<table>
<thead>
<tr>
<th>Title</th>
<th>Transport properties of field-effect transistor with Langmuir-Blodgett films of C<sub>60</sub> dendrimer and estimation of impurity levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawasaki, Naoko; Nagano, Takayuki; Kubozono, Yoshihiro; Sako, Yuuki; Morimoto, Yu; Takaguchi, Yutaka; Fujiwara, Akihiko; Chu, Chih-Chien; Imae, Toyoko</td>
</tr>
<tr>
<td>Citation</td>
<td>Applied Physics Letters, 91(24): 243515-1-243515-3</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/4028</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in (Naoko Kawasaki, Takayuki Nagano, Yoshihiro Kubozono, Yuuki Sako, Yu Morimoto, Yutaka Takaguchi, Akihiko Fujiwara, Chih-Chien Chu, and Toyoko Imae, Applied Physics Letters 91(24), 243515 (2007)) and may be found at http://link.aip.org/link/?apl/91/243515.</td>
</tr>
</tbody>
</table>
Transport properties of field-effect transistor with Langmuir-Blodgett films of C60 dendrimer and estimation of impurity levels

Naoko Kawasaki, Takayuki Nagano, and Yoshihiro Kubozono
Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan

Yuuki Sako, Yu Morimoto, and Yutaka Takaguchi
Graduate School of Environmental Science, Okayama University, Okayama 700-8530, Japan

Akihiko Fujiwara
Japan Advance Institute of Science and Technology, Ishikawa 923-1292, Japan

Chih-Chien Chu and Toyoko Imae
Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan

(Received 9 October 2007; accepted 23 November 2007; published online 14 December 2007)

Field-effect transistor (FET) device has been fabricated with Langmuir-Blodgett films of C60 dendrimer. The device showed n-channel normally off characteristics with the field-effect mobility of 2.7×10−3 cm2V−1s−1 at 300 K, whose value is twice as high as that (1.4×10−3 cm2V−1s−1) for the FET with spin-coated films of C60 dendrimer. This originates from the formation of ordered π-conduction network of C60 moieties. From the temperature dependence of field-effect mobility, a structural phase transition has been observed at around 300 K. Furthermore, the density of states for impurity levels was estimated in the Langmuir-Blodgett films. © 2007 American Institute of Physics. [DOI: 10.1063/1.2824818]

Various types of thin film field-effect transistor (FET) devices were fabricated with spin-coated films of [6,6]-phenyl C61-butyl acid methyl ester and 60-fused N-methylpyrrrolidine-meta-C12 phenyl (C60MC12).1,2 The FET device with C60MC12 showed the relatively high μ value (∼0.6 cm2V−1s−1) because this fullerene related materials could result in the self-assembled films which take 2.32 nm period bilayer structures with interdigitated dodecyl chains.2 Recently, we have fabricated the FET devices with the spin-coated films of C60 dendrimer [Fig. 1(a)] developed by Takaguchi and co-workers,3,4 and the μ value was 1.4×10−3 cm2V−1s−1 at 300 K.5 The channel conduction is based on π network through the C60 moieties. Further, the Langmuir-Blodgett (LB) films can be formed with the C60 dendrimer, as shown in Fig. 1(b),6 and the LB films are expected to form more ordered arrangement of C60 moieties than in the spin-coated films. In the present study, we have fabricated the FET devices with the LB films of C60 dendrimer and investigated their FET properties.

The structure (top-contact type) of the FET device with the LB films of C60 dendrimer is shown in Fig. 1(c). The LB films composed of five layers of C60 dendrimer were used as the active layers of the FET device. The thickness can be estimated to be ∼15 nm. The procedure of the formation of LB films is described elsewhere.2 The channel length L and channel width W were 5 μm and 6 mm, respectively. The thickness of Au source/drain electrodes was 50 nm. The capacitance per area C0 was 8.63×10−9 Fcm−2 for SiO2. The FET properties were measured under high vacuum of 10−9 Torr. The atomic force microscope (AFM) image of the LB films is shown in Fig. 1(d); the AFM image of LB films containing a defect is positively shown so that the LB is clearly recognized to be formed on Si/SiO2 substrate from the contrast. The Si/SiO2 surface was found to be covered with LB films of C60 dendrimer without defects over several square micrometers on the basis of the AFM images measured for some Si/SiO2/LB substrates.

