
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Common Representations of Soft and Hard

Declarative Knowledge

Author(s) Wiesław, Traczyk

Citation

Issue Date 2005-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/3956

Rights ⓒ2005 JAIST Press

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, IFSR 2005 : Proceedings of the

First World Congress of the International

Federation for Systems Research : The New Roles

of Systems Sciences For a Knowledge-based Society

: Nov. 14-17, 2166, Kobe, Japan, Symposium 6,

Session 7 : Vision of Knowledge Civilization

Teaching and Knowledge

Common Representations of Soft and Hard Declarative Knowledge

Wiesław Traczyk

 National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland
Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

W.Traczyk@itl.waw.pl

ABSTRACT

Features soft and hard are often attached to such
concepts as computing, knowledge, systems,
operational research and the others, in order to stress
different level of precision, certainty and completeness.
In particular, Soft Systems Methodology and
knowledge creation spirals are iterative processes,
which steps should have different levels of hardness:
from a very general and vague form in the first
iteration (a beginning stage of knowledge creation) to
more formal description in the last iteration
(particularly if a model is to be processed by computer).
The basic assumption of this approach is that, inserting
certainty factors and concept qualifiers into
conventional expressions of knowledge representation,
we can control their level of hardness, preserving
common representation for soft and hard knowledge.
Declarative knowledge is defined and its
representations are divided into relation-based and
mapping-based. The former are described by modified
Description Language, and the latter by conventional
logic with inserted factors.

Keywords: certainty factors, value qualifiers, fuzzy
sets, rough sets, description logics.

1. INTRODUCTION

In the case of physical objects hardness is well defined
and can be measured: by the level of compressibility
(water, ball) or deformation (metals). Softness is
usually understood as a low level of hardness
(described as a continuum), and there is no precise
border between soft and hard objects.
When features soft and hard are attached to more
abstract concepts such as computing, knowledge,
systems, operational research and the others, soft is
commonly considered as opposition to hard, and
handled by quite different methods.
Hard systems take the world as being systemic;
systems exist and have a clear purpose, goals and well
defined boundaries and solutions. We can define what
success will look like prior to implementation of the
solution. Hard systems analysis is largely devoid of
human aspects and is useful in technical or relatively
simple administrative or biophysical problems. Soft
systems are characterized by structuring the problem

situation rather then by problem solving (since there
might be many problems which need to be solved), and
"what" questions more than "how" questions. We know
that things are not working the way we want them to
and we want to find out why and see if there is
anything we can do about it. Goals, objectives and even
the interpretation of events are all problematic. Human
perceptions, behaviour or activity seem to be
dominating factors [1].
Hard knowledge is the part of what people know that
can be articulated, formalized and stored, and is well
structured. Soft knowledge is less quantifiable and can
not be so easily captured and stored in conventional
way. The social context and human aspect are very
important. Examples of such knowledge might include
tacit knowledge, experience, skills and cultural
knowledge [2].

Soft computing includes a set of tools, used for
handling problems which can not be solved by strict,
algorithmic methods but permit approximate results.
Applied values are vague, uncertain, fuzzy or rough.
Linguistic descriptions frequently replace numeric data
and some methods imitate the nature (neural nets,
genetic algorithms,...).

Even from this short presentation one can observe
similarities between features of "soft" concepts, and
deduce that soft knowledge can describe soft systems,
modeled and constructed with the help of soft
computing. The need for more formal description of
soft systems comes from Checkland's Soft Systems
Methodology (SSM) map, containing important stages:
root definitions and conceptual model. A root definition
is expressed as a transformation process that takes
some entity as input, changes or transforms that entity,
and produces a new form of the entity as output. A
conceptual model is a human activity model that
strictly conforms to the root definition, using the
minimum set of activities.
SSM is an iterative process so root definition and
conceptual model should have different levels of
vagueness: from a very general and vague form in the
first iteration (a beginning stage of knowledge creation)
to more formal description in the last iteration
(particularly if a model is to be processed by computer).
Entities should be defined, relations between them
precisely described and actions clearly presented.
Very similar situation exists in knowledge spirals [3,4].
A tacit knowledge is initially very soft but
externalisation makes it explicit, that means – more

