

the best performance for a given pattern recognition 

problem, the set of patterns misclassified by them would 

not necessarily overlap [8]. This means that different 

classifiers may potentially offer complementary 

information about patterns to be classified. In other 

words, features and classifiers of different types 

complement one another in classification performance. 

This observation highly motivated the interest in 

combining classifiers during the recent years. The basic 

idea is to use all the classifiers, or their subset, for 

decision making of classification by combining their 

individual opinions to derive a consensus decision, 

instead of only relying on any a single decision making 

scheme. 

 

As is well-known, there are basically two classifier 

combination scenarios. In the first scenario, all 

classifiers use the same representation of the input 

pattern. A typical example of this scenario is a set of 

k-NN classifiers, each of which uses the same 

measurement vector but different classifier parameters 

(number of nearest neighbors k, or distance metrics 

used). In the second scenario, each classifier uses its 

own representation of the input pattern. An important 

application of combining classifiers in this scenario is 

the possibility to integrate physically different types of 

features. Further, an important issue in combining 

classifiers is the combination strategy used to derive a 

consensus decision. In [8], the authors proposed a 

common theoretical framework for combining 

classifiers which leads to many commonly used 

decision rules used in practice. This framework has 

been also applied to the problem of word sense 

disambiguation (WSD) in [12]. However, to derive 

these decision rules, this framework adopts several 

assumptions imposed on individual classifiers (for more 

details, see [8]) which, to our opinion, are difficult to be 

accepted and verified in the context of word sense 

disambiguation. 

 

The issue of automatic disambiguation of word senses 

has been an interest and concern since the 1950s. 

Roughly speaking, word sense disambiguation involves 

the association of a given word in a text or discourse 

with a particular sense among numerous potential 

senses of that word. As mentioned in [6], this is an 

“intermediate task” necessarily to accomplish most 



natural language processing tasks. It is obviously 

essential for language understanding applications, while 

also at least helpful for other applications whose aim is 

not language understanding such as machine translation, 

information retrieval, among others. Since its inception, 

many methods involving WSD have been developed in 

the literature (see, e.g., [6] for a survey). During the last 

decades, many supervised machine learning algorithms 

have been used for this task, including Naive Bayesian 

(NB) model, decision trees, exemplar-based model, 

SVM, maximum entropy, etc. Especially, classifier 

combination for WSD has been received much attention 

recently from the community as well, e.g., [7], [5], [16], 

[9], [2], [3], [17]. In the spirit of categorizing into 

combination scenarios mentioned above, in the context 

of WSD, the work by Kilgarriff and Rosenxweig [7], 

Klein et al. [9], and Florian and Yarowsky [3] could be 

grouped into the first scenario. Whilst the work by 

Pedersen [17] can be considered as belonging to the 

second scenario, although the difference of 

representations here is only in terms of size of context 

windows. In this paper, we focus on weighted 

combination of classifiers in the second scenario with 

the discussion being put in the context of word sense 

disambiguation. Particularly, we discuss a framework 

for weighted combination of classifiers for WSD in 

which each individual classifier uses a distinct 

representation of objects to be classified. This 

framework is essentially based on Dempster-Shafer 

theory of evidence [18, 19] and OWA operators [21]. 

 
More particularly, we first consider various ways of 

using context in WSD as distinct representations of a 

polysemous word under consideration, and then all 

these representations are used jointly to identify the 

meaning of the target word. On the one hand, by 

considering each representation of the context as 

information inspired by a semantics or syntactical 

criterion for the purpose of word sense identification, 

we can apply OWA operators for aggregating 

multi-criteria to form an overall decision function 

considered as the fuzzy majority based voting strategy 

[13]. Essentially, we use OWA operators for classifier 

fusion in their semantic relation to linguistic quantifiers 

[22] so that we could provide a framework for 

combining classifiers, which also yields several 

commonly used decision rules for WSD but without 

some strong assumptions made in the work by Kittler et 

al. [8]. On the other hand, various ways of using the 

context could be considered as providing different 

information sources to identify the meaning of the target 

word. Moreover, each of these information sources does 

not by itself provide 100% certainty as a whole piece of 

evidence for identifying the sense of the target. Then by 

considering the problem as that of weighted 

combination of evidence for decision making, we 

formulate a general rule of classifier combination based 

on Dempster-Shafer theory of evidence [18], adopting a 

probabilistic interpretation of weights. This 

interpretation of weights seems to be appropriate when 

defining weights in terms of the accuracy of individual 

classifiers. Note that the formulation of weighted  

classifier combination in terms of Dempster-Shafer 

theory also yields some interestingly classifier 

combination schemes.  

