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Abstract
than normal noisy speech (i.e., noisy air-conducted speech) because of its stability against surrounding
noise. The sound quality of bone-conducted speech, however, is very low and restoring bone-conducted

Bone-conducted speech in an extremely noisy environment seems to be more advantageous

speech is a challenging new topic in the speech signal-processing field. We describe two types of models for
restoration: one based on the modulation transfer function (MTF) and the other based on linear prediction
(LP). The MTF-based model is expected to yield a restored signal with higher intelligibility while the LP-
based model is expected to yield one that is not only more intelligible to human hearing systems but
also enables automatic speech recognition (ASR) systems to achieve better performance. To evaluate the
ability of these models to improve voice-quality, we compared them with the other previous two models
using one subjective and three objective measurements. The mean opinion score (MOS) and log-spectrum
distortion (LSD) were used to evaluate the improvements in intelligibility, which is useful for human hearing
systems. The distances based on LP coefficients and mel-frequency cepstral coefficients (MFCCs) were used
to evaluate the improvements in cepstral distances which are useful for ASR systems. The results proved
that both the MTF-based and LP-based models are better than the other previous models for improving
intelligibility. They particularly proved that the LP-based model produces the best results for both human
hearing and ASR systems.

Keywords: bone-conducted (BC) speech, air-conducted (AC) speech, modulation transfer function (MTF), linear pre-
diction (LP), speech intelligibility

1. Introduction - “vantageous than noisy air-conducted (AC) speech. Al-

though BC speech is not affected by external noise as

The sound quality and intelligibility of speech are
influenced by their transmission environments. It is
very difficult for automatic speech recognition (ASR)
systems as well as humans to accomplish speech
communications in an extremely noisy environment.
There are many different complex models and/or al-
gorithms that are used as a solution to canceling or
reducing interfering noises. These are only efficient at
low and medium noise levels and are ineffective when
the noise levels are too high.

Another possible solution is to use a special micro-
phone to record the speech signal transmitted through
the speaker’s head and face. This recorded signal is
referred to as “bone-conducted speech”. Its stabil-
ity against interfering noise from a noisy environment
seems to make bone-conducted (BC) speech more ad-
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AC speech is, there is a drawback to using BC speech;
the signal is attenuated in a complex manner when it
is transmitted through bone-conduction. This causes
the voice-quality of BC speech, which means both its
intelligibility by human hearing systems and features
that are robust in ASR systems, to be very poor. If
the voice-quality of BC speech can be improved, the
restored signal can be applied to speech applications in
noisy environments with greater efficiency instead of
using noisy AC speech. Such applications include hu-
man hearing aids and machine hearing systems. Since
it is very difficult to blindly restore BC speech, this is
a challenging new topic in the speech signal processing
field.

The attenuation of the BC speech signal varies for
different positions of measurement (BC microphone
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positions), pronounced syllables, and speakers. This is
because the characteristics of bone-conduction change
for different measuring positions, and the distribution
of frequency components varies with speakers who
pronounce syllables differently. This attenuation is
generally strong at high frequencies and it seems to
be low-pass filtering with a cut-off frequency of about
1 kHz [1]. A straightforward method of restoring
BC speech is to emphasize these attenuated frequency
components by using high-pass filtering (inverse of the
low-pass filtering previously described). However, it
is difficult to adequately design one unique kind of
high-pass filtering that is independent of pronounced
syllables, speakers, and measuring positions. There
are various methods of deriving inverse filtering such
as the cross-spectrum method [2] and the long-term
Fourier transform [3, 4], but these yield restored sig-
nals with artifacts such as musical noise and echoes so
there are only slight improvements in voice-quality.

We investigated the relationships between BC and
clean AC speech using an AC/BC speech database as
an essential step toward constructing complete mod-
els to restore BC speech and find significant charac-
teristics (for inverse filtering) that would be useful
in restoring BC speech. We propose two models of
restoration from these results. The first is based on
the modulation transfer function (MTF) [5] and the
second is based on linear prediction (LP) [6]. All cur-
rent models (including the ones we propose) obtain
their parameters by using various information on AC
speech; we regarded the consideration of blindly de-
termined model parameters to be the next step we will
undertake in future work.

