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Abstract

One of the basic skills in design work is the
composition ability that controls the attributes of
objects in constructing wholly consistent figures.
One way to acquire this skill is through learn-
ing by examples, which is widely adopted in de-
sign or art classrooms. However, it is necessary
for an effective learning to help a learner gain an
adequate perspective of an example. In this pa-
per, we describe a method of extracting lerners’
perspectives from their works. Our method is
used in the task where leaners are presented with
an example and compose a novel visual space.
Once the learner completes the task, the system
automatically calculates the scores of similarity
between the space composed by the learner and
the example presented by the system. Then, it
gives the scores to the learner as part of the learn-
ing feedback. This feedback helps the learner
extract abstract principles from the presented ex-
ample.

Keywords: Design education, analogical rea-
soning, composition ability

1 Introduction

Creative thinking can be considered an activ-
ity that generates novel combinations of known
entities in a given domain. This view is con-
trasted by the idea that creative thinking is ac-
complished by generating novel entities out of
nothing. Compared to the later view, the former
one is commonly accepted in many fields. For
example, linguistic researchers often think that
the creative aspect of language use comes from
the infinite use of finite elements[1].

Cognitive science research also investigates
creative thinking by conducting experiments in
which novel ideas are generated through the
combination of a variety of object parts[2]. Fur-
thermore, Nagai and Taura analyzed the process
of concept design through the study of the prim-

itive operations of synthesizing individual con-
cepts[3].

In addition to the above fields, the combina-
tions of elements are important in the domains
that involve visible entities, such as art or graphic
design. This is especially true in design edu-
cation, to cultivate the composition ability that
controls the attributes of objects in constructing
wholly consistent figures.

In this paper, we propose a method of cul-
tivating composition ability through the devel-
opment of a learning support system. Basi-
cally, our method follows the traditional peda-
gogy. We employ the “learning by examples”
concept, which is widely adopted in design or art
classrooms. For example, students in art class of-
ten recreate famous works. Observational learn-
ing is also widely considered an effective way
for assisting learners in design education. As
with the proverb, “a picture is worth a thousand
words”, it might be difficult to communicate vi-
sual information with words[4].

However, there is a problem with learning by
examples. If the proverb were true, there would
be a thousand features in a visual example. In
this type of situation, the question that would
arise would be, which features should the learner
focus on? Obviously, it is necessary for an ef-
fective learning support system to help a learner
gain an adequate perspective of an example.

Our proposal is motivated by the above prob-
lem. In the next section, we propose a hypotheti-
cal solution to the problem, by reviewing some
of the studies on human analogical reasoning.
In third section we describe the learning support
system. The fourth section presents a prelimi-
nary experiment that evaluates the system. The
final section presents the proposals implications
and future studies are discussed.



2 Hypothesis

As noted earlier, learning by examples has a
problem with the perspective settings. In this
section the problem is considered from the view-
point of analogical reasoning. Analogical rea-
soning is an activity constructing a mapping
from the known base domain to the novel target
domain[5]. This type of activity has been inten-
sively investigated in the field of cognitive sci-
ence. The main problem of focus has been on
the constraints imposed on analogical reasoning.
Since numerous commonalities can be found be-
tween any two domains, it is impossible to con-
struct a mapping without constraints that can de-
termine the similarities between two domains.

It can be assumed that the same problems un-
derlie in analogical reasoning and learning by
example. Therefore, we propose a method of
learning by examples applying the findings of
analogical reasoning. Past studies have revealed
that several constraints are involved in analogi-
cal reasoning, including the following two types
of similarities[6; 7; 8].

o Surface similarity: the number of attributes
shared between the base and the target.

e Structure similarity: the commonality of re-
lational structure of the base and the target.

Psychological experiments have confirmed that
two types of similarities influence different as-
pects of human cognition. That is, people tend
to immediately notice surface features, whereas
they prefer structure similarity to surface sim-
ilarity in limited situations[8; 7]. More pre-
cisely, surface similarity mainly influences the
lower-level cognition, such as for instant percep-
tion, retrieving, or associating the examples from
memory. On the other hand, structure similarity
involves in higher-order cognition, such as for
problem solving or scientific discovery. We be-
lieve that the distinction between the two types of
similarity is also important in the field of graphic
design. Specifically, we have the following hy-
potheses.

e Learners have a tendency to focus on the
surface features of objects, such as color or
shapes.

e The important features in composition are
not the surface features but the structure
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Figure 2. User interface of the leaning support
system.

ones, such as distance, balance, or the com-
binations of shapes.

