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Abstract Bone-conducted speech in an extremely noisy environment seems to be more advantageous 

than normal noisy speech (i.e., noisy air-conducted speech) because of its stability against surrounding 
noise. The sound quality of bone-conducted speech, however, is very low and restoring bone-conducted 
speech is a challenging new topic in the speech signal-processing field. We describe two types of models for 
restoration: one based on the modulation transfer function (MTF) and the other based on linear prediction 

(LP). The MTF-based model is expected to yield a restored signal with higher intelligibility while the LP
based model is expected to yield one that is not only more intelligible to human hearing systems but 
also enables automatic speech recognition (ASR) systems to achieve better performance. To evaluate the 
ability of these models to improve voice-quality, we compared them with the other previous two models 
using one subjective and three objective measurements. The mean opinion score (MOS) and log-spectrum 
distortion (LSD) were used to evaluate the improvements in intelligibility, which is useful for human hearing 

systems. The distances based on LP coefficients and mel-frequency cepstral coefficients (MFCCs) were used 
to evaluate the improvements in cepstral distances which are useful for ASR systems. The results proved 
that both the MTF-based and LP-based models are better than the other previous models for improving 
intelligibility. They particularly proved that the LP-based model produces the best results for both human 
hearing and ASR systems. 

Keywords: bone-conducted (BC) speech, air-conducted (AC) speech, modulation transfer function (MTF), linear pre
diction (LP), speech intelligibility 

1.	 Introduction vantageous than noisy air-conducted (AC) speech. Al
though BC speech is not affected by external noise as 

The sound quality and intelligibility of speech are AC speech is, there is a drawback to using BC speech; 
influenced by their transmission environments. It is the signal is attenuated in a complex manner when it 
very difficult for automatic speech recognition (ASR) is transmitted through bone-conduction. This causes 
systems as well as humans to accomplish speech the voice-quality of BC speech, which means both its 
communications in an extremely noisy environment. intelligibility by human hearing systems and features 
There are many different complex models and/or al that are robust in ASR systems, to be very poor. If 
gorithms that are used as a solution to canceling or the voice-quality of BC speech can be improved, the 
reducing interfering noises. These are only efficient at restored signal can be applied to speech applications in 
low and medium noise levels and are ineffective when noisy environments with greater efficiency instead of 
the noise levels are too high. using noisy AC speech. Such applications include hu

Another possible solution is to use a special micro man hearing aids and machine hearing systems. Since 
phone to record the speech signal transmitted through it is very difficult to blindly restore BC speech, this is 
the speaker's head and face. This recorded signal is a challenging new topic in the speech signal processing 
referred to as "bone-conducted speech". Its stabil field. 
ity against interfering noise from a noisy environment The attenuation of the BC speech signal varies for 
seems to make bone-conducted (BC) speech more ad- different positions of measurement (BC microphone 
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positions), pronounced syllables , and speakers. This is 
becaus e the characterist ics of bon e-conduction change 
for different measuring positions , and the distribution 
of frequency components vari es with speakers who 
pronounce syllables differentl y. This attenuation is 
generally strong at high frequencies and it seems to 
be low-pass filterin g with a cut -off frequency of about 
1 kHz [1]. A st ra ight forward method of restorin g 
BC speech is to emphas ize these attenuated frequency 
components by using high-pass filtering (inverse of the 
low-pass filterin g pr eviously describ ed). However , it 
is difficult to adequately design one unique kind of 
high-pass filtering that is independ ent of pronoun ced 
syllables, speakers, and measuring positions. There 
are various methods of deriving inverse filt erin g such 
as the cross-spect rum method [2] and th e long-term 
Fouri er transform [3, 4], but t hese yield restored sig
nals with art ifacts such as musical noise and echoes so 
there are only slight improvements in voice-quali ty. 

We investigated t he relationships between Be and 
clean AC speech using an ACjBC speech database as 
an essent ial st ep towar d const ructing complete mod
els to restore BC speech and find significan t charac
teristi cs (for inverse filterin g) that would be useful 
in restoring BC speech. We propose two models of 
restoration from t hese results. Th e first is bas ed on 
t he modul ation transfer function (MT F) [5] and the 
second is based on linear prediction (LP) [6] . All cur 
rent models (including the ones we propose) obtain 
their paramet ers by using various inform ation on AC 
speech; we regarded t he consideration of blindly de
termined model parameters to be the next st ep we will 
undertake in future work. 

The MTF-based model or iginates from t he idea 
that the te mporal envelope contains most of the im
portant information related to speech intelligibili ty, 
and this intelligibility can be improved by using power 
envelope inverse filterin g such as t ha t with the speech 
dereverberation method [7, 8]. The LP-based model 
origina tes from the idea t hat th e information corre
sponding to the sour ce (glottal) characteristics as the 
LP residue is the same for both AC and BC speech 
signals. Therefore, adapt ive inverse filtering will be 
prim arily derived from t he LP coefficients of AC and 
BC speech related to filter information (voca l tract) . 