The MTF-based model originates from the idea
that the temporal envelope contains most of the im-
portant information related to speech intelligibility,
and this intelligibility can be improved by using power
envelope inverse filtering such as that with the speech
dereverberation method [7, 8]. The LP-based model
originates from the idea that the information corre-
sponding to the source (glottal) characteristics as the
LP residue is the same for both AC and BC speech
signals. Therefore, adaptive inverse filtering will be
primarily derived from the LP coefficients of AC and
BC speech related to filter information (vocal tract).

Both models manipulate source and filter informa-
tion; the temporal envelopes and carriers are used in
the MTF-based model and the LP residue and LP
coefficients are used in the LP-based model. The dif-
ference is in the processing domain, the MTF-based
model restores BC speech in the time domain with
each sub-band (channel) and the LP-based model re-
stores BC speech in the frequency domain with each
frame. We investigated both models, which are ex-
pected to yield restored signals that are not only more
intelligible to human hearing systems but which also
enable ASR systems to achieve better recognition.
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Table 1 List of equipment
Measurement, site Soundproof room
Measurement positions 5 positions
Number of speakers 10 people

Recorder SONY, TCD-D10 Proll
Sampling frequency 48 kHz
Sample size 16 bits

Mic. A for AC speech SONY, C536P
Mic. amp. A for AC speech | SONY, AC148F
Mic. B for BC speech Temco, HG-17
Mic. C for BC speech Handmade

Mic. amp. B for BC speech | Handmade

Soundproof room

3. .. DAT
Mic. B

L IR
|
Mic.
amp. A amp. B
x(t) !l yo
Mic. C S Mic. A //
~
g, s

e ——— . ———

Fig. 1 Environment for recording AC/BC speech

The rest of this paper is organized as follows. The
next section describes the AC/BC speech database
that was used in our study. Section 3 explains our as-
sumptions and approaches to BC speech restoration.
We then present our MTF-based and LP-based mod-
els in sections 4 and 5. These models are evaluated
and discussed in section 6. Section 7 concludes with
a summary and mentions future work.

2. AC/BC Speech Database

A database is indispensable for analyzing the re-
lationships and differences between BC speech and
clean AC speech signals before any models are used
to restore BC speech. We constructed a large-scale
database containing pairs of BC and clean AC speech
signals recorded simultaneously using a DAT system
(two channels).

Figure 1 and Table 1 show the environment and
equipment we used to construct this database. The
BC speech was collected at five different positions
on the head and face, i.e., the (1) mandibular an-
gle, (2) temple, (3) philtrum, (4) forehead, and (5)
calvaria. Thus, one position was associated with one
pair of clean AC speech and BC speech. Microphone
B was only used at position 5 and microphone C
was used at the other positions. Ten speakers (eight
males and two females) participated in the recording
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of the pronounced speech of 100 Japanese words and
45 Japanese syllables.

The selected words were chosen from the NTT
database by their degree of familiarity [9]. The
database had two parts. The first was (i) a Japanese
word dataset of 100 Japanese words selected from
Japanese word lists compiled by NTT-AT (2003).
With 10 speakers, 100 words, and 5 measurement po-
sitions, there were 5000 pairs of wave files. The second
was (ii) a Japanese syllable dataset of 45 Japanese syl-
lables. With 10 speakers, 45 syllables, and 5 measure-
ment positions, there were 2250 pairs of wave files.

3. Restoration Approaches
3.1 Assumptions

In the work reported here, clean AC speech was
used instead of noisy AC speech and this will be re-
ferred to as “AC speech” after this. AC speech was
recorded/observed simultaneously with BC speech, as
in the AC/BC speech database. We assumed that
there were existing relationships between AC and BC
speech that would be significant to restore BC speech.
Therefore, our strategy was to construct restoration
models through the following steps: (1) to investigate
the relationship between clean AC and BC speech sig-
nals, (2) to find significant characteristics and restora-
tion models to restore BC speech (toward clean AC
speech), and (3) to consider how to blindly determine
model parameters only from observed BC speech and
apply these to realistic communication. This paper fo-
cused on the first two essential steps. We considered
different approaches to designing inverse filtering for
the restoration models, which will be discussed in the
next section.

3.2 Approaches to restoring BC speech

There are three types of transfer functions that can
be used as different approaches to restoring BC speech
in Fig. 2. In general, these should be investigated
as transmission characteristics from AC speech to BC
speech before designing the inverse filtering to restore
observed BC speech.

