
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Java Mathematical Kit : A Dynamic Mathematical

Guide

Author(s)
Nasrullah, Memon; Abdul, Rasool; Muhammad, Urs

Shaikh; Abdul, Qadeer Rajput

Citation

Issue Date 2005-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/3930

Rights ⓒ2005 JAIST Press

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, IFSR 2005 : Proceedings of the

First World Congress of the International

Federation for Systems Research : The New Roles

of Systems Sciences For a Knowledge-based Society

: Nov. 14-17, 2140, Kobe, Japan, Symposium 7,

Session 3 : Foundations of the Systems Sciences

Models and Applications

Java Mathematical Kit: A Dynamic Mathematical Guide

Nasrullah Memon1, Abdul Rasool 1 , Muhammad Urs Shaikh 2 and Abdul Qadeer Rajput 1

1Department of Computer Systems and Software Engineering
Mehran University of Engineering and Technology Jamshoro Sindh Pakistan

nmemon@acm.org, parqureshi@yahoo.com, aqkrajput@hotmail.com
2Department of Basic Sciences and Related Studies

Mehran University of Engineering and Technology Jamshoro Sindh Pakistan
ursshaikh@yahoo.com

ABSTRACT

Mathematics is tough sledding for many. The difficulty
is that most students fail to appreciate that mathematics
is "just a language." It happens to be a very rigorous
language, one with very little ambiguity associated with
its symbols. It's also a very abstract one. And it's
primarily the latter attribute, abstractness, which causes
many students to falter. In this paper an attempt has
been made to present design, development and
implementation of software, “Java Mathematical Kit”
(JMK). It aims to establish a framework to support
solutions of various mathematical problems by using
click and done methodology. The JMK is
mathematical software, which has some unique features
(Step Evaluator, etc.); which are not available in other
mathematical software.

Keywords: Java Mathematical Kit (JMK), Step
Evaluator, Matrixulator, Dynamic graphs, Dynamic
error indicator.

1. INTRODUCTION

During the initial development of computers in the
1940’s and early 1950’s the chain of intermediate
technologists between the computer designer/builder
and the computer user was very short. In fact it was not
uncommon for one individual to be actively involved in
the design, construction, and application of a computer.
By 1970 there was a significant amount of infrastructure
between the computing machine and the end user - for
example, from low-level to high-level one could cite
operating systems, compilers, general-purpose software,
and applications-specific software. Each level of this
infrastructure absorbed the creativity and energies of its
own community of specialists trying to improve its link
in the chain. This frequently took the form of trying to
meet the perceived needs of the higher levels in the
infrastructure while coping with the limitations and
peculiarities of the resources provided by the lower
levels.

The Java Mathematical Kit is a contribution to the
general-purpose mathematical software stratum of the
computing infrastructure

2. BACKGROUND AND MOTIVATION

Through the late 1960’s and up to about 1971, a number
of collections or libraries of mathematical software had
been assembled. Typically each of these libraries was
developed for, and useable on, just one brand of
computer system. Examples would be a library collected
and/or developed by a computer vendor for use with
their computer, or a library collected and/or developed
by a large organization’s computing center for use
within that organization. For instance, Michael Powell
recalls developing a math library at the Harwell
Laboratory in the early 1960’s.

Even the two organizations, NAG [1] and IMSL [2],
that later became the world’s main suppliers of math
libraries across diverse machine types, each started in
1970 by targeting a single machine type. NAG started as
an informal cooperative effort by six institutions in
England to develop a math library for their newly
acquired ICL 1906A systems. Their first library, in both
Algol and Fortran versions, was available to the
participating institutions in October 1971, and they
immediately started attacking the problem of developing
the library for other computer types.

IMSL was founded in 1970 as a company to develop
and market mathematical and statistical libraries. A
major motivation for the founding of IMSL was a
perception of customer dissatisfaction with the math
libraries provided by IBM for use on their systems.
IMSL’s first product, available in 1971, was a Fortran
library for the IBM/370-360.

Designing math library software to be portable across
diverse systems was particularly difficult in the 1970’s
because there were significant differences between the
arithmetic characteristics of computers from different

manufacturers. The state of standardization of
programming languages was in its infancy, and
operating systems (encompassing file naming and file
storage) were quite different on different computer
brands. Fortran was the only language widely supported
in the U.S., and the only language for which there was
an ANSI standard (1966). However, the standardized
language had major shortcomings so the programmers
tended to use vendor-specific extensions and that
worked against portability. Algol and Fortran were both
used in Europe.

