
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Organizational Knowledge in a Software Company

Growth with Awareness of a Three-Stage Evolution

Model

Author(s) Yamakami, Toshihiko

Citation

Issue Date 2007-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/4079

Rights

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, KICSS 2007 : The Second

International Conference on Knowledge,

Information and Creativity Support Systems :

PROCEEDINGS OF THE CONFERENCE, November 5-7,

2007, [Ishikawa High-Tech Conference Center,

Nomi, Ishikawa, JAPAN]



Organizational Knowledge in a Software Company Growth with
Awareness of a Three-Stage Evolution Model

Toshihiko Yamakami†‡
†Research and Development, ACCESS

‡Graduate School of Engineering, Kagawa University
Toshihiko.Yamakami@access-company.com

Abstract

Sustained challenges in organizational knowl-
edge support include how to evolve according
to the problem solving domain dynamism. For
example, while a small company grows, the
knowledge support requirements shift. With the
emerging globalization, it is an every day chal-
lenge for organizational knowledge support. In
this paper, the author made a case study on
a growing software vendor company to iden-
tify the impact of the organizational dynamism.
From observation, the author proposes 3-stage
models in both of vertical and horizontal evolu-
tion dimensions. The author describes the prac-
tical guidelines for knowledge support systems
from a perspective of dynamism.

Keywords: Knowledge Evolution, Corporate
Dynamism, Company Growth

1 Introduction

The challenges in creative problem solving in-
clude the dynamic adaptation to the problem
frameworks. The dynamism in a software devel-
opment company is analyzed with implications
to the multiple levels of problem domains. Dur-
ing the corporate business growth, there could be
a significant impact on problem solving frame-
works. With globalization, it is a vital challenge
to cope with this growing dynamism in the or-
ganizational knowledge support systems. The
companies today encounter every day challenge
to cope with the increased complexity and glob-
alization. When the author joined the company,
it was a 90-employee 1.1 billion-yen-sales com-
pany. Now it grows to be a 1500-employee 30
billion-yen-sales company. The revenue growth
is depicted in Figure 1. The employee growth is
outlined in Figure 2. This growth and accompa-
nied evolution give challenges to the organiza-
tional knowledge sharing structure.

1999 2001 2003 2005 2007

E
m

pl
oy

ee
s

0
50

0
10

00
15

00

Figure 1. Headcounts of the Corporate-group

1999 2001 2003 2005 2007

A
nn

ua
l C

on
so

lid
at

ed
 S

al
es

(1
00

 M
ill

io
n 

Y
en

)
0

50
10

0
20

0
30

0

Figure 2. Revenue growth (unit: 0.1 billion yen)

In this paper, a case study with a growing soft-
ware vendor is discussed with the three differ-
ent levels: software development level, project
management level, global corporate manage-
ment level. The framework changes during the
growth are outlined to identify the today’s cor-
porate demands on the creative problem solving
and organizational knowledge support.

The author performed a case study to cap-
ture the typical knowledge of a software ven-
dor company in Japan. During its growth, it
was recognized that the organizational knowl-
edge shifted from program knowledge, project
knowledge and overall business structure. Soft-
ware vendors are unique where each company
converts human intelligent activities into soft-
ware, the final product. This uniqueness brings a
challenge to software vendor to focus its compe-
tence with intelligent activity support and knowl-



edge sharing. In this paper, with a case study
with a growing software vendor organizational
knowledge shifts, the author gives some con-
siderations to the organizational knowledge dy-
namism from time-dimension dynamism with
corporate growth. The author summarizes some
guidelines for organizational knowledge sharing
in the dynamic situation encountered in the to-
day’s competitive business environment.

2 Research Purpose

The organizational knowledge is impacted by the
industrial conditions and competences of each
company. The dynamism on the corporate ex-
ternal conditions is a common challenge for cor-
porate activities, especially under the impact of
globalization. The aim of this research is to iden-
tify the frameworks and guidelines for organiza-
tional knowledge sharing under dynamism.

3 Related Works

The dynamism of organizations is non-negligible
part of organizational knowledge. There are
multiple approached how to capture the dynamic
part.

For example, the past organizational knowl-
edge systems like Answer Garden [1] had an as-
sumption that the organizational knowledge did
not have a rigid structure. The goal of such a sys-
tem was to achieve a relatively improved status
with incremental knowledge acquisition. Know-
how sharing had similar literature[2].

