
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

An Approach to Implementing A Threshold Adjusting

Mechanism in Very Complex Negotiations : A

Preliminary Result

Author(s)
Fujita, Katsuhide; Ito, Takayuki; Hattori,

Hiromitsu; Klein, Mark

Citation

Issue Date 2007-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/4096

Rights

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, KICSS 2007 : The Second

International Conference on Knowledge,

Information and Creativity Support Systems :

PROCEEDINGS OF THE CONFERENCE, November 5-7,

2007, [Ishikawa High-Tech Conference Center,

Nomi, Ishikawa, JAPAN]

An Approach to Implementing A Threshold Adjusting Mechanism
in Very Complex Negotiations: A Preliminary Result

Katsuhide Fujita† Takayuki Ito‡ Hiromitsu Hattori∗ Mark Klein∗∗

†Department of Computer Science, Nagoya Institute of Technology, Japan
fujita@longwood.mta.nitech.ac.jp

‡Techno-Business School / Department of Computer Science
Nagoya Institute of Technology, Japan
ito.takayuki@nitech.ac.jp

∗Graduate School of Informatics, Kyoto University, Japan
hatto@i.kyoto-u.ac.jp

∗∗Center for Collective Intelligence, Massachusetts Institute of Technology, USA
m klein@mit.edu

Abstract
In this paper, we propose a threshold adjusting

mechanism in very complex negotiations among
software agents. The proposed mechanism can
facilitate agents to reach an agreement while
keeping their private information as much as
possible. Multi-issue negotiation protocols have
been studied widely and represent a promising
field since most negotiation problems in the real
world involve interdependent multiple issues.
We have proposed negotiation protocols where a
bidding-based mechanism is used to find social-
welfare maximizing deals. The existing works
have not yet concerned about agents’ private in-
formation. Such private information should be
kept as much as possible in their negotiation.
Thus, in this paper, we propose a new thresh-
old adjusting mechanism in which agents who
open their local information more than the oth-
ers can persuade the others. The preliminary ex-
perimental results demonstrate that the threshold
adjusting mechanism can reduce the amount of
private information that is required for an agree-
ment among agents.

Keywords: Multi-issue Negotiation, Threshold
Adjusting, Multi-agent Systems

1 Introduction

Multi-issue negotiation protocols represent an
important field of study since negotiation prob-
lems in the real world are often complex ones
involving multiple issues. While there has been
a lot of previous work in this area ([1; 2; 3;
4]) these efforts have, to date, dealt almost ex-
clusively with simple negotiations involving in-

dependent multiple issues, and therefore linear
(single optimum) utility functions. Many real-
world negotiation problems, however, involve
interdependent multiple issues. When design-
ers work together to design a car, for example,
the value of a given carburetor is highly depen-
dent on which engine is chosen. The addition of
such interdependencies greatly complicates the
agent’s utility functions, making them nonlinear,
with multiple optima. Negotiation mechanisms
that are well suited for linear utility functions,
unfortunately, fare poorly when applied to non-
linear problems ([5]).

We have proposed a bidding-based multiple-
issue negotiation protocol suited for agents with
such nonlinear utility functions. Agents gener-
ate bids by sampling their own utility functions
to find local optima, and then using constraint-
based bids to compactly describe regions that
have large utility values for that agent. These
techniques make bid generation computationally
tractable even in large (e.g., 1010 contracts) util-
ity spaces. A mediator then finds a combination
of bids that maximizes social welfare.

The existing works have not yet concerned
about agents’ private information. Such private
information should be kept as much as possible
in their negotiation. In this paper, we propose
a threshold adjusting mechanism. First agents
make bids that produce more utility than the
common threshold value based on the bidding-
based protocol we proposed in [6]. Then the
mediator asks each agent to reduce its threshold
based on how much each agent opens its private
information to the others. Each agent makes bids
again above the threshold. This process con-

tinues iteratively until agreement is reached or
no solution. Our experimental results show that
our method substantially outperforms the exist-
ing negotiation methods on the point of how
much agents have to open their own utility space.

The remainder of the paper is organized as fol-
lows. First we describe a model of non-linear
multi-issue negotiation. Second, we describe a
bidding-based negotiation protocol designed for
such contexts. Third we propose a threshold
adjusting mechanism that helps agents to keep
their private information secret as much as pos-
sible. Forth, we present experimental assessment
of this protocol. Finally, we compare our work
with previous efforts, and conclude with a dis-
cussion of possible avenues for future work.

