
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Induction-Guided Falsification

Author(s)
Ogata, Kazuhiro; Nakano, Masahiro; Kong,

Weiqiang; Futatsugi, Kokichi

Citation Lecture Notes in Computer Science, 4260: 114-131

Issue Date 2006

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/3979

Rights

This is the author-created version of Springer,

Kazuhiro Ogata, Masahiro Nakano, Weiqiang Kong,

Kokichi Futatsugi, Lecture Notes in Computer

Science, 4260, 2006, 114-131. The original

publication is available at www.springerlink.com.

http://springerlink.metapress.com/content/u587712

122840t66/?p=f5354dd060624ac0bf09d398d37544be&pi=

0

Description

Induction-Guided Falsification

Kazuhiro Ogata1, Masahiro Nakano1,
Weiqiang Kong1, and Kokichi Futatsugi1

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{ogata, m-nakano, weiqiang, kokichi}@jaist.ac.jp

Abstract. The induction-guided falsification searches a bounded reach-
able state space of a transition system for a counterexample that the
system satisfies an invariant property. If no counterexamples are found,
it tries to verify that the system satisfies the property by mathematical
induction on the structure of the reachable state space of the system,
from which some other invariant properties may be obtained as lemmas.
The verification and falsification process is repeated for each of the prop-
erties until a counterexample is found or the verification is completed.
The NSPK authentication protocol is used as an example to demonstrate
the induction-guided falsification.
Keywords: CafeOBJ, counterexample, induction, invariant, Maude, ob-
servational transition system (OTS)

1 Introduction

The OTS/CafeOBJ method [1] is a modeling, specification and verification
method. In the method, a system is modeled as an observational transition
system, or an OTS, the OTS is specified in CafeOBJ [2], an algebraic specifi-
cation language, and it is verified that the OTS satisfies a property using the
CafeOBJ system as an interactive theorem prover. OTSs are transition systems.
Unlike the conventional definition of transition systems, however, the structure
of states are not specified explicitly. Instead of use of variables, functions from
states to data types are used to obtain the values that characterize states. Such
functions are called observers. We have conducted some case studies [3–10] so as
to demonstrate the effectiveness of the method and refine the method.

Although CafeOBJ does not have any model checking facilities, Maude [11],
which is a sibling language of CafeOBJ, is equipped with such facilities. Although
the state space of a system to be model checked by Maude does not have to be
finite, its reachable state space should be finite. The reachable state space of an
OTS is generally infinite, even if the number of some entities such as principals
is made finite. Therefore, a way to search a bounded reachable state space of
an OTS for a counterexample that the OTS satisfies an invariant property has
been proposed [12], which is inspired by Bounded Model Checking, or BMC [13].

What if no counterexamples that an OTS satisfies an invariant property are
found in the bounded reachable state space whose depth is n and the bounded

reachable state space whose depth is n + 1 or more is too large to be exhaus-
tively traversed within a reasonable time? If that is the case, we start verifying
that the OTS satisfies the invariant property by mathematical induction on the
structure of the reachable state space of the OTS. Some other invariant proper-
ties may be obtained as lemmas from the induction. If such invariant properties
are obtained, we search the bounded reachable state space whose depth is n for
a counterexample that the OTS satisfies each of the invariant properties. If at
least one such counterexample is found, the OTS does not satisfy the original
invariant property. Otherwise, the verification and falsification process called the
induction-guided falsification is repeated for each of the invariant properties until
a counterexample is found or the verification is completed.

The rest of the paper is organized as follows. Section 2 describes OTSs. Sec-
tion 3 mentions how to write OTSs in CafeOBJ and Maude. Section 4 outlines
how to search a bounded reachable state space of an OTS for a counterexam-
ple that the OTS satisfies an invariant property. Sections 5 and 6 describe the
induction-guided falsification. Section 7 reports on a case study. The NSPK au-
thentication protocol [14] is used as an example in Sections 3, 4 and 7. Section 8
mentions some related work. Section 9 concludes the paper.

2 Observational Transition Systems (OTSs)

We suppose that there exists a universal state space denoted Υ and that each
data type used in OTSs is provided. The data types include Bool for truth values.
A data type is denoted D∗.

Definition 1 (OTSs). An OTS S [1] is 〈O, I, T 〉 such that

– O : A finite set of observers. Each observer ox1:Do1,...,xm:Dom
: Υ → Do

is an indexed function that has m indexes x1, . . . , xm whose types are
Do1, . . . , Dom. The equivalence relation (υ1 =S υ2) between two states
υ1, υ2 ∈ Υ is defined as ∀ox1,...,xm : O. (ox1,...,xm(υ1) = ox1,...,xm(υ2)), where
∀ox1,...,xm

: O is the abbreviation of ∀ox1,...,xm
: O.∀x1 : Do1 . . .∀xm : Dom.

– I : The set of initial states such that I ⊆ Υ .
– T : A finite set of transitions. Each transition ty1:Dt1,...,yn:Dtn

: Υ → Υ is an
indexed function that has n indexes y1, . . . , yn whose types are Dt1, . . . , Dtn

provided that ty1,...,yn(υ1) =S ty1,...,yn(υ2) for each [υ] ∈ Υ/=S , each υ1, υ2 ∈
[υ] and each yk : Dtk for k = 1, . . . , n. ty1,...,yn

(υ) is called the successor
state of υ with respect to (wrt) S. Each transition ty1,...,yn

has the condition
c-ty1:Dt1,...,yn:Dtn

: Υ → Bool, which is called the effective condition of the
transition. If c-ty1,...,yn(υ) does not hold, then ty1,...,yn(υ) =S υ. ut

Note that although the number of indexed functions is finite, the instances
of the indexed functions may be infinite. For example, the number of instances
of transition send1p:Prin,q:Prin : Υ → Υ is infinite if Prin is infinite, namely that
the number of principals is infinite.

Definition 2 (Reachable states). Given an OTS S, reachable states wrt S
are inductively defined:

– Each υinit ∈ I is reachable wrt S.
– For each ty1,...,yn

∈ T and each yk : Dtk for k = 1. . . . , n, tx1,...,xn
(υ) is

reachable wrt S if υ ∈ Υ is reachable wrt S.

Let RS be the set of all reachable states wrt S. RS may be called the reachable
state space wrt S. ut

Predicates whose types are Υ → Bool are called state predicates. We suppose
that each state predicate includes a finite number of logical connectives. We
also suppose that each state predicate p considered in this paper has the form
∀z1 : Dp1 . . .∀zM : DpM . P (υ, z1, . . . , zM), where υ, z1, . . . , zM are all variables
in p and P (υ, z1, . . . , zM) does not contain any quantifiers.