Both mod els manipulate source and filter inform a
t ion; the tempora l envelopes and car riers are used in 
the MTF-based model and the LP residu e and LP 
coefficient s are used in t he LP-based model. The dif
ference is in the processing domain , the MTF-based 
model restores BC speech in the time dom ain with 
each sub-band (channel) and th e LP-based mod el re
stores BC speech in the frequency domain with each 
fram e. We investigated both models, which are ex
pected to yield restored signals t hat are not only more 
intelligible to hum an hearing systems but which also 
enable ASR systems to achieve bet ter recognit ion . 

Tabl e 1 List of equipment 
Measurement sit e Soundproof room 
Measurement positions 5 posit ions 
Number of speakers 10 people 
Recorder SONY, TCD-D I D Proll 
Sampling frequency 48 kHz 
Sample size 16 bits 
Mic. A for AC speech SON Y, C536 P 
Mic. amp. A for AC speech SON Y, AC148F 
Mic. B for BC speech Temco, HG-1 7 
Mic. C for BC speec h Handmad e 
Mic. amp. B for BC speec h Handmade 

Soundproof room 

5 .
Mlc.S 

,R4. 
I 

~ 
~ 

.... __ I" Mic A I y(t) 
.... . I 

.... - /
------------",/ 

Fig. 1 Environment for recording ACjBC speec h 

The rest of this pap er is organized as follows. The 
next secti on describes the ACjBC speech datab ase 
that was used in our st udy. Section 3 explains our as
sumptions and approaches to BC speech restoration. 
We then present our MTF-bas ed and LP-based mod
els in sections 4 and 5. These models ar e evaluated 
and discussed in sect ion 6. Section 7 concludes wit h 
a summary and mentions future work. 

2. AC/BC Speech Database 

A datab ase is indispensable for analyzing th e re
lationships and differences between BC speech and 
clean AC speech signals before any models are used 
to restore BC speech. We constructed a large-scale 
da tabase containing pairs of BC and clean AC speech 
signals recorded simul tan eously using a DAT system 
(two channels) . 

Figure 1 an d Table 1 show the enviro nment and 
equipment we used to const ruc t this datab ase. The 
BC speech was collected at five different positi ons 
on the head and face, i.e., the (1) mandibul ar an
gle, (2) temple, (3) philtrum, (4) forehead , and (5) 
calvaria . Thus, one positi on was associated wit h one 
pair of clean AC speech and BC speech. Microphone 
B was only used at position 5 and microphone C 
was used at the ot her positions. Ten speakers (eight 
males and two females) participat ed in the recording 
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of t he pronoun ced speech of 100 J ap anese words and 
45 J ap anese syllables. 

T he selected words were chosen from the NTT 
dat ab ase by their degree of famili arity [9]. The 
dat ab ase had two parts . The first was (i) a J ap anese 
word dataset of 100 J apanese words selected from 
Jap anese word lists compiled by NTT-AT (2003) . 
With 10 speakers , 100 words , and 5 measurement po 
sit ions, there were 5000 pairs of wave files. The second 
was (ii) a J apanese syllable dataset of 45 Japanese syl
lables. Wi th 10 speakers , 45 syllables, and 5 measure
ment positions, there were 2250 pairs of wave files. 

3. Restoration Approaches 

3.1 Assumptions 

In the work reported here, clean AC speech was 
used instead of noisy AC speech and this will be re
ferred to as "AC speech" after this. AC speech was 
record ed/ observed simultaneously with BC speech, as 
in the AC/BC speech dat abase. We assumed that 
there were exist ing relationships between AC and BC 
speech that would be significant to restore BC speech. 
T herefore, our st rategy was to cons truct restoration 
models through the following ste ps : (1) to investigate 
the relat ionship between clean AC and Be speech sig
nals, (2) to find significant cha rac te ristics and rest ora
t ion models to restore BC speech (toward clean AC 
speech) , and (3) to consider how to blindly determ ine 
model parameters only from observed BC speech and 
app ly these to realisti c communication. T his pap er fo
cused on the first two essent ial steps . We considered 
different app roaches to designing inverse filtering for 
the restoration models, which will be discussed in the 
next section. 

3.2 Approaches to restorin g BC speech 

T here are three ty pes of transfer functions t hat can 
be used as different ap proaches to restorin g BC speech 
in Fig. 2. In general, these should be investigated 
as t ransmission characteristics from AC speech to BC 
speech before designin g t he inverse filterin g to restore 
observed BC speech . 