codified and harder. After several circulations explicit
knowledge may be quite hard and needs a formal
description.
Knowledge related to systems and creation procedures
should be therefore considered as a spectrum: at one
extreme it is completely soft and at the other end it is
hard. Very often initial knowledge is represented in
natural language. In this stage the information elicited
will be incomplete, and contain contradictions and
ambiguities. Likely it is qualitative rather than
quantitative. As our understanding of the system
becomes clearer (during circulation though the spiral),
the knowledge can be refined and represented more
formally. It will be good to have such methods of
knowledge representation which are able to present the
whole spectrum in uniform manner.
The approach suggested here presents some
modifications of existing knowledge representation
languages, making them common for both soft and
hard notions.

2. KNOWLEDGE DEFINITIONS AND
VALIDATION

Description of knowledge representation should be
started from the knowledge definition. Unfortunately,
there is no generally accepted such definition. Most
likely the cause of it lies in very big diversity of the
notion. Knowledge (in its intuitive meaning) can be
descriptive or procedural, individual or collective,
general or specific, tacit or explicit, structured or
unstructured and so on. The term knowledge suffers
from a high degree of what might be called
“terminological ambiguity” and often requires a lot of
adjectives to make clear in what sense it is being used.
Therefore it is essential to determine the need that the
knowledge must fulfill.
If a range of interesting knowledge is limited to static
descriptions and "how" questions, only declarative
knowledge can be considered. In this case the
following definitions seem to be appropriate.
 Declarative knowledge is a collection of information
and relations between information descriptions. Either
information or relations are complex.
For example complex information and rather simple
relations has knowledge (described sometimes by
frames) relating to a university organization, but
knowledge concerning a large family may have quite
complex relations (and nets will be more suitable) .
 Information is understood here (with compliance with
C.E. Shannon) as everything that decreases uncertainty.
More formally:
 DKNOWL = 〈INF, REL〉
 INF = {inf 1 , inf 2 , …},

 REL = {rel 1 , rel 2 , …}, rel ⊆ inf i × inf j
The symbol inf represents a set of information in the
form of simple data, statements or expressions, and rel
shows adequate relation.
For example the signature:
SERVICE-KNOWLEDGE

⊆ TELEPHONE-OWNERS ×
 SERVICE- PARAMETERS

describes clusters of telephone owners with common
service products provided. Each component of the
relation can be presented as another relation, e.g.
 TELEPHONE-OWNERS =
〈category, living-place, time-of-cooperation, …〉.

Instead of this intensional form one can use extensional
one e.g.

〈business, small-town, 3-year,... 〉.

 Important special case of the above relation, having
properties of a function, has a form of the mapping:

map: inf S → inf D
describing dependencies between the source
information and information in demand.
Example of general signature may look as:
 DIAGNOSTIC-RULE:
 SYMPTOMS → DIAGNOSIS.

Practical representation tools for relational knowledge
include frames, semantic nets and another graphical
descriptions, jointly expressed by languages using
Description Logics. Representations with mapping
comprise decision tables, trees, decision rules or
association rules, and appropriate languages use
conventional first order logic or its subset.
All these languages and tools are open to some
methods, making expressions and actions more "soft".
Approach presented here shows such possibilities in
the ordered form.

Effective way of stepwise transformation from soft to
hard knowledge should take into account:
- substitution of conventional natural language
 statements by more structured expressions,
- reduction of imprecision of all values,
- decreasing uncertainty of all representation elements,
- elimination of vague decisions.