SECI model [3] tried to capture the dynamism
between explicit knowledge and tacit knowl-
edge. It indicated a framework not to miss the
large part of tacit knowledge in the knowledge
sharing process. Kunifuji indicated importance
of positive feedbacks among participants from
practical case studies[4].

These approaches tried to capture the dy-
namism issue from multiple aspects. It is im-
portant to identify the organizational process to
absorb the qualitative dynamism on corporate
growth In globalization, corporate systems need
to cast off with environment changes and inter-
nal growth. To our best knowledge, there was
no literature on codifying how to cope with this
challenge.

4 Complexity of Issues

4.1 Complexity in Software Development

Software development is unique in manufactur-
ing that it depends on human resources. It is
tightly coupled with knowledge sharing. It is
essential part of software development to cope
with problem domain complexity and to con-
vert to the complexity into machine-processable
forms. Any modularized software development
is not free from this complexity origin in the
real world. This conversion to the machine-
processable forms is resolved with architecture,
library, or other development methodologies.

Another source of complexity of software
problem solving is project management. When
a software product increases its size, complexity
management becomes a crucial part of business.
Large-scale software goes beyond a small de-
velopment team. For example, a browser client
in a handset reaches a million lines of code.
The number of testing items exceeds 100 thou-
sand. Including other software in a handset, a
total development size of client software reaches
multiple millions lines of code and more-than-a-
million testing items. The division of software
process into requirement identification, coding
and testing requires intensive coordination.

Current globalization increases offshore de-
velopment like China and India in Asia, East-
ern European countries in Europe. It becomes
a critical factor to manage global resources in
software development. When a company grows
beyond country boundaries with expanded mar-
keting and development networks, even the in-
house development has complexity comparable
to the past inter-organization development. New
development paradigms like open source add
further complexity.

Software manufacturing depends on human
resources. It is a manufacturing process with hu-
man resources from requirement to release pro-
cess. It is important to raise awareness in sym-
pathy, we-ness, and motivation in order to con-
trol global software development process. Oth-
erwise, it is difficult to improve software quality
in the global development scenes. The globaliza-
tion not just impacts the software development
flow, but the software business models impact
development process [5]. The business model
issues also influence the complexity of organi-
zational knowledge support.



4.2 Information Appliance Software
Development

The client software in a mobile handset includes
browser, mailer, Java, Flash and so on. The
browser software reaches a million line of codes.
Other software increases size and complexity.
The most complicated software in a PC client
was Windows XP, estimated software size was
5 millions of code. The Windows Vista may be
further complicated, however, the client software
in a mobile handset is not a small one today. It
is to be noted that a 100g handset with a limited
display requires this size of complexity. The size
of software is comparable to ones in the financial
systems in 1980’s.

There are several characteristics in the mobile
handset software that are common to information
appliance software. They are as follows:

• Diversity of environments and capabilities

• Parallelism due to the short product life cy-
cle

The underlying execution environment of soft-
ware in a mobile handsets is diverse. REX (a
binary environment is BREW) in CDMA-1x.
Symbian and Linux are used in GSM-based sys-
tems. The emerging iPhone uses OS X. Samsung
press releases a Window-XP-based mobile hand-
set. This diversity increases code size and com-
plexity of porting process. The mobile handsets
have biannual product releases, which means
twice a year. This increases development com-
plexity. The product process has a parallelism
with the bug fixing from multiple previous re-
leases, development for the current and the fu-
ture releases, testing, performance improvement,
quality improvement for core software. The par-
allelism includes product versions, libraries, and
core versions. These construct multiple parallel
source code sets. For each product, the simulator
version, debugging versions, real machine ver-
sion produce multiple parallel binary versions.
For real machine version, it may use different
library codes to reduce the final foot print size.
This environment leads to the integrated man-
agement on multiple source code sets and binary
versions.

These diversity and parallelism lead to the in-
creased complexity in development software. It
adds complexity on the inherited one of soft-
ware.