 

Experimentally, we design a set of individual classifiers, 

each of which corresponds to a distinct representation 

type of context considered in the WSD literature, and 

then the proposed combination strategies are 

experimentally tested on the datasets for four 

polysemous words, namely interest, line, serve, and 

hard. 

 
The paper is organized as follows. In section 2, we will 

recall basic notions from Dempster-Shafer theory of 

evidence and OWA operators. Section 3 devotes to the 

theoretical framework for combining classifiers in WSD 

based on these theories. Then an experimental study will 

be conducted in section 4. Finally, section 5 presents 

some concluding remarks. 

 

 

2. PRELIMINARIES 

 

In this section we briefly review basic notions of 

Dempster-Shafer (DS) theory of evidence and OWA 

operators. 

 

2. 1. Dempster-Shafer Theory of Evidence 
 

In Dempster-Shafer theory of evidence, a problem 

domain is often represented by a finite set Θ of mutually 

exclusive and exhaustive hypotheses, called frame of 

discernment [18]. In the standard probability framework, 

all elements in Θ are assigned a probability. And when 

the degree of support for an event is known, the 

remainder of the support is automatically assigned to the 

negation of the event. On the other hand, in DS theory 

mass assignments are carried out for events as they 

know, and committing support for an event does not 

necessarily imply that the remaining support is 

committed to its negation. Formally, a basic probability 

assignment (BPA, for short) is a function m: 2
Θ
 → [0,1] 

verifying: 

(i) m(∅) = 0, and 

(ii) ∑A⊆Θ m(A) = 1. 

The quantity m(A) can be interpreted as a measure of the 

belief that is committed exactly to A, given the available 

evidence. A subset A∈2
Θ 

with m(A)>0 is called a focal 



element of m. A BPA m is called to be vacuous if 

m(Θ)=1 and m(A)=0 for all A ≠ Θ. 

 

Two evidential functions derived from the basic 

probability assignment m are the belief function Belm 

and the plausibility function Plm, defined as 

∑
⊆≠∅

=
AB

m BmABel )()( , 

and 

∑
∅≠∩

=
AB

m BmAPl )()( . 

Two useful operations that play a central role in the 

manipulation of belief functions are discounting and 

Dempster's rule of combination. The discounting 

operation is used when a source of information provides 

a BPA m, but one knows that this source has probability 

α of reliable. Then one may adopt (1-α) as one's 

discount rate, which results in a new BPA m
α
 defined 

by  

m
α
(A) = αm(A), for any A⊆ Θ  

m
α
(Θ) = (1-α) +αm(Θ). 

 

Consider now two pieces of evidence on the same frame 

Θ represented by two BPAs m1 and m2. Dempster's rule 

of combination is then used to generate a new BPA, 

denoted by (m1 ⊕ m2) (also called the orthogonal sum of 

m1 and m2), defined as follows 

,0)(21 =∅⊕ mm  

,)()(
1

1
)( 2121 ∑

=∩−
=⊕

ACB

CmBmAmm
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where 

∑
∅=∩

=
CB

CmBm )()( 21κ . 

Note that the orthogonal sum operator is only applicable 

to such two BPAs that verify the condition κ <1. 

 

2. 2. OWA Operators 

 

The notion of ordered weighting average (shortly, 

OWA) operators was first introduced in [21] regarding 

the problem of aggregating multi-criteria to form an 

overall decision function. A mapping 

F: [0,1]
n
 → [0,1] 

is called an OWA operator of dimension n if it is 

associated with a weighting vector W=[w1,…,wn], such 

that 1) wi ∈[0,1] and 2) ∑i wi =1, and 

F(a1,…,an) =∑i wibi 

where bi is the i-th largest element in the collection a1,.., 

an. 

 

OWA operators provide a type of aggregation operators 

which lay between the “and” and the “or” aggregation. 

As suggested by Yager [21], there exist at least two 

methods for obtaining weights wi's. The first approach is 

to use some kind of learning mechanism. The second 

one is to give some semantics or meaning to the weights. 

Then, based on these semantics we can directly provide 

the values for the weights. In the following we use the 

semantics based on fuzzy linguistic quantifiers for the 

weights. 