A project called NATS (National Activity for Testing
Software or NSF, Argonne, Texas, Stanford) [3]
undertook during 1971-1972, to investigate the
problems of achieving Fortran portability for
mathematical software by testing, and as necessary
modifying, a Fortran version of a set of dense matrix
eigenvalue/eigenvector algorithms. These 30 algorithms
were originally developed in Algol and published in a
series of papers in the 1960’s by J. H. Wilkinson and
others, and subsequently published together as the
Handbook ... [4]. The collection was converted to
Fortran by Virginia Klema and others at Argonne
National Laboratory and then processed for portability
by NATS. NATS announced the availability of
EISPACK [2, 6, 7] in 1972, the package having been
successfully tested on IBM 360-370, CDC 6000-7000,
Univac 1108, Honeywell 635, and PDP-10 computers.
The same EISPACK code ran on all these systems, with
the exception of one variable that needed to be set to
indicate the precision of the arithmetic on the host
system. EISPACK was widely requested and
distributed. This project demonstrated the great utility of
carefully tested portable mathematical software based
on state of the art algorithmic research. But did
(Fortran) portability mean sacrificing efficiency?
Library developers began giving more attention to this
issue, and new hardware designs presented new
challenges and opportunities.

Nowadays much mathematical software are available in
market, for example, MathCAD, Mathematica, Matlab,
TK Solver, Adams, etc. We developed our software
(Java Mathematical Kit) using Java Technology as our
tool of development.

3. IN WHAT SENSE IT IS DIFFERENT FROM
 OTHER SOFTWARE?

This software holds some features like:

• Graphical User Interface
• Step Evaluator
• Matrixulator

• Dynamic Graphs (GML)
• Dynamic Error Indicator

3.1 Graphical User Interface

This Software has User Friendly and Self Explanatory
Graphical Interface (as shown in figure 1). This means
that users do not have to worry about Syntaxes of
Commands. One has just to enter the function with
proper conventions and then select the required
command to cope with problem. For invalid inputs, the
software generates dynamic error with exact location,
indicating where the user has made the error. Thus by
knowing what and where error has occurred, user has a
facility to correct it without much botheration.

Figure 1: Graphical User Interface

3.2 Step Evaluator
This Software has a very unique quality of solving an
expression or function in Step by Step fashion. User can
view a complete step by step method of solving an
expression that Step Evaluator performs manually. Thus
user may solve an expression with Step Evaluator, save
and print it. This feature is not present in any Software,
as shown in figure 2.

Figure 2: Preview of Step-Evaluator

3.3 Matrixulator

This software has a special feature named as
“Matrixulator” for matrix manipulation. With this, user
may add, subtract, and multiply any two suitable
matrices. One can also evaluate determinant of a matrix
using “Matrixulator” tool. Moreover, all these
operations are performed in step by step manner. This is
also a unique property of the software.

Figure 3: Preview of Matrixulator

3.4 Dynamic Graphs

This Software has efficiencies to draw graph of any
function in one variable as shown in figure 4. As the
name suggests, user may change the scale and view of

the graph dynamically at runtime, after drawing the
graph. The user may save the current graph or load
previously saved graphs. This is done by GML
(Graphic Markup Language), a special format in which
this software saves and retrieves the graphs.

Figure 4: Dynamic Graphs

3.5 Dynamic Error Handling

This Software generates different type of errors with
location numbers to help the user to correct it. This
property is shown in Figure 5 and discussed in detail in
the next section.

Figure 5: Dynamic Error Handling

4. DANYMIC ERROR DETECTION FACILITIES

This Software has some special “Error Trapping
Routines” which are designed to locate all possible
types of dynamic errors which a user may commit,
during input session.

“Self Detecting Skills” of this software not only locates
the error, but also let the user know the type and exact
position/place of the error.

Table 1 shows errors that appear when user enters
invalid inputs.

4.1 Ambiguous Operators

This type of error appaers when the user enters empty
parenthesis like "()”. It is displayed with the location at
which it occurs.

Example: 5+()+4

4.2 Extra "(" in the Expression

This type of error appears when the user enters an extra
parenthesis like "(“. It may be noted that this error is not
displayed with the location at which it occurs.

Example: 5+((a + b)+4

4.3 Extra ")" in the Expression

This type of error appears when the user enters an extra
parenthesis like ")”. It is not also displayed with the
location at which it occurs.