Definition 3 (Invariants). Any state predicate p : Υ → Bool is called invari-
ant wrt S if p holds in all reachable states wrt S, i.e. ∀υ : RS . p(υ). ut

Definition 4 (Execution fragments). Given an OTS S, execution fragments
wrt S are inductively defined:

– Each υinit ∈ I is an execution fragment (to υinit) wrt S.
– For each ty1,...,yn

∈ T and each yk : Dtk for k = 1. . . . , n, υ0, . . . ,
υm, ty1,...,yn

(υm) is also an execution fragment (to ty1,...,yn
(υm)) wrt S if

υ0, . . . , υm is an execution fragment wrt S.

Let EFS be the set of all execution fragments wrt S. ut

Proposition 1 (Reachable states and Execution fragments). (1) For
each reachable state υ ∈ RS , there exists an execution fragment to υ wrt S,
and (2) for each execution fragment υ0, . . . , υm ∈ EFS , each υk is reachable wrt
S for k = 0, . . . ,m.

Proof. (1) By mathematical induction on υ. (2) By mathematical induction on
m. ut

Given an execution fragment e ∈ EFS , let depth(e) denote the length of the
execution fragment, e.g. depth(υ0, . . . , υn) = n, and let ef2set(e) denote the set
of the states that appear in e, e.g. ef2set(υ0, . . . , υn) = {υ0, . . . , υn}. Let EFS,≤n

be {e ∈ EFS |depth(e) ≤ n}, the set of all execution fragments wrt S whose
lengths are less than or equal to n.

Definition 5 (Bounded reachable state space). (
⋃

e∈EFS,≤n
ef2set(e)) is

called the (n-)bounded reachable state space wrt S. Let RS,≤n denote the set of
states.

From Prop. 1, it is clear that every υ ∈ RS,≤n is reachable wrt S. For a set
A ⊆ Υ of states to be (in)finite wrt S means that A/=S consists of (in)finite
elements.

Theorem 1 (Sufficient condition that RS,≤n is finite). If I is finite wrt
S and the number of the instances of transitions whose effective conditions hold
in each state of RS,≤(n−1) is finite, then RS,≤n is finite wrt S.

Proof. By mathematical induction on n. ut

If ∀υ : RS . p(υ) does not hold, then there must exist a reachable state υ ∈ RS
such that ¬p(υ), and there must exit an execution fragment to υ wrt S from
Prop. 1.

Definition 6 (Counterexamples). Any execution fragment to υ ∈ RS such
that ¬p(υ) is called a counterexample for an invariant ∀υ : RS . p(υ). Let CXS,p

be all counterexamples for ∀υ : RS . p(υ). ut

Any counterexample cx ∈ CXS,p such that ¬(∃ex ′ : CXS,p. (depth(cx ′) <
depth(cx))) is called a shortest counterexample for ∀υ : RS . p(υ). When CXS,p

is not empty, let cxmin
S,p ∈ CXS,p be a shortest counterexample for ∀υ : RS . p(υ).

3 Specifying OTSs

OTSs are defined so that they can be straightforwardly specified as behavioral
specifications in CafeOBJ. But, OTSs can be specified in Maude as well [15, 12].
In this paper, the NSPK authentication protocol [14] is used as an example to
describe how to specify OTSs in Maude as well as CafeOBJ.

The protocol can be described as the three message exchanges:

Msg 1 p −→ q : Eq(np, p)
Msg 2 q −→ p : Ep(np, nq)
Msg 3 p −→ q : Eq(nq)

Each principal is given a pair of keys: public and private keys. Ep(m) is the
message m encrypted with the principal p’s public key. np is a nonce (a random
number) generated by principal p.

3.1 OTS SNSPK Modeling NSPK

One of the desired invariant properties that the protocol should have is (Nonce)
Secrecy Property that any nonces cannot be leaked. The protocol is modeled
as an OTS SNSPK by taking into account the intruder so as to verify that the
protocol has Secrecy Property. The data types used in SNSPK are: (1) Bool for
truth values, (2) Prin for principals; intr denoting the intruder, (3) Rand for
random numbers; seed denoting a random number available initially; next(r)
denoting a random number that has never been generated so far, (4) Nonce for
nonces; n(p, q, r) denoting the nonce (generated by principal p for principal q)
whose uniqueness is guaranteed by random number r, (5) Cipher for ciphertexts;
enc1(p, n, q) denoting Ep(n, q); enc2(p, n1, n2) denoting Ep(n1, n2); enc3(p, n) de-
noting Ep(n), (6) SetNonce for sets of nonces; empty denoting the empty set;

n , s denoting {n} ∪ s; s1 , s2 denoting s1 ∪ s2, and (7) Network for multisets
of ciphertexts; empty denoting the empty multiset; e , m denoting {| e |}] m;
m1 , m2 denoting m1]m2.

SNSPK is 〈ONSPK, INSPK, TNSPK〉 such that

ONSLPK , {rand : Υ → Rand,nw : Υ → Network,nonces : Υ → SetNonce}
INSLPK , {υinit ∈ Υ | rand(υinit) = seed ∧ nw(υinit) = empty∧

nonces(υinit) = empty}
TNSLPK , {send1p:Prin,q:Prin : Υ → Υ,

send2p:Prin,q:Prin,n:Nonce,nw :Network : Υ → Υ,
send3p:Prin,q:Prin,n1,n2:Nonce,nw :Network : Υ → Υ,
fake1p:Prin,q:Prin,n:Nonce,ns:SetNonce : Υ → Υ,
fake2p:Prin,n1,n2:Nonce,ns:SetNonce : Υ → Υ,
fake3p:Prin,n:Nonce,ns:SetNonce : Υ → Υ}

Given a state υ ∈ Υ , rand returns a random number available in υ, nw returns
a multiset of ciphertexts (denoting the network) that have been sent up to υ,
and nonces returns a set of nonces that have been gleaned by the intruder up
to υ. The first three transitions model sending messages exactly following the
protocol, while the last three transitions model the intruder’s faking messages
based on the gleaned nonces. The transitions are defined as follows:

– send1p,q : send1p,q(υ) , υ′ such that

rand(υ′) , next(rand(υ)), nw(υ′) , enc1(q, n(p, q, rand(υ)), p) , nw(υ), and

nonces(υ′) , if q = intr then n(p, q, rand(υ)) , nonces(υ) else nonces(υ).

– send2p,q,n,nw : csend2p,q,n,nw (υ) , (nw(υ) = enc1(p, n, q) , nw).

If csend2p,q,n,nw (υ), then send2p,q,n,nw (υ) , υ′ such that

rand(υ′) , next(rand(υ)), nw(υ′) , enc2(q, n, n(p, q, rand(υ))) , nw(υ), and

nonces(υ′) , if q = intr thenn , n(p, q, rand(υ)) , nonces(υ) else nonces(υ).

