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Abstract  

Interactions among proteins are essential to al-
most all cellular functions. Several experimental 
and computational methods have been proposed 
to discover protein-protein interactions (PPI). 
However the reliability of these interactions is 
still challenging. Our motivation is to more re-
liably predict protein-protein interactions by 
mining and combining multiple biologically sig-
nificant data. By integrating function catalog and 
biological process data, especially domain fusion 
data in Bayesian networks, a considerable num-
ber of putative PPI was predicted. In addition to 
the large number of predicted PPI, the main 
contribution of our work is predicting more re-
liable PPI by combining both protein information 
and domain information. Experimental results 
demonstrated the reliability of predicted PPI in 
three main points: (i) the large number of over-
lapped interactions between predicted PPI set and 
two well-known PPI databases, (ii) the large 
number of domain-domain interactions covered 
by predicted PPI, and (iii) the physical properties 
of predicted PPI.  
 
Keywords:  protein-protein interactions, Bayes-
ian networks, biological processes, functional 
catalogs, domain fusion. 
 

1   Introduction  
 
Proteins are macro molecules made of twenty 
amino acids arranged in a linear chain, which 
participate in every process within cells. Protein 
domains (domains in short) are the key elements 
in proteins. Different domains in different pro-
teins sometimes fused in other proteins to per-
form specific biological functions in particular 
environment conditions. This phenomenon is 
called domain fusion. 
       In genome era, more and more genomes and 

their encoded proteins are successfully studied. 
However, simply knowing the list of genes and 
proteins is not sufficient to tell us about the 
complex biological functions in cell, and most of 
proteins in cell are considered not to be inde-
pendent individuals. They could interact perma-
nently or transiently with the others to function in 
cell. Protein-protein interactions are at the heart 
of biological activities 
       Protein-protein interaction prediction is one 
of the most important problems in biology. With 
much effort of biological scientists, pro-
tein-protein interactions were early discovered 
from many experimental methods such as yeast 
two-hybrid, phage display, affinity purification 
and mass spectrometry, and protein micro-arrays 
[17], [20]. Until recently, the results from these 
expensive experimental methods are little over-
lapped.  
       Since the constantly increasing numbers of 
published biological databases, there are a mul-
titude of computational methods to detect pro-
tein-protein interactions. Some work tried to 
propose the new computational techniques to 
effectively infer PPI [1], [4], [6], [12], [15]. From 
a different point of view, other work have re-
cently been tried to look for biologically signifi-
cant data related to PPI, and then combined them 
in computational frameworks [3], [8], [10], [13]. 
Owing to the combination of multiple databases, 
PPI can be better predicted in a comprehensive 
way.  Though domains are basic parts in proteins 
[11],  most of previous works did not use this 
appealing information in their integrative 
frameworks.  
      In this paper, our purpose is to more reliably 
predict protein-protein interaction by integrating 
domain information, in particular domain fusion, 
using Bayesian network framework. Bayesian 
networks have been shown to be powerful [8].  
We took an effort to improve this framework by 
integrating domain fusion information in addition 
to function catalog and biological process. As a 



result, our contribution is proposing of a method 
which uses not only protein information but also 
domain information. Studying on the deeper 
mechanism of protein-protein interaction, our 
method is promising to more reliably predict PPI. 
       In experiments, among 7 millions of yeast 
protein pairs (matched from the three genomic 
data sources), we predicted a considerable num-
ber of protein-protein interactions. We evaluated 
the reliability of predicted interactions in three 
ways. First, comparing with two well-known 
protein interaction databases, Comprehensive 
Yeast Genome Database [24] and Database of 
Interacting Proteins [25], there are much over-
lapped between the predicted interaction set and 
these databases. Second, we extracted do-
main-domain interactions from InterDom data-
base [11], and checked whether protein interac-
tions had domain-domain interactions. Because 
domain-domain interactions (DDI) are biological 
mechanisms underlying PPI, the large number of 
covered DDI persuaded the reliability of pre-
dicted PPI. Third, the reliability of putative PPI 
was reconfirmed by the physical properties. 
      For further study on protein complexes and 
cellular pathways, we discovered a large number 
of triplets (two interacting couples sharing one 
protein). These strong triplets may be building 
blocks to form various biological pathways and 
functional complexes. 
       In Section 2, we present our proposed 
methods and materials. The experimental results 
and evaluation will be shown Section 3. Finally, 
we make some conclusions and discuss some 
future work in Section 4. 