As we can see from Fig. 2(a), one st raightforward 
approach is to design the inverse transfer function 
from yet) to x(t) . There are also the cross-spectral 
and long-term FFT methods [2]-[4] . These are used 
to const ruct t he inverse transfer func tion from the BC 
spectrum to the AC spectrum using cross-spectrum or 
FFT methods. The LP- based model t hat we propose 
can be regarded as this kind of approach to restora
t ion because it is used to design the inverse transfer 
function t hat can easily restore BC speech. However , 
here, its inverse filte ring was designed by using the 

(a) Signal waveform [ yet) =x(t) * h(t) ] 

AC speech BC speech 
----+1-1 Transfer function 

x(t) h(t) yet) 

(b) Temporal envelope [e it) = e x(t) * he(t)] 

BC temporal AC temporal 
envelope -------+1_1 Transfer function envelope 

he(t) e (t)ex(t) 
-- y 

2 2 2,
(c) Power envelope [ e y(t) =eit) * ~( t) J 

BC power 
envelope 

AC power 
envelope 

e (t) 2 ex(t) 2 
y 

Fig. 2	 Definitions of transfer functions: (a) signal 
waveform , (b) tempo ral envelope, and (c) 
power envelope 

LP coefficients related to the spectral characterist ics 
of signals. 

The signa l in each sub-ban d (cha nnel) can be re
stored independentl y where the temporal envelope 
and carr ier are t he two components to be restored , 
when representing a signal in the filterbank. More
over, t he te mporal envelope contains most of the im
portant inform at ion related to speech intelligibility 
rather than the carrier difference [10, 11]. Thus, th e 
primary goal is to restore the tem poral envelope in 
each channel, as can be seen in Fig. 2(b) . The cross
spectrum and long-term FFT methods , for example, 
can be applied to temporal-envelope inverse filtering 
(inverted he(t)) for BC speech. 

When focusing on the representation of the power 
envelopes of signals (F ig. 2(c)) rather than t hose of 
the temporal envelopes (Fig. 2(b)) , we can clearly 
express t he charact erist ics of the power envelopes as 
follows [7, 8]: 

ey(t? = eh(t? * ex(t)2 (1) 

where "*" denotes convolution , and ex(t)2, ey(t)2, and 
eh(t)2 corr espond to the power envelopes of signal s 
x (t ), yet) , and h(t ). In this relat ion , the carriers were 
assumed to be mutually independent respective whit e 
noise random variable functions (see [7] for details). 
T hus, restorin g the power envelope in each channel is 
the primary goal. As mentioned above, the temp oral 
envelope contains most of the impor tan t inform ation 
rela ted to speech int elligibility. T he modulation t ran s
fer function of %(t) 2 is strongly related to speech in
te lligibility and this can be applied to deriving power 
envelope inverse filterin g, so t hat speech intelligibility 
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can be improved by using this kind of inverse filtering 
used in MTF-based speech dereverberation [7, 8]. 

Although the MTF-based and LP-based models 
seem to be different approaches, both, in fact, involve 
the same concept to restore the observed BC signal, 
i.e., the same representation of source and filter in- __ 
formation. The MTF-based model tries to restore 
the temporal power envelope in each channel, while 
the LP-based one tries to restore the spectral enve
lope. Thus, their only difference lies in the processing 
domain, one processing in the time domain, and the 
other processing in the frequency domain. In the next 
two sections, we present the two models based on the 
MTF and the LP concepts in detail. 

4. MTF-Based Model 

4.1 Model concept 

The MTF concept was proposed by Houtgast et al. 
to measure the room acoustics to assess what effect 
the enclosure had on speech intelligibility [10, 12, 13]. 
The model originated from the idea that the temporal 
envelope contained most of the important information 
related to speech intelligibility, and this intelligibility 
could be improved if the power envelope of BC speech 
were restored, as processing did with the method of 
speech dereverberation [7, 8]. Thus, the primary goal 
of the MTF-based model was to restore the power en
velopes of BC speech by using power envelope inverse 
filtering related to the MTF concept, in the filterbank 
[5]. According to this concept, the input signal is di
vided into sub-band signals, and the sub-band signal 
in each channel is then manipulated independently. 
Here, the power envelope and carrier are represented 
as the two components to be restored in each channel. 

4.2 Definitions 

Let x(t) and y(t) be AC speech and associated BC 
speech. With the N-channel band-pass filterbank, we 
assumed that the signals could be represented as 

N N 

x(t) =	 L xn(t) = L eX n (t) . cxJt) (2) 
n=l n=l 

N N 

y(t) =	 L Yn(t) = L eY n (t) . <;(t) (3) 
n=l n=l 

Here, xn(t) and Yn(t) are the sub-band signal compo
nents, eX n (t) and e

Y n 
(t) are the temporal envelopes, 

and cX n (t) and c
Y n 

(t) are the carriers in the n-th chan
nel of the filterbank. 

