
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Mining Query Logs for Improving Search Efficiency

Author(s)
Tongchim, Shisanu; Sornlertlamvanich, Virach;

Isahara, Hitoshi

Citation

Issue Date 2007-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/4074

Rights

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, KICSS 2007 : The Second

International Conference on Knowledge,

Information and Creativity Support Systems :

PROCEEDINGS OF THE CONFERENCE, November 5-7,

2007, [Ishikawa High-Tech Conference Center,

Nomi, Ishikawa, JAPAN]



Mining Query Logs for Improving Search Efficiency

Shisanu Tongchim† Virach Sornlertlamvanich † Hitoshi Isahara‡

†Thai Computational Linguistics Laboratory
NICT Asia Research Center

112 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
‡National Institute of Information and Communications Technology

3-5, Hikari-dai, Seika-cho, Soraku-gun, Kyoto, 619-0289,Japan
{shisanu,virach}@tcllab.org, isahara@nict.go.jp

Abstract

The understanding of how users use search
queries is an important step towards developing
successful web search engines. Mining search
query log is a way to gain insight into user be-
havior. One technique used to analyze the query
log is query clustering. Query clustering can be
used to group semantically related queries, and
can be used to gain an understanding of query us-
age. In this work, we focus on queries written in
Thai language. A technique for query clustering
is proposed. We first discuss the nature of Thai
queries that makes this problem much more chal-
lenging. We examine the use of returned results
from several search engines to enrich the mean-
ings of queries. The experimental results show
that query enrichment helps in finding the degree
of similarity between any two queries. We apply
a density-based clustering technique, called DB-
SCAN, for the query clustering task. Finally, we
explore the use of clustered queries for query ex-
pansion.

Keywords: Query Clustering, Query Similarity

1 Introduction

Search engine query logs are valuable sources of
information regarding the interactions between
users and search providers. Data mining has
been applied on query logs in order to gain some
insights into user behavior and to improve the
search performance. Query clustering is one
of major research areas conducting on query
logs. The objective is to group semantically re-
lated queries. The results can be applied in sev-
eral ways. They can be used to analyze the
query usage. For example, the most frequently
asked questions or the current trends of increas-

ingly asked questions can be identified. If we
know this information, the search performance
for these questions can be improved. Another
application is the query recommendation task.
Some related queries to user queries are sug-
gested to users in order to refine their queries if
the results of the current queries are unsatisfying.

In this work, we carry out some experiments
in clustering search queries. We are particu-
larly interested in the queries written in Thai
language. Firstly, we discuss some challenging
issues in clustering the Thai query log that we
have. User queries are generally short and lack
of information about user intention. Many of
them also contain typos and ill-written strings.
The use of words from queries is thus insuf-
ficient in determining the similarity degree be-
tween any two queries. In our case, there are
also some language-related issues, e.g. unknown
word problem, that may affect the performance
in finding the query similarity. Before conduct-
ing query clustering, we investigate some sim-
ilarity functions based on the use of search en-
gine results to enhance the similarity calculation.
Then, we explore the use of a density-based ap-
proach, called DBSCAN, for clustering search
queries. After clustering queries, we examine the
use of clustered results for query expansion.

2 Related Work

Baeza-Yateset al. [1] used a simple K-means
algorithm for query clustering. They used ex-
tracted words from selected URLs by users for
determining query similarity. However, the use
of K-means algorithm requires the number of
clusters as an input parameter which is impracti-
cal to determine in advance.

Chuang and Chien [2] used hierarchical ag-



glomerative clustering algorithm (HAC) for
query clustering. However, the input data for
query clustering task usually contains many out-
liers. The domains with many outliers are unde-
sirable for hierarchical agglomerative clustering
[3; 4].

Beeferman and Berger [5] exploited click-
through data for query clustering. They used
a graph-based iterative clustering based on the
information of user queries and selected URLs.
However, it is hard to justify a promising termi-
nation condition. Chanet al. [6] adopted the
technique of Beeferman and Berger for cluster-
ing search queries. They modified the termina-
tion condition since the original termination con-
dition grouped the majority of queries into a sin-
gle cluster.