2   Materials and Methods  
 
In this part, we present our method integrating 
three genomic data sources using Bayesian net-

works to predict protein-protein interactions. We 
first extracted complexes catalog from MIPS 
database and the yeast localization data [22] as 
positive and negative training data sets, respec-
tively. Then MIPS functional catalogs [24], GO 
biological processes [21], and domain fusion [23] 
are the three genomic features. These features are 
combined to train the Bayesian networks. Figure 
1 presents the proposed framework.  
 
2.1   Generating Positive and Negative Train-
ing Datasets 
 
Two proteins are in the same complex are known 
to be likely interact to each other [8]. The positive 
examples were chosen from the MIPS complex 
database. In this database, proteins for the yeast 
species Saccharomyces cerevisiae, are catego-
rized into various hierarchy classes, such as in-
tracellular transport complexes having two 
sub-catalogs: clathrin and clathrin-associated 
protein (AP) complex. Similar to [8], only classes 
containing single complexes are considered to 
extract positive examples. The total of positives 
is 8,250 protein pairs. 
       Until now, there is not any available database 
for non-interacting protein pairs. There are two 
popular ways to generate negative examples in 
studies on protein interactions [2]. The first one is 
randomly choosing the protein pairs that are not 
included in the protein interaction set (the posi-
tive set). The second one is based on an assump-
tion that if two proteins belong to different 
compartments in the cell, they are likely to have 
no chance to interact with each other [2]. We then 
followed the second approach to generate nega-
tive examples. From yeast localization data [24], 
2,708,746 protein pairs are considered as nega-
tives in our experiments. 

 

 
 Figure 1.  The Bayesian framework for predicting protein-protein interactions. 

http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
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Table 1.  The parameters of the naïve Bayesian network. 

Go process      

 Extracting Domain Fusion, Function fusion data is referred from Domain F
Catalog and Biological Process Data 
 
T
tional catalog and biological process, are com-
bined in our work. Because these features have 
the biologically close associations with PPI, they 
are useful features for predicting PPI. 
       Two proteins functioning in the 
logical process are more likely to interact than 
two proteins involved in different processes. 
Thus, we can infer PPI from function catalog and 
biological process data. We collected information 
from two catalogs of protein functional informa-
tion: MIPS (Munich Information Center for 
Protein Sequences) functional catalog [22], and 
GO (Gene Ontology) biological processes [21].  
      In addition, domains of interacting proteins
can fuse in other proteins to perform some spe-
cific functions. It is said that domain fusion and 
protein interactions have strong relations. If do-
mains of protein A and domains of protein B fuse 
in protein C, we can predict an interaction be-
tween two proteins, A and B [17], [18]. Domain 

tabase [18], [23].  The purpose of the work in [17] 
is to discover domain fusion using relational 
algebra and sequence data. Because of the high 
accuracy when validating with PPI data, we 
chose domain fusion data from these data sources. 
The Bayesian network approach can be more 
effective with predictive features [17], [9]. After 
investigating various genomic features, three 
extracted features are considered to be useful for 
predicting protein-protein interactions. 
       We used the same procedure propos

-

to quantify the functional similarity between two 
proteins. Protein pairs are binned to five intervals 
(Inv1, Inv2, Inv3, Inv4, and Inv5) according to 
their similarity. We have five feature values for 
MIPS function and GO process features, i.e. Inv1 
(1-9), Inv2 (10-99), Inv3 (100-1000), Inv4 
(1000-10000), and Inv5 (10000 - infinite). For 
domain fusion feature, there are two feature 
values, i.e. “yes” (if having domain fusion), and 
“no” (if not having domain fusion). All proteins 
are identified by their ORF (Open Reading 
Frame). 

        
Feature 
value pos neg Sum(pos) Sum(neg) P(GO process/ pos) P(GO process/ neg) GO_L  
Inv1 98 825 9 152  98 825 0.0126109 0.001278856 9.861
Inv2 7 3 8 4 079 336 77 161 .100244499 0.005171227 19.38505
Inv3 525 1 1 10242 402 4403 0.067558873 0.015876411 4.255299
Inv4 1005 28251 2407 42654 0.129326985 0.043792667 2.953165
Inv5 5364 6 602454 7771 45108 0.690258654 0.933880839 0.739129
Sum 7771 645108           
          
MIPS function              
Feature 
value pos neg Sum(pos) Sum(neg) P(MIPS function/pos)