– send3p,q,n1,n2,nw :
csend2p,q,n1,n2,nw (υ) , (nw(υ) = enc2(p, n1, n2) , enc1(q, n1, p) , nw).

If csend3p,q,n1,n2,nw (υ), then send3p,q,n1,n2,nw (υ) , υ′ such that

rand(υ′) , rand(υ), nw(υ′) , enc3(q, n2) , nw(υ), and

nonces(υ′) , if q = intr then n2 , nonces(υ) else nonces(υ).

– fake1p,q,n,ns : cfake1p,q,n,ns (υ) , (nonces(υ) = n , ns).

If cfake1p,q,n,ns (υ), then fake1p,q,n,ns(υ) , υ′ such that

rand(υ′) , rand(υ), nw(υ′) , enc1(q, n, p) , nw(υ), and nonces(υ)′ , nonces(υ)

– fake2p,n1,n2,ns : cfake2p,n1,n2,ns (υ) , (nonces(υ) = n1 , n2 , ns).

If cfake2p,n1,n2,ns (υ), then fake2p,n1,n2,ns(υ) , υ′ such that

rand(υ′) , rand(υ), nw(υ′) , enc2(p, n1, n2) , nw(υ), and

nonces(υ)′ , nonces(υ).

– fake3p,n,ns : cfake3p,n,ns (υ) , (nonces(υ) = n , ns).
If cfake3p,n,ns (υ), then fake3p,n,ns(υ) , υ′ such that

rand(υ′) , rand(υ), nw(υ′) , enc3(p, n) , nw(υ), and nonces(υ)′ , nonces(υ).

Secrecy Property can be expressed as ∀υ : RSNSPK .SP(υ), where SP(υ) ,
∀n : Nonce (n ∈ nonces(υ) ⇒ (p1(n) = intr ∨ p2(n) = intr)), p1(n(p, q, r)) , p
and p2(n(p, q, r)) , q.

3.2 Specifying SNSPK in CafeOBJ

We suppose that there exist visible sorts Bool, Prin, Rand, Nonce, Cipher,
SetNonce and Network corresponding to the data types used in SNSPK. SNSPK

is specified as a module NSPK. The signature of the module is as follows:

op init : -> Sys

bop rand : Sys -> Rand

bop nw : Sys -> Network

bop nonces : Sys -> SetNonce

bop send1 : Sys Prin Prin -> Sys

bop send2 : Sys Prin Prin Nonce Network -> Sys

bop send3 : Sys Prin Prin Nonce Nonce Network -> Sys

bop fake1 : Sys Prin Prin Nonce SetNonce -> Sys

bop fake2 : Sys Prin Nonce Nonce SetNonce -> Sys

bop fake3 : Sys Prin Nonce SetNonce -> Sys

Sys is the hidden sort denoting the state space. bop is the keyword to declare
observation and action operators, while op is the keyword to declare other op-
erators. Constant init denotes an arbitrary initial state of SNSPK. The three
observation operators correspond to the three observers, and the six action op-
erators correspond to the six transitions. In this paper, the definition of action
operator send3 is shown, which is as follows:

op c-send3 : Sys Prin Prin Nonce Nonce Network -> Bool

eq c-send3(S,P1,P2,N1,N2,NW)

= (nw(S) = enc2(P1,N1,N2), enc1(P2,N1,P1) , NW) .

eq rand(send3(S,P1,P2,N1,N2,NW)) = rand(S) .

ceq nw(send3(S,P1,P2,N1,N2,NW))

= (enc3(P2,N2) , nw(S)) if c-send3(S,P1,P2,N1,N2,NW) .

ceq nonces(send3(S,P1,P2,N1,N2,NW))

= (if P2 = intr then (N2 , nonces(S)) else nonces(S) fi)

if c-send3(S,P1,P2,N1,N2,NW) .

ceq send3(S,P1,P2,N1,N2,NW) = S if not c-send3(S,P1,P2,N1,N2,NW) .

eq is the keyword to declare equations, while ceq is the keyword to declare
conditional equations.

Constant init is defined as follows:

eq rand(init) = seed .

eq nw(init) = empty .

eq nonces(init) = empty .

3.3 Specifying SNSPK in Maude

We suppose that there exist sorts Bool, Prin, Rand, Nonce, Cipher, SetNonce
and Network corresponding to the data types used in SNSPK. SNSPK is specified
as a module NSPK. The signature of the module is as follows:

subsorts TRule OValue < Sys .

op none : -> Sys .

op __ : Sys Sys -> Sys [assoc comm id: none] .

op rand :_ : Rand -> OValue .

op nw :_ : Network -> OValue .

op nonces :_ : SetNonce -> OValue .

op send1 : Prin Prin -> TRule .

op send2 : -> TRule .

op send3 : -> TRule .

op fake1 : Prin Prin -> TRule .

op fake2 : Prin -> TRule .

op fake3 : Prin -> TRule .

Sys is the sort denoting the state space. A state is represented by a multiset
of variables (which correspond to observers) and transitions. OValue is the sort
denoting variables and TRule is the sort denoting transitions. TRule and OValue
are declared as subsorts of Sys. Constant none denotes the empty state, and
the juxtaposition operator __, which is given associativity, commutativity and
none as its identity, is the data constructor of non-empty states. The next three
operators denote the three variables, which correspond to the three observers,
and the last six operators denote the six transitions. In this paper, the definition
of operator send3 is shown, which is as follows:

rl [send3] : send3 (rand : R)

(nw : (enc2(P1,N1,N2), enc1(P2,N1,P1) , NW)) (nonces : Ns)

=> send3 (rand : R)

(nw : (enc3(P2,N2) , enc2(P1,N1,N2), enc1(P2,N1,P1) , NW))

(nonces : (if P2 == intr then N2 , Ns else Ns fi)) .

rl is the keyword to declare rewriting rules, while crl is the keyword to declare
conditional rewriting rules. send3 is the label given to this rewriting rule.

When three principals including the intruder participate in the protocol, the
initial state is represented as follows:

op init : -> Sys .

eq init = send1(p1,p2) send1(p1,intr) send1(p2,p1) send1(p2,intr)

send1(intr,p1) send1(intr,p2) send2 send3 fake1(p1,p2) fake1(p1,intr)

fake1(p2,p1) fake1(p2,intr) fake1(intr,p1) fake1(intr,p2) fake2(p1)

fake2(p2) fake2(intr) fake3(p1) fake3(p2) fake3(intr)

(rand : seed) (nw : empty) (nonces : empty) .