Wenet al. [4; 3] used DBSCAN for clustering
search queries. The similarity calculation was
based from several features (e.g., query content
words, clickthroughs). Their experiments tried
to examine the effect of each feature combina-
tion for the clustering results.

3 Thai Query Log

The queries used in this study are obtained from
Truehits1. Truehits is a largest web statistics col-
lector in Thailand. Truehits provides the list of
alphabetically sorted queries submitted to search
engines. To our knowledge, this is the only pub-
lic source of used Thai queries. However, there
are two challenging issues in clustering this Thai
query log. The first one is a lack of useful infor-
mation that can be used to determine the similar-
ity degree between any two queries. The second
issue is related to the language aspects.

3.1 Limited information

Typically, queries submitted to search engines
are short and ambiguous. Many queries are ill-
written or misspelled. The use of words from
queries are thus inefficient for finding the query
similarity and clustering the related queries.
Many studies have utilized other information in
finding the similarity or clustering user queries.
These studies use some sorts of human activi-
ties recorded by search engines. Some studies [6;
1] rely on the information about the documents

1truehits.net

clicked by users for the corresponding queries
(called clickthroughs). The assumption is that
two queries are similar or closely related if both
queries lead to the same set of documents se-
lected by users. Some proposed techniques [7; 8]
try to identify the set of queries issued by a user
within a certain time frame. These studies try
to identify the user sessions from the search en-
gine logs. The intuition behind these techniques
is that a user submits several related queries dur-
ing searching for information.

The studies mentioned earlier require the
query log with some information of user activ-
ities. However, such information is not always
publicly available. Although most search en-
gines record this information in order to improve
their service, the disclosure of such information
may lead to privacy concern, like the case of
AOL [9; 10]. In our case, Truehits only pro-
vides the list of used queries from various search
engines. These is a lack of useful information
that can be used to determine the similarity de-
gree of these Thai queries. Thus, the techniques
mentioned earlier cannot be applied to our case.
To overcome the problem of short and ambigu-
ous queries, a technique calledquery enrichment
has been examined. By submitting queries to
search engines, some results can be obtained.
The textual information from these returned re-
sults is used to resolve and enrich the meanings
of queries. That is, search engines are used as a
tool to resolve the meanings of queries.

3.2 Language aspects

Despite a lack of information for query cluster-
ing, the nature of Thai queries is also challenging
for this task. Thai language is a non-segmenting
language. Thai text is written without explicit
word boundary. Therefore, the Thai text process-
ing normally starts from applying the word seg-
mentation. Due to the ambiguity of word bound-
ary, the errors of word segmentation are gener-
ally unavoidable. In case of search queries, many
keywords are ill-written or misspelled. This
makes unreliable results when applying the word
segmentation. The inevitable errors of the word
segmentation clearly affect the similarity func-
tion and query clustering in the later steps.

From the observation of query log, there are



two main groups of queries based on the query
formation. In the first group, each query is com-
posed of some manually selected words. The
keywords are separated with spaces like English
queries. In the second group, each query is com-
posed of one or few short phrases. In this group,
the word segmentation plays an important role
in extracting words from the query strings for
processing in the later steps. The correctness of
word segmentation clearly influences the perfor-
mance of the query similarity calculation. Based
on the query log analysis, there are several is-
sues that would degrade the performance of word
segmentation and may affect the query similarity
calculation.

• Unknown word problem

New words regularly appear throughout the
Web. Since many word segmentation al-
gorithms rely on dictionaries, the accuracy
and completeness of dictionaries play an
important role in the correctness of word
segmentation. For example, the query
“ก้านกล้วย” (Kan Kluai) which is the name
of a Thai animation will separated into two
words, “ก้าน” (limb) and “กล้วย” (banana),
by the word segmentation. When compar-
ing this query with others, it may be con-
fused by some queries containing the word
“กล้วย” (banana).