2 Negotiation with Complex Utilities

2.1 Complex Utility Model

We consider the situation where n agents want to
reach an agreement. There are m issues, sj ∈ S,
to be negotiated. The number of issues repre-
sents the number of dimensions of the utility
space. For example, if there are 3 issues1, the
utility space has 3 dimensions. An issue sj has a
value drawn from the domain of integers [0, X],
i.e., sj ∈ [0, X]2.

A contract is represented by a vector of issue
values s⃗ = (s1, ..., sm).

An agent’s utility function is described in
terms of constraints. There are l constraints,
ck ∈ C. Each constraint represents a region with
one or more dimensions, and has an associated
utility value. A constraint ck has value wi(ck, s⃗)
if and only if it is satisfied by contract s⃗. Figure
1 shows an example of a binary constraint be-
tween issues 1 and 2. This constraint has a value
of 55, and holds if the value for issue 1 is in the
range [3, 7] and the value for issue 2 is in the
range [4, 6]. Every agent has its’ own, typically

1The issues are not ”distributed” over agents. The
agents are all negotiating over a contract that has N (e.g.
10) issues in it. All agents are potentially interested in the
values for all N issues.

2A discrete domain can come arbitrarily close to a real
domain by increasing the domain size. As a practical mat-
ter, very many real- world issues that are theoretically real
(delivery date, cost) are discretized during negotiations.
Our approach, furthermore, is not theoretically limited to
discrete domains. The deal determination part is unaf-
fected, though the bid generation step will have to be modi-
fied to use a nonlinear optimization algorithm suited to real
domains.

Utility

Issue 2

Issue 1

3

7

4 6

55

Figure 1. Example of A Constraint

unique, set of constraints.
An agent’s utility for a contract s⃗ is defined as

ui(s⃗) =
∑

ck∈C,s⃗∈x(ck) wi(ck, s⃗), where x(ck)
is a set of possible contracts (solutions) of ck.
This expression produces a ”bumpy” nonlinear
utility space, with high points where many con-
straints are satisfied, and lower regions where
few or no constraints are satisfied. This repre-
sents a crucial departure from previous efforts
on multi-issue negotiation, where contract utility
is calculated as the weighted sum of the utilities
for individual issues, producing utility functions
shaped like flat hyper-planes with a single opti-
mum. Figure 2 shows an example of a nonlinear
utility space. There are 2 issues, i.e., 2 dimen-
sions, with domains [0, 99]. There are 50 unary
constraints (i.e., that relate to 1 issue) as well as
100 binary constraints (i.e., that inter-relate 2 is-
sues). The utility space is, as we can see, highly
nonlinear, with many hills and valleys.

Figure 2. A Complex Utility Space for a Single
Agent

We assume, as is common in negotiation con-
texts, which agents do not share their utility
functions with each other, in order to preserve
a competitive edge. It will generally be the case,

in fact, that agents do not fully know their de-
sirable contracts in advance, because each own
utility functions are simply too large. If we have
10 issues with 10 possible values per issue, for
example, this produces a space of 1010 (10 bil-
lion) possible contracts, too many to evaluate ex-
haustively. Agents must thus operate in a highly
uncertain environment.

Finding an optimal contract for individual
agents with such utility spaces can be handled
using well-known nonlinear optimization tech-
niques such a simulated annealing or evolution-
ary algorithms. We cannot employ such methods
for negotiation purposes, however, because they
require that agents fully reveal their utility func-
tions to a third party, which is generally unreal-
istic in negotiation contexts.

The objective function for our protocol can be
described as follows:

arg max
s⃗

∑
i∈N

ui(s⃗) (1)

Our protocol, in other words, tries to find con-
tracts that maximize social welfare, i.e., the total
utilities for all agents. Such contracts, by defini-
tion, will also be Pareto-optimal.

2.2 Bidding-based Consenting Protocol
The bidding-based negotiation protocol consists
of the following four steps:

[Step 1: Sampling] Each agent samples its
utility space in order to find high-utility contract
regions. A fixed number of samples are taken
from a range of random points, drawing from a
uniform distribution. Note that, if the number
of samples is too low, the agent may miss some
high utility regions in its contract space, and
thereby potentially end up with a sub-optimal
contract.

[Step 2: Adjusting] There is no guarantee, of
course, that a given sample will lie on a locally
optimal contract. Each agent, therefore, uses a
nonlinear optimizer based on simulated anneal-
ing to try to find the local optimum in its neigh-
borhood. Figure 3 exemplifies this concept. In
this figure, a black dot is a sampling point and a
white dot is a locally optimal contract point.