We used the Hilbert transform to decompose the 
signal in each channel into an envelope and a carrier. 
This method was based on the calculation of the in
stantaneous amplitude of the signal, using low-pass 
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filtering as post-processing to remove the higher fre
quencies components in the envelopes. 

eYn (t) LPF [IYn(t) + j . Hilbert(Yn(t))I] (4) 

Yn(t) (5)cYn (t) (t)eYn 

In these equations, Hilbertr-) is the Hilbert transform. 
LPF[·] denotes low-pass filtering with a 20 Hz cut
off frequency to remove the high-pass envelope [7, 8]. 
This cut-off value (20 Hz) was chosen because the im
portant modulation region, for speech perception [14] 
and speech recognition [15, 16], ranges from 1 to 16 
Hz. eX n (t) and CX n (t) can also be calculated from x(t) 
using the same method (Eqs. (4) and (5)). 

4.3 Analysis 

We analyzed the relationships between all pairs 
of speech signals (BC and AC speech) to design the 
MTF-based inverse transfer function, using the follow
ing: 
(1) Correlation 

Corr(ex(t)2, ey(t)2) 

faT ~ex(t)~ey(t)dt 
(6) 

{faT ~ex(t)2dt} {faT ~ey(t)2dt} 

~ex(t) = ex(t)2 - ex(t)2 
2 - 

~ey(t) = ey(t) - ey(t)2 

(2) SNR (dB) 

itT ex(t)2dt 
2 I _~o:!....-- _ 

SNR(ex (t )2, ey(t) ) = 20 oglO JoT (e - ey(t)2)1~) 
x(t)2 

(3) Complex modulation transfer function MTF 

M(w) = I fo
oo 

eh(~2 exp( -jwt)dt I (8)
fa eh(t)2dt 

(4) Transfer functions via long-term FFT 

1[H(w)] -1 [F[y(t)]] (9)h(t) F- = F F[x(t)] 

-1 [F[ey(t)2]] (10)eh(t)2 1
F- [Eh(w)] = F F[e (tF]x

where F[·] is the long-term Fourier transform and 
F- 1 [.] is the inverse of the long-term Fourier trans
form. 

The signal was resampled at a sampling frequency 
of 16 kHz with 16 bits per sample. Then, to analyze 
the signal within 8 kHz, we used a constant-band N
channel filter bank, with 200 channels and a constant 
bandwidth of 40 Hz. Figure 3 shows the analyzed 
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Fig.3	 Analysis results : (a) averaged ex(t)2 (solid line) and ey(t)2 (dashed line) in channels, (b) IH (w)1via 
long-term FFT, (c) ex(t)2, (d) ey(t)2, (e) power envelope correlation Corr(ex(t)2,e y(t)2) , (f) SNR 
(ex (t)2, ey(t)2), (g) slope of the MTF M(w), and (h) slope of IEh(w) I via long-term FFT in each 
channel 

results for a pair of AC/BC male speech /asahan/ , 
recorded at position 5 via Microphone B. 

Figure 3(a) shows the averaged powers of AC (solid 
line) and BC speech (dashed line). The averaged pow
ers of AC speech were reduced to less than 40 dB in 
th e first 130 channels , while this was only in the first 
40 channels with BC speech . Figure 3(b) showes the 
transfer function , H(w), as a low-pass filter. There
fore , generally speaking, these figures indicated low
pass characteristics as their transfer functions. Fig
ures 3(g) and 3(h) show the magnitude curves of MTF 
M(w) and IEh(w)1in 200 channels that we analyzed. 
The signs of their values correspond to the charac
teristics of the transfer function in each channel. A 
positive value implies a high-pass filter and a negative 
value implies a low-pass filter. From Figs . 3(g) and 
3(h), we know that the significant characteristics to 
restore BC speech in the power envelope can be in
terpreted as low-pass or hig-hpass filtering. In Figs. 

3(e) and 3(f), the correlation between the power en
velopes of AC and BC speech, Corr(ex(t)2 ,ey(t)2) , is 
high within about 100 channels while the gain reduc
tion, SNR(e x(t)2, ey(t)2) , is small in most channels, 
and variants of th ese 100 channels . Therefore, the 
shapes of the power envelopes seem to be alm ost the 
sam e (Fig. 3(e)) and the difference is only in mag
nitude (Fig . 3(f)) . Therefore, the relative reduction 
in the BC power envelopes with AC speech can be 
approximately interpreted as a reduction in constant 
gain within 100 channels (respective to 4 kHz) . 

These results were used to design the MTF-based 
inverse transfer function to construct the restoration 
model as descussed in the following. 

4.4 Restoration method 

From the above results , we predicted that the 
MTF-based transfer function with constant gain 
would be useful for restoring BC speech. We there
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N-channel N-chann el Restored 
speech 
Be 

constant constant speech 
bandwidth bandwidth 

y(t) filterbank filterbank ~ (t) 
(analysis) (synth esis) 

Fig. 4 Restoration of BC speech by MTF model 

fore propose a method of restoration based on MT F 
with t he power envelope gain compensation out lined 
in Fig. 4 [5]. T he BC speech signal is decomp osed 
into te mpora l envelopes and carr iers in N- channels as 
Eq. (3), using Eqs. (4) and (5). Here, the power enve
lope could be obtained as the square of the temporal 
envelope. After pro cessing in the BC power envelopes 
and th e BC carriers, the restored sub-band signals in 
th e channels are reconstructed into a restored speech 
signal, x( t), using synthesis processing. 