As we can see from Fig.2(a), one straightforward
approach is to design the inverse transfer function
from y(t) to z(¢). There are also the cross-spectral
and long-term FFT methods [2]-[4]. These are used
to construct the inverse transfer function from the BC
spectrum to the AC spectrum using cross-spectrum or
FFT methods. The LP-based model that we propose
can be regarded as this kind of approach to restora-
tion because it is used to design the inverse transfer
function that can easily restore BC speech. However,
here, its inverse filtering was designed by using the
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(a) Signal waveform [ y(t) = x(t) * h(t) ]

AC speech . BC speech
Transfer function
x(1) h(t) y(®)

(b) Temporal envelope [ ey(t) =e () *h, ()]

AC temporal BC temporal
envelope Transfer function | e€nvelope
| | R

e (V) h,(t) e, (V)

(c) Power envelope [ ey(t)zz ex(t)2 * e (t)zj

AC power BC power

envelope Transfer function | e€nvelope
2 2 2

e, (V) e, () e, (t)

Fig. 2 Definitions of transfer functions: (a) signal
waveform, (b) temporal envelope, and (c)
power envelope

LP coefficients related to the spectral characteristics
of signals.

The signal in each sub-band (channel) can be re-
stored independently where the temporal envelope
and carrier are the two components to be restored,
when representing a signal in the filterbank. More-
over, the temporal envelope contains most of the im-
portant information related to speech intelligibility
rather than the carrier difference [10, 11]. Thus, the
primary goal is to restore the temporal envelope in
each channel, as can be seen in Fig. 2(b). The cross-
spectrum and long-term FFT methods, for example,
can be applied to temporal-envelope inverse filtering
(inverted h,(t)) for BC speech.

When focusing on the representation of the power
envelopes of signals (Fig. 2(c)) rather than those of
the temporal envelopes (Fig. 2(b)), we can clearly
express the characteristics of the power envelopes as
follows [7, 8]:

ey(t)2 = eh(t)2 * €g (t)2 (1)

where “«” denotes convolution, and e, (t)?, ey (t)?, and
en(t)? correspond to the power envelopes of signals
z(t), y(t), and h(t). In this relation, the carriers were
assumed to be mutually independent respective white
noise random variable functions (see [7] for details).
Thus, restoring the power envelope in each channel is
the primary goal. As mentioned above, the temporal
envelope contains most of the important information
related to speech intelligibility. The modulation trans-
fer function of ey (t)? is strongly related to speech in-
telligibility and this can be applied to deriving power
envelope inverse filtering, so that speech intelligibility
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can be improved by using this kind of inverse filtering
used in MTF-based speech dereverberation [7, 8.
Although the MTF-based and LP-based models
seem to be different approaches, both, in fact, involve
the same concept to restore the observed BC signal,

i.e., the same representation of source and filter in- ..

formation. The MTF-based model tries to restore
the temporal power envelope in each channel, while
the LP-based one tries to restore the spectral enve-
lope. Thus, their only difference lies in the processing
domain, one processing in the time domain, and the
other processing in the frequency domain. In the next
two sections, we present the two models based on the
MTF and the LP concepts in detail.

4. MTF-Based Model
4.1 Model concept

The MTF concept was proposed by Houtgast et al.
to measure the room acoustics to assess what effect
the enclosure had on speech intelligibility [10, 12, 13].
The model originated from the idea that the temporal
envelope contained most of the important information
related to speech intelligibility, and this intelligibility
could be improved if the power envelope of BC speech
were restored, as processing did with the method of
speech dereverberation [7, 8]. Thus, the primary goal
of the MTF-based model was to restore the power en-
velopes of BC speech by using power envelope inverse
filtering related to the MTF concept, in the filterbank
[5]. According to this concept, the input signal is di-
vided into sub-band signals, and the sub-band signal
in each channel is then manipulated independently.
Here, the power envelope and carrier are represented
as the two components to be restored in each channel.

4.2 Definitions

Let z(t) and y(t) be AC speech and associated BC
speech. With the N-channel band-pass filterbank, we
assumed that the signals could be represented as

N N
z(t) = Y zat) =) ea(t) o () (2

N N
y(®) = D vt =D ey () ey, (t)  (3)

Here, z.,,(t) and y,(t) are the sub-band signal compo-
nents, e, (t) and e, (t) are the temporal envelopes,
and c,, (t) and ¢y, (t) are the carriers in the n-th chan-
nel of the filterbank.