MIPS function /
IPS_L 

P(  
neg) M

Inv1 165 1024 0.000779479  165 1024 0.019666269  25.23002
Inv2 697 4265 862 5289 0.083075089 0.00324656 25.58865
Inv3 741 1 1 1 03119 603 8408 0.088319428 .009986313 8.844047
Inv4 6221 47135 7824 65543 0.74147795 0.035879631 20.66571
Inv5 566 12 13 048155 8390 13698 .067461263 0.950108016 0.071004
 Sum 8     390 1313698       
          
Domain f n  usio             
Feature 
value pos neg Sum(pos) Sum(neg) P(domain fusion/pos) P(domain fusion/ neg) Domain_L 

Yes 446 274 446 274 0.673716012 0.006724752 100.1845
No 216 40 40471 662 745 0.326283988 0.993275248 0.328493

 Su 66     m 2 40745       



 
.3   Bayesian Networks for PPI Prediction 

ayesian networks have incredible power to offer 

sian networks are a representation of 

2
 
B
assistance in a wide range of endeavors. They 
support the use of probabilistic inference to up-
date and revise belief values. Bayesian networks 
readily permit qualitative inferences without the 
computational inefficiencies of traditional joint 
probability determinations [5]. Furthermore, as 
integrating multiple data source has been em-
phasized in recent bioinformatics, Bayesian 
networks are quite suitable for the task of com-
bining various features from heterogeneous data 
sources.  
        Baye
the joint probability distribution among multiple 
variables (which could be datasets or information 
sources). Denote by ‘positive’ a pair of proteins 
that are in the same complex. Given the number 
of positives among the total number of protein 
pairs, the ‘prior’ odds of finding a positive are: 
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      In this paper, we assumed that three ge-  

nomic features, MIPS functional catalog, GO 
biological process and domain fusion, are inde-
pendent, and then we applied naïve Bayesian 
networks to infer PPI from these features. In that 
case, L can be simplified to: 

)(
)(

)()...(
11

1 negfP
posfP

fLffL
i

i
NN

i
i

i
N

==
∏=∏=  

 
     The parameters of the naïve Bayesian net-

pling dataset with the 8,250 positives and the 

 

estimate the final one, likelihood 

       In these 
kelihood ratios to the whole yeast interactome 

tegrat-

 Evaluation 

I. 
oing the experiments with the whole data set (7 

  
work are shown in Table 1.  Columns “pos” and 
“neg” give the overlap of protein pairs in sam-

2,708,746 negatives. Columns “sum (pos)” and 
“sum(neg)” show the number of posi-
tives/negatives among the protein pairs with 
likelihood ratio greater than or equal to L. 
P(feature value/positive) is the probability of a 
positive having a corresponding feature value and 
P(feature value/negative) is the probability of a 
negative having a corresponding feature value.  
      From above equation, the likelihood ratios 
MIPS_L, GO_L, and Domain_L showed in the
last columns are the likelihood ratios for respec-
tive feature values extracted from databases 
MIPS, GO, and Domain fusion. We obtained 
very high MIPS_L, GO_L and GO_L, especially 
Domain_L (Domain_L = 100.1845). The likeli-
hood ratio Domain_L of domain fusion feature is 
the highest ratio L among the ratios of various 
features extracted from other data sources used in 
[8], [9]. This means that domain fusion is the 
helpful genomic feature to predict reliable protein 
interactions.  
       Likelihood ratios of all genomic features are 
multiplied to 
ratio L, as the representation of integrating of 
genomic features in naïve Bayesian networks and 
then increase the accuracy of protein interactions:  
 

L = MIPS_L * GO_L * Domain_L 
 

this paper, we have not applied 
li
(about 18 millions pairs) yet; we only did ex-
periments with a dataset of about 7 millions pairs 
from three genomic data sources. This dataset is 
rich information because in theory all protein 
pairs in this dataset are likely to interact. 
       In Section 3, the experimental results show 
that Bayesian networks are suitable for in
ing many different features. The evaluation with 
different aspects demonstrates that domain fusion 
is the appropriate feature to reliably predict PPI 
and open some further studies. 
 

. Experimental Results and3
 
We chose different thresholds of L to predict PP
D
millions protein pairs), we obtained some good 
results (as shown in Figure 2). In Figure 2, we can 
see that when the threshold L increases, the 



number of protein will decrease. But we think 
that L ≥ 25 is a suitable threshold for determining 
a protein-protein interaction [13]. With this 
threshold, we predicted 70,601 protein interac-
tions. When L ≥ 1 (means that the probability of a 
protein pair as positive is higher than as a nega-
tive), there are 443,896 protein pairs that satisfy 
this threshold. This means that the proposed 
method is effective to predict protein interactions. 
The big number of predicted protein interactions 
encouraged us to follow this approach. 