Because th e carr iers are not important for speech 
intelligibility [11] during the carrier process, we used 
th e BC carr iers as the AC carriers as in the MTF
based model in Unoki et at. [5], i.e. , c = X n CYn' 

A gain value is normally used as compensation for 
the BC power envelope during the power envelope pro
cess; this value is obtained from the average differences 
between BC and AC power envelopes in each channel. 
However, when the correlat ion is lower than 0.8 and 
the BC power envelope is low (~ - 20 dB), inverse 
filtering, Ei:1(z ), as in some methods of MT F-based 
dereverberation [7, 8] is used to restore the BC power 
envelope as follows: 

1{ (13.8) I}E-I(z) = - 1 - exp - - - z" (11)
h a2 TR . is 

where is is th e sampling frequency (16 kHz) , a is th e 
gain factor , and T R is th e delay parameter. Param
ete rs a and TR can be estimated using the following 
algorit hm: 

arg min {iT })
T R = max 

(
0 :::; T R :::; T R,max 0 min (ex,TR(t)2, O)dt 

(12) 

a= ~ I fiT::~ :~~ dt / iTexp (-~~ 8t) dt (13) 

e
where TR ,max is th e upp er limited region of T R, 

x ,TR (t )2 is t he set of candidates for th e power en
velope restored as the function of TR , and T is the 
signal duration of y(t ). These algori thms for param
ete rs TR and aoriginated in Unoki et at. [7, 8] and 
were modified for ACjBC speech. The algorithm for a 
was change d with a gain factor of ) t JoT ::i ~l~ dt that 
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Fig. 5 Signal improvement in N -channel filt erbank 
(N = 200, 40 Hz const ant bandwidth ): 
(a) correlat ion Corr(ex (t )2, ey(t )2), 
(b) SNR(ex (t)Z, ey(t)2) (dB) , (c) improved 
correlation , and (d) improved SNR (dB) 

reflected th e relation between AC and BC power en
velopes. Here, the BC power envelope was rest ored us
ing its gain control when parameter TR was 0 (~ -40 
dB), 

Figur e 5 compares a restored signal and the BC 
speech signal. There are improvements in the corre
lation and SNR of the power envelope in each chan
nel (N = 200). The left panel (a) in Fig. 5 shows 
the corr elation between ACjBC power envelopes and 
(c) shows t heir SNR. Using th e MTF-based model 
with power envelope gain compensation, the correla
t ion was improved in lower frequency regions as shown 
in Fig. 5(b) , and the SNR was also imp roved as seen 
in Fig. 5(d). These results prove the advantages of 
the MTF-based model. 

5 . LP -Based Model 

5.1 Model concept 

Linear pr ediction (LP) is one of th e most power
ful techniqu es for analyzing speech. It pr ovides ex
tremely accurate estimates of speech parameters such 
as fund amental frequency, formants, spectra, and vo
cal tract area functions, and it is relatively efficient 
in comput ation [6]. The LP-based model can be in
terpreted as a source-filter model; the LP residue is 
related to th e source , which corresponds to th e char
acterist ics of t he glottis and th e LP coeffi cients are 
related to the filter , which corr esponds to the cha rac
te rist ics of the vocal tract. Th e LP-based mod el orig
inat es from t he idea that th e inform ation correspond
ing to t he source (glot tal) characterist ics can be the 
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-1 G(z) S(z) .IF(z)=--p I • r.. a(i) Z-i 

i=O 

Fig. 6 LP as source-filt er model 

same for both BC and AC speech. Therefore, inverse 
filt ering is primarily derived from the LP coefficients. 
Moreover , since the LP coefficients correspond to the 
voca l tract , inverse filt ering based on LP coefficients 
could be adapted for the different characterist ics of 
speakers and those of the syllables t hey pronounce. 

5.2 Definiti on 

When the LP order is sufficient ly high , the all-po le 
model provides a goo d representation for almost all 
speech sounds, s(n), as in Rabiner [6] 

p 

s(n ) = 2:= s(i)a(n - i) + g(n) (14) 
;=1 

where P is t he LP order , a(i) is the i-th LP coefficient, 
an d g(n) is t he LP residue of speech signa l s(n). We 
can rewrite Eq. (14) in the z-domai n as 

p 

- G(z ) = S(z) 2:= a(i )z- ; (15) 
;=0 

where a(O) = -1 , G( z) and S( z) are t he z tran sform s 
of g(n ) an d s(n) . As we can see in Fig. 6, LP repre
sentation can be interpreted as a source- filt er model. 
The LP residue, G( z) , is related to the source, which 
correspo nds to the characteristics of the glottis. T he 
LP coefficients are related to the filter , F (z ), which 
corresponds to t he characteristics of the voca l t ract . 