We used the Hilbert transform to decompose the
signal in each channel into an envelope and a carrier.
This method was based on the calculation of the in-
stantaneous amplitude of the signal, using low-pass
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filtering as post-processing to remove the higher fre-
quencies components in the envelopes.

ey, (t) = LPF[lya(t) +j - Hilbert(yn(2))[] (4)
_ yal®)
ey (t) = m (5)

In these equations, Hilbert(-) is the Hilbert transform.
LPF|-] denotes low-pass filtering with a 20 Hz cut-
off frequency to remove the high-pass envelope [7, 8].
This cut-off value (20 Hz) was chosen because the im-
portant modulation region, for speech perception [14]
and speech recognition [15, 16], ranges from 1 to 16
Hz. e, (t) and ¢, (t) can also be calculated from x(¢)
using the same method (Egs. (4) and (5)).

4.3 Analysis

We analyzed the relationships between all pairs
of speech signals (BC and AC speech) to design the
MTF-based inverse transfer function, using the follow-
ing:

(1) Correlation

Corr(e, (t)?, e, (1)?)
foT Ae, (t)Aey(t)dt

= (6)
\/{foT Aem(t)’zdt} {fOT Aey(t)2dt}
Aeg(t) = ey (t)? — e4(t)2
Aey(t) = ey (t)* — ey (t)2
(2) SNR (dB)

2 o 2y I ea(t)2dt
SNR(ex(t)", ey (t)") = 20logy, T a0 —ey(t)Q)El;)
(3) Complex modulation transfer function MTF

oy — 15~ en(t)? exp(—jwt)dt
M) = [ ®
(4) Transfer functions via long-term FFT
i — gt [Fl)]
b0 = PG =P FEE] o)

en(t)> = F—l[Eh(w)]:F-l{ﬁ} (10)

where F[] is the long-term Fourier transform and
F~1[] is the inverse of the long-term Fourier trans-
form.

The signal was resampled at a sampling frequency
of 16 kHz with 16 bits per sample. Then, to analyze
the signal within 8 kHz, we used a constant-band N-
channel filterbank, with 200 channels and a constant
bandwidth of 40 Hz. Figure 3 shows the analyzed
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Fig. 3 Analysis results: (a) averaged e, (t)* (solid line) and e,(¢)? (dashed line) in channels, (b) |H (w)]| via
long-term FFT, (c) e, (t)?, (d) e,(t)?, (e) power envelope correlation Corr(e,(t)?,e,(t)?), (f) SNR
(ex(t)?,e4()?), (g) slope of the MTF M (w), and (h) slope of |Ej(w)| via long-term FFT in each

channel

results for a pair of AC/BC male speech /asahan/,
recorded at position 5 via Microphone B.

Figure 3(a) shows the averaged powers of AC (solid
line) and BC speech (dashed line). The averaged pow-
ers of AC speech were reduced to less than 40 dB in
the first 130 channels, while this was only in the first
40 channels with BC speech. Figure 3(b) showes the
transfer function, H(w), as a low-pass filter. There-
fore, generally speaking, these figures indicated low-
pass characteristics as their transfer functions. Fig-
ures 3(g) and 3(h) show the magnitude curves of MTF
M (w) and |Ex(w)| in 200 channels that we analyzed.
The signs of their values correspond to the charac-
teristics of the transfer function in each channel. A
positive value implies a high-pass filter and a negative
value implies a low-pass filter. From Figs. 3(g) and
3(h), we know that the significant characteristics to
restore BC speech in the power envelope can be in-
terpreted as low-pass or hig-hpass filtering. In Figs.
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3(e) and 3(f), the correlation between the power en-
velopes of AC and BC speech, Corr(e,(t)?, e,(t)?), is
high within about 100 channels while the gain reduc-
tion, SNR(e(t)?,e,(t)?), is small in most channels,
and variants of these 100 channels. Therefore, the
shapes of the power envelopes seem to be almost the
same (Fig. 3(e)) and the difference is only in mag-
nitude (Fig. 3(f)). Therefore, the relative reduction
in the BC power envelopes with AC speech can be
approximately interpreted as a reduction in constant
gain within 100 channels (respective to 4 kHz).

These results were used to design the MTF-based
inverse transfer function to construct the restoration
model as descussed in the following.