These hypotheses are consistent with the defini-
tion of composition ability. The combination of
elements in graphic design can be considered the
structural features in analogical reasoning. The
present study develops the method of extracting
larner’s perspectives based on these hypotheses.
This method incorporates an analogical reason-
ing model that computes the surface and struc-
ture similarities of graphics.

3 Learning support system

In this section, we describe a learning system for
composition ability, one that presents the learner

Figure 3. A work of composition.



with an example and prompts him/her to com-
pose a novel graphic. Once the learner com-
pletes the task, the system automatically calcu-
lates the scores of similarity between the graphic
composed by the learner and the example pre-
sented by the system. Then, it gives the scores
to the learner as part of the learning feedback.
This feedback helps the learner extract the ab-
stract principles of graphic compositions from
the presented example.

Figures 1 and 2 present the system overview
and its user interface, respectively. The system is
composed of four main components: (1) the de-
sign environment, (2) the example presentation
window, (3) the creating the propositional repre-
sentation, and (4) the similarity scoring. In this
section, we describe these components.

3.1 Task environment

The system provides the design environment to
the learner. The learners in this environment
compose a graphic on a space that consists of a
5 by 5 matrix by placing several objects on the
grids. The system provides scrolling menus for
assigning the following attributes to the objects.

e [ocation:
The user can choose the objects locations
on the horizontal (x) and vertical (y) axes
but cannot place two objects in the same lo-
cation.

o Size:
The size of the objects can be chosen from
five values ranging from 175 to 250 pt.

e Density:
The density of the objects can be cho-
sen from five values ranging from white to
black.

e Shape:
The shape of the objects can be chosen
from sixteen types, including oval, rectan-
gle, rectangular triangle, or parallelogram.

This environment was inspired by the com-
position tasks used in real-world design educa-
tion. Figure 3 presents a work from a compo-
sition task, which was created in a ceramic art
school. It was created by locating several geo-
metric shapes.
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Figure 4. Examples

3.2 Examples

The learner considers an example presented
through the example presentation window. It is
chosen from a dataset including the graphics pre-
sented in Figure 4. The ceramic artist who is the
author of the work in Figure 3 composed these
graphics.

3.3 Representations

The system computes two types of similari-
ties between an example and a graphic com-
posed by learners. The calculation of the two
types of similarities uses a common scheme
that represents a visual scene as propositions
(predicates-calculus). The representation is de-
veloped through the following two steps.

1. Representing attributes:
The system creates propositions that de-
scribe the five dimensions of attributes; Lo-
cation on x-axis, Location on y-axis, Den-
sity, Size, and Shape. These attributes are
obtained directly from the task environ-
ment.

2. Representing relations:

The system creates propositions that de-
scribe the five dimensions of relations; Dis-
tance, Direction, Density difference, Size
difference, and Shape difference. These re-
lations are obtained from the attributes of
two objects. Distance and Direction are
obtained from the Locations on x- and y-
axis. Density difference, Size difference,
and Shape difference are obtained from
each corresponding attribute of Density,
Size, and Shape.



.:Propositions of Attributes
;Attributes of Shapel
R
Shape2 y Shape
i u D (4size Shapel)
Shaped |2 (5darkness Shape1)
(rectangle Shape1)
;Attributes of Shape2
(1x Shape2)
(1y Shape2)
(1size Shape2)
(1darkness Shape2)
(rectangle Shape2)
;Attributes of Shape3
(1x Shape3)
(2y Shape3)
(1size Shape3)

(5darkness Shape3)

(rectangle Shape3)

;» Propositions of Relations
;Relations between Shape1 and Shape2
(horizontal Shape1 Shape2)

(1distance Shapel Shape2)

(4dens _difference Shapel Shape2)

(3size_difference Shape1 Shape2)
(same_shape Shapel Shape2)

:Relations between Shapd and Shape3
(right_up Shapel Shape3)

(1distance Shape3 Shapel)

(0dens_difference Shape3 Shapel)
(3size_difference Shapel Shape3)
(same_shape Shape3 Shape1)

;Relations between Shape2 and Shape3
(vertical Shape2 Shape3)

(1distance Shape3 Shape2)

(4dens _difference Shape3 Shape2)
(Osize_difference Shape3 Shape2)
(same_shape Shape3 Shape2)

Figure 5. Example of representations.

