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ABSTRACT 

 
Features soft and hard are often attached to such 
concepts as computing, knowledge, systems, 
operational research and the others, in order to stress 
different level of precision, certainty and completeness.  
In particular, Soft Systems Methodology and 
knowledge creation spirals are iterative processes, 
which steps should have different levels of hardness: 
from a very general and vague form in the first 
iteration (a beginning stage of knowledge creation) to 
more formal description in the last iteration 
(particularly if a model is to be processed by computer). 
The basic assumption of this approach is that, inserting 
certainty factors and concept qualifiers into 
conventional expressions of knowledge representation, 
we can control their level of hardness, preserving 
common representation for soft and hard knowledge.  
Declarative knowledge is defined and its 
representations are divided into relation-based and 
mapping-based. The former are described by modified 
Description Language, and the latter by conventional 
logic with inserted factors. 

 
Keywords: certainty factors, value qualifiers, fuzzy 
sets, rough sets, description logics. 
 
 

1. INTRODUCTION 
 

In the case of physical objects hardness is well defined 
and can be measured: by the level of compressibility 
(water, ball) or deformation (metals). Softness is 
usually understood as a low level of hardness 
(described as a continuum), and there is no precise 
border between soft and hard objects. 
When features soft and hard are attached to more 
abstract concepts such as computing, knowledge, 
systems, operational research and the others, soft is 
commonly considered as opposition to hard, and 
handled by quite different methods. 
Hard systems take the world as being systemic; 
systems exist and have a clear purpose, goals and well 
defined boundaries and solutions. We can define what 
success will look like prior to implementation of the 
solution. Hard systems analysis is largely devoid of 
human aspects and is useful in technical or relatively 
simple administrative or biophysical problems. Soft 
systems are characterized by structuring the problem 

situation rather then by problem solving (since there 
might be many problems which need to be solved), and 
"what" questions more than "how" questions. We know 
that things are not working the way we want them to 
and we want to find out why and see if there is 
anything we can do about it. Goals, objectives and even 
the interpretation of events are all problematic. Human 
perceptions, behaviour or activity seem to be 
dominating factors [1]. 
Hard knowledge is the part of what people know that 
can be articulated, formalized and stored, and is well 
structured. Soft knowledge is less quantifiable and can 
not be so easily captured and stored in conventional 
way. The social context and human aspect are very 
important. Examples of such knowledge might include 
tacit knowledge, experience, skills and cultural 
knowledge [2]. 
 
Soft computing includes a set of tools, used for 
handling problems which can not be solved by strict, 
algorithmic methods but permit approximate results. 
Applied values are vague, uncertain, fuzzy or rough. 
Linguistic descriptions frequently replace numeric data 
and some methods imitate the nature (neural nets, 
genetic algorithms,...). 

 
Even from this short presentation one can observe 
similarities between features of "soft" concepts, and 
deduce that soft knowledge can describe soft systems, 
modeled and constructed with the help of soft 
computing. The need for more formal description of 
soft systems comes from Checkland's Soft Systems 
Methodology (SSM) map, containing important stages: 
root definitions and conceptual model. A root definition 
is expressed as a transformation process that takes 
some entity as input, changes or transforms that entity, 
and produces a new form of the entity as output. A 
conceptual model is a human activity model that 
strictly conforms to the root definition, using the 
minimum set of activities.  
SSM is an iterative process so root definition and 
conceptual model should have different levels of 
vagueness: from a very general and vague form in the 
first iteration (a beginning stage of knowledge creation) 
to more formal description in the last iteration 
(particularly if a model is to be processed by computer). 
Entities should be defined, relations between them 
precisely described and actions clearly presented.  
Very similar situation exists in knowledge spirals [3,4]. 
A tacit knowledge is initially very soft but 
externalisation makes it explicit, that means – more 



codified and harder. After several circulations explicit 
knowledge may be quite hard and needs a formal 
description. 
Knowledge related to systems and creation procedures 
should be therefore considered as a spectrum: at one 
extreme it is completely soft and at the other end it is 
hard. Very often initial knowledge is represented in 
natural language. In this stage the information elicited 
will be incomplete, and contain contradictions and 
ambiguities.  Likely it is qualitative rather than 
quantitative. As our understanding of the system 
becomes  clearer (during circulation though the spiral), 
the knowledge can be refined and represented more 
formally. It will be good to have such methods of 
knowledge representation which  are able to present the 
whole spectrum in uniform manner. 
The approach suggested here presents some 
modifications of existing knowledge representation 
languages, making them  common for both soft and 
hard notions. 
 