 

The fuzzy linguistic quantifiers were introduced by 

Zadeh in [22]. According to Zadeh, there are basically 

two types of quantifiers: absolute, and relative. Here we 

focus on the relative quantifiers typified by terms such 

as most, at least half, as many as possible. A relative 

quantifier Q is defined as a mapping Q: [0,1] → [0,1] 

verifying Q(0)=0, there exists r∈[0,1] such that Q(r)=1, 

and Q is a non-decreasing function. For example, the 

membership function of relative quantifiers can be 

defined [4] as 


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



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with parameters a, b∈ [0,1]. Then, Yager [21] proposed 

to compute the weights wi's based on the linguistic 

quantifier represented by Q as follows: 

)
1

()(
n

i
Q

n

i
Qwi

−
−=   (2b) 

for i=1,…, n. 

 

 

3. WEIGHTED COMBINATION OF 

CLASSIFIERS FOR WSD 

 

Consider a pattern recognition problem where pattern x 

is to be assigned to one of the M possible classes c1, c2, 

…, cM. Let us also assume that we have R classifiers 

corresponding to R distinct representations of the given 

pattern, denoted by f1, f2,…, fR. Now, in order to utilize 

all the available information to make a decision on the 

classification, it is essential to consider all the 

representations of the pattern simultaneously and, 

according to the Bayesian theory [8], then the pattern x 

should be assigned to class cj provided the a posteriori 

probability of that class is maximum, i.e. 

),...,|(maxarg 1 Rk
k

cpj ff=   (3) 

Begin with the decision rule (3), under the conditional 

independence assumption of the representations used 

and the assumption that the posterior class probabilities 

computed by the respective classifiers do not deviate 

greatly from the prior ones, the authors in [8] developed 

a theoretical framework for combining classifiers which 

leads to many commonly used decision rules used in 

practice. However, the authors also conceded that these 

assumptions seem to be unrealistic in many situations. 



Particularly, to our opinion, these assumptions are 

difficult to be accepted and verified in the context of 

WSD. In the following, we will focus on a framework 

for combining classifiers in WSD based on the DS 

theory and OWA operators. This framework also 

interestingly yields many commonly used decision rules 

for WSD but without the strong assumptions mentioned 

above. 

 

3. 1. WSD with Multi-Representation of Context 
 

Given a polysemous word w, which may have M 

possible senses (classes): c1, c2,…, cM, in a context C, 

the task is to determine the most appropriate sense of w. 

Generally, context C can be used in two ways [6]: in the 

bag-of-words approach, the context is considered as 

words in some window surrounding the target word w; 

in the relational information based approach, the 

context is considered in terms of some relation to the 

target such as distance from the target, syntactic 

relations, selectional preferences, phrasal collocation, 

semantic categories, etc. As such, for a target word w, 

we may have different representations of context C 

corresponding to different views of context. Assume we 

have such R representations of C, say f1, f2,…, fR, 

serving for the aim of identifying the right sense of the 

target w. Clearly, each fi can be also considered as a 

semantical representation of w. Each representation fi of 

the context has its own type depending on which way 

context is used. 

 

Now let us assume that we have R classifiers, each 

representing the context by a distinct set of features. The 

set of features fi, which is considered as a representation 

of context C of the target word w, is used by the i-th 

classifier. Furthermore, assume that each i-th classifier 

(expert) is associated with a weight αi, 0 ≤ αi ≤1, 

reflecting the relative confidence in or important of the 

classifier. In the following we will show that different 

semantic views of representations fi associated with 

various interpretations of corresponding weights αi lead 

to numerous various classifier combination schemes 

serving for identifying the sense of the target w. 

 

3. 2. DS Theory Based Combination Scheme 
 

Given a target word w in a context C and S={c1,…, cM} 

is the set of its possible senses. Using the vocabulary of 

DS theory, S can be called the frame of discernment of 

the problem. As mentioned above, various ways of 

using the context could be considered as providing 

different information sources to identify the meaning of 

the target word. Each of these information sources does 

not by itself provide 100% certainty as a whole piece of 

evidence for identifying the sense of the target. 

Formally, we have the available information for making 

the final decision on the sense of w given as follows 

� R probability distributions P(•| fi) (i=1,…, R) on S, 

� The weights αi of the individual information 

sources (i=1,…, R) (Note that the constraint ∑αi=1 

does not need to be imposed). 