Reduction of imprecision can be achieved by changing
a form of values (qualifiers α). In the case of
parameters or attributes with numerical values, a
spectrum of precision can have several steps (from
more soft to more hard):
1. undetermined value in linguistic form:
 tax is small
2. linguistic variable defined as fuzzy set:

 tax is small ≡ tax ∈ 〈3,5,7,10〉1
3. interval (sometimes in linguistic form):
 tax ∈ [5,6]
4. precise value (with a needed level of precision):
 tax = 5.
Quite soft (imprecise and linguistic) value “small”
may be, in this way, transformed to quite hard value
“5”. General description of these steps is denoted as
V is α or V = α.
In the case of concepts which can be evaluated only
linguistically, a level of hardness depends on the
granularity of valuation. For instance, if weather is
evaluated, the scale {bad, good} gives softer
description than the scale {bad, nice, good, fine}.
Denotation αV will be used for such valuations.

Measures (factors) of certainty (γ) can be presented and
changed in the similar manner. Usually they are
attached to statements or expressions (E), giving the
form γE (E is certain with a grade γ). Numerical values
of γ are usually taken from the interval [0, 1] (as for
probability), where 0 means “impossible” and 1 means
“sure”.
If E=”Republicans will win”, then γ may have
following values (from soft to hard):
1. undetermined, in linguistic form, e.g. may-beE,
2. fuzzy set, with different granularity, determined
 on the interval [0, 1]: possibleE,
3. subinterval of [0, 1]: [0.6, 0.8]E,
4. precise value from the interval (0,1): 0.7E,
5. value 0 or 1, e.g. E.
This example shows that sometimes it is very hard to
obtain harder factors.
 The basic assumption of this approach is that,
inserting certainty factors γ and qualifiers α into
conventional expressions of knowledge representation,
we can control their level of hardness, preserving
common representation for soft and hard knowledge.

3. KNOWLEDGE REPRESENTED BY
RELATIONS

Nowadays a whole family of relational knowledge
representation systems has been built using one of

1 For simplicity it is assumed that a membership
function is trapezoidal and components of 〈x,y,v,w〉
show the characteristic points of a trapezium.
Since 〈x,x,v,v〉 ≡ [x,v] and [x,x,x,x] ≡ x, trapezoidal
description is the all-purpose tool.

Description Languages (DL). Languages from this
group differ with respect of their expressiveness and
their complexity, and they have been used for building
a variety of applications ([5,6]). Here will be presented
only some basic principles of DL, needed for
explanation of suggested modifications.

 In DL concepts are used to represent classes as sets of
individuals, and roles are binary relations used to
specify their properties or attributes.
Descriptions start from three alphabets of symbols:
concept names or primitive concepts (denoted by A)
role names (denoted by R) and
individuals (denoted by a and b).
A concept or concept expression (denoted C or D) is
built out from concept names with the use of
constructors, and represents information, mentioned in
the knowledge definition.
An assertion is an expression of type a:C (“a is C”,
“a is an instance of C”) or an expression of type
(a,b):R (“(a,b) is an instance of R”).
Semantics of DL is based on the notion of
interpretation, usually taken from sets or predicates.
 Thus, assertion a:C can be interpreted as a∈S C or

P C (a), where S and P are appropriate sets and binary
predicates. For example:
JOHN: Republican means that
John ∈ REPUBLICANS or Republican(John), and
(JOHN, USA):inhabitant replaces predicate
Inhabitant(John, USA).
Information described by these assertions may be
uncertain, changing its form to γ [a:C] or γ [(a,b):R]
(another approach is presented in [7]). For example

almost-sure [JOHN: Republican] and
 possibly [(JOHN, USA):inhabitant].
When concept or role can be evaluated qualitatively,
assertions are of the form a:αC (or γ [a:αC]) as in
JOHN:verysick or almost-sure [JOHN:verysick]
and (a,b):αR or γ [(a,b):αR] as in

(JOHN, MARY)dearlyloves.