 

2. KNOWLEDGE DEFINITIONS AND 
VALIDATION 

  
Description of knowledge representation should be 
started from the knowledge definition. Unfortunately, 
there is no generally accepted such definition. Most 
likely the cause of it lies in very big diversity of the 
notion. Knowledge (in its intuitive meaning) can be 
descriptive or procedural, individual or collective, 
general or specific, tacit or explicit, structured or 
unstructured and so on. The term knowledge suffers 
from a high degree of what might be called 
“terminological ambiguity” and often requires a lot of 
adjectives to make clear in what sense it is being used. 
Therefore it is essential to determine the need that the 
knowledge must fulfill.  
If a range of interesting knowledge is limited to static 
descriptions and "how" questions, only declarative 
knowledge can be considered. In this case the 
following definitions seem to be appropriate. 
 Declarative knowledge is a collection of information 
and relations between information descriptions. Either 
information or relations are complex.  
For example complex information and rather simple 
relations has knowledge (described sometimes by 
frames) relating to a university organization, but 
knowledge concerning a large family may have quite 
complex relations (and nets will be more suitable) . 
  Information is understood here (with compliance with 
C.E. Shannon) as everything that decreases uncertainty. 
More formally: 
   DKNOWL = 〈INF, REL〉 
      INF = {inf 1 , inf 2 , …}, 

     REL = {rel 1 , rel 2 , …},     rel ⊆ inf i ×  inf j  
The symbol inf represents a set of information in the 
form of simple data, statements or expressions, and rel 
shows adequate relation.  
For example the signature: 
SERVICE-KNOWLEDGE  

⊆ TELEPHONE-OWNERS ×  
                              SERVICE- PARAMETERS 

describes clusters of telephone owners with common 
service products provided.  Each component of the 
relation can be presented as another relation, e.g.   
 TELEPHONE-OWNERS =  
〈category,  living-place, time-of-cooperation, …〉. 

Instead of this intensional form one can use extensional 
one e.g. 

〈business, small-town, 3-year,... 〉. 
 

 Important special case of the above relation, having 
properties of a function, has a form of the mapping: 

map:  inf S  →  inf D  
describing dependencies between the source 
information and information in demand. 
Example of general signature may look as: 
    DIAGNOSTIC-RULE:  
                         SYMPTOMS  →  DIAGNOSIS. 
 
Practical representation tools for relational knowledge 
include frames, semantic nets and another graphical 
descriptions, jointly expressed by languages using 
Description Logics. Representations with mapping 
comprise decision tables, trees, decision rules or 
association rules, and appropriate languages use 
conventional first order logic or its subset. 
All these languages and tools are open to some 
methods, making expressions and actions more "soft". 
Approach presented here shows such possibilities in 
the ordered form. 
 
Effective way of stepwise transformation from soft to 
hard knowledge should take into account: 
-  substitution of conventional natural language     
       statements by more structured expressions, 
-  reduction of imprecision of all values, 
-  decreasing uncertainty of all representation elements, 
-  elimination of vague decisions. 
 
Reduction of imprecision can be achieved by changing 
a form of values (qualifiers α). In the case of 
parameters or attributes with numerical values, a 
spectrum of precision can have several steps (from 
more soft to more hard): 
1. undetermined value in linguistic form: 
        tax is small 
2. linguistic variable defined as fuzzy set: 



 tax is small   ≡  tax ∈ 〈3,5,7,10〉1 
3. interval (sometimes in linguistic form): 
         tax ∈ [5,6]  
4. precise value (with a needed level of precision): 
         tax = 5. 
Quite soft (imprecise and linguistic) value “small”  
may be, in this way, transformed to quite hard value 
“5”.  General description of these steps is denoted as  
V is α  or V = α. 
In the case of concepts which can be evaluated only 
linguistically, a level of hardness depends on the 
granularity of valuation. For instance, if weather is 
evaluated, the scale {bad, good} gives softer 
description than the scale {bad, nice, good, fine}. 
Denotation αV will be used for such valuations. 
   
Measures (factors) of certainty (γ) can be presented and 
changed in the similar manner. Usually they are 
attached to statements or expressions (E), giving the 
form γE (E is certain with a grade γ). Numerical values 
of γ are usually taken from the interval [0, 1] (as for 
probability), where 0 means “impossible” and 1 means 
“sure”.  
If E=”Republicans will win”, then γ may have 
following values (from soft to hard): 
1. undetermined, in linguistic form, e.g.  may-beE, 
2. fuzzy set, with different granularity, determined   
    on the interval [0, 1]:   possibleE, 
3. subinterval of [0, 1]:  [0.6, 0.8]E, 
4. precise value from the interval (0,1):  0.7E, 
5. value 0 or 1, e.g. E. 
This example shows that sometimes it is very hard to 
obtain harder factors. 
   The basic assumption of this approach is that, 
inserting certainty factors γ and qualifiers α into 
conventional expressions of knowledge representation, 
we can control their level of hardness, preserving 
common representation for soft and hard knowledge.  
 