 

From the probabilistic point of view, we may 

straightforwardly think of the combiner as a weighted 

mixture of individual classifiers defined as 

∑
∑ =

=
R

i

iki

i

Rk cPcP
1

1 )|(
1

),...,|( fff α
α

    (4) 

for k = 1,…,R. Then the target word w should be 

naturally assigned to the sense cj according to the 

following decision rule 

),...,|(maxarg 1 Rk
k

cPj ff=              (5) 

However, by considering the problem as that of 

weighted combination of evidence for decision making, 

we now formulate a general rule of combination based 

on DS theory. To this end, we first adopt a probabilistic 

interpretation of weights. That is, the weight αi 

(i=1,…,R) is interpreted as reliable probability of the 

i-th classifier. This interpretation of weights seems to be 

especially appropriate when defining weights in terms 

of the accuracy of individual classifiers. 

 

Under such an interpretation of weights, the piece of 

evidence represented by P(•| fi) should be discounted at 

a discount rate of (1-αi). This results in a BPA mi 

verifying 

mi(ck) = αiP(ck | fi) ÷ pik, for k = 1,…,M 

mi(S) = 1- αi ÷ piS. 

That is, the discount rate of (1-αi) can not be distributed 

to anything else than S, the whole frame of discernment. 

We are now ready to formulate our belief on the 

decision problem by aggregating all pieces of evidence 

represented by mi's in the general form of the following 

i

R

i
mm

1=
⊕=     (6) 

where m is a BPA and ⊕ is a combination operator in 

general. 

 

By applying different combination operators for ⊕ in 

(6), we may have different aggregation schemes for 

obtaining the BPA m which models our belief for 

making the decision on the sense of w. In [11] we have 

examined two different combination strategies, called 

discounting-and-orthogonal sum and discounting-and 

–averaging, which correspond to applying Dempster’s 

rule of combination and average operator for ⊕ 

respectively. Note that in this approach, after obtained 

the BPA m, we must also deal with the problem of how 

to make a decision based on it. Because m does not in 



general provide a unique probability distribution on S, 

but only a set of compatible probabilities bounded by 

the belief function Belm and the plausibility function Plm. 

Consequently, individual classes in S can no longer be 

ranked according to their probability. Fortunately, based 

on the Generalized Insufficient Reason Principle, we 

may define a probability function Pm on S derived from 

m for the purpose of decision making via the pignistic 

transformation [19]. That is, as in the two-level 

language of the so-called transferable belief model [19], 

the aggregated BPA m itself represented the belief is 

entertained based on the available evidence at the credal 

level, and when a decision must be made, the belief at 

the credal level induces the probability function Pm for 

decision making. 

 

Let us denote by DS1 and DS2 the discounting-and 

-orthogonal sum and discounting-and-averaging 

combination strategies respectively. It is of interest to 

note that the combination strategy DS2 is nothing but 

the weighted mixture of individual classifiers as defined 

in (4). Due to the limitation of space, the details of these 

could be referred to [11]. 

 

3. 2. OWA Operator Based Combination Scheme 
 

Let us return to the problem of identifying the sense of a 

given word w as described above. As discussed on the 

role of context in the task of determining the most 

appropriate sense of w, each representation fi of the 

context C can be also considered as providing the 

information inspired by a semantical or syntactical 

criterion for the purpose of word sense identification. 

Let us assume that we have R classifiers corresponding 

to R representations fi of the context, each of which 

provides a soft decision for identifying the right sense of 

the target word w in the form of a posterior probability 

P(ck | fi), for i=1,…,R.  

 

Under such a consideration, we now can define an 

overall decision function D, with the help of an OWA 

operator F of dimension R, which combines individual 

opinions to derive a consensus decision as follows: 

∑
=

==
R

i

iiRkkWk pwcPcPFcD
1

1 ))|(),...|(()( ff  (7) 

where pi is the i-th largest element in the collection 

P(ck|f1),…,P(ck|fR), and W=[w1,…,wR] is a weighting 

vector semantically associated with a fuzzy linguistic 

quantifier. Then, the fuzzy majority based voting 

strategy suggests that the word w should be assigned to 

class cj provided that D(cj) is maximum, namely 

)(maxarg k
k

cDj =    (8) 

 

It should be worth mentioning that the use of OWA 

operators in classifier combination has been studied, for 

example, in [10]. In this work we use OWA operators 

for classifier fusion in their semantic relation to 

linguistic quantifiers so that we could provide a 

framework for combining classifiers, which also yields 

several commonly used decision rules but without some 

strong assumptions made in the work by Kittler et [8]. 

 

As studied in [21], using Zadeh's concept of linguistic 

quantifiers [22] and Yager's idea of associating their 

semantics to various weighting vectors W, we can 

obtain many commonly used decision rules as 

following. 