Let x(t) and y(t) be the AC and it s associated BC 
speech. The signals x(n) an d y(n) are discrete signals 
of x( t ) and y(t) with a sam pling frequency of 16 kHz. 
Thus, the two signals, x(n) and y(n ), are represented 
by the LP model in the z-domain as: 

p 

- G,,(z ) = X( z) 2:= a,,(i) z - ; (16) 
;=0 

Q 

- Gy(z ) = Y (z ) 2:= ay(i) z -; (17) 
;=0 

where a,,(O) = -1 , ay(O) = -1, X (z) an d Y( z) are z 
transforms of x(n) and y(n) , P and Q are LP ord ers , 
a,,(i) and ay(i) are i-th LP coefficients , and G,,(z) and 
Gy(z ) are z t ransforms of LP residu es g,,(n ) and gy(n) , 
respectively. 

Speaker: Kimura Syllable: hi Position: 5 
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Fig. 7 Ratio of AC/ BC residu es: (a) AC speech , 
(b) BC speech, (c) residue correlat ion 
Corr(g,,(n ), gy(n )), and (d)residue ratio 
Gy(z) IG ,,(z ) 

Assuming th at the mathematic al description of 
h(t ) is an M-order FIR filter, the transfer fun cti on 
from x(t) to y(t) in t he z-domain , H (w), is represented 
as 

M 

H (z ) = ~ ~:~ = ~ h(i )z - ; (18) 

From Eqs. (16)-(18), we have 

p 

~ . . 2:= ax (i) z - ; 
L h(z) z - ' = ;=0 

; =0 Q2:= ay(i) z-; 

Gy( z) 
. G,,(z) (19) 

;= 0 

5.3 Analysis 

Since the LP residues g,,(t) and gy(t ) are related 
to t he source information (or glottal information) of 
x( t) and y(t) , t his kind of information may remain un
changed in both the AC and BC speech signals. To 
verify this suppos ition, we ana lyzed every pair of AC 
and BC speech signals in a J apanese syllable dataset. 
The te chnique for LP analysis as autocorrelation us
ing the Levinson-Durbin recursion algorithm. There 
is a typical example of the results of analysis in F ig. 7. 
The AC and BC vowel Ii i signa ls ar e in Figs. 7(a) and 
7(b) , respecti vely. Figure 7(c) indicates that the cor
relation between g" (n) an d gy(n) is very high . Each 
correlation value here is associate d wit h a pair of 4
millisecond AC / BC speech fram es. Figure 7(d) shows 
t hat the rat io of t he LP residues in the frequency do
main , G,,(z )/ Gy(z ), is almost constant. Although this 
ratio is not stable at any frequency, we can approxi-
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mately represent it as 

Gy(z) = k (20)
Gx(z) 

where k is a constant factor. 

5.4 Restoration method 

From Eqs. (19) and (20) , we can rewrite this ratio 
as 

(~h(i)Z-i) . (t, ay(i)z-i) = k t, ax(i)z-i 

(21) 
Deriving the zero-th variable of both sides in Eq. (21), 
we obtain 

Gy(z) 
(22)h(O) = k = Gx(z) 

Figure 8 outlines a typical conversion from AC 
speech to BC speech with transfer function H(z). The 
inverse filter, H - 1(z), can be found as the inverse 
function of H( z) and used to straightforwardly restore 
BC speech to AC speech. All equations in the fig
ure have been implied from Eqs . (16),(17), and (22) . 
From these, we can obtain the equation for H- 1(z) 
simply as 

Q . 

L ay(i)z-' (23) 
1 1 i=O 

H- (z) = h(O)' p '-i

L ax(2)z 

i=O 

We should obtain the restored speech from ob
served BC speech with the inverse transfer function, 
H-1 (z), which depends on the LP coefficients and 
residue ratio of the AC and BC speech signals . Equa
tion (23) gives us a different way to estimate this 
transfer function . Inverse transfer function H - 1 (z) is 
decomposed into two parts. In the first part, the con
stant value, h(O) , can be chosen manually and used to 
control the magnitude of restored speech. The second 
part primarily depends on the LP coefficients of sig
nals . Therefore, in the LP-based model, the relation
ship between the LP coefficients of AC and BC speech 
signals is essential to restore BC speech. Here, we 
chose h(O) = 1 and set the LP orders at P = Q = 20. 