       In Jansen et al.‘s work [8], they did several 
experimental evaluations such as comparison of 
B

In the different ways, we carried out various 
ex

 
      

 

ayesian networks with voting, cross-validation.  
 

  
periments and other evaluation to validate the 

reliability of our work. First, we evaluated the 
predicted PPI by comparing them with other 
well-known PPI data sets such as CYGD (Com-
prehensive Yeast Genome Database) [24] and 
DIP (Database of Interacting Proteins) [19, 25]. If 
in the predicted PPI data set, there are many 
overlapping PPI with DIP and CYGD, we could 
rely on the predicted results. The results are 
showed in Figure 3. A large amount of the pre-
dicted PPI overlaps in DIP database and CYGD 
database.           

 
Figure 2. Number of predicted PPI with various thresholds L.
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Figure 3.  Comparison with overlapped PPI in databases DIP and CYGD . 
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        Second, 
tigated the characteristic of predicted PPI, 

n-

ently, many 
studies take domain-domain interactions (DDI) 

etected combination groups of 

 

owing to DIP database, we inves- protein-protein interactions. Rec

whether they are physical or genetic PPI. In bi-
ology, PPI are divided into two types: physical 
PPI and genetic PPI [4]. Physical PPI, which are 
considered as the direct ones, play a very im-
portant role in forming stable complexes. These 
complexes perform biological roles together and 
can last a long time in cell. Because protein do-
mains are the basic parts of proteins then we 
expected with domain fusion features we can 
better predict physical PPI. In some situations, 
stable physical interactions are thought to be 
more reliable than transient genetic ones.  Figure 
4 shows the number of physical and genetic PPI 
corresponding to threshold L. With L ≥ 500, all of 
PPI are physical. For every thresholds of L, the 
number of physical PPI is always higher than the 
number of genetic PPI.  These results mean that 
our method promisingly predict physical PPI. 
     Third, we verified the reliability of the puta-
tive PPI by looking up their domain-domain i
teractions in InterDom database [11]. Like pro-
teins, protein domains also interact together, and 
they are considered as the stable channels behind 

into account to predict PPI. From that point of 
view, we tried to validate the predicted PPI 
through DDI. The number of PPI having at least 
one DDI is given in Figure 5. From more than 
30,000 DDI extracted from InterDom database, 
there are lot of predicted PPI verified to have at 
least one DDI. 
       To build up complexes of proteins or protein 
pathways, we d

 
 

interactions, in which protein A interacts with 
protein B and protein B interacts with protein C. 
Such kinds of groups are called triplets. With L ≥ 
25 then, there are a huge number of 1,851,579 
triplets. We may think about the way to build the 
cellular pathways and protein complexes from 
these triplets. Actually, the cellular pathways in 
cells such as metabolism pathways or signal 
transduction pathways are much more compli-
cated, but these triplets could be cores of the 
cellular pathways. Spreading groups with four, 
five or more protein interactions, we can con-
struct the complex networks of protein interac-
tions and cellular pathways. 

 
 

Figure 4. Genetic and physical protein-protein interactions overlapped with those in CYGD database. 
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Figure 5. Number of PPI having DDI in InterDom database. 

 
 

 4. Discussion and Conclusion 
 
 In this work, we applied Bayesian networks to 
predict novel and reliable protein interactions in 
yeast. We chose three predictive genomic fea-
tures in particular domain fusion to discover pro-
tein-protein interactions. Among various ge-
nomic features, domain fusion stands out as the 
promising feature to predict protein-protein in-
teractions. The efficiency of our method is not 
only the huge number of predicted pro-
tein-protein interactions but also the reliability of 
them. And these putative proteins are carefully 
validated by various ways. 
      The result will be better when the data miss-
ing problem can be solved. The missing data 
problem is that we have not had an adequate 
domain fusion database. But these problems can 
be resolved as genomic data is more available. 
The method presented in this paper can be also 
applied for various organisms and alternative 
genomic features. In future, we would like to 
build up the protein complexes, and then cellular 
pathways. To improve the method, other ge-
nomic/proteomic features need combing to have 
more comprehensive view of protein-protein 
interactions. 
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