[Step 3: Bidding] For each contract s⃗ found
by adjusted sampling, an agent evaluates its util-
ity by summation of values of satisfied con-
straints. If that utility is larger than the reser-
vation value δ, then the agent defines a bid that

Contracts

U
ti
li
ty

Figure 3. Adjusting the Sampled Contract Points

covers all the contracts in the region that has that
utility value. This is easy to do: the agent need
merely find the intersection of all the constraints
satisfied by that s⃗.

Steps 1, 2 and 3 can be captured as follows:
SN : The number of samples
T : Temperature for Simulated Annealing
V : A set of values for each issue, Vm is for an
issue m

1: procedure bid-generation with SA(Th, SN,
V, T, B)

2: Psmpl := ∅
3: while |Psmpl| < SN
4: Psmpl := Psmpl∪{pi} (randomly selected

from P)
5: P := Π|I|

m=0Vm, Psa := ∅
6: for each p ∈ Psmpl do
7: p′ := simulatedAnnealing(p, T)
8: Psa := Psa ∪ {p′}
9: for each p ∈ Psa do

10: u := 0, B := ∅, BC := ∅
11: for each c ∈ C do
12: if c contains p as a contract

and p satisfies c then
13: BC := BC ∪ c
14: u := u + vc

15: if u >= Th then
16: B := B ∪ (u,BC)

[Step 4: Deal identification] The mediator
identifies the final contract by finding all the
combinations of bids, one from each agent, that
are mutually consistent, i.e., that specify overlap-
ping contract regions3. If there is more than one
such overlap, the mediator selects the one with

3A bid has an acceptable region. For example, if a bid
has a region, such as [0,2] for issue1, [3,5] for issue2, the
bid is accepted by a contract point (1,4), which means is-
sue1 takes 1, issue2 takes 4. If a combination of bids, i.e.
a solution, is consistent, there are definitely overlapping re-

Agent 1

Agent 2

U
ti

li
ty

U
ti

li
ty

Contracts

Contracts

The best contract point

The 2nd best

contract point

Figure 4. Deal Identification

the highest summed bid value (and thus, assum-
ing truthful bidding, the highest social welfare)
(see Figure 4). Each bidder pays the value of its
winning bid to the mediator.

The mediator employs breadth-first search
with branch cutting to find social-welfare-
maximizing overlaps:
Ag: A set of agents
B: A set of Bid-set of each agent (B =
{B0, B1, ..., Bn},

A set of bids from agent i is Bi =
{bi,0, bi,1, ..., bi,m})

1: procedure search solution(B)
2: SC :=

∪
j∈B0

{b0,j}, i := 1
3: while i < |Ag| do
4: SC ′ := ∅
5: for each s ∈ SC do
6: for each bi,j ∈ Bi do
7: s′ := s ∪ bi,j

8: if s′ is consistent then SC ′ := SC ′∪s′

9: SC := SC ′, i := i + 1
10: maxSolution = getMaxSolution(SC)
11: return maxSolution

It is easy to show that, in theory, this approach
can be guaranteed to find optimal contracts. If
every agent exhaustively samples every contract
in its utility space, and has a reservation value
of zero, then it will generate bids that represent
gion. For instance, a bid with regions (Issue1,Issue2) =
([0,2],[3,5]), and another bid with ([0,1],[2,4]) is consistent.

the agent’s complete utility function. The me-
diator, with the complete utility functions for all
agents in hand, can use exhaustive search over all
bid combinations to find the social welfare max-
imizing negotiation outcome. But this approach
is only practical for very small contract spaces.
The computational cost of generating bids and
finding winning combinations grows rapidly as
the size of the contract space increases. As a
practical matter, we introduce the threshold to
limit the number of bids the agents can gener-
ate. Thus, deal identification can terminate in a
reasonable amount of time.

In the previous work [6], the threshold for
each agent is commonly defined by the media-
tor. Agents could not change it by their selves.
The threshold adjusting mechanism proposed in
this paper allows agents to change their threshold
values.