4 Falsification of OTSs

Maude is used to falsify ∀υ : RS . p(υ), i.e. to find a counterexample for ∀υ :
RS . p(υ). The way [12] used in this paper is to searchRS,≤n for a counterexample
for ∀υ : RS . p(υ). If RS,≤n is finite wrt S, this search can be completed within a
finite time. A sufficient condition thatRS,≤n is finite wrt S is given in Theorem 1.
Since Maude is not equipped with any facilities that can be used to search only
RS,≤n for a counterexample for ∀υ : RS . p(υ), however, we need to make a little
modification to S.

Definition 7 (Bounded OTSs). One observer steps : Υ → Nat is added to
S, where Nat is the type for natural numbers. The initial value returned by steps
is 0, and the inequality steps(υ) < n is added to the effective condition of each
transition. The value returned by steps is incremented whenever each transition
is applied in a state where the effective condition holds. The OTS obtained by
modifying S in this way is called the (n-)bounded OTS S and denoted S≤n. ut

We have the theorem that guarantees that the search of RS≤n for a coun-
terexample for ∀υ : RS≤n . p(υ) coincides with the search of RS,≤n for a coun-
terexample for ∀υ : RS . p(υ) if the observer steps is not used in p.

Theorem 2 (Coincidence of counterexamples [12]). If the observer steps
is not used in a state predicate p : Υ → Bool, then (1) any counterexample
for ∀υ : RS≤n . p(υ) is also a counterexample for ∀υ : RS . p(υ), and (2) for
any counterexample υ0, . . . , υm for ∀υ : RS . p(υ) such that m ≤ n, there exists
a counterexample υ′0, . . . , υ

′
m for ∀υ : RS≤n . p(υ) such that υ′k =S υk for k =

0, . . . ,m. ut

In the Maude specification of SNSPK, the following operator declaration is
added:

op steps :_ : Nat -> OValue .

The term (steps : 0) is added to constant init in Subsect. 3.3. Then, the
rewriting rules defining each transition is modified such that the value returned
by steps is incremented whenever each transition is applied and the inequal-
ity steps(υ) < n is added to the condition of each of the rewriting rules. The
rewriting rule labeled send3 is modified as follows:

crl [send3] : send3 (rand : R)

(nw : (enc2(P1,N1,N2), enc1(P2,N1,P1) , NW)) (nonces : Ns) (steps : X)

=> send3 (rand : R)

(nw : (enc3(P2,N2) , enc2(P1,N1,N2), enc1(P2,N1,P1) , NW))

(nonces : (if P2 == intr then N2 , Ns else Ns fi)) (steps : (X + 1))

if X < bound .

where constant bound corresponds to n.

The Maude model checker can be used to searchR≤n
SNSPK

for a counterexample
for ∀υ : RSNSPK .SP(υ), and so can command search. In this paper, we use
command search. One way to use command search is as follows:

search [1] start =>* pattern such that condition .

Command search performs a breadth-first search to find one state that matches
pattern and that can be reached from start by applying zero or more rewriting
rules.

To search R≤n
SNSPK

for a counterexample for ∀υ : RSNSPK .SP(υ), all we have
to do is to feed the following line to the Maude system:

search [1] init =>* (nonces : (N , Ns)) S

such that not(p1(N) == intr or p2(N) == intr) .

When bound is 4, command search finds a state υ in which SP(υ) does not
hold. Command show path can be used to show the path to the state, which is
a shortest counterexample for ∀υ : RSNSPK .SP(υ).

5 Interaction between Verification and Falsification

When bound is less than 4, command search does not find any states υ in which
SP(υ) does not hold. What if RSNSPK,≤4 is too large for the Maude system to
search it within a reasonable time? If so, we start verifying ∀υ : RSNSPK .SP(υ).
One standard way to prove ∀υ : RS . p(υ) is to use mathematical induction on υ.
In the rest of the paper, let p(υ) be ∀z1 : Dp1 . . .∀zM : DpM . P (υ, z1, . . . , zM).

Theorem 3 (Mathematical induction on RS). Let (I) be ∀υinit : I. p(υinit),
(II) be ∀υ : RS . (p(υ) ⇒ A. p(ty1,...,yn(υ))), let (III) be ∀υ : RS .B. (P (υ, zι1 ,
. . . , zM) ⇒ A.P (ty1,...,yn

(υ), z1, . . . , zM)), where A is ∀ty1,...,yn
: T .∀y1 :

Dt1 . . .∀yn : Dtn and B is ∀z1 : Dp1 . . .∀zM : DpM . Then, (1) ∀υ : RS . p(υ) ⇔
((I) ∧ (II)) and (2) ((I) ∧ (II)) ⇔ ((I) ∧ (III)).

Proof. (1) From the mathematical induction principle. (2) ⇐ : Straightforward.
⇒ : It is clear that ((I) ∧ (II)) ⇒ (I). We assume (I) ∧ (II). From (1), we have
∀υ : RS . p(υ), which implies (III). ut

We use ∀υ : RS . p(υ) ⇔ ((I)∧ (III)) from Theorem 3 in order to prove (and
disprove) ∀υ : RS . p(υ). We often need lemmas to prove ∀υ : RS . p(υ).

Definition 8 (Effective case splits and Necessary lemmas). Let us con-
sider proving ∀υ : RS . p(υ) by mathematical induction on υ. In an induction
case where ty1,...,yn ∈ T is taken into account, all we have to do is to prove
P (υc, zc

1, . . . , z
c
M) ⇒ P (tyc

1,...,yc
n
(υc), zc

1, . . . , z
c
M), where υc is a constant denot-

ing an arbitrary state and each yc
k (zc

k) is a constant denoting an arbitrary
value of Dtk (Dpk). We suppose that a proposition q1 ∨ . . . ∨ qL is a tautol-
ogy, where each ql is in the form Ql(υc, yc

1, . . . , y
c
n, zc

1, . . . , z
c
M). If the truth value

of P (υc, zc
1, . . . , z

c
M) ⇒ P (tyc

1,...,yc
n
(υc), zc

1, . . . , z
c
M) can be determined assuming

each ql, then q1 ∨ . . .∨ qL is called an effective case split for this induction case.
Moreover, if the truth value is false, then ∀υ : RS .∀y1 : Dt1, . . . ,∀yn : Dtn,∀z1 :
Dp1, . . . ,∀zM : DpM .¬Ql(υ, y1, . . . , yn, z1, . . . , zM) is called a necessary lemma
of ∀υ : RS . p(υ). Given an effective case split for each induction case, let NLS,p

be the set of all necessary lemmas of ∀υ : RS . p(υ) obtained by the effective case
splits. Generally, there are multiple such sets, which depend on effective case
splits. ut

In the rest of this section, let q(υ) be ∀υ : RS .∀y1 : Dt1, . . . ,∀yn :
Dtn,∀z1 : Dp1, . . . ,∀zM : DpM .¬Ql(υ, y1, . . . , yn, z1, . . . , zM), and let ql be
Ql(υc, yc

1, . . . , y
c
n, zc

1, . . . , z
c
M).