6. Evaluation 

This section discusses the feasibility of the mod
els to restore BC speech signals. The main aim of 
our evaluation was to determine which model would 
be the most useful with regard to sound quality to 
achieve two different purposes: speech intelligibility 
for human hearing systems and robustness for ASR 
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Y(z) 
H(z) = X(z) 

G,(z) = k (const .) 
G,(z) 

G,(z) 
X(z) Y(z) = G,(z) 

I' . j 

· 1r,a.(i). z fa,(i) . ziH (z)
i=O ,=0 

Fig . 8 Transfer function of LP-based model 

systems. Using a number of different measurements, 
we evaluated two previous models and our two pro
posed models . The two previous were (1) the cross 
spectrum signal (CrossSig) and the (2) the long-term 
FFT (LTFSig) models. Ours were (3) the MTF-based 
(MTFGain) and (4) the LP-based (LPSig) models. 

Log-spectrum distortion (LSD) and the mean opin
ion score (MOS) were used to evaluate the improve
ments in intelligibility, and the LP coefficient distance 
(LCD) and mel-frequency cepstral coefficient distance 
(MCD) were used to evaluate the improvements in 
the cepstral distance of restored speech signals. The 
Japanese vowel dataset from the AC/BC database 
was used to evaluate improvements with the objective 
measurements (LSD, LCD, and MCD), and ten words 
that were chosen randomly from the Japanese word 
dataset were used to evaluate improvements with the 
subjective measurements (MOS). 

6.1 Objective evaluations 

We used LSD, LCD, and MCD for the Japanese 
syllable dataset to objectively evaluate the four meth
ods . These three measurements were computed as fol
lows: 

LSD ~ t [20 log" (:~i:~:)r(24) 

LCD P 
1 Lp 

(ax(i) - ay(i))2 (25) 
i =l 

12
2MCD L(C . - C . ) (26)X. I'/, Y ,l 

i=O 

where W is the upper frequency (8 kHz in this 
case), and 5 (w) and S(w) are the am plitude spec
tra obtained by 1024-point FFT calculation of 25
millisecond frames. The time these frames overlapped 
was 15 ms. Here, ax (i) and ay(i) are the i-th LP 
coefficients of signals with the LP order being set at 
P = 20, and Cx ,i and Cy,i are the i-th MFCC of the 
signals. 

After measuring the distances between the clean 
AC speech signal and the other signals, i.e., the ob-
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Table 2 Average LSD improvem ents in restored 
speech 

Method 
1 

Measurement positi on 
2 - 3 4 5 

CrossSig 1.14 5.00 2.14 3.53 5.54 
LTFSi g 3 .18 4.64 4.58 3.95 6.27 

MTFGa in 1.94 4.04 2.60 1.68 6.55 
LPSig 3.02 5.80 4.29 5.00 7.71 

Table 3 Average LCD imp rovements in restored 
speech 

Method 
Measurement position 

1 2 3 4 5 
CrossSig 0.60 1.09 0.56 0.89 0.57 
LTFSig 0.62 1.24 1.15 1.07 0.78 

MTFGain 0.61 0.18 0.08 0.25 0.31 
LPSi g 0.73 1.26 0.91 0.92 0 .82 

Tabl e 4 Average MCD improvements in restored 
sp eech 

Method 
Measur ement posi tion 

1 2 3 4 5 
Cross Sig 6.13 7.00 7.74 5.4 2 1.71 
LTFSig 4.91 10.13 13.84 7.98 7.56 

MTFGain 5.72 4.22 7.22 5.53 4.91 
LPSig 9.69 11.66 13.95 10.09 8.33 

Tabl e 5 Results of MOS test 

BC 
spee ch 

Cros s 
-Sig 

LTF 
-Sig 

MTF 
-Gain 

LP 
-Sig 

AC 
speech 

2.44 1.72 2.45 2.68 2.91 4.33 

served BC speech and the restored speech signals, we 
evaluated the improvements in the restored speech in 
comparison with BC spe ech. Tabl es 2, 3, an d 4 list 
the average imp rovements in t he three ob jective mea
surements. T he LP-based model is genera lly the best 
for all the measurements . Alth ough the MT F-based 
mo del does not have advantages in the obj ecti ve mea
sure ments, it does yield bet ter results than the pre
vious mod els with t he LSD measurement at measure
ment in Positi on 5. Figure 9 shows typical LSD curve s 
in t his position. 

6.2 Subjective evaluat ion 

We carr ied out MOS (mean opinion score) tests 
usin g the four methods for the subjective evaluat ion. 
We conducte d t hese wit h five sub jec ts who had nor
mal hearing. The MOS test s were used to measure 
t he sound quali ty of restored speech using t he four 
methods in five evaluations graded as perceived by 
the subjects. The levels rated were: bad (1), poor 
(2) , fair (3) , good (4), and excellent (5). The speech 
signals in these tes t s were t en words that had been 
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Fig. 9 LSD between AC and restored speech signals 

randomly chosen from t he J ap an ese word dataset . 
Table 5 list s the mean scores for the subjective rat

ings. The LP-based model is t he best for restoring BC 
speech to AC speech. This is followed by the MTF
based mod el. These subjective results also pr ove t hat 
the previous models were not as good. The improve
ment s with the LTFSig model are almost zero, and 
even minus with t he Cr ossSig model. 