4.4 Restoration method
From the above results, we predicted that the

MTF-based transfer function with constant gain
would be useful for restoring BC speech. We there-
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Carrier extraction
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eyn(t) &xn(t)

Fig. 4 Restoration of BC speech by MTF model

fore propose a method of restoration based on MTF
with the power envelope gain compensation outlined
in Fig. 4 [5]. The BC speech signal is decomposed
into temporal envelopes and carriers in N-channels as
Eq. (3), using Egs. (4) and (5). Here, the power enve-
lope could be obtained as the square of the temporal
envelope. After processing in the BC power envelopes
and the BC carriers, the restored sub-band signals in
the channels are reconstructed into a restored speech
signal, £(t), using synthesis processing.

Because the carriers are not important for speech
intelligibility [11] during the carrier process, we used
the BC carriers as the AC carriers as in the MTF-
based model in Unoki et al. [3], i.e., é, = ¢y, .

A gain value is normally used as compensation for
the BC power envelope during the power envelope pro-
cess; this value is obtained from the average differences
between BC and AC power envelopes in each channel.
However, when the correlation is lower than 0.8 and
the BC power envelope is low (> —20 dB), inverse
filtering, E; '(2), as in some methods of MTF-based
dereverberation [7, 8] is used to restore the BC power
envelope as follows:

E\(z) = aiQ {1 — (- Tfi) z_l} (11)

where fs is the sampling frequency (16 kHz), a is the
gain factor, and Tg is the delay parameter. Param-
eters a and Tk can be estimated using the following
algorithm:

arg min T ;
Tr = max (0 < TRgg TR max {/ min(éz,7p (t)’,O)dt})
0
(12)

1 [T el(r)? ® —13.8¢
a—\/;/o ey(t)Zdt//O exp( Tn )dt (13)

where Tg max is the upper limited region of T'g,
€z.1,(t)? is the set of candidates for the power en-
velope restored as the function of T, and T is the
signal duration of y(t). These algorithms for param-
eters Ty and @ originated in Unoki et al. [7, 8] and
were modified for AC/BC speech. The algorithm for a

was changed with a gain factor of 4/ 4 OT %%—;dt that
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Fig. 5 Signal improvement in N-channel filterbank
(N =200, 40 Hz constant bandwidth):
(a) correlation Corr(es(t)?, ey (t)?),
(b) SNR(es (t)%,e,(t)?) (dB), (c) improved
correlation, and (d) improved SNR (dB)

reflected the relation between AC and BC power en-
velopes. Here, the BC power envelope was restored us-
ing its gain control when parameter Tr was 0 (> —40
dB).

Figure 5 compares a restored signal and the BC
speech signal. There are improvements in the corre-
lation and SNR of the power envelope in each chan-
nel (N = 200). The left panel (a) in Fig. 5 shows
the correlation between AC/BC power envelopes and
(c) shows their SNR. Using the MTF-based model
with power envelope gain compensation, the correla-
tion was improved in lower frequency regions as shown
in Fig. 5(b), and the SNR was also improved as seen
in Fig. 5(d). These results prove the advantages of
the MTF-based model.

5. LP-Based Model
5.1 Model concept

Linear prediction (LP) is one of the most power-
ful techniques for analyzing speech. It provides ex-
tremely accurate estimates of speech parameters such
as fundamental frequency, formants, spectra, and vo-
cal tract area functions, and it is relatively efficient
in computation [6]. The LP-based model can be in-
terpreted as a source-filter model; the LP residue is
related to the source, which corresponds to the char-
acteristics of the glottis and the LP coefficients are
related to the filter, which corresponds to the charac-
teristics of the vocal tract. The LP-based model orig-
inates from the idea that the information correspond-
ing to the source (glottal) characteristics can be the
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G(2) F(z) = - . S(z)
Y ai)z'
=0

Fig. 6 LP as source-filter model

same for both BC and AC speech. Therefore, inverse
filtering is primarily derived from the LP coefficients.
Moreover, since the LP coefficients correspond to the
vocal tract, inverse filtering based on LP coefficients
could be adapted for the different characteristics of
speakers and those of the syllables they pronounce.

5.2 Definition

When the LP order is sufficiently high, the all-pole
model provides a good representation for almost all
speech sounds, s(n), as in Rabiner [6]

s(n) =" s(i)a(n —1i) + g(n) (14)

=1

where P is the LP order, a(i) is the i-th LP coefficient,
and g(n) is the LP residue of speech signal s(n). We
can rewrite Eq. (14) in the z-domain as

P

~G(2) = S(2) Y a(i)z™ (15)

=0

where a(0) = —1, G(z) and S(z) are the z transforms
of g(n) and s(n). As we can see in Fig. 6, LP repre-
sentation can be interpreted as a source-filter model.
The LP residue, G(z), is related to the source, which
corresponds to the characteristics of the glottis. The
LP coefficients are related to the filter, F(z), which
corresponds to the characteristics of the vocal tract.