• Improper query usage

Improper queries are typically found in the
query log. They contains typos, ill-written
strings or informal language. For exam-
ple, a query found in the query log is
“กรมอุตุนิยมวิทยา” which is the ”Thai Me-
teorological Department”. This query can
be considered as two words:“กรม” (de-
partment) and“อุตุนิยมวิทยา” (meteorology).
Since this word represents a unique entity,
it may be recognized as an indivisible unit.
We have found that there are some queries
that resemble to this word, but they are ill-
written. For example, we found at least
three queries that can be considered to re-
fer to this word:“กรมอุตุ”, “กรมอุตุนิยม” and
“กรมอุตุวิทยา”. The use of these keywords
usually leads to the websites that have im-
proper forms of the word“กรมอุตุนิยมวิทยา”,

rather than the website of the Thai Meteo-
rological Department.

When applying the word segmentation
to these queries, the results may be
unexpected. For example, the query
“กรมอุตุนิยม” will be separated into three
words: “กรม” (department),“อุตุ” (com-
fort) and “นิยม” (favour). Thus, it is dif-
ficult when trying to relate this query to
“กรมอุตุนิยมวิทยา”.

• Incorrect or inconsistency transliteration

There are many transliterated words in the
list of queries. They are foreign words writ-
ten by using Thai characters. One problem
arises when each user has a different way
for transliteration. For example, the word
“Internet” has been transliterated into sev-
eral forms: “อินเตอร์เน็ต”, “อินเทอร์เน็ต” and
“อินเตอร์เน็ท”. This issue affects the similar-
ity measurement among queries that have
different forms of transliteration. More-
over, the dictionary or lexicon used by the
word segmentation algorithm may not have
all forms of transliterated words. In this
case, the unknown word problem may oc-
cur.

4 Query Similarity

Before applying query clustering, the similarity
function must be defined. To overcome the prob-
lem of short and ambiguous queries, the results
from search engines are used to resolve and ex-
pand the meanings of queries. This technique is
called query enrichment. A similar approach to
this technique was used by the team who won
ACM KDDCUP in 2005 [11]. Their problem is
to classify given queries to predefined categories.

In this study, we try to use this technique
to overcome the problem of limited information
and the language aspects mentioned earlier. The
process of query enrichment is as follows:

1. Each query is submitted to a number of pub-
lic web search engines.

2. The titles and short descriptions (snippets)
are parsed from the returned results. The
word segmentation is applied. The ex-
tracted words from the query string are also



merged into the list of extracted words from
the titles and snippets. Stopwords and spe-
cial symbols are filtered out. Stemming is
not applied since Thai language does not
have the concept of inflection.

3. We filter out the words that have low fre-
quency.

4. The extracted words are then weighted by
usingtf*idf.

We examine the similarity functions on the
query recommendation task. From 45,792 Thai
queries obtained from Truehits, we select 9,000
queries for evaluating the similarity functions.
We select 60 queries as the main topics. The task
is to find the top 30 queries that are likely to be
relevant to each given main topic. We adopt the
mean average precision (MAP) as the evaluation
measure. The suggested results are evaluated by
a team of three judges.

Query enrichment is based on the results from
three search engines: Google2, SiamGURU3 and
AlltheWeb4. The top 20 results from each search
engine are used. The word segmentation is based
on the maximal matching method.

The cosine similarity is used to compute the
similarity score between a pair of queries. Three
similarity functions are tested:

1. Query words only : This function uses
words extracted from queries without query
enrichment. This test is used as a base-
line for assessing the benefit of the pro-
posed method. However, usingtf*idf for
the query words is impractical. Most query
words appear one time only in each query.
Thus, tf for the query words makes no
sense. Some studies suggest the use of the
search frequency instead of the term fre-
quency [12]. However, Truehits does not
provide the information about the search
frequency. Thus, we useidf to weight the
extracted terms in the experiment on the
query words.