Lemma 1 (Counterexamples induced by necessary lemmas). Let ∀υ :
RS . q(υ) be a necessary lemma of ∀υ : RS . p(υ). If there exists a counterexample
ceq ∈ CXS,q such that depth(ceq) = N , then ceq ∈ CXS,p or there exists a
counterexample cep ∈ CXS,p such that depth(cep) = N + 1.

Proof. We suppose that ∀υ : RS . q(υ) is found in an induction case where a tran-
sition ty1,...,yn ∈ T is taken into account. Let ceq be υ0, . . . , υN . From the assump-
tion, there exist yd

1 , . . . , yd
n, zd

1 , . . . , zd
M such that Q(υN , yd

1 , . . . , yd
n, zd

1 , . . . , zd
M)

holds. (1) ¬p(υN) : Clearly ceq ∈ CXS,p. (2) p(υN) : Since both p(υN) and
Q(υN , dj1 , . . . , djn

, dι1 , . . . , dια
) holds, P (tdj1 ,...,djn

(υN), dι1 , . . . , dια
) must not

hold because ∀υ : RS . q(υ) is a necessary lemma of ∀υ : RS . p(υ) and is found
in the induction case concerned. Therefore, υ0, . . . , υN , tyd

1 ,...,yd
n
(υN) is a coun-

terexample of ∀υ : RS . p(υ). ut

Lemma 2 (Existence of necessary lemmas that induce counterexam-
ples). If CXS,p is not empty and depth(cxmin

S,p) = N + 1, then there exists a
necessary lemma ∀υ : RS . q(υ) of ∀υ : RS . p(υ) such that CXS,q is not empty
and depth(cxmin

S,q) = N , and such a necessary lemma can be found in any NLS,p.

Proof. Let cxmin
S,p be υ0, . . . , υN , υN+1. From the assumption, p(υN) holds

and there exist ty1,...,yn ∈ T and yd
1 , . . . , yd

n, zd
1 , . . . , zd

M such that υN+1 =S
tyd

1 ,...,yd
n
(υN) and ¬P (tyd

1 ,...,yd
n
(υN), zd

1 , . . . , zd
M). Let q1 ∨ . . .∨ qL be an arbitrary

effective case split for the induction case where ty1,...,yn
is taken into account.

There must exist l ∈ {1, . . . , L} such that the truth value of P (υc, zc
1, . . . , z

c
M) ⇒

P (tyc
1,...,yc

n
(υc), zc

1, . . . , z
c
M) is false assuming ql because otherwise there does

not exist the supposed counterexample. Therefore, Ql(υc, yc
1, . . . , y

c
n, zc

1, . . . , z
c
M)

holds and then υ1, . . . , υN is a counterexample for ∀υ : RS . q(υ). We suppose
that depth(cxmin

S,q) < N . If so, depth(cxmin
S,p) < N + 1 from Lemma 1, which con-

tradicts the assumption. ut

We give a procedure with which we alternately falsify and verify ∀υ :
RS . p(υ).

Definition 9 (Procedure IGF). Given an OTS S, a state predicate p and a
natural number n, the procedure is defined as follows:

1. P := {p} and Q := ∅.
2. Repeat the following until P = ∅.

(a) Choose a state predicate q from P and P := (P − {q}).
(b) Search RS≤n for a counterexample for ∀υ : RS . q(υ).

If a counterexample is found, terminate and return Falsified.
(c) Try to prove ∀υ : RS . q(υ) by mathematical induction on υ and

compute NLS,q.
(d) Q := Q∪ {q} and P := P ∪ (NLS,q −Q).

3. Terminate and return Verified. ut

We have the the soundness and completeness theorem on procedure IGF.

Theorem 4 (Soundness and Completeness of IGF wrt Falsification).
Given an arbitrary OTS S, an arbitrary state predicate p and an arbitrary natural
number n, (1) if IGF terminates and returns Falsified, then ¬(∀υ : RS . p(υ)),
and (2) if CXS,p is not empty, depth(cxmin

S,p) is finite, RS≤n is finite wrt S and
NLS,q can be computed for an arbitrary state predicate q, then IGF terminates
and returns Falsified.

Proof. From Lemmas 1 and 2. ut

Note that when n is large, the search of RS≤n may not be completed within a
reasonable time, which implies that IGF may not terminate within a reasonable
time, and when depth(cxmin

S,p) is large, IGF may not terminate within a reasonable
time.

The following should be noted. The number of some entities such as principals
may have to be made finite so as to make the n-bounded reachable state space
wrt an OTS finite. Even when there exists a counterexample for an invariant
in the n-bounded reachable state space wrt an OTS S in which there are an
infinite number of some entities, no such counterexamples may be found in the
n-bounded reachable state space wrt S in which there are a finite number of the
entities, which depends on the number of the entities. Let us consider SNSPK for
example. When the number of principals is infinite, RSNSPK,≤n is also infinite
if n ≥ 2. The number of principals should be made finite to make RSNSPK,≤n

finite. When there are three or more principals, one of which is the intruder, a
counterexample that SNSPK satisfies Secrecy Property is found in RSNSPK,≤n if
n ≥ 4. Otherwise, however, no such counterexamples are found in RSNSPK,≤n for
any n.

6 A Way to Compute Necessary Lemmas

Since Theorem 4 relies on whether NLS,p can be computed for an arbitrary
state predicate p, we need to argue the feasibility. Given an arbitrary OTS S
and an arbitrary state predicate p, we show a way to compute an effective case
split for each induction case when we prove ∀υ : RS . p(υ) by mathematical
induction on υ and to obtain NLS,p based on the effective case splits. The

solution employs the CafeOBJ system that uses the Hsiang TRS [16] as a decision
procedure of propositional logic. The CafeOBJ system reduces a proposition that
is always true (false) to true (false). Generally, the CafeOBJ system reduces
a proposition to an exclusive-or normal form.