Figure 5 shows an example of the developed
representations. The graphic in the figure con-
tains three objects: Shapel, Shape2, and Shape3.
The attributes of each object are represented in
“Propositions of attributes.” The relations of ev-
ery possible combination of objects are repre-
sented in “Propositions of relations.”

As shown in the figure, in our scheme the
predicates do not take a specific value as an
augment (e.g., (x Shapel 2), (distance Shapel
Shape2 1)) but instead indicate the values di-
rectly. For example, the proposition (2x Shapel)
means that the object Shape2 is located in the
second column of the graphic. The proposition
(Idistance Shapel Shape2) means that Shapel
and Shape2 are placed in adjacent locations.
Thus, the propositions of attributes are always
described with a one-place predicate, whereas
the propositions of relations are described with
a two-place predicate.

3.4 Similarity Scoring

The two types of similarity scores are calculated
by using the above representation. The calcula-
tion of the surface similarity uses the represen-
tations of the attribute. The calculation of the
structure similarity uses the representations of
the relation.

3.4.1 Surface Similarity

Surface similarity is computed through a pro-
cess that is slightly modified from the method
presented by Forbus et. al[6]. They use a feature
vector that specifies which predicates were used
in that representation and the number of times
they occurred. According to them, this type of
vector is a flat summary of the knowledge struc-
tures. They use the dot product of these vec-
tors as a rough estimate of overlap between two
representations. They indicated that this value
is positively correlated with retrievability mea-
sured in studies of the human memory system.

Our system differs from theirs in the types of
predicates specified in the vectors. Our method
restricts a type of predicate in the vectors to ob-
ject attributes. For example, the following fea-
ture vector is created from the representation in
Figure 5:

((2x 2) (Ix 2) (1y 2) (2y 1) (4size 1) (Isize 2)
(5darkness 2) (1darkness 1) (rectangle 3))

We use the dot product of these vectors to esti-
mate the score of the surface similarity, which
reflects the overlap of attribute features between
two representations. !

3.4.2 Structure similarity

Structure similarity is computed as the com-
mon relational structures of the base and the tar-
get. The commonality of their relational struc-
ture is calculated by estimating the maximum
mapping from the base to the target. Gentner
proposed the following structural consistency
constraints that guide the process of mapping|[5].

e Parallel connectivity:
If two predicates are placed into correspon-
dence then the arguments to these predi-
cates are also placed into correspondence,
and vice versa.

e One-to-one mapping:
Each item in the base maps to at most one
item in the target, and vice versa.

Similar to the models in the past studies [9;
10], our system follows the above constraint.
The algorithm for computing the structure sim-
ilarity consists of the following three steps.

'In the experiment described later in this paper, the fea-
ture vectors were normalized to the unit vectors.



Step 1: P-match Construction The system
first constructs the correspondences of proposi-
tions. This step is similar to the algorithm shown
by Falkenhainer et al[9]. These correspondences
(P-matches) are created by comparing the predi-
cates in the base proposition with the predicates
in the target proposition. If the two propositions
have a predicate that is the same, a P-match is
created.

Each of the P-matches consists of a pair of
predicates (a Pre-match) and pairs of augments
(O-matches). For example, if the base contains
the proposition (vertical Shapel Shape3) and the
target contain the proposition (vertical Shape?2
Shape3), the following P-match is created.

((vertical vertical) (Shapel Shape2) (Shape3
Shape3))

This process is applied to every possible com-
bination of propositions, and a list that contains
every constructed P-match is created.

Step 2: Weighting P-matches In the second
stage, in order to sort the list of P-match, the
system assigns a weight to each P-match. The
assigned weight is a product of the following two
sub-weights.

e Frequencies of O-match:

This weight reflects the frequencies of the
O-matches in the list of P-matches. This is
calculated as a summation of the individ-
ual O-match frequency (freq (O-match;),
freq(O-match;)) and co-occurrence fre-
quency of two O-matches (freq (O-match;,
O-match;)).

e Frequencies of Pre-match:
This weight reflects the dimensions of the
Pre-match. The number of occurrences of
each dimension is counted from the entire
P-match list. Then the P-match is assigned
the number of corresponding dimensions as
the weight.