2www.google.com
3www.siamguru.com
4www.alltheweb.com

Table 1: MAP for the query recommendation
task

Method MAP

1 Query Words .560
2 Query Enrichment .693
3 Hybrid .711

2. Query enrichment : This function uses
query enrichment as mentioned earlier.
Each term is weighted by usingtf*idf.

3. Hybrid method : We also examine a hybrid
method by combining the similarity scores
from the use of query enrichment and the
similarity of query words. A simple combi-
nation is used as follows:

simhybrid = α×simenrich +β×simquery

(1)

wheresimenrich andsimquery are the co-
sine similarity scores with and without
query enrichment respectively. To select the
best coefficients, we fine-tune the parame-
ters by using a small set of 6 topics apart
from the topics used in the main evaluation.
In the experiment, we setα = 0.9, β = 0.1.

The results of three variants of similarity cal-
culation are shown in Table 1. The results show
that the use of query enrichment helps in improv-
ing the similarity calculation. From the exper-
iment, the best similarity function is the hybrid
function.

5 Query Clustering

After choosing the similarity function, the next
step is to determine the a clustering algorithm.
A density-based approach, calledDBSCAN [13],
is used in the query clustering. DBSCAN has
several advantages for this task. It does not re-
quire some parameters that are impractical to
determine in advance (e.g., the number of clus-
ters). This technique is also suitable of the data
with outliers. In the query clustering task, not
all queries can be clustered. These queries are
unique and are not related to any other queries.
Thus, these queries should not be classified as



members of any clusters. DBSCAN is suitable
for this kind of data. DBSCAN can identify
these queries as outliers.

DBSCAN is a single pass algorithm. Each
point in one cluster isdensity-reachable from
other points in the same cluster. The algorithm
groups all points that are density-reachable from
the starting point to the same cluster. DBSCAN
requires two parameters, MinPts and Eps, to con-
trol the notion of density. MinPts is the mini-
mum number of points while Eps is the distance
threshold. The clustering result depends upon
how both parameters are set. If the density is
too high, only few clusters will be detected. In
contrast, several clusters will be indivisible from
each other if the density is too low.

To examine how the parameters affect the
clustering results, some experiments are carried
out by using different parameter settings for
query clustering. The clustering results are man-
ually checked. We adopt two standard perfor-
mance measures, precision and recall, to assess
the quality of clustering results. Precision can be
judged by the ratio of the numbers of correctly
clustered queries to the size of clusters. How-
ever, recall is difficult to determine since it re-
quires the information about all correct members
to each cluster. Some studies [3; 4] use normal-
ized recall instead of standard recall. The nor-
malized recall is calculated relative to the clus-
tering result of the best algorithm. However, the
normalized recall shows only the performance of
algorithms when compared against the best one.
It does not provide real recall information. In or-
der to do the quantitative assessment in terms of
precision and recall while the performance eval-
uation is still manageable, we use a limited num-
ber of queries in the experiments. We use a set
of 9,000 queries from the previous section to test
the effect of parameter settings. The finding will
be applied to the later experiment.

Three parameter settings are examined. For
the sake of simplicity, MinPts is set to a con-
stant value of 3. Eps is set as 1.3, 1.5 and
1.7 for three experiments. Intuitively, the use
of lower density by increasing Eps should im-
prove recall, but may reduce precision. In con-
trast, higher density by reducing Eps seems to
improve precision at the expense of recall. We

Table 2: Precision and recall for three parameter
settings

Parameter setting Pr Re F1

MinPts = 3, 0.851 0.804 0.827
Eps = 1.7

MinPts = 3, 0.927 0.754 0.832
Eps = 1.5

MinPts = 3, 0.984 0.608 0.752
Eps = 1.3

evaluate the performance of each parameter set-
ting on 20 randomly chosen clusters. The per-
formance of three parameter settings is shown in
Table 2. From the table, the results confirm the
intuition of precision and recall tradeoff. When
reducing the density by settingEps = 1.7, recall
improves at the expense of precision. When in-
creasing the density by settingEps = 1.3, preci-
sion improves nearly to the maximum value. We
also calculate theF1 measure for each parame-
ter setting. TheF1 measure represents the over-
all performance. From theF1 scores, the setting
MinPts = 3, Eps = 1.5 yields the best overall
performance among three settings.