We suppose that S is written as a module MS in CafeOBJ. We also suppose
that when all equations available in MS are regarded as a set of left-to-right
rewrite rules, the set, i.e. the TRS, is confluent and terminating. The TRS will
be referred as TRSS . In a module INV, which imports MS , we declare the following
operator and equation:

op invp : H Vp1 . . . VpM -> Bool
eq invp(S, Z1, . . . , ZM) = P(S, Z1, . . . , ZM) .

where H is a hidden sort denoting Υ , S is a CafeOBJ variable of sort H, each
Zk is a CafeOBJ variable of sort Vpk, and P(S, Z1, . . . , ZM) is a term denoting
P (υ, z1, . . . , zM). In INV, for each Vpk, we also declare a constant yc

k of the sort,
which denotes an arbitrary value of the sort. In a module ISTEP, which imports
INV, we declare the following operator and equation:

op istepp : Vp1 . . . VpM -> Bool
eq istepp(Z1, . . . , ZM) = invp(s, Z1, . . . , ZM) implies invp(s′, Z1, . . . , ZM) .

where s and s’ are constants of sort H declared in the module, and the oper-
ator _implies_ corresponds to the logical implication. Constant s denotes an
arbitrary state, and constant s’ denotes a successor state of the state.

Let us consider an induction case in which a transition ty1,...,yn ∈ T is taken
into account. We suppose that the transition and its effective condition are rep-
resented by the action operator t and the operator c-t, respectively, declared
in MS as follows:

bop t : H Vt1 . . . Vtn -> H
op c-t : H Vt1 . . . Vtn -> Bool

We also have the following equation:

eq s′ = t(s, yc
j1

, . . . , yc
jn

) .

where each yc
k is a constant of Vtk denoting an arbitrary value of Vtk.

We give a procedure that computes an effective case split for the induction
case.

Definition 10 (Procedure CaseSplit). The procedure is defined as follows:

1. C := {c-t(s, yc
j1

, . . . , yc
jn

),¬c-t(s, yc
j1

, . . . , yc
jn

)} and C′ := ∅.
2. Repeat the following until C = ∅.

(a) Choose a proposition q from C and C := C − {q}.
(b) Reduce istepp(z

c
1, . . . , y

c
M) assuming q in module ISTEP.

Let r be the result.
– If r is true, do nothing.

– If r is false, C′ := C′ ∪ {q}.
– Otherwise, choose a primitive proposition ρ from r and
C := C ∪ {q ∧ ρ, q ∧ ¬ρ}.

3. Terminate and return C′. ut

When istepp(z
c
1, . . . , y

c
M) is reduced assuming q in module ISTEP, q should

be written as one or more equations. A way to write q in equations is described in
[17]. Since TRSS is terminating and p includes a finite number of logical connec-
tives, procedure CaseSplit terminates. CaseSplit clearly computes an effective
case split for the induction case, and when CaseSplit terminates, C′ consists
of all the propositions in the effective case split such that istepp(z

c
1, . . . , y

c
M)

reduces to false assuming each of the propositions. From C′, it is straightfor-
ward to construct all necessary lemmas (of ∀υ : RS . p(υ)) that are found in the
induction case.

7 A Case Study

We try to prove ∀υ ∈ RSNSPK .SP(υ) by mathematical induction on υ based
on the CafeOBJ specification of SNSPK. We first declare a module INV, which
imports module NSPK. In module INV, the following operator and equation are
declared:

op inv1 : Sys Nonce -> Bool

eq inv1(S,N)

= ((N \in nonces(S)) implies (p1(N) = intr or p2(N) = intr)) .

where the operator _or_ corresponds to the logical disjunction. We also declare a
constant n of sort Nonce in module INV. We next declare a module ISTEP, which
imports module INV. In module ISTEP, the following operator and equation are
declared:

op istep1 : Nonce -> Bool

eq istep1(N) = inv1(s,N) implies inv1(s’,N) .

where s and s’ are constants of sort Sys declared in module ISTEP.
We have the two cases in which istep1(n) reduces to false. The corre-

sponding proof passages (basic fragments of a proof, or a proof score) are as
follows:

open ISTEP

-- arbitrary values

ops p1 p2 : -> Prin . op m : -> Nonce . op nw : -> Network .

-- assumptions

-- eq c-send2(s,p1,p2,m,nw) = true .

eq nw(s) = enc1(p1,m,p2) , nw .

--

eq p2 = intr . eq (p1(n) = intr) = false .

eq (p2(n) = intr) = false . eq m = n . eq n \in nonces(s) = false .

-- successor state

eq s’ = send2(s,p1,p2,m,nw) .

-- check

red istep1(n) .

close

open ISTEP

-- arbitrary values

ops p1 p2 : -> Prin . ops m1 m2 : -> Nonce . op nw : -> Network .

-- assumptions

-- eq c-send3(s,p1,p2,m1,m2,nw) = true .

eq nw(s) = enc2(p1,m1,m2), enc1(p2,m1,p1) , nw .

--

eq p2 = intr . eq m2 = n . eq (p1(n) = intr) = false .

eq (p2(n) = intr) = false . eq n \in nonces(s) = false .

-- successor state

eq s’ = send3(s,p1,p2,m1,m2,nw) .

-- check

red istep1(n) .

close

The CafeOBJ command open constructs a temporary module that imports a
given module and the CafeOBJ command close destroys such a temporary
module. A comment starts with -- and terminates at the end of the line.

From the two proof passages, we obtain the two necessary lemmas of
∀υ ∈ RSNSPK .SP(υ). The two necessary lemmas are ∀υ ∈ RSNSPK .NL1(υ) and
∀υ ∈ RSNSPK .NL2(υ), where NL1(υ) , ∀n : Nonce.∀q : Prin. (enc1(q, n, intr) ∈
nw(υ) ⇒ (n ∈ nonces(υ)∨ p1(n) = intr∨ p2(n) = intr)) and NL2(υ) , ∀n1, n2 :
Nonce.∀q : Prin. ((enc2(q, n1, n2) ∈ nw(υ) ∧ enc1(intr, n1, q) ∈ nw(υ)) ⇒ (n2 ∈
nonces(υ) ∨ p1(n2) = intr ∨ p2(n2) = intr)).

To search RSNSPK,≤n for a counterexample for ∀υ : RSNSPK .NL1(υ), all we
have to do is to feed the following line to the Maude system:

search [1] init =>* (nw : (enc1(Q,N,intr) , Ms)) (nonces : Ns) S

such that not(N \in Ns or p1(N) == intr or p2(N) == intr) .

Command search does not find any states υ such that NL1(υ) does not hold
when bound is up to 5. Actually, we have proved ∀υ ∈ RSNSPK .NL1(υ) by math-
ematical induction on RSNSPK without any lemmas.

To search RSNSPK,≤n for a counterexample for ∀υ : RSNSPK .NL2(υ), all we
have to do is to feed the following line to the Maude system:

search [1] init =>*

(nw : (enc2(Q1,N1,N2) , enc1(intr,N1,Q1) , Ms)) (nonces : Ns) S

such that not(N2 \in Ns or p1(N2) == intr or p2(N2) == intr) .