3 Threshold Adjusting Mechanism

3.1 The Outline of the Threshold Adjusting
Mechanism

The main idea of the threshold adjusting mecha-
nism is that if an agent reveals the larger area of
his utility space, then he can persuade the other
agents. On the other hand, an agent who reveals
the small area of his utility space, he should ad-
just his threshold to agree with if no agreement
is achieved. The revealed area can be defined
how the agent reveals his utility space on his
threshold value. The threshold value is defined
at the same value beforehand. Then the thresh-
old values are changed by each agent based on
the amount of the revealed area afterwards. Fig-
ure 5 shows the concept of the revealed area of
agent’s utility space. If the agent decreases the
threshold value, then this means that he reveals
his utility space more.

Figure 6 shows an example of the threshold
adjusting process among 3 agents. The upper fig-
ure shows the thresholds and the revealed areas
before adjusting the threshold. The bottom fig-
ure shows the thresholds and the revealed areas
after adjusting the threshold. In particular, in this
case, agent 3 revealed the small amount of his
utility space. The amount of agent 3’s revealing
utility space in this threshold adjusting is largest
among these 3 agents. In the protocol, this pro-
cess is repeated until an agreement is achieved
or until they could not find any agreement. The

Utility

Issue1

Threshold

Issue2

Issue2

Issue1

Revealed area

Figure 5. Revealed Area

exact rate of the amount of revealed utility space
and the amount of decreasing the threshold is de-
fined by the mediator or the mechanism designer.

The details of the threshold adjusting mecha-
nism is shown as follows:
Ar: Area of each agent (Ar =
{Ar0, Ar1, ..., Arn})

1: procedure threshold adjustment()
2: loop:
3: i := 1, B := ∅
4: while i < |Ag| do
5: bid generation with SA(Thi, V , SN ,

T , Bi)
6: SC := ∅
7: maxSolution := search solution(B)
8: if maxSolution is not empty
9: maxSolution := getMaxSolution(SC)

10: break loop
11: elseif all agent can lower the threshold
12: i := 1
13: SumAr := Σi∈|Ag| Ari

14: while i < |Ag| do
15: Thi := Thi −C ∗ (σiAr−Ari)/σiAr
16: i := i + 1
17: end while
18: else
19: break loop
20: return maxSolution

The above algorithm utilizes step 1, step 2,
step 3, and step 4 in the previous section. In the
former paper [6], we did not define any external
loop of these steps. This paper is the first that
proposed the external loop for an effective con-
senting mechanism.

3.2 Incremental Deal Identification

The threshold adjusting process shown in the
previous section could reduce the computational
cost of deal identification in step 4. The origi-
nal step 4 requires an exponential computational
cost because the computation is actually combi-
natorial optimization. In the new threshold ad-
justing process, agents incrementally reveal their
utility spaces as bids. Thus, for each round, the
mediator only computes the new combinations
of bids that submitted newly in that round. This
process actually reduces the computational cost.
We just observed this fact in the preliminary ex-
periments, and did not investigate this deeply.
Thus future work includes the investigation of
this good feature of incremental deal identifica-
tion.

4 A Preliminary Experimental Result

We conducted several experiments to evaluate
the effectiveness of our approach. In each exper-
iment, we ran 100 negotiations between agents
with randomly generated utility functions. We
compare our new threshold adjusting protocol
and the existing protocol without adjusting the
threshold in terms of optimality and privacy.

In the experiments on optimality, for each
run, we applied an optimizer to the sum of
all the agents’ utility functions to find the con-
tract with the highest possible social welfare.
This value was used to assess the efficiency
(i.e., how closely optimal social welfare was ap-
proached) of the negotiation protocols. To find
the optimum contract, we used simulated anneal-
ing (SA) because exhaustive search became in-
tractable as the number of issues grew too large.
The SA initial temperature was 50.0 and de-
creased linearly to 0 over the course of 2500 iter-
ations. The initial contract for each SA run was
randomly selected.

In terms of privacy, the measure is the range
of revealed area. Namely, if an agent reveals one
point of the gird of utility space, this means he
lost 1 privacy unit. If he reveals 1000 points, the
he lost 1000 privacy.

The parameters for our experiments were as
follows:

Number of agents is N = 3. Number of issues
is 2 to 10. Domain for issue values is [0, 9].