5.1 Multi-level clustering

We apply the best parameter setting (MinPts =

3, Eps = 1.5) from the previous section to clus-
ter a larger set of Thai queries from Truehits
(45,792 queries). The clustering results show
that 1163 clusters can be detected. These clus-
ters are composing of 14,531 queries. Thus, the
size of outliers is 31,261. However, we observe
that there are some clusters that compose of two
or more sub-clusters. These clusters can be fur-
ther divided into several clusters. For example,
the cluster number two contains the queries re-
lated to “กระเป๋า” (Bag) and“กล้อง” (Camera).
The clustering algorithm merges these two clus-
ters into the same cluster since there are some
queries that bridge the gap between two clusters
and make them density-reachable, e.g. the query
1223“กระเป๋ากล้อง” (Camera bag). This situation
can be solved by increasing the density, but recall
may decrease as shown in the previous section.

To obtain indivisible clusters without the
penalty of reducing recall, we propose a vari-
ant of DBSCAN called multi-level DBSCAN. In



multi-level DBSCAN, a recursive DBSCAN is
carried out. From the output of DBSCAN, each
cluster is partitioned by a recursive call of DB-
SCAN using higher density level. The process
can be repeated recursively on existing clusters
until all clusters cannot be further decomposed.
By using higher density level to decompose ex-
isting clusters, three conditions can arise:

• Condition 1 : All queries are considered as
outliers.

• Condition 2 : Only one cluster can be
found. Some queries are considered as out-
liers.

• Condition 3 : Two or more sub-clusters can
be found. Some outliers are detected.

In the conditions 1 and 2, we assume that the
cluster is indivisible and all queries belong to this
cluster. We use these two conditions as stopping
criteria. In the condition 3, the cluster can be
divided into several clusters. The outliers are as-
signed to the nearest clusters. A recursive DB-
SCAN is then applied to these clusters until the
conditions 1 or 2 are met.

The incremental density of multi-level DB-
SCAN is used to decompose the clusters con-
taining some sub-clusters. The assignment of
outliers to nearest clusters helps in retaining re-
call when the density level increases. In order to
evaluate the precision of outlier assignment, we
apply multi-level DBSCAN on the set of 45,792
Thai queries. Like the previous test, MinPts is
set to a constant value of 3. The Eps is set to
1.5 as the starting value with a decreasing step
size of 0.2. At the first level, the clustering re-
sults are identical to the use of DBSCAN with
Eps = 1.5. Then, the clustering algorithm
is repeated with higher density levels (Eps =

1.3, 1.1, ...). From the experiment, multi-level
DBSCAN mostly terminates at the second level
(Eps = 1.3), while some clusters can be fur-
ther divided until the third level (Eps = 1.1).
We randomly choose 30 clusters for evaluating
the outlier assignment. From these 30 clusters,
197 outliers are assigned to one of these clusters.
If outliers correspond with existing members in
assigned clusters, they will be judged as correct
assignments. In contrast, incorrect assignments

Table 3: Precision and relative recall of DB-
SCAN (Eps = 1.3) and multi-level DBSCAN

Parameter setting Pr RR

DBSCAN (Eps = 1.3) 0.94 0.65
Multi-level DBSCAN 0.87 1

occur when outliers should assign to other clus-
ters instead of the current clusters or should be
discarded. By manually evaluating, the average
precision of the outlier assignment is 0.8.