When bound is 3, command search finds a state υ in which NL2(υ) does not
hold. Command show path can be used to show the path to the state, which
is a shortest counterexample for ∀υ : RSNSPK .NL2(υ). An excerpt from the
counterexample generated is shown in Fig. 1.

state 0, Sys: send2 send3 rand : seed nw : empty nonces : empty fake2(intr)
fake2(p1) fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 0 send1(intr,
p1) send1(intr, p2) send1(p1, intr) send1(p1, p2) send1(p2, intr) send1(p2,
p1) fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2,
intr) fake1(p2, p1)

===[... [label send1] ...]===>
state 3, Sys: send2 send3 rand : next(seed) nw : enc1(intr, n(p1, intr, seed),

p1) nonces : n(p1, intr, seed) fake2(intr) fake2(p1) fake2(p2) fake3(intr)
fake3(p1) fake3(p2) steps : 1 send1(intr, p1) send1(intr, p2) send1(p1,
intr) send1(p1, p2) send1(p2, intr) send1(p2, p1) fake1(intr, p1) fake1(
intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2, intr) fake1(p2, p1)

===[... [label fake1] ...]===>
state 31, Sys: send2 send3 rand : next(seed) nw : (enc1(intr, n(p1, intr,

seed), p1),enc1(p2, n(p1, intr, seed), p1)) nonces : n(p1, intr, seed)
fake2(intr) fake2(p1) fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 2
send1(intr, p1) send1(intr, p2) send1(p1, intr) send1(p1, p2) send1(p2,
intr) send1(p2, p1) fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(
p1, p2) fake1(p2, intr) fake1(p2, p1)

===[... [label send2] ...]===>
state 436, Sys: send2 send3 rand : next(next(seed)) nw : (enc1(intr, n(p1,

intr, seed), p1),enc1(p2, n(p1, intr, seed), p1),enc2(p1, n(p1, intr,
seed), n(p2, p1, next(seed)))) nonces : n(p1, intr, seed) fake2(intr)
fake2(p1) fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 3 send1(intr,
p1) send1(intr, p2) send1(p1, intr) send1(p1, p2) send1(p2, intr) send1(p2,
p1) fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2,
intr) fake1(p2, p1)

Fig. 1. An excerpt from the counterexample for ∀υ : RSNSPK . NL2(υ).

state 0, Sys: send2 send3 rand : next(next(seed)) nw : (enc1(intr, n(p1, intr,
seed), p1),enc1(p2, n(p1, intr, seed), p1),enc2(p1, n(p1, intr, seed), n(
p2, p1, next(seed)))) nonces : n(p1, intr, seed) fake2(intr) fake2(p1)
fake2(p2) fake3(intr) fake3(p1) fake3(p2) steps : 3 send1(intr, p1) send1(
intr, p2) send1(p1, intr) send1(p1, p2) send1(p2, intr) send1(p2, p1)
fake1(intr, p1) fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2,
intr) fake1(p2, p1)

===[... [label send3] ...]===>
state 9, Sys: send2 send3 rand : next(next(seed)) nw : (enc3(intr, n(p2, p1,

next(seed))),enc1(intr, n(p1, intr, seed), p1),enc1(p2, n(p1, intr, seed),
p1),enc2(p1, n(p1, intr, seed), n(p2, p1, next(seed)))) nonces : (n(p1,
intr, seed),n(p2, p1, next(seed))) fake2(intr) fake2(p1) fake2(p2) fake3(
intr) fake3(p1) fake3(p2) steps : 4 send1(intr, p1) send1(intr, p2) send1(
p1, intr) send1(p1, p2) send1(p2, intr) send1(p2, p1) fake1(intr, p1)
fake1(intr, p2) fake1(p1, intr) fake1(p1, p2) fake1(p2, intr) fake1(p2, p1)

Fig. 2. An excerpt from the path to a state υ such that ¬SP(υ) from s436.

The counterexample and send3p,q,n1,n2,nw make a counterexample for ∀υ :
RSNSPK .SP(υ). Command search can also be used to make such a counterexam-
ple. Let a constant s436 equal the term of state 436 appearing in Fig. 1. Instead
of init, s436 is used to find a state such υ that SP(υ) does not hold by feeding
the following line into the Maude system:

search [1] s436 =>* (nonces : (N , Ns)) S

such that not(p1(N) == intr or p2(N) == intr) .

When bound is 1, such a state is found. An excerpt from the path to the state
from s436 is shown in Fig. 2. The two paths shown in Fig. 1 and Fig. 2 are
combined to make a counterexample for ∀υ : RSNSPK .SP(υ).

8 Related Work

There are two main methods of falsifying (software and/or hardware) systems:
testing and model checking [18]. Model checking is superior to testing in terms
of coverage provided that systems should be basically modeled as finite-state
transition systems. Even when a system can be modeled as a finite-state tran-
sition system, the system may not be model checked because the state space is
too large for a computer on which model checking is performed. Bounded model
checking, or BMC [13] can alleviate the problem. BMC uses a propositional SAT
solver to search RS,≤n for a counterexample for a property written in proposi-
tional LTL for a fixed n, although a Kripke structure is used instead of an OTS.
If no counterexample is found, BMC repeatedly increments n and performs the
search until a counterexample is found, the search becomes intractable, or some
pre-computed completeness threshold is reached.

In addition to modeling systems as finite-state transition systems, abstract
data types such as lists and queues should be encoded in basic data types such
as arrays and bounded integers because most existing model checkers do not
allow to use abstract data types freely in a system to be model checked. The
Maude model checker [19] allows to use abstract data types including inductively
defined data types in a system to be model checked and does not require the
state space of a system to be finite, although the reachable state space of a
system should be finite. That is why we have decided to use Maude to falsify
OTSs. Since Maude is not equipped with any BMC facilities, however, a way to
search RS≤n for a counterexample for ∀υ : RS . p(υ) has been devised [12]. Note
that the search command can be used to search an infinite state space of an
OTS for a counterexample that the OTS satisfies an invariant property, but the
termination is not guaranteed, which is required by procedure IGF.

A way to implement a local (or bounded) µ-calculus model checker in Maude
using the Maude reflective facilities has been proposed [20]. The primary purpose
of implementing or specifying the model checker in Maude is toward verification
of the model checker. The bounded µ-calculus model checker could be used
to search the bounded reachable state space RS,≤n for a counterexample for
∀υ : RS . p(υ). In terms of speed, however, the Maude search command and the
Maude model checker are superior to the bounded µ-calculus model checker.

The induction-guided falsification can be considered a possible solution to the
state explosion problem, which we often encounter when we try to model check
if a system satisfies a property. Several possible solutions to the problem have
been proposed. Their primary purpose is verification. One of the most popular
methods is abstraction [21], which requires an original transition system and
property to be modified. Instead of abstraction, our solution uses mathematical
induction on the structure of the reachable state space of a transition system,
which does not require an original transition system to be modified.