Specialized
Stage

- Common
Stage

- Extension
Stage

Figure 3. 3-Staged Model of Software Architec-
ture

4.3 3-Staged model of software architecture

A typical software architecture evolution pattern
is illustrated in Figure 3. The initial stage needs a
particular competence in a limited domain. The
initial success of software comes from some par-
ticular platform, a particular problem domain, or
a particular customer. Next, the software archi-
tecture moves forward to the common stage. The
common architecture enables the solution appli-
cable to a wider range of applications or prob-
lem domains. Smaller and modular parts enable
the simplified manufacturing process and min-
imized maintenance. When software succeeds
in this stage, the software moves forward to the
extension stage, where the company adds value-
added enhancement and customization to wider
problem domains with keeping the common core
accomplished in the previous stage.

It is interesting that the browser software in
mobile handsets follow this evolution path.

The browser software started from the focus
on the compact code size. The mobile handset
CPU was power-less and bundled memory was
small. The requirements from the wireless car-
rier were to maintain the four key factors (a) size,
(b) weight, (c) cost and (d) battery life as well
as enabling Internet access. This priority was a
little bit different from the common software en-
gineering. This featured the initial stage charac-
teristics.

When software reached the common stage, the
micro-browser became a critical part of mobile
handset software. In this stage, the priority of
development shifted toward (a) software quality,
(b) reliability, (c) ease of porting, and (d) short
market lead-time. The size of object code was
not in the top priority list. The new created com-
mon core codes increased the total size of execu-
tion code. The binary size increased 5 times, and
the common core codes were established. The
portability was improved. This featured the com-



mon stage characteristics.
Next, the software entered into the expan-

sion stage. The common core started to produce
the micro-browser codes for automotive systems,
game consoles and digital TVs as well as mobile
handsets. A new framework to cope with multi-
ple profiles was created. Portability was further
enhanced to cope with the differences of bundled
window systems or with real-time OS facilities.
This featured the extension stage characteristics.

This evolution path follows the common soft-
ware evolution pattern.

5 Organizational Knowledge Sharing
Two-dimensional Model

5.1 Two-dimensional model to cope with
corporate evolution

Organizational Knowledge with Dynamism
needs a dynamic model to codify the organi-
zational knowledge and its evolution process.
The author considers the following items for the
model requirements:

• Coping with Software development scaling

• Coping with Globalization and its impacts
on development process

In order to address these requirements, it is
important to consider the qualitative shifts ac-
cording to the corporate growth. The author pro-
poses a two-dimensional model as outlined in
Figure 4.

6

Knowledge
on Evolution

-
Awareness on

Problem Domain Shifts

Figure 4. A Two-dimensional Evolution-
awareness model

5.2 Three-Staged Model for Evolution

In relation to the software architecture evolution,
the author recognized the following three stages
in the software vendor growth in development

Waste
Stage

- Inconsistency
Stage

- Improvement
Stage

Figure 5. Three-Staged Model of Software Pro-
cess Know-how

• Centralized control on source codes

• Centralized control on bug lists

• Encouraged sharing on Know-how on library usage

• Encouragement on unified writing rules for headers and
functions

Figure 6. Improvement Know-how examples
frequently found in the Waste Stage

process and project know-how sharing. They are
not one-to-one matching to the software archi-
tecture shifts. However, there is some parallel
similarity over these three stages. The stages are
outlined in Figure 5.

• Waste Stage: Human resources were
wasted with lack of know-how sharing

• Inconsistency Stage: Inefficiency was
found in the lack of process know-how

• Improvement Stage: No silver-bullet, incre-
mental know-how improves the situation in
a slow pace

In the waste stage, it was often found that
the software man-month was not efficiently used.
The know-how on coding rules, library know-
how, know-how on error-prone issues (mem-
ory allocation and release, et al) improved the
problem solving. A wide range of software
know-how was used to improved the problematic
projects in this stage. Examples of know-how are
depicted in Figure 6.

In the Inconsistency Stage, we can find many
pieces of know-how are shared among mem-
bers though the trouble-shooting in the previ-
ous Waste stage. With the increase of size and
complexity, we can find an increased number of
project management know-how. The project im-
provement know-how examples are outlined in
Figure 7.