This weighting is intended to extract the de-
signer’s focus from their works. In the composi-
tion task, a designer would focus on specific sets
of objects or dimensions. We considered that the
estimated mapping should contain these focused
elements. This assumption is based on the re-
sults of studies on similarity judgment. Spencer-
Smith and Goldstone report that human subjects

tend to estimate higher similarity when the map-
ping is concentrated on specific objects or di-
mensions[11].

Step 3: Global-map construction In the third
stage, the system constructs a global map that
is a set of consistent P-matches. This step is
similar to the algorithm presented by Forbus et
al[10]. The basis for this process is an investiga-
tion of whether a pair of P-matches conflict with
each other. Conflicts are defined as situations
where several P-matches share the same object
but differ from one another. Beginning with the
P-match that has the highest weight, the system
sequentially chooses one of the P-matches and
deletes the P-matches conflicting with it. The
process results in a set of consistent P-matches.

The global mapping process is illustrated
schematically in Figure 6, where descriptions are
represented as propositional networks. The net-
works in the top and middle parts of the figure
represent the base and the target structures con-
structed from the graphics on the left side of the
figure. The oval nodes represent predicates, and
the boxed nodes represent objects. There are two
types of links: solid links connecting a predicate
with its first augment and dashed links connect-
ing a predicate with its second augment. If the
predicate is commutative, there are no distinc-
tions between these two types of links.

The bottom network in the figure represents a
global map from the base to the target. It does
not contain pairs of predicates whose types are
different or pairs of predicates whose augments
are not placed in corresponding positions. Con-
sistent with our intuition on the graphics, this
global map mainly consists of the correspon-
dence of Direction, Size difference, and Shape
difference.

The score of structure similarity is quantified
as the number of elements in the global map. In
the case of Figure 6, the score is 13, which is
shown in the lower right-hand corner of Figure
6. The value in parentheses is the normalized
score of structure similarity, which is the size of
the global map as a fraction of the size of the
target structure.

4 Experiment

A preliminary experiment was conducted, in
which the participants were presented with ex-
amples (bases) and then drew their own original
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graphics (targets). It was not directly designed
to provide statistical evidence on the hypotheses
discussed in the section two. Instead, we tried to
present qualitative examples demonstrating how
our system can extract lerners’ perspectives from
their works.

4.1 Method

4.1.1 Participants

Three graduate students (Participant A, Partic-
ipant B, and Participant C) in Japan Advanced
Institute of Science and Technology voluntary
participated in the experiment. All of them had
some knowledge of graphic composition.

4.1.2 Materials

The experiment was conducted using the sys-
tem described in the above section. Two exam-
ples of the graphics were chosen from Figure 4,
e and f. In the following section, we call them
Base 1 (Figure 4e) and Base 2 (Figure 4f).

4.1.3 Procedure

Participants individually took part in this ex-
periment, which comprised two drawing ses-
sions. In each of the sessions, one of the two
graphics was presented in the right-hand panel
of the task environment, and then the participant
was asked to compose a graphic in the left-hand
panel of the environment. They were prompted
to use the features in the example in their graph-
ics and to make their graphics as creative as they
could. All the participants were shown the two
graphics in the same order. First, Base 1, then
Base 2. Each session lasted for thirty minutes.

4.2 Results and Discussion

All of the participants were able to compose their
graphics within the allotted thirty minutes. Fig-
ure 7 presents the graphics prepared by each
participant. As can be seen, all of the graph-
ics share sufficient commonalities with the ex-
amples (Base). In addition, there are a variety
of different features seen between each of the
graphics. These impressions indicate that the
task adopted in this study were suitable for culti-
vating creative minds.

Additionally, the system computed the two
types of similarity scores for each graphic (Fig-
ure 8). The distinction of the two types of sim-
ilarity was investigated by using Pearson’s coef-
ficient correlations between the two scores. A
high positive correlation was obtained for the
scores computed with Base 1, 7(3) = 0.99, p <
.05, while a negative correlation was obtained for
the scores computed with Base 2, 7(3) = —0.94,
n.s.