We compare the results from DBSCAN with
the high density level (Eps = 1.3) and multi-
level DBSCAN. This test is used to compare the
results from multi-level DBSCAN and the use
of DBSCAN with high density level in ability to
distinguish close clusters. Since it is impractical
to determine recall for the large dataset, we use
relative recall calculated by normalizing recall
of each method with recall of multi-level DB-
SCAN. Relative recall shows the recall metric
of each method relative to multi-level DBSCAN.
Basically, relative recall is calculated by divid-
ing the number of correctly clustered queries of
each method with the number of correctly clus-
tered queries of multi-level DBSCAN. We use
20 clusters for evaluation. The results are shown
in Table 3. The results indicate that precision of
multi-level DBSCAN is slightly less than that of
DBSCAN, while recall is much better. The re-
ducing in precision is caused by errors in the out-
lier assignment. Overall, multi-level DBSCAN
can be used to divide large clusters containing
several sub-clusters without sacrificing recall. It
is also applicable when the optimal parameter
setting is not known.

6 Automatic Query Expansion

The results from the previous sections can be
used to determine some statistics about user
queries, e.g. the most frequently asked ques-
tions, the diversity of query formations in asking
the same question. In addition, the results can be
applied for the query suggestion task as shown
in the section 4. In this section, we try to use the
results of query clustering for the query expan-
sion. The idea is to use some related queries to
expand the search results of user queries. When
a user submits a query to the system, the system



automatically finds some related queries to the
user query and submits the user query and re-
lated queries to a search engine. The search re-
sults are then merged by using some meta-search
approaches.

We simulate this idea by randomly selecting
20 topics from the query log as the main top-
ics. For each main topic, three related queries are
selected as support queries by using the queries
from the same cluster of the main topic. The
main topics and their support queries are sub-
mitted to Google, and the search results are col-
lected. The results from each main topic and its
support queries are merged by using Borda-fuse
[14]. We assign the same weight to the results
from each query.

Like the evaluation of the similarity functions,
the performance measure is MAP. The binary
judgement is used. Two systems are compared.
The first one uses only the results from the main
topics. The top 20 returned results of each main
topic are evaluated. In the second system, query
expansion is applied. The results from each main
topic and support queries are merged into a sin-
gle ranked result by using Borda-fuse. By sub-
mitting each main topic and its support queries to
the search engine, the top 20 returned results of
each query is collected and merged into a single
pool. Each main topic has three support queries.
Thus, the maximum pool size of returned results
for each main topic and support queries is 80.
We apply Borda-fuse to select the top 20 results
from the result pool.

We develop a web-based user interface for the
blind evaluation. The results from two systems
are merged and shown randomly on the interface.
We employ two human assessors to evaluate the
results. Based on the results from two systems
on 20 topics, there are 229 relevant results from
the total 800 results. The first system can find
139 relevant results, while the second system
that use query expansion can find 161 relevant
results. In terms of MAP, the first system has the
MAP score as .37, while MAP of the second sys-
tem that uses query expansion is .39. From the
results, there is no obvious improvement from
query expansion. A possible explanation of this
finding is the sparseness of results from the main
topic and its support queries. Borda-fuse works

by calculating the Borda score of each result.
Given one main topic and three support queries,
we normally get four lists of returned results.
Each result gets a number of points, depending
on the positions in these lists. The higher ranked
results have the higher scores. The total point
of each result is determined from the positions
in these four result lists. The prospective results
will be the results ranked in the high positions in
several lists.

Based on our previous study [15] in apply-
ing meta-search models on the results from sev-
eral search engines, the documents have a higher
chance of being relevant if they can be found
by several search engines. We analyze the re-
sult lists from each main topic and its support
queries. Despite the similarity of the main topics
and support queries, the results have a low de-
gree of overlap. The majority of results (90.25%)
are unique to one of the queries. The results dif-
fer from queries to queries. The sparseness of
results and a lack of agreement between the re-
sults from the main topic and the support queries
may not work well with Borda-fuse. Therefore,
the retrieval effectiveness cannot be boosted by
the fusion model. However, we acknowledge
that some extensive experiments are necessary to
clarify the clause of this issue.