Figure 2(a) shows the drain current ID versus drain-source voltage VDS plots for the FET with the LB films of C60 dendrimer at 300 K; the annealing was carried out at 60 °C for 12 h under vacuum of 10−6 Torr before the FET measurement. The plots show typical n-channel normally off output characteristics. The value of μ was determined to be 2.1×10−4 cm2V−1s−1 at 300 K from the ID/VG plot [Fig. 2(b)] at saturation regime of VDS=100 V with general formula for FET analysis,6 the μ reached the value of 2.7×10−3 cm2V−1s−1 at 300 K by a repetition of annealing, as shown in Fig. 2(c). The μ value is twice as high as that obtained for the FET with spin-coated films of C60 dendrimer (1.4×10−3 cm2V−1s−1 at 300 K). The higher performance in the FET with the LB films than in the spin-coated film FET can be attributed to the formation of well-ordered π-conduction path. The value of threshold voltage VTH was 36 V [Fig. 2(b)]. No FET properties were observed in the FET device with the L of 30 μm, suggesting that the ordered region in the LB films is still smaller than 30 μm, while the FET properties with spin-coated films could be observed at L=30 μm.5 In the spin-coated films, the conduction path was easily formed even at the L of 30 μm because of the thicker films (~1 μm) than the LB films (~15 nm). The on-off ratio reached 107 in the LB film FET.

The temperature (T) dependence of μ value in the FET device with the LB films is shown in Fig. 2(c). The μ value increases with an increase in T up to 300 K, and the μ value decreased rapidly above 300 K; the maximum μ value was 2.7×10−3 cm2V−1s−1 at 300 K, as described above. The drastic decrease is also observed in that reported for the FET device with the spin-coated films.3 As the drastic decrease above 300 K cannot be ascribed to neither the degradation of the

Footnote:
4Electronic mail: kubozono@cc.okayama-u.ac.jp
C$_{60}$-dendrimer molecule nor the evaporation of the solvents incorporated into the LB films. Furthermore, the reversible transition of the powder sample of C$_{60}$ dendrimer was found at around 300 K by the differential scanning calorimetry. Consequently, this transition probably corresponds to the structural order-disorder of C$_{60}$-dendrimer LB films.

The μ value for the LB film FET increased by a factor of 2 in comparison with that for the spin-coated film FET. This result is inconsistent with the first expectation that the highly ordered π-conduction network in the LB film FET should remarkably increase the μ value in comparison with that in the spin-coated film FET. From the expectation of the well-ordered C$_{60}$-moiety network in the LB films, which was supported by the x-ray reflection, we assumed that the characteristics of the LB film FET are not still governed by the formation of well-ordered π-conduction network between the C$_{60}$ moieties but by the impurity levels formed into the LB films. In order to evidence this assumption, we have estimated the density of states $N(\epsilon)$ for the impurity levels which exists in the LB films and compared the $N(\epsilon)$ with that for C$_{60}$ thin film FET formed by the thermal deposition. Here, ϵ is the energy measured from the lowest unoccupied molecular orbital (LUMO) level.

As seen from the schematic energy band diagram in the LB film FET shown in Fig. 3(a), the LUMO level which is associated with n-channel conduction is lowered by applying the $V_G (>0)$, and the activation energy E_a, i.e., the energy difference between the impurity levels matching the Fermi level of electrodes and the LUMO level, should decrease gradually. The E_a values were determined by a least-squares fitting with $I_D \sim \exp (-E_a/k_BT)$ to the I_D-T plot in the T region of 260–310 K at each V_G of 40–100 V (in 1 V step) and at the fixed V_{DS} of 100 V; k_B is Boltzmann constant. The E_a-V_G plot is shown in Fig. 3(b), and the E_a decreases monotonously with an increase in V_G, which is consistent with the behavior expected from the energy band diagram [Fig. 3(a)]. The $N(\epsilon)$ for the C$_{60}$-dendrimer LB film FET is shown as a function of ϵ in Fig. 3(c) together with

![Diagram](image-url)
$N(\varepsilon)$-ε plot for the C$_{60}$ FET; the $N(\varepsilon)$ is given by a logarithmic scale. Since the $N(\varepsilon)$ values in low ε region below 0.15 eV are scattered in the C$_{60}$ FET, the scattered $N(\varepsilon)$ values are ruled out in the analyses described in the subsequent paragraph.