Example: 5+(c + d))+4

4.4 Unexpected Decimal Point

This type of error appears when the user enters an extra
Decimal point. It is displayed with the location at which
it occurs.

Example: 2.3.4

4.5 Unnecessary Decimal Point

This type of error appears when the user enters
continuous decimal points. It is displayed with the
location at which it occurs.

Example: 2..4

4.6 Unidentified Letter or Symbol

This type of error appears when the user enters any
letter that is not used in any Mathematical Symbol.

This type of error is displayed with the location at which
it occurs.

Example 1: sinx+ +cosx
Example 2: sinx+u+cosx

Note: This error may appear due to Space or blank
being entered by the user as in first example.

4.7 Operator Missing or Required

This type of error appears when the user enters two
operands without operator. It is displayed with the
location at which it occurs.

Example: 2x

Note: There is no automatic multiply operation in
software, therefore user must write 2*x instead of 2x.

4.8 Operand Missing or Required

This type of error appears when the user enters two
operators without operand. It is displayed with the
location at which it occurs.

Example: 2+*x

4.9 Undefined Symbol

This type of error appears when the user enters a symbol
comprising of letters, which are used in other Symbols.
It is displayed with the location at which it occurs.

 Example: cinx

4.10 Unexpected ")" in Expression

This type of error appears when the user closes
parenthesis ")" without opening it. This error is not
displayed with the location at which the error occurs.

Example: 5+)+4

4.11 Incomplete Equation

This type of error appears when an unusual end of
expression is made. This error is not displayed with the
location at which it occurs.

Example: 5+4+

4.12 Not a number (NAN)

This type of error appears when the result of required
operation is a non-real value.

This error is not displayed with the location at which it
occurs.

Example: Root of x^2+2

4.13 Infinity

This type of error is displayed when the result of
expression is infinity. It is not displayed with the
location where the error has occurred.

Example: 5/0

Note: Error may come in form of +Infinity or -Infinity.

5. SYSTEM ARCHITECTURE

The user inputs a string that is send to the Expression
Class, which in turn converts it to postfix and then
evaluates it to find the value of function. Class
Command and its subclasses, to implement their
algorithms, use this value. The result is then converted
back in string form. This string is calculated output.
The whole process is shown in Figure 6.

Figure 6: Working of Java Mathematical Kit

6. FUNCTION WRITING CONVENTIONS

The following rules may be applied in writing functions.

• No White Space in Expression.
• Function must be in one variable, that is, “x”.
• The Fundamental Binary Operators which a
 user can use in Function are:

1. “ + “ for Addition
2. “ - “ for Subtraction
3. “ * “ for Multiplication
4. “ / “ for Division
5. “ ^ “ for Power

• The Unary Operators which a user can use in
 functions are:

1. Sinx for Sine
2. Cosx for Cosine
3. Tanx for Tangent
4. Sin~x for arcSine
5. Cos~x for arcCosine
6. Tan~x for arcTangent
7. Log for Logarithm with base 10
8. Ln for Natural Logarithm
9. Exp for e

• Parenthesis may be used to increase or
 decrease the precedence of any operation.
• Function is not Case Sensitive.

7. CONCLUSION

One of the motivations for developing the Java
Mathematical Kit is to provide features, which are not
available in any other mathematical software. It is
hoped that this software will be of great help to both
students and teachers.

In this paper, we presented the design, development,
and implementation of mathematical software named as
Java Mathematical Kit. With this software we can:

• Integrate a function and finds its definite value
• Differentiate a function at a point
• Find roots of an equation and solve

simultaneous equations
• Find value of function at different instants
• Finding the roots of equations graphically
• Draw, Save and Load graphs of a function

This Software is Robust. It possesses Self-detecting
ability for any type of dynamic and input errors. It
cannot only detect what type of error is made but also
hits where the error has occurred (if the error is input by
the user).

This Software not only finds the values of functions but
can also show all steps required for performing the task.
This functionality is an important feature of this
software in the shape of "Step - Evaluator "(a special
part of this software).

Moreover, this software is also capable of performing
matrix arithmetic, means it can add, multiply, divide,
and subtract any matrix of any order. Besides, it can
also find determinants and inverses of the matrix. It can
also show the steps that one performs manually.

This is dynamic software that can save or load users
work and graphs. This is done with the help of GML

(Graphics Markup Language), a special format, which
saves and loads the graph.

8. FUTURE EXTENSIONS

The authors are still working for the extension of the
software and hope that following extensions be
implemented in very short span of time.