 
 
 

3. KNOWLEDGE REPRESENTED BY 
RELATIONS 

 
Nowadays a whole family of relational knowledge 
representation systems has been built using one of 
                                                 
1 For simplicity it is assumed that a membership 
function is trapezoidal and components of 〈x,y,v,w〉 
show the characteristic points of a trapezium.  
Since 〈x,x,v,v〉 ≡ [x,v] and  [x,x,x,x] ≡ x, trapezoidal 
description is the all-purpose tool. 
 
 

Description Languages (DL). Languages from this 
group differ with respect of their expressiveness and 
their complexity, and they have been used for building 
a variety of applications ([5,6]). Here will be presented 
only some basic principles of DL, needed for 
explanation of suggested modifications. 
 
 In DL concepts are used to represent classes as sets of 
individuals, and roles are binary relations used to 
specify their properties or attributes.  
Descriptions start from three alphabets of symbols:  
concept names or primitive concepts (denoted by A) 
role names (denoted by R) and 
individuals (denoted by a and b). 
A concept or concept expression (denoted C or D) is 
built out from concept names with the use of 
constructors, and represents information, mentioned in 
the knowledge definition. 
An assertion is an expression of type a:C (“a is C”, 
“a is an instance of C”) or an expression of type 
(a,b):R (“(a,b) is an instance of R”).  
Semantics of DL is based on the notion of 
interpretation, usually taken from sets or predicates.  
 Thus, assertion  a:C can be interpreted as a∈S C or 

P C (a), where S and P are appropriate sets and binary 
predicates. For example: 
JOHN: Republican   means that  
John ∈ REPUBLICANS  or  Republican(John), and 
(JOHN, USA):inhabitant replaces predicate 
Inhabitant(John, USA). 
Information described by these assertions  may be 
uncertain, changing its form to γ [a:C] or γ [(a,b):R] 
(another approach is presented in [7]). For example 

almost-sure [JOHN: Republican] and 
            possibly [(JOHN, USA):inhabitant]. 
When concept or role can be evaluated qualitatively, 
assertions are of the form a:αC (or γ [a:αC])  as in  
JOHN:verysick  or  almost-sure [JOHN:verysick] 
and  (a,b):αR  or  γ [(a,b):αR]  as in 

(JOHN, MARY)dearlyloves. 
 
If  C and  D are concepts, then so are C ⊕ D (concept 
disjunction), C ⊗ D (conjunction) 2, ¬C (negation), 
∀R.C (universal quantification) and ∃R.C (existential 
quantification).   
Expression      C ⊕ D is interpreted as S C ∪ S D  or 

P C  ∨  P C  and can be extended to γ C C ⊕ γ D D 
(conjunction and negation – similarly). For example 

                                                 
2 Symbols used in Description Logic are quite different, 
but they are not provided by Microsoft Word, 
obligatory in this publication.  



0.3 Fighter ⊗ 0.5 Terrorist 
 
More complex are the interpretations of   ∀R.C: 
    {a: ∀b  (a,b) ∉ R  or  b ∈ S C }, 

    {a: ∀b  ¬P R (a,b)  or  P C (b)}. 
For  ∃R.C the interpretations look as follows: 
    {a: ∃b  (a,b) ∈R  and  b ∈ S C }, 

    {a: ∃b  P R (a,b)  and  P C (b)}. 
Some examples will make these constructors more 
clear. 
Expression ∀R.C designates all individuals which are 
in relation R with individuals from the concept C. All 
people having a boss or business will be described by 

∀supervised.Boss ⊕ Businessman. 
                  
 Expression ∃R.C designates some individuals which 
are in relation R with individuals from the concept C. 
For example: somebody who teaches two courses 
belongs to the concept 
       ∃teaches.(Mathematics ⊗ Physics). 
As in the previous cases, concepts and roles can be 
equipped, if appropriate, with certainty factors γ and 
qualifiers α, but separate factors can also make 
quantifiers more soft: 
      almost∀supervised.Boss ⊕ Businessman. 
 
 Direct relations between concepts are described by a 
terminology: a finite set of concept definitions 
(expressions of the form A:=C) and concept inclusions 
(of the form C ∠ D ). 
  A concept definition allows stating a new name for 
the complex concept, e.g. 

Son := Male ⊗ Child. 
  An inclusion allows stating the existence of a 
specialization (“more specific than”) between concepts. 
For instance, 

Smoking ∠  ∃causes.Cancer 
  In the case of concept definition one should decide 
how to propagate certainty factors from the right side 
to the left side, that means what is the value of γ A in 

the definition  γ A A := γ C C ⊗ γ D D. Since the tasks of 
constructors  ⊕, ⊗ and ¬ are similar to the tasks of 
logical operators ∨, ∧ and ¬, it is justifiable using 
norms and co-norms, as in reasoning with logical 
formulae.  
Finite sets of terminological axioms T  and assertions A 
create a knowledge base KB= 〈T, A〉 . 
In order for designers to be able to use Description 
Logic to model their application domains, it is 
important for the DL constructs to be easily 
understandable. Concepts, roles and primitives are 

defined in natural language but the abstract notation 
commonly used in DL is not fully satisfactory. To 
improve this situation, in some practical 
implementations symbols are substituted for simple 
words:  or (⊕),  and (⊗),  not (¬), all (∀),  some (∃) 
etc. These make DL expression more understandable. 
 