• Identifying the bottlenecks in the release process

– Recognizing diversity in codes, with debugging,
without debugging, with simulator, with real ma-
chine

– Reconfirming the efficient parallelism in the task
distribution

• Reconfirming the coders with their own testing

– Identifying the inefficiency of the delayed debugs
after coding

• Encouraging the use of static tools like syntax checkers

→Minimizing the backward motion in process

Figure 7. Examples of the project improvement
know-how found in the Inconsistency Stage

• Checking source revision history

– Confirming the entropy of code decreases over
time

– Confirming the structured-ness of code is im-
proved over time

• Checking the large-size of source file

– Checking inefficient copy-and-paste of code frag-
ments

– Checking the copy-and-paste without under-
standing functions

• Checking transparent releases

→ Incremental improvement

Figure 8. Examples of know-how in the Im-
provement Stage

Many instant problems were solved during the
previous two stages. The know-how to cope
with the past problems is shared. In this Im-
provement stage, it is difficult to identify the
instant solution to the problematic projects. In
this stage, it is typical to accumulate incremen-
tal programming know-how and project know-
how, especially specific to each project. It is im-
portant to identify the bird-eye view of the total
project. However, there is no silver bullet in this
stage. The know-how examples in the Improve-
ment stage are shown in Figure 8.

In the project management, there are three
stages as follows:

• Programmer gaps: Bottom-up program-
ming without clear management

• Functional Inefficiency in Team: Inefficient
manager role, missing technical leader

Table 1. Three staged Management Issues

Programmer Improvement of
-bottlenecks programmer skills
Project Improvement of
-bottlenecks debugging/release process
Globalization Improvement of
-bottlenecks Global processes

• Work-split inefficiency: work-split does not
work well in scaled-up projects

In the Improvement stage, the corporate man-
agement issues become visible more than the
case-by-case project issues. Especially, success
software tries to cross the country-boundaries,
which initiates a trigger to expose the corpo-
rate management issues. The obstacles in corpo-
rate management are outlined in the three-stage
model depicted in Table 1.

5.3 Problem-awareness Dimension

The author became aware that the problem-
awareness dimension is important when the is-
sues of globalization became critical. The ho-
mogeneity and shared-culture context are lost in
the global software development. The lack of
this awareness makes the problem more diffi-
cult to deal with. Today’s global software ven-
dors do their work crossing country-boundaries.
Team members around the world have different
cultures, economic infrastructures, and we-ness
feeling when they are engaged in the global de-
velopment process. It is inevitable to deal with
this issue in the global software development
company.

In order to enter this stage, software com-
panies reach the Improvement stage to satisfy
the large customer base with sufficient software
quality.

The author summarizes the globalization
stages in the Figure 9.

The one-way globalization takes place when
only one of marketing or manufacturing is
global-ized. There are two cases: one is the
case where the customer is the domestic and the
manufacturing is globalized; the other is the cus-
tomers are globalized and the manufacturing is
centralized. In the two-way globalization, both
of marketing and manufacturing are globalized.



Domestic
Stage

- One-way
Globalization

Stage

- Two-way
Globalization

Stage

¾ -
small largeSharing Problem-awareness

Figure 9. 3 Staged View of Software Manufac-
turing Globalization

5.4 Embedded software engineering specific
issues

Information appliances increase their network
capabilities. The information appliance software
engineering has some common features as the
Microsoft software development approaches in
the first half of 1990’s [6]. For example, the fol-
lowing items have common aspects:

• Every day builds

• Loose specification management different
from server side software development

• Software development to deal with changes

• Increased awareness on quality control

It is to be noted that the today’s information
appliance software development is a combina-
tion of the large-scale system development and
short turn-around time small-scale system devel-
opment. This duality brings the following issues:

• The problem solving does not solely de-
pend on technologies

– Communication Skills
– Awareness of the tacit situations

∗ Dealing with a wide open-ended
situation

∗ Imagination of the open-ended
testing

With some interviews with development facil-
itators, it is noticed that the good management
needs a 6-th sense to detect the good develop-
ment and poor development in an early stage.
The sixth sense is the detection to differentiate
the well-controlled ness of the software project.

It is triggered by a simple question. When the an-
swer was too simple, or the answer was given too
quickly, the 6th sense detects something wrong
may happen. This is based on the skills incu-
bated in long experience. It is a challenge to
transfer such a sensible detection skill.

The need to facilitate the time-scale problem
solving is increased. For example, in the em-
bedded software development, it needs a paral-
lel management on debugging in the past-derived
versions and delivering of the new core versions
for the future development. Those maintenance
and design decision making moves forward in
parallel in large-scale in the today’s software
vendor.