The $N(\varepsilon)$ was 1019–1020 cm$^{-3}$ eV$^{-1}$ for both LB film and C$_{60}$ FETs. The trapped carriers are assumed to exist within 5–10 nm of the interface between active layers and gate dielectric on the basis of the results reported so far, and actually, the trapping depth of 7.5 nm was used for the $N(\varepsilon)$ estimation. As seen from Fig. 3(c), the $N(\varepsilon)$ for the LB film FET in the ε region of 0.15–0.4 eV is approximately four times as high as that for the C$_{60}$ thin film FET which exhibits the μ value of 0.14 cm2 V$^{-1}$ s$^{-1}$. This result suggests that the lower μ value (2.7 \times 10$^{-3}$ cm2 V$^{-1}$ s$^{-1}$) in the LB film FET than that (0.14 cm2 V$^{-1}$ s$^{-1}$) in the C$_{60}$ FET can be closely related to the $N(\varepsilon)$ for the impurity levels. The $N(\varepsilon)$-ε plots were well fitted by $N(\varepsilon)=N_0\exp(-\beta\varepsilon)$, and the N_0 and β were determined to be 8.1 \times 1019 cm$^{-3}$ eV$^{-1}$ and 6.4 eV$^{-1}$ for the LB FET, respectively, and 2.0 \times 1010 cm$^{-3}$ eV$^{-1}$ and 5 eV$^{-1}$ for the C$_{60}$ FET. Consequently, the $N(\varepsilon)$ for the C$_{60}$-dendrimer LB film FET showed only an exponential decay with an increase in ε. The structureless behavior is different from the $N(\varepsilon)$ for the single crystal pentacene FET, which exhibits a peak ascribable to the impurity levels produced from the bias-stressed defects of pentacene as well as an exponential decay. Therefore, the LB film FET is scarcely affected by the bias stress.

Finally, we have calculated the values of subthreshold swing S for the C$_{60}$-dendrimer LB film and C$_{60}$ thin film FETs from the $N(\varepsilon)$ of the impurity levels with $S=(k_BT/e)\ln\left(1+N(\varepsilon)/C_0\right)$, where $N(\varepsilon)$ is given in unit (cm$^{-2}$ eV$^{-1}$). In this estimation, the $N(\varepsilon)$ values were used at the same $V_G (<V_{TH})$ as those used in the determination of experimental S values from I_D-V_G plots, i.e., $N(\varepsilon)=1.91 \times 10^{12}$ cm$^{-2}$ eV$^{-1}$ at $\varepsilon=0.54$ eV and $V_G=25$ V for the LB FET and $N(\varepsilon)=1.61 \times 10^{12}$ cm$^{-2}$ eV$^{-1}$ at $\varepsilon=0.50$ eV and $V_G=55$ V for the C$_{60}$ FET. The S values were estimated to be 2.2 V/decade for the LB FET and 1.8 V/decade for C$_{60}$ FET from the $N(\varepsilon)$ and the above equation. These values were 1/5 times the experimental S values, 10.2 V/decade for the LB FET and 7.9 V/decade for the C$_{60}$ FET, determined from I_D-V_G plots. Nevertheless, the increase in experimental S values from 7.9 V/decade (C$_{60}$ FET) to 10.2 V/decade (LB FET) can be completely correlated with the increase in S from 1.8 V/decade (C$_{60}$ FET) to 2.2 V/decade (LB FET) estimated from the $N(\varepsilon)$ values, i.e., the ratio of the increase is the same for both S values from the I_D-V_G and from the $N(\varepsilon)$, suggesting that a relative relation of $N(\varepsilon)$ between LB and C$_{60}$ films is reliable. The deviation of the absolute S value estimated with $N(\varepsilon)$ from that with I_D-V_G plot may be ascribed to the factors other than $N(\varepsilon)$ such as the increase in off current produced by the measurements under light condition.

The authors are grateful to Mr. Yohei Ohta and Mrs. Michie Sasaki for their kind assistance through this work. This work was partly supported by NEDO and by a Grant-in-Aid (No. 18340104) from MEXT, Japan.