 

Max Rule. First let us use the quantifier there exists 

which can be relatively represented as a fuzzy set Q of 

[0,1] such that Q(r) = 0, for r <1/R and Q(r)=1, for r ≥ 

1/R. We then obtain from (2b) the weighting vector 

W=[1,0,…,0], which yields from (7) and (8) the Max 

Decision Rule as 

)|(maxmaxarg ik
ik

cPj f=  

 

Min Rule. Similarly, if we use the quantifier for all 

which can be relatively represented as a fuzzy set Q of 

[0,1] such that Q(1) = 1, and Q(r)=0, for r ≠ 1 [25]. We 

then obtain from (2b) the weighting vector W=[0,…,0,1], 

which yields from (7) and (8) the Min Decision Rule as 

)|(minmaxarg ik
ik

cPj f=  

 

Median Rule. In order to have the Median decision rule, 

we use the absolute quantifier at least one which can be 

equivalently represented as a relative quantifier with the 

parameter pair (0,1) for the membership function Q in 

(2a). Then we obtain from (2b) the weighting vector 

W=[1/R,…,1/R], which from (7) and (8) leads to the 

median decision rule as 

])|(1[maxarg
1

∑
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ik
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Fuzzy Majority Voting Rules. We now use the relative 

quantifier at least half} with the parameter pair (0,0.5) 

for the membership function Q in (2a). Then, depending 

on a particular value of R, we can obtain from (2b) the 

corresponding weighting vector W=[w1,…,wR] for the 

decision rule, denoted by FM1, as: 

][maxarg
1

∑
=

=
R

i

ii
k

pwj  

where pi is the i-th largest element in the collection 

P(ck|f1),…,P(ck|fR). 

 

Similarly, we can also use the relative quantifier as 

many as possible with the parameter pair (0.5,1) for the 

membership function Q in (2a) to obtain the 



corresponding decision rule, denoted by FM2. 

 

Interestingly also, from the following relation 
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it suggests that the Max and Min decision rules can be 

approximated by the upper or lower bounds 

appropriately. Especially, under the assumption of equal 

priors, the decision rule derived from (3) (see [8]) 

simplifies to the Product rule, which is a lower 

approximation of the Min rule, while approximating 

Max rule by the upper bound yields the Sum rule. 

 

In addition, from the classical voting strategy, we can 

also obtain the following decision rule. 

 

Majority Vote Rule. Majority voting follows a simple 

rule as: it will vote for the class which is chosen by 

maximum number of individual classifiers. This can be 

done by hardening the a posteriori probabilities P(ck | fi) 

in terms of functions ∆ki defined as follows: 





 =

=∆
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f if      
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ik
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cP|fcP
 

then the right class (sense) cj is determined as follows: 

∑∆=
i

ki
k

j maxarg  

 

 

4. AN EXPERIMENTAL STUDY 
 

In this section we will design an experiment to test the 

classifier combination schemes discussed. 

 

4. 1. Representations of Context for WSD 
 

As mentioned above, context plays an essentially 

important role in WSD and the representation choice of 

context is a factor which may be more important than 

the algorithm used for the task itself on the aspect of 

affecting the obtained result. For predicting senses of a 

word, information usually used in all studies is the topic 

context which is represented by bag of words. Ng and 

Lee [16] proposed the use of more linguistic knowledge 

resources including topic context, collocation of words, 

and a syntactic relationship verb-object, which then 

became popular resources for determining word sense in 

many papers. In [14], the authors use another 

information type, which is words or part-of-speech and 

each is assigned with its position in relation with the 

target word. However, in the second scenario of 

classifier combination strategies, according to our 

knowledge, only topic context with different sizes of 

context windows is used for creating different 

representations of a polysemous word, such as in 

Pedersen [17] and Wang and Matsumoto [20]. 

 

On the other hand, we observe that two of the most 

important information sources for determining the sense 

of a polysemous word are the topic of context and 

relational information representing the structural 

relations between the target word and the surrounding 

words in a local context. Under such an observation, we 

have experimentally designed five kinds of 

representation defined as follows: f1 is a set of 

unordered words in the large context; f2 is a set of words 

assigned with their positions in the local context; f3 is a 

set of part-of-speech tags assigned with their positions 

in the local context; f4 is a set of collocations of words; 

f5 is a set of collocations of part-of-speech tags. 