If C and D are concepts, then so are C ⊕ D (concept
disjunction), C ⊗ D (conjunction) 2, ¬C (negation),
∀R.C (universal quantification) and ∃R.C (existential
quantification).
Expression C ⊕ D is interpreted as S C ∪ S D or

P C ∨ P C and can be extended to γ C C ⊕ γ D D
(conjunction and negation – similarly). For example

2 Symbols used in Description Logic are quite different,
but they are not provided by Microsoft Word,
obligatory in this publication.

0.3 Fighter ⊗ 0.5 Terrorist

More complex are the interpretations of ∀R.C:
 {a: ∀b (a,b) ∉ R or b ∈ S C },

 {a: ∀b ¬P R (a,b) or P C (b)}.
For ∃R.C the interpretations look as follows:
 {a: ∃b (a,b) ∈R and b ∈ S C },

 {a: ∃b P R (a,b) and P C (b)}.
Some examples will make these constructors more
clear.
Expression ∀R.C designates all individuals which are
in relation R with individuals from the concept C. All
people having a boss or business will be described by

∀supervised.Boss ⊕ Businessman.

 Expression ∃R.C designates some individuals which
are in relation R with individuals from the concept C.
For example: somebody who teaches two courses
belongs to the concept
 ∃teaches.(Mathematics ⊗ Physics).
As in the previous cases, concepts and roles can be
equipped, if appropriate, with certainty factors γ and
qualifiers α, but separate factors can also make
quantifiers more soft:
 almost∀supervised.Boss ⊕ Businessman.

 Direct relations between concepts are described by a
terminology: a finite set of concept definitions
(expressions of the form A:=C) and concept inclusions
(of the form C ∠ D).
 A concept definition allows stating a new name for
the complex concept, e.g.

Son := Male ⊗ Child.
 An inclusion allows stating the existence of a
specialization (“more specific than”) between concepts.
For instance,

Smoking ∠ ∃causes.Cancer
 In the case of concept definition one should decide
how to propagate certainty factors from the right side
to the left side, that means what is the value of γ A in

the definition γ A A := γ C C ⊗ γ D D. Since the tasks of
constructors ⊕, ⊗ and ¬ are similar to the tasks of
logical operators ∨, ∧ and ¬, it is justifiable using
norms and co-norms, as in reasoning with logical
formulae.
Finite sets of terminological axioms T and assertions A
create a knowledge base KB= 〈T, A〉 .
In order for designers to be able to use Description
Logic to model their application domains, it is
important for the DL constructs to be easily
understandable. Concepts, roles and primitives are

defined in natural language but the abstract notation
commonly used in DL is not fully satisfactory. To
improve this situation, in some practical
implementations symbols are substituted for simple
words: or (⊕), and (⊗), not (¬), all (∀), some (∃)
etc. These make DL expression more understandable.

4. KNOWLEDGE REPRESENTED BY
MAPPINGS

Components of a mapping map: inf S → inf D are
usually presented in the form of logical expressions,
known as conditions (Φ) and decisions (Ψ). Functional
dependencies between them are described by
implication, giving the well known structure of a
decision (production) rule: Φ ⇒ Ψ. Similarly, if
transactions are used as components, a mapping is
known as association rule.
Three types of rules, being in practical use, are
determined by three types of assertions ϕ and ψ -
building blocks of expressions Φ and Ψ, with truth
values TRUTH and FALSE. These are:
1 –logical propositions– sentences in natural language,
2 - attributive statements of the form
 attribute-name = attribute-value (a = v) or
 attribute is value (a is v),
3 - predicates - structured forms of statements:
 P(x,y,..).
All values present in these assertions may be qualified
as more or less soft, with a full scale of qualifiers, e.g.:
1 – “Tax is small” or “ Tax is equal 5%”,
2 – Tax is small or Tax = 5,
3 – Equal(tax, small) or Equal(tax, 5).
Since a rule may be certain or not, typical (and
simplified) set of rules R contains expressions of the
form