Constraints : 10 unary constraints, 5 binary
constraints, 5 trinary constraints, etc. (a unary

Utility

Issue1

Threshold

Issue2

Issue2

Issue1

Utility

Issue1

Threshold

Issue2

Issue2

Issue1

Utility

Issue1

Threshold

Issue2

Issue2

Issue1

Compromising (Threshold adjusting)

Utility

Issue1

Threshold

Issue2

Utility

Issue1

Threshold

Issue2

Utility

Threshold

Issue2

Issue2

Issue1

Issue2

Issue1

Issue2

Issue1

Agent 1

Agent 1

Agent 2 Agent 3

Agent 2 Agent 3

Issue1

Figure 6. The Threshold Adjusting Process

constraint relates to one issue, an binary con-
straint relates to two issues, and so on).

The maximum value for a constraint : 100 ×
(Number of Issues). Constraints that sat-
isfy many issues thus have, on average, larger
weights. This seems reasonable for many do-
mains. In meeting scheduling, for example,
higher order constraints concern more people
than lower order constraints, so they are more
important for that reason.

The maximum width for a constraint : 7. The
following constraints, therefore, would all be
valid: issue 1 = [2, 6], issue 3 = [2, 9] and issue 7
= [1, 3].

The number of samples taken during random
sampling: (Number of Issues) × 200.

Annealing schedule for sample adjustment:
initial temperature 30, 30 iterations. Note that
it is important that the annealer not run too long
or too ’hot’, because then each sample will tend
to find the global optimum instead of the peak of
the optimum nearest the sampling point.

The threshold agents used to select which bids
to make in starts with 900 and decreases until
200 in the threshold adjusting mechanism. The
protocol without the threshold adjusting process
defines the threshold as 200. The threshold is
used to cut out contract points that have low util-

Figure 7. Revealed Rate

ity.
The limitation on the number of bids per

agent: n
√

6400000 for N agents. It was only
practical to run the deal identification algorithm
if it explored no more than about 6400,000
bid combinations, which implies a limit of
n
√

6400000 bids per agent, for N agents.
In our experiments, we ran 100 negotiations

in every condition. Our code was implemented
in Java 2 (1.5) and run on a core 2 duo proces-
sor iMac with 1.0GB memory under Mac OS X
10.4.

Figure 7 shows the optimality of 3 comparable

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

No Threshold Adjustment

Threshold Adjustment (50)

Threshold Adjustment (200)

Threshold Adjustment (400)

O
p

ti
m

al
ty

 R
at

e

Number of Issues

Figure 8. Optimality

mechanisms, one with the threshold adjustment
(with bid limitation), one without the threshold
adjustment and bid limitation, and one without
the threshold adjustment with bid limitation. The
revealed rate is defined by (Revealedrate) =
(Revealedarea)/(Wholeareaofutilityspace).

The mechanism without both of the threshold
adjustment and bid limitation increasing the re-
vealed rate. This means that if we do not use
the threshold adjustment and bid limitation, then
agents need to reveal their utility space much
more than the other mechanisms.

We found that bid limitation can show the nice
effects to keep the increasing amount of revealed
rate small. The mechanism with bid limitation
but without the threshold adjustment shown by
triangles starts decreasing when the number of
issue is 5, namely bid limitation starts being ac-
tive.

Compared with the above two mechanisms,
the mechanism with the threshold adjustment
proposed inn this paper drastically decreases the
amount of the revealed rate.

As we show in the previous paragraph, our
proposed threshold adjustment mechanism can
effectively reduce the revealed rates. We then
show the optimality of our proposed mechanism
is quite competitive compared with the other
mechanisms in Figure 8.

Each line in Figure 8 means the followings:
No threshold adjustment means a mechanism
without the threshold adjustment. Threshold ad-
justment (50), Threshold adjustment (200), and
Threshold adjustment (400) mean mechanisms
with the threshold adjustment. Each mecha-
nism determines the decreasing amount of the

Figure 9. Number of rounds

threshold by 50 × (SumAr − Ari)/SumAr,
200 × (SumAr − Ari)/SumAr, and 400 ×
(SumAr−Ari)/SumAr, respectively. SumAr
means the sum of all agents’ revealed areas. Ari

means agenti’s revealed area.
As we can see in Figure 8, in terms of the opti-

mality, the difference between ”no threshold ad-
justment” and ”threshold adjustments” is small.
At most the difference is around 0.1 around 3 is-
sues to 7 issues. When the threshold decreasing
amount is not large, say 50, agents could miss the
agreement points that have larger total utilities.
This occurs when some agents have higher util-
ity on the agreement point but other agents have
very lower utility on the agreement point. ”No
threshold adjustment” mechanism makes agents
to submit all agreement points that have larger
utility than the minimum threshold. Thus, ”No
threshold adjustment” can find such cases. But
”threshold adjustment” mechanisms fail to cap-
ture such cases when the decreasing amount is
smaller.