To facilitate the human resource development
in remote development, it is important to raise
awareness using online meeting. This is based
on the importance of the problem-awareness
raising. It is still a future issue whether this prob-
lem should be solved in a human relation ex-
pansion. Sometimes it enables bottom-up skill
transfer using human networks. In some cases,
this bottom-up knowledge transfer does not work
well beyond the cultural boundaries.

6 Guidelines to Knowledge sharing
systems

The order-made software development compa-
nies can exist in a different scale. Package
software development companies are difficult to
grow. There are no medium or small size pack-
age software companies. There is only one seat
for the worldwide packaging software company.
In other cases, it is difficult to survive and con-
tinue to attract customers. The success packag-
ing software companies are not many. Few ex-
amples include Microsoft and Adobe. They are
facing with the challenges from SaaS (Software
as a Service) business models [7]. This scarcity
of examples makes the growing software vendor
case studies difficult. From the case study, the
author lists guidelines for organizational knowl-
edge in scaling software vendor in Table 2.

It is necessary to facilitate flexible design with
imagination to the organizational and process
evolution. Organizational knowledge fundamen-
tally tries to improve productivity. Increased
productivity brings a company to lead to M&A
growth. This illustrates the inherited orientation
toward growth in organizational knowledge. To-
day’s dynamic corporate scenes reiterate this as-



Table 2. Guideline for organizational knowledge
systems to deal with growth dynamism

Awareness of Growth Preparedness for growth
Quantity-to-quality
transfer awareness

Awareness on Focus on problem
problem domain awareness as well as
shifts knowledge

Stage-awareness
Readiness Multi-lingual, translation、
for globalization Gateway for cross-culture

knowledge sharing

pect of organizational knowledge. Conceptually,
it is acceptable, however, it is difficult to deploy
in the real world organizations.

The telephony and Internet technologies are
improving. However, the challenge to identify
the corporate knowledge and design to facilitate
it in real world scenes are still challenging to re-
searchers and businesspersons.

7 Conclusion

The time-dimensional issue in the software com-
pany growth is discussed in the viewpoint of or-
ganizational knowledge growth. A case study in
an embedded software vendor was performed.
Organizational knowledge inherits scale-up of
a company. Growth increases the potential
reusability of knowledge and opens doors for im-
proved productivity.

It is a common case that organizational knowl-
edge was built in a small-scale early stage.
This type of knowledge encounters challenges of
scale-up, which is even more difficult to build up
knowledge.

The growing organizations encounter new
qualitative different challenges with new inter-
organizational issues.

In this paper, the author proposed a two-
dimensional model for knowledge support to
deal with organizational dynamism. It high-
lights the importance of problem-domain-shift
awareness. The time-dimensional and space-
dimensional issues are highlighted using three-
staged models. This facilitates the staged-
awareness to open doors for organizational
knowledge sharing in a new stage. Prepared-
ness is important in knowledge system design as
well as corporate management. Stage-transition
support is an unexplored field in organizational

knowledge support systems. It will increase im-
portance in today’s dynamic business environ-
ment. The proposed frameworks provide a mile-
stone to move forward in facilitating organiza-
tional stage transitions.

References

[1] A. Ackerman and C. Halverson. Con-
sidering an organization’s memory. In
ACM CSCW’96, pages 39–48. ACM Press,
November 1996.

[2] T. Yamakami. Information flow analysis:
An approach to evaluate groupware adoption
patterns. Trans. IPSJ, 36(10):2511–2519,
October 1995.

[3] I. Nonaka and H. Takeuchi.The Knowl-
edge Creating Company. Oxford Universtiy
Press, 1995.

[4] Susumu Kunifuji.“Knowledge Resonance”
in Knowledge Management (in Japanese).
Trans. IPSJ, 47(9):1021–1027, September
2006.

[5] J. Kontio, J-P. Jokinen, M. Mäkelä, and
V. Leino. Current practices and research
opportunities in software business models.
In ICSE ’05, pages 1–4. ACM Press, May
2005.

[6] M. Cusumano and R. Selby.Microsoft Se-
crets. The Free Press, 1995.

[7] M. Cusumano. The Business of Software:
What Every Manager, Programmer, and En-
trepreneur Must Know to Thrive and Survive
in Good Times and Bad. The Free Press,
March 2004.