 R = iΥ γ i [ϕ i1 ∧ ϕ i2 ∧ … ⇒ ψ i1 ∧ ψ i2 ∧ …].
Utilization of these rules is possible when there are
known facts ϕ’, equal or similar to some assertions ϕ
(making conditions satisfied). A set of facts F

comprises elements γ j ϕ '
j , taking into account

assertions certainty: F = jΥ γ j ϕ '
j . There are

known procedures, calculating certainty factors of
decisions ψ on the basis of γ i and γ j , with chosen
kind of norms.
 A knowledge base is described by KB= 〈R, F〉 . Thus,
having a knowledge base with factors γ and qualifiers
α, we can influence a level of hardness.

During first steps of system design its goals are often
presented in “soft” manner, therefore some decisions
are imprecise and ambiguous. Inconsistency valuation
can help in system improving and deserves
consideration.
Each row i in a decision table or path in a decision tree
designates decision rule of the form
 (c 1 = v i1) ∧ (c 2 = v i2) ∧ … ⇒

 (d 1 = w i1) ∧ (d 2 = w i2) ∧ …
where c,d are condition and decision names and v,w
their values. In the shorter form a set of such rules is
described by
 k

i 1=Υ Φ i ⇒ Ψ i

Usually if Φ a ⇒ Ψ a and Φ b ⇒ Ψ b then for

Φ a = Φ b there is Ψ a = Ψ b , but in the tables or rule
sets with ambiguous decisions a measure of
inconsistency can be obtained with the help of rough
sets [8,9].
Equal conditions X and decisions Y define two distinct
partitions of the set of rules, with:
 X 1 ∪X 2 ∪…∪X x = k

i 1=Υ Φ i ,

 Y 1 ∪Y 2 ∪…∪Y y = k
i 1=Υ Ψ i .

If conditions from a class X i , in each appropriate rule,

generate decisions from one only class Y i (described

by X i → Y i) then decisions are undertaken univocally.

If conditions from a class X i generate decisions from

two or more classes: X i → Y i ∪ Y j , and there exists a

mapping X j → Y j , then decisions are ambiguous. A

class Y i designates the lower approximation of

decisions when conditions are X i , and a set

Y i ∪ Y j fixes the upper approximation of decisions.
The formula

 η i =
ji

i

YY
Y
∪

can be used as a measure of decision hardness: if
η i = 1 decision is hard, if η i < 1 - decision is more or
less soft.

5. CONCLUSION

Knowledge concerning soft and hard system is also
soft or hard. The level of softness changes during

system design, so it will be useful to have common
representation for different kind of knowledge.
Examples presented above show that typical
knowledge representation methods, modified by
special factors, can control a level of softness of
expressions, describing real systems.

.

REFERENCES

[1] P. Checkland and J. Scholes. Soft Systems
Methodology in Action. John Wiley, 1999.
[2] P.M. Hildreth and Ch. Kimble. The Duality of
Knowledge. Information Research, vol.8, no.1, 2002.
[3] I. Nonaka and H. Takeuchi. The Knowledge –
Creating Company. Oxford University Press, New
York, 1995.
[4] A.P. Wierzbicki and Y. Nakamori. Creative Space
and Creative Environments (in the press).
[5] F. Baader et al. The Description Logic Handbook.
Cambridge University Press, 2003.
[6] B.N. Grosof et al., Description Logic Programs:
Combining Logic Programs with Description Logic.
Proc. WWW2003, Budapest, Hungary.
[7] U. Straccia. Reasoning within Fuzzy Descrip-tion
Logic. Journal of Artificial Intelligence Research, 14,
2001.
[8] Z. Pawlak. Rough Sets: Theoretical Aspects of
Reasoning about Data. Kluwer Acad. Publ.,1991.
[9] T.Y. Lin, Y.Y Yao. Mining soft rules Using Rough
Sets and Neighborhoods. CESA’96, France.