Figure 9 and Figure 10 compare the required
rounds and the revealed rates for different de-
creasing amounts, 50 and 200. Figure 9 demon-
strates that the decreasing amount is small, 50,
then the number of rounds could be larger. On
the other hand, in Figure 10, if the decreasing
amount is small, then the revealed rate is rela-
tively small.

5 Related Work

Most previous work on multi-issue negotiation
([7; 1; 2]) has addressed only linear utilities.
A handful of efforts have, however, considered
nonlinear utilities. [8] has explored a range of
protocols based on mutation and selection on
binary contracts. This paper does not describe

Figure 10. Revealed Rates

what kind of utility functions is used, nor does it
present any experimental analyses. It is therefore
unclear whether this strategy enables sufficient
exploration of the utility space to find win-win
solutions with multi-optima utility functions. [9]
presents an approach based on constraint relax-
ation. In the proposed approach, a contract is
defined as a goal tree, with a set of on/off labels
for each goal, which represents the desire that an
attribute value is within a given range. There are
constraints that describe what patterns of on/off
labels are allowable. This approach may face se-
rious scalability limitations. However, there is
no experimental analysis and this paper presents
only a small toy problem with 27 contracts. [10]
also presents constraint based approach. In this
paper, a negotiation problem is modeled as a dis-
tributed constraint optimization problem. Dur-
ing exchanging proposals, agents relax their con-
straints, which express preferences over multi-
ple attributes, over time to reach an agreement.
This paper claims the proposed algorithm is op-
timal, but do not discuss computational com-
plexity and provides only a single small-scale
example. [5] presented a protocol, based on a
simulated-annealing mediator, that was applied
with near-optimal results to medium-sized bilat-
eral negotiations with binary dependencies. The
work presented here is distinguished by demon-
strating both scalability, and high optimality val-
ues, for multilateral negotiations and higher or-
der dependencies.

6 Conclusions

In this paper, we proposed a threshold adjusting
mechanism in very complex negotiations among
software agents. In very complex negotiations,
we assume agents have to do interdependent

multi-issue negotiation. The threshold adjust-
ing mechanism can facilitate agents to reach an
agreement while keeping their private informa-
tion as much as possible. The preliminary ex-
perimental results demonstrate that the threshold
adjusting mechanism can reduce the amount of
private information that is required for an agree-
ment among agents. One of the interesting future
works includes more autonomous threshold ad-
justment mechanism for agents in very complex
negotiations.

References

[1] P. Faratin, C. Sierra, and N.R. Jenning. Us-
ing similarity criteria to make issue trade-
offs in automated negotiations. In Artificial
Intelligence, pp. 142:205–237, 2002.

[2] S. Fatima, M. Wooldridge, and N.R. Jen-
nings. Optimal negotiation of multiple is-
sues in incomplete information settings. In
AAMAS-2004, pp. 1080–1087, 2004.

[3] R. Y. K. Lau. Towards genetically opti-
mised multi-agent multi-issue negotiations.
In of HICSS-2005, 2005.

[4] L.K. Soh and X. Li. Adaptive, confidence-
based multiagent negotiation strategy. In
AAMAS-2004, pp. 1048–1055, 2004.

[5] M. Klein, P. Faratin, H. Sayama, and
Y. Bar-Yam. Negotiating complex con-
tracts. Group Decision and Negotiation,
12(2):58–73, 2003.

[6] T. Ito, H. Hattori, and M. Klein. Multi-
issue negotiation protocol for agents : Ex-
ploring nonlinear utility spaces. In JCAI-
2007, pp. 1347–1352, 2007.

[7] T. Bosse and C. M. Jonker. Human vs.
computer behaviour in multi-issue negoti-
ation. In RRS-2005, pp. 11–24, 2005.

[8] R. J. Lin and S. T Chou. Bilateral multi-
issue negotiations in a dynamic environ-
ment. In AMEC-2003, 2003.

[9] M. Barbuceanu and W. K. Lo. Multi-
attribute utility theoretic negotiation for
electronic commerce. In AMEC-2000, pp.
15–30, 2000.

[10] X. Luo, N. R. Jennings, N. Shadbolt, H.
Leung, and J.H. Lee. A fuzzy constraint
based model for bilateral, multi-issue nego-
tiations in semi-competitive environments.
Artificial Intelligence, 148:53–102, 2003.