1. Simultaneous Linear Equation Solver
2. Non Linear Equation Solver
3. Step by Step Derivative Calculator
4. Discrete Mathematician
5. 3D graphs (graphing the functions involving two

variables)

9. ACKNOWLEDGEMENTS

This work is partially supported by Mehran
University of Engineering and Technology
Jamshoro, Pakistan.

REFERENCES

[1] B. FORD, The Nottingham Algorithms Group (NAG)
Project, ACM SIGNUM Newsletter, 8, 2, April 1973,
pp. 16-21.

[2] O. G. JOHNSON, IMSL’s ideas on subroutine
library problems, ACM SIGNUM Newsletter, 6, 3, Nov
1971, pp. 10-12.

[3] ANNOUNCEMENT, NATS Project - Collaborative
Research toward the Development of a Certified
Sub-routine Library, ACM SIGNUM Newsletter, 6, 3,
Nov 1971, p. 5.

[4] J. H. WILKINSON AND C. REINSCH, eds.,
Handbook for Automatic Computation, Vol. 2, Linear
Algebra, Springer-Verlag, New York, 1971.

[5] ANNOUNCEMENT, The Certified Eigensystem
Package, EISPACK, ACM SIGNUM Newsletter, 7, 2,
July 1972, pp. 4-5.

[6] B. S. GARBOW, J. M. BOYLE, J. J. DONGARRA,
AND C. B. MOLER, Matrix Eigensystem Routines
-EISPACK Guide Extension, Vol. 51 of Lecture Notes
in Comput. Sci., Springer-Verlag, Berlin, 1977.

[7] B. T. SMITH, J. M. BOYLE, B. S. GARBOW, Y.
IKEBE, V. C. KLEMA, AND C. B. MOLER, Matrix
Eigensystem Routines - EISPACK Guide, Vol. 6 of
Lecture Notes in Comput. Sci., Springer-Verlag, Berlin,
1974 (2nd ed., 1976, with additional author, J. J.
DONGARRA).

[8] MathML International Conference 2000,
www.mathmlconference.org, UIUC Illinois USA, Oct.
20-21, 2000.

[9] Workshop on The Future of Mathematical
Communication
http://www.msri.org/activities/events/9900/fmc99/, Dec.
1999.

[10] ActiveMath, http://www.mathweb.org/activemath

[11] Calc101, http://www.calc101.com/

[12] Ezmath,
http://www.w3.org/People/Raggett/EzMath/

[14] Institute for Computational Mathematics, demos of
mathematical computation
http://icm.mcs.kent.edu/research/demo.html

Table 1: Errors that appear when user enters invalid inputs.

S.No. Type Input Remarks Example
1 Ambiguous Operators Empty

parenthesis like
"()”

Type of Error is
displayed along
with Location at
which Error has
occurred

5+()+4

2
Extra "(" in Expression

Extra parenthesis
like "(“

This Type of Error
is displayed without
the Location at
which Error has
occurred

5+(()+4

3
Extra ")" in Expression

Extra Parenthesis
like ")”

This Type of Error
is displayed without
the Location at
which Error has
occurred

5+())+4

4 Unexpected Decimal Point An extra Decimal
point

Type of Error is
displayed along
with the Location at
which Error has
occurred

2.3.4

5 Unnecessary Decimal Point Continuous
Decimal points

Type of Error is
displayed along
with the Location at
which Error has
occurred

2..3

6 Unidentified Letter or
Symbol

Letter which is
not used in any
symbol

Type of Error is
displayed along
with the Location at
which Error has
occurred

1. simx+ +cosx

2. sinx+u+cosx

7 Operator Missing or Required Two operands
without operator

Type of Error is
displayed along
with the Location at
which Error has
occurred

2x

8 Operand Missing or Required Two operators
without operand

Type of Error is
displayed along
with the Location at
which Error has
occurred

2+*x

9
Undefined Symbol

A symbol
comprising of
letters which are
used in other
Symbols

Type of Error is
displayed along
with the Location at
which Error has
occurred

cinx

10
Incomplete Equation

An unusual end of
expression is
made

This Type of Error
is displayed without
the Location at
which Error has
occurred

5+4+

11
Nan

Type of Error
comes when the
result of required
operation comes
as a non real
value

This Type of Error
is displayed without
the Location at
which Error has
occurred

Root of x^2+2

12
Infinity

Type of Error
comes when the
result of
expression is
infinity

This Type of Error
is displayed without
the Location at
which Error has
occurred

8/0