Let z(t) and y(¢) be the AC and its associated BC
speech. The signals z(n) and y(n) are discrete signals
of z(t) and y(t) with a sampling frequency of 16 kHz.
Thus, the two signals, z(n) and y(n), are represented
by the LP model in the z-domain as:

P
~Gu(2) = X(2)) au(i)z (16)
=0

Q
—Gy(z) = Y(2)) ay(i)z (17)
1=0

where a,(0) = —1, ay(0) = -1, X(z) and Y (z) are z
transforms of z(n) and y(n), P and @Q are LP orders,
a.(7) and ay(7) are i-th LP coefficients, and G,(z) and
Gy(z) are z transforms of LP residues g.(n) and gy(n),
respectively.
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Fig. 7 Ratio of AC/BC residues: (a) AC speech,
(b) BC speech, (c) residue correlation
Corr(g.(n), gy(n)), and (d)residue ratio
Gy(2)/Ga(2)

Assuming that the mathematical description of
h(t) is an M-order FIR filter, the transfer function
from z(t) to y(t) in the z-domain, H (w), is represented
as

_Y(2) s
H(z) = X0 = ;h(z)z (18)

From Egs. (16)-(18), we have

o ‘ N OFE (
> k@) = 12" GZ e (19)
=0 > ay i)z

1=0

5.3 Analysis

Since the LP residues g,(t) and g,(t) are related
to the source information (or glottal information) of
z(t) and y(t), this kind of information may remain un-
changed in both the AC and BC speech signals. To
verify this supposition, we analyzed every pair of AC
and BC speech signals in a Japanese syllable dataset.
The technique for LP analysis as autocorrelation us-
ing the Levinson-Durbin recursion algorithm. There
is a typical example of the results of analysis in Fig. 7.
The AC and BC vowel /i/ signals are in Figs. 7(a) and
7(b), respectively. Figure 7(c) indicates that the cor-
relation between g.(n) and gy(n) is very high. Each
correlation value here is associated with a pair of 4-
millisecond AC/BC speech frames. Figure 7(d) shows
that the ratio of the LP residues in the frequency do-
main, G.(z)/Gy(z), is almost constant. Although this
ratio is not stable at any frequency, we can approxi-
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mately represent it as

Gy(2) _

Gule) (20)

where k is a constant factor.

5.4 Restoration method

From Eqs. (19) and (20), we can rewrite this ratio
as

M Q P
(Z h(i)z‘i> : (Z ay(i)z_i) =3 Z az(1)z7"
i=0 i=0 i=0
(21)
Deriving the zero-th variable of both sides in Eq. (21),
we obtain
Gy(2)
G.(2)

Figure 8 outlines a typical conversion from AC
speech to BC speech with transfer function H(z). The
inverse filter, H~1(2), can be found as the inverse
function of H(z) and used to straightforwardly restore
BC speech to AC speech. All equations in the fig-
ure have been implied from Egs. (16),(17), and (22).
From these, we can obtain the equation for H~1(z)
simply as

(22)

Q .
Z ay(i)z™"
i=0

P .
Z ax(1)z""
i=0

We should obtain the restored speech from ob-
served BC speech with the inverse transfer function,
H1(z), which depends on the LP coefficients and
residue ratio of the AC and BC speech signals. Equa-
tion (23) gives us a different way to estimate this
transfer function. Inverse transfer function H~!(z) is
decomposed into two parts. In the first part, the con-
stant value, h({0), can be chosen manually and used to
control the magnitude of restored speech. The second
part primarily depends on the LP coefficients of sig-
nals. Therefore, in the LP-based model, the relation-
ship between the LP coefficients of AC and BC speech
signals is essential to restore BC speech. Here, we
chose h(0) = 1 and set the LP orders at P = Q = 20.