The high correlation for the scores with Base 1
indicates that the drawings by the subjects were
influenced equally by the surface and structure
features of this base. In other words, they did
not distinguish two types of feature in their draw-
ing. This interpretation is consistent with litera-
tures that indicates a preponderance of mundane
literal similarity based on both the surface and
structure commonalities in human memory re-
trieval [6].

The low correlation for the scores with Base
2 is interesting, indicating differences between
participants with regard to the ratio of the two
types of similarity. That is, Participant C was
weakly influenced by the surface features com-
pared to the other participants, whereas partic-
ipant A and B was weakly influenced by the
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Figure 8. Similarity scores for graphics.

structure features. The result indicates the dif-
ferences of their perspectives of the examples.

4.2.1 Dividing features into dimensions

To obtain more detailed information on the
subjects’ perspectives, we computed the scores
of similarity after dividing the features into the
dimensions. That is, we separately computed
dot products of feature vectors in each dimen-
sion of Location on x- and y-axis, Size, Density
or Shape type. Similarly we separately counted
the number of elements in global maps in each
dimensions of Direction, Distance, Size differ-
ence, Density difference, or Shape difference.
Because of space limitations, here we present
only the similarity scores obtained with Base 2,
with which the lower correlation was observed.

The star plots in Figures 9 presents the scores
of surface and structure similarity for each di-
mension. Large differences between the partici-
pants can be observed for the dimensions related
to the shape of objects (Shape type and Shape
difference), but the pattern differs between the
two scores. Participant C obtained the lowest
score of the surface similarity for this dimension,
whereas Participant B obtained the lowest score
of the structure similarity for this dimension.

These patterns can be interpreted by observ-
ing the graphics in Figures 4 and 7. As can be
seen in Figure 4, Base 2 (Figure 4f) consists of

Dimensions of surface features
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Figure 9. Star plots indicating the scores of sur-
face and structure similarity for each dimension.

the same-shaped objects (the 9 circles). All the
participants except Participant B used this struc-
ture feature in their graphic (see Figure 7). This
is the reason why Participant B obtained the low-
est score of the structure similarity. The reason
for the lowest surface similarity score obtained
by Participant C is in the change of the shape
type. As can be seen in Figure 7, the graphic
drawn by Participant C consists of the 9 rounded
rectangular.

From the viewpoint of graphic composition,
we consider that making the graphic with the
same-shaped objects is an important structure
feature. Participant C used a strategy that em-
phasized this feature, whereas the strategy par-
ticipant B used did not. Although it is not clear
which of the strategy is more creative in graphic
composition, the example above demonstrates
that our system is effective for extracting lean-
ers’ perspectives in this task.

5 Conclusion

In the above experiment, we successfully ex-
tracts lerners’ perspectives from their works.
The two types of similarity were correlated in
one session, whereas they were discriminated in
the other session. Further investigation revealed
that this result was not caused by trivial matters
of the algorithm, but was related to the impor-
tant features of the drawings created by the par-
ticipants. We considered that the presentations
of the types of similarity would help a learner
learns structure features from the example.

Our system is characterized as an application
of the model of analogical reasoning. There have
been many attempts to implement the analogical
reasoning model in a design support system[12;



13; 14]. Most of them use the model to retrieve
examples from a database. For example, in the
system proposed by Forbus et al.,[12] the model
receives a designer’s design solution, and then
retrieves examples from the database. The de-
signer receives the matching results and infer-
ence produced by the model.

Our study can be distinguished from these
studies, because our system does not retrieve ex-
amples. Instead the system computes the two
scores of similarity between a presented exam-
ple and a work created by a learner. The scores
are used to evaluate the learner’s perspectives on
the example. We believe that by using these sim-
ilarities, it could be possible to prompt a learner’s
reflective thinking.

However, this paper does not provide any ev-
idence on the learning effect of these feedbacks.
In future studies, the hypothesis must be inves-
tigated. Also, we must carefully consider the
learning goal, shifting a leaner’s perspectives
from surface to structure features. The goal may
be efficient in the elemental stages of learning;
but it may be insufficient for cultivating creativ-
ity. In the later stages of learning, it might be
necessary to cultivate an ability to discover a va-
riety of structures in the example. Therefore, it is
necessary for the design learning system to shift
the learner’s perspective not only to the biggest
structure but also to the varieties of structures in
an example.
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