7 Conclusions

The analysis of search query log can be used to
gain some insight user behaviour. The findings
can be used to improve the search engine perfor-
mance to match user demands. In this work, we
study some techniques for mining search query
logs. We start from designing the similarity
functions that can be used when the information
is really limited. We show that the similarity
functions can be applied to the query suggestion
task. Then, we investigate some techniques for
query clustering. The clustered results provide
some important statistics that can be used to im-
prove the search performance. Finally, we try
to use the clustered results for query expansion.
The experimental results show that the improve-
ment is marginal. One possible explanation is
the sparseness of results from multiple queries.



References

[1] Ricardo A. Baeza-Yates, Carlos A. Hur-
tado, and Marcelo Mendoza. Query recom-
mendation using query logs in search en-
gines. In Wolfgang Lindner, Marco Mesiti,
Can Türker, Yannis Tzitzikas, and Athena
Vakali, editors,EDBT Workshops, volume
3268 of Lecture Notes in Computer Sci-
ence, pages 588–596. Springer, 2004.

[2] Shui-Lung Chuang and Lee-Feng Chien.
Towards automatic generation of query tax-
onomy: A hierarchical query clustering ap-
proach. In ICDM, pages 75–82. IEEE
Computer Society, 2002.

[3] Ji-Rong Wen and HongJiang Zhang. Query
clustering in the web context. In Weili
Wu, Hui Xiong, and Shashi Shekhar, edi-
tors,Clustering and Information Retrieval,
pages 195–226. Kluwer, 2003.

[4] Ji-Rong Wen, Jian-Yun Nie, and HongJiang
Zhang. Query clustering using user logs.
ACM Trans. Inf. Syst., 20(1):59–81, 2002.

[5] Doug Beeferman and Adam L. Berger. Ag-
glomerative clustering of a search engine
query log. InKDD, pages 407–416, 2000.

[6] Wing Shun Chan, Wai Ting Leung, and
Dik Lun Lee. Clustering search engine
query log containing noisy clickthroughs.
In SAINT, pages 305–308. IEEE Computer
Society, 2004.

[7] Bruno M. Fonseca, Paulo Braz Golgher,
Edleno Silva de Moura, Bruno Pôssas, and
Nivio Ziviani. Discovering search engine
related queries using association rules.J.
Web Eng., 2(4):215–227, 2004.

[8] Bruno M. Fonseca, Paulo Braz Golgher,
Edleno Silva de Moura, and Nivio Ziviani.
Using association rules to discover search
engines related queries. InLA-WEB, pages
66–71. IEEE Computer Society, 2003.

[9] Electronic Frontier Founda-
tion. AOL’s massive data leak.
http://www.eff.org/Privacy/AOL/, 2007.
last accessd on May 18, 2007.

[10] Michael Barbaro and Tom Zeller Jr. A face
is exposed for AOL searcher no. 4417749.
New York Times, August 9 2006.

[11] Dou Shen, Rong Pan, Jian-Tao Sun, Jef-
frey Junfeng Pan, Kangheng Wu, Jie Yin,
and Qiang Yang. Query enrichment for
web-query classification.ACM Trans. Inf.
Syst., 24(3):320–352, 2006.

[12] Zhiyong Zhang and Olfa Nasraoui. Min-
ing search engine query logs for query rec-
ommendation. In Les Carr, David De
Roure, Arun Iyengar, Carole A. Goble,
and Michael Dahlin, editors,WWW, pages
1039–1040. ACM, 2006.

[13] Martin Ester, Hans-Peter Kriegel, Jörg
Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large
spatial databases with noise. InKDD,
pages 226–231, 1996.

[14] Javed A. Aslam and Mark H. Montague.
Models for metasearch. In W. Bruce Croft,
David J. Harper, Donald H. Kraft, and
Justin Zobel, editors,SIGIR, pages 275–
284. ACM, 2001.

[15] Shisanu Tongchim, Virach Sornlertlam-
vanich, and Hitoshi Isahara. Examining the
feasibility of metasearch based on results of
human judgements on thai queries. InPro-
ceedings of The 2007 IEEE International
Symposium on Data Mining and Informa-
tion Retrieval, 2007.