H™'(2) = (23)

h(0)

6. Evaluation

This section discusses the feasibility of the mod-
els to restore BC speech signals. The main aim of
our evaluation was to determine which model would
be the most useful with regard to sound quality to
achieve two different purposes: speech intelligibility
for human hearing systems and robustness for ASR
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H(z) =
X(z)
X(z) Y(z)
. 6@ _
AC speech G (@) =k (const.) BC speech
G,(2)
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E; a(i). z H "(Z) 2 a(i). z

Fig. 8 Transfer function of LP-based model

systems. Using a number of different measurements,
we evaluated two previous models and our two pro-
posed models. The two previous were (1) the cross
spectrum signal (CrossSig) and the (2) the long-term
FFT (LTFSig) models. Ours were (3) the MTF-based
(MTFGain) and (4) the LP-based (LPSig) models.

Log-spectrum distortion (LSD) and the mean opin-
ion score (MOS) were used to evaluate the improve-
ments in intelligibility, and the LP coefficient distance
(LCD) and mel-frequency cepstral coefficient distance
(MCD) were used to evaluate the improvements in
the cepstral distance of restored speech signals. The
Japanese vowel dataset from the AC/BC database
was used to evaluate improvements with the objective
measurements (LSD, LCD, and MCD), and ten words
that were chosen randomly from the Japanese word
dataset were used to evaluate improvements with the
subjective measurements (MOS).

6.1 Objective evaluations

We used LSD, LCD, and MCD for the Japanese
syllable dataset to objectively evaluate the four meth-
ods. These three measurements were computed as fol-
lows:

i |S<w>|)r
LSD = 201og,, | = 24
\ Z[ Og"(w(wﬂ o

|

el
M~

LCD = (az(3) — ay(3)) (25)
\ i=1

MCD = i(cm_i—cw-)Q (26)
=0

where W is the upper frequency (8 kHz in this
case), and S(w) and S(w) are the amplitude spec-
tra obtained by 1024-point FFT calculation of 25-
millisecond frames. The time these frames overlapped
was 15 ms. Here, a,(i) and ay(i) are the i-th LP
coeflicients of signals with the LP order being set at
P = 20, and ¢, ; and ¢y ; are the i-th MFCC of the
signals.

After measuring the distances between the clean
AC speech signal and the other signals, i.e., the ob-
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Table 2 Average LSD improvements in restored
speech

Measurement position
Method 1 2 3 4 R
CrossSig | 1.14 | 5.00 | 2.14 | 3.53 | 5.54
LTFSig | 3.18 | 4.64 | 4.58 | 3.95 | 6.27
MTFGain | 1.94 | 4.04 | 2.60 | 1.68 | 6.55
LPSig 3.02 | 5.80 | 4.29 | 5.00 | 7.71

Table 3 Average LCD improvements in restored
speech

Measurement position
Method 1 5 3 7] 5
CrossSig | 0.60 | 1.09 | 0.56 | 0.89 | 0.57
LTFSig 0.62 | 1.24 | 1.15 | 1.07 | 0.78
MTFGain | 0.61 | 0.18 | 0.08 | 0.25 | 0.31
LPSig 0.73 | 1.26 | 0.91 | 0.92 | 0.82

Table 4 Average MCD improvements in restored
speech

Measurement, position

Method 1 5 3 1 £

CrossSig | 6.13 | 7.00 7.74 542 | 1.71

LTFSig 491 | 10.13 | 13.84 | 7.98 | 7.56

MTFGain | 5.72 | 4.22 7.22 5.53 | 491

LPSig 9.69 | 11.66 | 13.95 | 10.09 | 8.33

Table 5 Results of MOS test

BC | Cross | LTF | MTF | LP AC
speech | -Sig | -Sig | -Gain | -Sig | speech
2.44 1.72 | 245 | 2.68 | 291 | 433

served BC speech and the restored speech signals, we
evaluated the improvements in the restored speech in
comparison with BC speech. Tables 2, 3, and 4 list
the average improvements in the three objective mea-
surements. The LP-based model is generally the best
for all the measurements. Although the MTF-based
model does not have advantages in the objective mea-
surements, it does yield better results than the pre-
vious models with the LSD measurement at measure-
ment in Position 5. Figure 9 shows typical LSD curves
in this position.

6.2 Subjective evaluation

We carried out MOS (mean opinion score) tests
using the four methods for the subjective evaluation.
We conducted these with five subjects who had nor-
mal hearing. The MOS tests were used to measure
the sound quality of restored speech using the four
methods in five evaluations graded as perceived by
the subjects. The levels rated were: bad (1), poor
(2), fair (3), good (4), and excellent (5). The speech
signals in these tests were ten words that had been
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LSD measure
3

Fig. 9 LSD between AC and restored speech signals

randomly chosen from the Japanese word dataset.