Symbolically, we have 

� },...,,,,,...,{
11 21121 nn wwwwww −−−=f  

� )},(),...,1,(),1,(),...,,{( 21122 22
nwwwnw nn −−= −−f  

� )},(),...,1,(),1,(),...,,{( 31133 33
npppnp nn −−= −−f  

� }|......{ 411 nrlwwww rl ≤+= −− wf4  

� }|......{ 511 nrlpppp rl ≤+= −− wf5  

where wi is the word at position i in the context of the 

ambiguous word w and pi be the part-of-speech tag of wi, 

with the convention that the target word w appears 

precisely at position 0 and i will be negative (positive) if 

wi appears on the left (right) of w. In the experiment, we 

design the window size of topic context (for both left 

and right windows) as 50 for the representation f1, i.e. 

n1=50, while the window size ni of local context as 3 for 

remaining representations. 

 

4. 2. Data 
 

We tested on the datasets for four words, namely 

interest, line, serve, and hard, which are used in 

numerous comparative studies of word sense 

disambiguation methodologies such as Pedersen [17], 

Ng and Lee [16], Bruce and Wiebe [1], and Leacock, 

Chodorow and Miller [14]. We have obtained those data 

from Pedersen's homepage
1
. There are 2369 instances of 

interest with 6 senses, 4143 instances of line with 6 

senses, 4378 instances of serve with 4 senses, and 4342 

instances of hard with 3 senses. 

 

4. 3. Experimental Results 
 

In the experiment, we obtain the results that are the 

average of 5 results from 10-folds cross validation. Data 

                                                 
1
 http://www.d.umn.edu/~tpederse/data.html 



included four datasets corresponding to four 

polysemous words interest, line, hard, and serve, were 

tested based on multi-representation of context as 

defined in the preceding section. 

 

Table 1 shows the experimental results obtained by 

using various strategies of classifier combination 

developed in Section 3 and the best results obtained by 

individual classifiers respectively. It is of interest to 

note that Majority Voting, which is widely used in many 

studies of combining classifiers, may not be a good 

choice for classifier combination in WSD. 

 

Table 2 shows the comparison of results from the best 

classifier combination with previous WSD studies, 

which were also tested on the four words. It is shown 

that the best classifier combination based on 

multi-representation of context gives the highest 

accuracy on all the four words, except for the word line 

where Pedersen’s method does better. 

 

 

5. CONCLUSIONS 

 

In this paper we have discussed and formalized various 

ways of using context in WSD as distinct 

representations of a polysemous word under 

consideration, and then all these representations are 

used jointly to identify the meaning of the target word. 

This consideration allowed us to develop a framework 

for combining classifiers based on DS theory and the 

notion of OWA operators with the help of fuzzy 

majorities. Interestingly, this framework also yields 

many commonly used decision rules for WSD, without 

assumptions imposed on individual classifiers as done 

in [10]. We also experimentally explored all developed 

combination strategies on the datasets for four 

polysemous words, namely interest, line, serve, and 

hard, which are used in numerous comparative studies 

of word sense disambiguation methodologies. It has 

been also shown that multi-representation of context 

could significantly improve the accuracy of WSD by 

combining classifiers, as individual classifiers 

corresponding to different types of representation 

suitably offer complementary information about the 

target to be assigned a sense; this consequently helps to 

make more correct decisions. 

 

However, more reliable results would be needed to 

strongly support the claim of improvement in WSD by 

the developed framework. We are planning to revise 

and test the classifier combination schemes discussed in 

this paper with the Senseval data [7] for that purpose. 
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Table 1. Experimental Results 

 

 Best individual 

classifier (%) 

Max  

(%) 

Min  

(%) 

Median  

(%) 

Majority  

(%) 

DS1  

(%) 

DS2  

(%) 

FM1  

(%) 

FM2  

(%) 

interest 87.0 89.6 89.9 90.5 88.7 91.2 90.7 90.2 89.7 

line 82.8 86.9 87.2 84 79.8 87.2 85.6 84.3 82.7 

hard 90.2 89.8 89.2 91 90.4 91.6 91.3 91 90.9 

serve 84.4 87.7 88.1 88.6 85.4 89.7 89.1 89 88.8 

 
Table 2. The comparison with previous studies 

 

 Bruce & 

Wiebe [1] (%) 

Mooney [15]  

(%) 

Ng & Lee 

[16]  (%) 

Leacock, Chodorow 

& Miller [14] 

(%) 

Pedersen 

[17]  (%) 

Best combiner  

(%) 

interest 78 - 87 - 89 91.2 

line - 72 - 84 88 87.2 

hard - - - 83 - 91.6 

serve - - - 83 - 89.7 

 

 