The induction-guided falsification can also be regarded as one possible combi-
nation of BMC and mathematical induction. There exists another possible com-
bination of them: k-induction [22]. k-induction has been implemented in SAL

(Symbolic Analysis Laboratory) [23], which is a toolkit for analyzing transition
systems. The primary purpose of k-induction is verification.

9 Conclusion

The induction-guided falsification has been described. The NSPK authentica-
tion protocol has been used as an example to demonstrate the induction-guided
falsification. We have been developing a translator [24], which takes a CafeOBJ
specification of an OTS and generates a Maude specifications of the OTS, and
an automatic invariant verifier [25, 26] for OTSs, which uses an automatic case
splitter that computes necessary lemmas. One piece of our future work is to use
the translator and the automatic case splitter to automate the induction-guided
falsification.

The basic idea in the proposed solution to find a counterexample that an
OTS S satisfies an invariant property is as follows. When no counterexamples
are found in the bounded reachable state spaceR≤n

S and it is impossible to search
R≤(n+1)
S entirely, first discover all necessary lemmas of the invariant property

and then search R≤n
S for each of the necessary lemmas. The proposed solu-

tion guarantees if there exists a counterexample for the invariant property in
R≤(n+1)
S , there exists a counterexample for at least one of the necessary lemmas

in R≤n
S , and vice versa. Some may wonder how efficient it is to search R≤n

S
when compared to the search of R≤(n+1)

S . We suppose that S has one initial
state and there are x (≥ 2) (instances of) transitions whose effective conditions
hold in each state. Then, the number of states in R≤n

S is
∑n

i=0 xi, which equals
(xn+1− 1)/(x− 1). The difference between the number of states in R≤(n+1)

S and
that in R≤n

S is xn+1, which is greater than the number of states in R≤n
S because

xn+1 −
∑n

i=0 xi is (xn+1(x − 2) + 1)/(x − 1). The greater x is, the greater the
difference is. There are more than two (instances of) transitions whose effective
conditions hold in each state in most applications. Therefore, the search of R≤n

S
is more efficient than that of R≤(n+1)

S . When three principles including the in-
truder participate the NSPK protocol, the number of states in R≤3

SNSPK
is 807,

while that in R≤4
SNSPK

is 11323 and that in R≤5
SNSPK

is 180475.
Although procedure IGF can be used to verify that a state predicate p is

invariant wrt an OTS S, it is not efficient for the verification. This is because
necessary lemmas are useful for finding counterexamples, i.e. falsification but
they may not for verification. It is often the case that necessary lemmas should
be strengthened to make the corresponding proofs more tractable. It is another
piece of our future work to make the procedure useful for both verification and
falsification.

As described at the end of Section 5, it depends on the number of some
entities in an OTS whether procedure IGF works effectively if the number of the
entities should be made finite. Therefore, we need to come up with something
that can decide how many entities in an OTS S are enough to make sure that

there exists a counterexample for an invariant in the n-bounded reachable state
space wrt S in which there are a finite number of the entities if there does so in
the n-bounded reachable state space wrt S in which there are an infinite number
of the entities.

References

1. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: FMOODS
2003. LNCS 2884, Springer (2003) 170–184

2. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. Volume 6 of AMAST Series in
Computing. World Scientific (1998)

3. Ogata, K., Futatsugi, K.: Formally modeling and verifying Ricart&Agrawala dis-
tributed mutual exclusion algorithm. In: 2nd APAQS, IEEE CS Press (2001)
357–366

4. Ogata, K., Futatsugi, K.: Formal analysis of Suzuki&Kasami distributed mutual
exclusion algorithm. In: 5th FMOODS, Kluwer (2002) 181–195

5. Ogata, K., Futatsugi, K.: Rewriting-based verification of authentication protocols.
In: 4th WRLA 2002. ENTCS 71, Elsevier (2002)

6. Ogata, K., Futatsugi, K.: Formal analysis of the iKP electronic payment protocols.
In: 1st ISSS. LNCS 2609, Springer (2003) 441–460

7. Ogata, K., Futatsugi, K.: Formal verification of the Horn-Preneel micropayment
protocol. In: 4th VMCAI. LNCS 2575, Springer (2003) 238–252

8. Ogata, K., Futatsugi, K.: Equational approach to formal verification of SET. In:
4th QSIC, IEEE CS Press (2004) 50–59

9. Ogata, K., Futatsugi, K.: Formal analysis of the NetBill electronic commerce
protocol. In: 2nd ISSS. LNCS 3233, Springer (2004) 45–64

10. Ogata, K., Futatsugi, K.: Equational approach to formal analysis of TLS. In: 25th
ICDCS, IEEE CS Press (2005) 795–804

11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: Spesification and programming language in rewriting logic. TCS 285
(2002) 187–243

12. Ogata, K., Kong, W., Futatsugi, K.: Falsification of OTSs by searches of bounded
reachable state spaces. In: 18th SEKE. (2006) 440–445

13. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Advances in Computers. 58. Academic Press (2003)

14. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. CACM 21 (1978) 993–999

15. Kong, W., Ogata, K., Futatsugi, K.: Model-checking observational transition sys-
tem with Maude. In: 20th ITC-CSCC. (2005) 5–6

16. Hsiang, J., Dershowitz, N.: Rewrite methods for clausal and nonclausal theorem
proving. In: 10th ICALP. LNCS 154, Springer (1983) 331–346

17. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Algebra, Meaning, and Computation: A Festschrift Symposium in
Honor of Joseph Goguen. LNCS 4060, Springer (2006) 596–615

18. Edmund M. Clarke, J., Grumberg, O., Peled, D.A.: Model Checking. The MIT
Press (2001)

19. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker.
In: WRLA 2002. ENTCS 71, Elsevier (2002) 143–168

20. Wang, B.Y.: Specification of an infinite-state local model checker in rewriting logic.
In: 17th SEKE. (2005) 442–447

21. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
TOPLAS 16 (1994) 1512–1542

22. de Moura, L., Rueß, H., Sorea, M.: Bounded model checking and induction: From
refutation to verification. In: 15th CAV. LNCS 2392, Springer (2003) 14–26

23. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: 16th CAV. LNCS 3114, Springer (2004) 496–500

24. Kong, W., Ogata, K., Seino, T., Futatsugi, K.: Lightweight integration of theorem
proving and model checking for system verification. In: 12th APSEC, IEEE CS
Press (2005) 59–66

25. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Automatic verification of
the STS authentication protocol with Crème. In: 20th ITC-CSCC. (2005) 15–16

26. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Automating invariant veri-
fication of behavioral specifications. In: 6th QSIC, IEEE CS Press (2006)