Table 5 lists the mean scores for the subjective rat-
ings. The LP-based model is the best for restoring BC
speech to AC speech. This is followed by the MTF-
based model. These subjective results also prove that
the previous models were not as good. The improve-
ments with the LTFSig model are almost zero, and
even minus with the CrossSig model.

6.3 Discussion

As previously mentioned, we used LSD and MOS
to evaluate improvements in speech intelligibility,
which is useful in human hearing systems. LCD and
MCD were used to evaluate the cepstral distances,
which are significant for ASR systems. With LCD
and MCD measurements, the MTF-based model did
not seem to have as good ASR robust-features. Al-
though the LSD measurements demonstrated that the
MTF-based model significantly improved intelligibil-
ity, the subjective MOS measurements also revealed
its advantages in comparison with the two previous
models. The objective measurements were better for
evaluating the models for ASR systems, and the lis-
tening tests were better for evaluating speech intelli-
gibility. Overall, the MTF-based model was best for
improving intelligibility.

All the objective measurements (LSD, LCD, and
MCD) and the subjective measurements (MOS) re-
vealed that the proposed models, i.e., MTF-based and
LP-based, were better at improving voice-quality than
the other previous methods. In particular, the LP-
based model was the best for both human hearing and
ASR systems.

The proposed models still currently need to use
some information from AC speech to restore the ob-
served BC speech. The gain values of the power en-
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velope in the MTF-based model, and the LP coeffi-
cients of AC speech in the LP-based model, are essen-
tial in constructing inverse filtering. This also means
that there are only a few parameters (gain, LP coef-
ficients) that affect the ability of the proposed mod-
els in restoration. These parameters should depend
on the characteristics of pronounced sounds such as
vowels and consonants from each specific position of
measurement. By investigating the variances in these
parameters along with BC speech sounds, we should
be able to find practical algorithms to determine them
automatically without AC speech.

7. Conclusion

We constructed a large-scale AC/BC speech
database (5 measurement positions, 10 speakers, and
145 stimuli for both AC and BC speech) to investi-
gate the significant characteristics in the relationship
between AC and BC speech signals. By analyzing
all AC/BC datasets in this database, we found that
the gain of the power envelope is approximately con-
stant in about 100 channels, corresponding to 4 kHz.
We also found a constant ratio of LP residues of AC
and BC speech signals with the LP method. These
characteristics seem to be significant in restoring BC
speech. We then proposed two models according to
these characteristics, i.e., MTF-based and LP-based
models. Both models worked with the same concept,
but there were differences in their processing domains.
The MTF-based model decomposed a signal into sub-
band signals and then separately manipulated tempo-
ral envelopes and carriers in each channel, while the
LP-based model manipulated the LP residue and LP
coefficients in each frame. These differences can re-
sult in different restoration goals in improving speech
intelligibility and features that are robust in ASR.

We evaluated both these models and demonstrated
their advantages by comparing them with two other
methods (CrossSig and LTFSig). As a result, we
found that both the MTF-based and LP-based models
were better than the other two methods for improving
voice-quality. The MTF-based model, in particular,
efficiently restore speech intelligibility which is use-
ful for human hearing systems. The LP-based model
efficiently improved voice-quality. We therefore veri-
fied both the proposed methods based on our concept
could adequately restore BC speech to improve not
only its intelligibility but also the performance of ASR
systems.

These results were obtained as the first steps to-
ward investigating the possibility of restoring BC
speech. We thus focused on analyzing the signifi-
cant relationship between AC and BC speech signals,
and the feasibility of models to restore BC speech
signals. The proposed models still currently need to
use AC speech to determine the coefficients of MTF-
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based and LP-based inverse filtering. The gain values
of power envelope inverse filtering in the MTF-based
model were determined by the ratio of the AC/BC
envelopes. The inverse transfer function in the LP-
based model was determined using the LP coefficients
of AC/BC speech signals.

As the next step toward developing blind restora-
tion of BC speech in future work, we intend to investi-
gate the variances in the model parameters in associ-
ation with BC speech signals before finding practical
algorithms to automatically calibrate these parame-
ters only from the characteristics of BC speech sig-
nals. A different development, i.e., a hybrid model
based on the same concept (of both MTF-based and
LP-based models) may be able to be proposed, which
would restore temporal-spectral information in both
the time and frequency domains. It would have su-
perior performance for both human hearing and ASR
systems.
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