 

4. KNOWLEDGE REPRESENTED BY 
MAPPINGS 

 
Components of a mapping  map:  inf S  →  inf D  are 
usually presented in the form of logical expressions, 
known as conditions (Φ) and decisions (Ψ). Functional 
dependencies between them are described by 
implication, giving the well known structure of a 
decision (production) rule: Φ ⇒  Ψ. Similarly, if 
transactions are used as components, a mapping is 
known as association rule. 
Three types of rules, being   in practical use, are 
determined by three types of assertions ϕ and ψ - 
building blocks of expressions Φ and Ψ, with truth 
values TRUTH and FALSE. These are: 
1 –logical propositions– sentences in natural language,    
2 - attributive statements  of the form 
     attribute-name = attribute-value    (a = v)  or 
     attribute is value  (a is v), 
3 - predicates -  structured forms of statements:      
     P(x,y,..). 
All values present in these assertions may be qualified 
as more or less soft, with a full scale of qualifiers, e.g.: 
1 – “Tax is small”  or  “ Tax is equal 5%”, 
2 – Tax is small   or  Tax = 5, 
3 – Equal(tax, small) or Equal(tax, 5). 
Since a rule may be certain or not, typical (and 
simplified) set of rules R contains expressions of the 
form 

 R = iΥ  γ i [ϕ i1  ∧ ϕ i2 ∧ … ⇒ ψ i1  ∧ ψ i2 ∧ … ].    
Utilization of these rules is possible when there are 
known  facts  ϕ’, equal or similar to some assertions ϕ 
(making conditions satisfied). A set of facts F 

comprises elements  γ j ϕ '
j ,  taking into account 

assertions certainty:    F = jΥ γ j ϕ '
j . There are 

known procedures, calculating certainty factors of 
decisions ψ on the basis of γ i and γ j , with chosen 
kind of norms. 
 A knowledge base is described by KB= 〈R, F〉 . Thus,   
having a knowledge base with factors γ and qualifiers  
α, we can influence a level of hardness.   
 



During first steps of system design its goals are often 
presented in “soft” manner, therefore some decisions 
are imprecise and ambiguous. Inconsistency valuation 
can help in system improving and deserves 
consideration.   
Each row i in a decision table or path in a decision tree 
designates decision rule of the form 
      (c 1 = v i1 ) ∧ (c 2 = v i2 ) ∧ … ⇒   

                                   (d 1 = w i1 ) ∧ (d 2 = w i2 ) ∧ … 
where c,d are condition and decision names and v,w 
their values. In the shorter form a set of such rules is 
described by  
                        k

i 1=Υ  Φ i   ⇒  Ψ i  

Usually if Φ a   ⇒  Ψ a  and  Φ b   ⇒  Ψ b  then for    

Φ a   = Φ b   there is Ψ a  = Ψ b , but in the tables or rule 
sets with ambiguous decisions a measure of 
inconsistency can be obtained with the help of  rough 
sets [8,9]. 
Equal conditions X and decisions Y define two distinct 
partitions of the set of rules, with: 
          X 1 ∪X 2 ∪…∪X x = k

i 1=Υ  Φ i , 

          Y 1 ∪Y 2 ∪…∪Y y = k
i 1=Υ Ψ i . 

If conditions from a class X i , in each appropriate rule, 

generate decisions from one only class Y i  (described 

by X i → Y i ) then decisions are undertaken univocally. 

If conditions from a class X i  generate decisions from 

two or more classes:  X i → Y i ∪ Y j , and there exists a 

mapping  X j → Y j , then decisions are ambiguous.  A 

class Y i  designates the lower approximation of 

decisions when conditions are X i , and a set            

Y i ∪ Y j fixes the upper approximation of decisions. 
The  formula  

                           η i  = 
ji

i

YY
Y
∪

 

can be used as a measure of decision hardness:  if                            
η i = 1 decision is hard, if  η i < 1 - decision is more or 
less soft. 
 
 
  

5.  CONCLUSION 
 
Knowledge concerning soft and hard system is also 
soft or hard. The level of softness changes during 

system design, so it will be useful to have common 
representation for different kind of knowledge.  
Examples presented above show that typical 
knowledge representation methods, modified by 
special factors, can control a level of softness of 
expressions, describing real systems. 
 
. 
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