6.3 Discussion 

As previously mentioned , we used LSD and MOS 
to evaluate improvements in speech intelligibili ty, 
which is useful in human hearin g systems. LCD and 
MCD were used to evaluate t he cepstral distan ces, 
which are significant for ASR sys te ms. With LCD 
and MCD measur ements, the MTF-based mo del did 
not seem to have as good ASR robust -features. Al
though the LSD measurements demonstrat ed t hat t he 

. MTF-based model significan tl y improved intelligibil
ity, the subjective MOS measurements also revealed 
its advantages in comparison with th e two previous 
mod els. The object ive measur ements were better for 
evaluat ing t he mo dels for ASR sys tems , and the lis
te ning tests were be tter for evaluating speech intelli
gibility. Overall , t he MTF-based model was best for 
improving intelligibility. 

All the obj ective measurements (LSD , LCD , and 
MCD ) and the subject ive measurements (MOS) re
vealed that t he proposed models, i.e. , MTF-based and 
LP-based , were bet ter at improving voice-quality than 
t he other pr eviou s method s. In particular , t he LP
based model was t he best for both human hearing and 
ASR systems . 

The proposed models still curre ntly need t o use 
some inform ation from AC speech to restore the ob
served BC speech. The gain values of t he power en
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velope in t he MTF-based model, and t he LP coeffi
cient s of AC speech in the LP-based model, are essen
t ial in const ructing inverse filtering. This also means 
that there ar e only a few par ameters (gain , LP coef
ficients) that affect t he ability of the proposed mod
els in restoration . These parameters should depend 
on the characterist ics of pronounced sounds such as 
vowels and consonant s from each specific positi on of 
meas urement . By investi gatin g t he var iances in these 
parameters along wit h BC speech sounds, we should 
be able to find practi cal algorithms to determin e them 
automatically without AC speech. 

7. Conclusion 

We constructed a lar ge-scale AC/BC speech 
database (5 measur ement positions , 10 speakers, and 
145 st imuli for both AC and BC speech) to investi 
gate the significant characte ristics in the relati onship 
between AC and BC speech signa ls. By analyzing 
all AC/ BC datasets in this database, we foun d t hat 
t he gain of the power envelope is approximately con
stant in about 100 channels, corres ponding to 4 kHz. 
We also found a constant ratio of LP residues of AC 
and BC spe ech signals with the LP method . These 
characte rist ics seem to be significant in restorin g BC 
speech. We then pro posed two models according to 
these characterist ics, i.e., MTF-based and LP-based 
models. Both models worked wit h t he same concept , 
but t here were differences in t heir processing domains. 
T he MTF-based model decomp osed a signal into sub
band signals and then separately manipulated tempo
ral envelopes and carriers in each channel, while the 
LP-based model manipul at ed th e LP residu e and LP 
coefficients in each frame. These differences can re
sult in different restorati on goals in improving speech 
intelligibility and features t hat are robust in ASR. 

We evaluated both these models and demonstrated 
t heir advantages by comparing t hem wit h two ot her 
methods (CrossSig and LTFSig). As a result , we 
found that both the MTF-based and LP-based models 
were better t han the ot her two methods for improving 
voice-quality . The MTF-based model, in parti cular , 
efficient ly restore speech intelligibility which is use
ful for human hearing syst ems . The LP-based model 
efficiently improved voice-quality. We therefore veri
fied both t he proposed methods based on our concept 
could adequately rest ore BC speech to imp rove not 
only its intelligibility but also the perform ance of ASR 
systems . 

These results were obtained as the first steps to
ward investi gat ing the possibili ty of rest oring BC 
speech. We thus focused on analyzing the signifi
can t relationship between AC and BC speech signals, 
and t he feasibility of models to restore BC speech 
signals . The proposed models st ill cur rent ly need to 
use AC speech to determine the coefficients of MT F-

based and LP-based inverse filtering. The gain values 
of power envelope inverse filterin g in t he MTF-based 
model were det ermined by the ratio of the AC/BC 
envelopes . The inverse transfer function in t he LP 
bas ed model was determined using t he LP coefficients 
of AC/BC speech signals. 

As the next st ep toward developing blind restora
t ion of BC speech in future work , we intend to investi 
gate the varian ces in the model par ameters in associ
ation with BC speech signals before findin g practical 
algorit hms to automatically calibrate these parame
ters only from the characterist ics of BC speech sig
nals. A different developm ent , i.e., a hybrid model 
based on the same concept (of b oth MTF-based and 
LP-based models) may be able to be prop osed , which 
would rest ore temporal-spectral inform at ion in both 
the t ime and frequency domains. It would have su
perior performance for both human hear ing and ASR 
systems . 
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