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Abstract
Complex problems cannot be rationally ana-

lyzed and solved without adequate integration
of pertinent knowledge and its representation in
form of the corresponding mathematical model.
Such models are actually used for creation of
knowledge about the problem through model
analysis. Modeling complex problems for find-
ing rational solutions demands not only novel
modeling methods but also appropriate modeling
technology. The paper presents selected issues
of knowledge integration and creation aimed at
model-based support for solving complex prob-
lems, and characterizes the structured modeling
technology developed for supporting collabora-
tive interdisciplinary modeling processes.

Keywords: Structured modeling, Knowledge,
Creative environments.

1 Introduction

Everybody makes decisions all the time. In
most cases we manage even complex problems
by successfully making decisions based on ex-
perience and intuition. Consider driving a car,
for example. Each driver controls a car sub-
consciously applying quite complex principles
of adaptive control, typically without even un-
derstanding the dynamics of the car.1 Moreover,
in congested traffic each driver constantly moni-
tors the behavior of the other drivers and every
few seconds subconsciously predicts their be-
havior, assessing the risk related to various com-
binations of the predicted behavior. Given the
complexity of this everyday activity, it is amaz-
ing how well (measured e.g., by the frequency
of mistakes that leads to accidents) the problem
of controlling cars is solved by drivers with very
diversified backgrounds and experience. If every
driver can do this, then one should ask why any
formal methods may help solving problems that
seem to be simpler.

1Control engineers could solve differential equations to
optimize the way they drive a car, but they do not need to
do so.

The simplest answer to this question comes
from the experience with science-based support
for solving complex problems in policy-making,
industry, and management. While it is possible
to accumulate enough knowledge and experience
to solve diverse problems, often even without un-
derstanding all the underlying mechanisms, in
many other decision-making situations mathe-
matical models and adequate methods of model
analysis are necessary for finding and/or justify-
ing rational decisions.2 Such situations are char-
acterized by at least one of the following issues:
• complex relations between the decisions and

the corresponding outcomes (measures of con-
sequences of their implementations);
• difficult to assess trade-offs between attainable

goals (preferred values of outcomes);
• uncertainties and risks related to the decision-

making situation;
• needs for supporting the transparency of the

decision-making process and enhancing public
understanding of problems and the considered
solutions.
Rational decision-making3 for such problems

has to be based on an appropriate use of perti-
nent knowledge. Knowledge is typically under-
stood as familiarity, awareness, or understanding
gained through experience or study. Knowledge
creation and integration is a rather complex pro-
cess, which requires careful management. This
field has recently been intensively researched,
and the School of Knowledge Science at JAIST4

is a leading center of this research. The research
has a wide scope, therefore even an outline of
its results is beyond the scope of this paper. Re-
cent developments in this area including exten-
sive bibliography can be found in [3; 4; 5].

This paper focuses on the two elements of
such a process that are mostly related to knowl-
edge management, namely knowledge integra-

2A comprehensive discussion of model-based decision-
making support is available in [1].

3Modern approaches to rational decision-making are
discussed in more detail in [2].

4Japan Advanced Institute of Science and Technology.



tion and representation, and knowledge creation.
For many complex problems a large part of

the pertinent knowledge can be represented by
mathematical models. Knowledge grows very
quickly, therefore even the best scholars can only
master a tiny fraction of the knowledge available
in their professional area. Consider, e.g. mathe-
matical programming, which is on the one hand
a rather specialized area of mathematics, but on
the other hand is quite a broad area from the
point of view of researchers working in a par-
ticular field (e.g. interior point methods for opti-
mization, or wavelet-based approaches to analy-
sis of time series). Therefore model development
for solving complex problems requires collabo-
ration of scientists and professionals who con-
tribute (typically interdisciplinary and heteroge-
neous) knowledge. Such a collaboration is or-
ganized through virtual organizations, which for
collaborative interdisciplinary modeling can be
called virtual modeling laboratories. This impor-
tant topic is beyond the scope of this paper, it is
however discussed in [6].

The remaining part of this paper is organized
as follows.

Methods for selection of knowledge pertinent
to the problem at hand and its representation is
a kind of meta-knowledge that actually is tacit,
i.e., experienced modelers know how to develop
models to properly: (1) integrate and represent,
and (2) create knowledge relevant to the mod-
eled problem. This meta-knowledge is how-
ever fragmented and not documented, therefore
can hardly be disseminated. Selected issues
of knowledge integration are discussed in Sec-
tion 2.

In the final step of model-based support
for problem solving knowledge is created by
model analysis, and used for supporting ratio-
nal decision-making. More detailed discussion
of the relations between knowledge management
and decision support can be found in [7]. In this
paper we concentrate in Section 3 on selected
issues of knowledge creation through a model
analysis.

Rational problem solving requires concerted
handling of all pertinent elements of the
decision-making support process, which is ac-
companied by the corresponding stages of the
related modeling process, which in turn requires
methods and tools appropriate for effective han-
dling of complex models. These issues are dis-

cussed in Section 4.

2 Knowledge Integration

Probably the best way to integrate knowledge for
problem-solving whenever it involves analysis of
large amounts of data and/or non-trivial relations
is to develop an appropriate mathematical model,
or several models to provide diverse insights into
the problem. In order to outline the knowledge
integration let us consider a mathematical model
as being composed of entities, and relations be-
tween them. Entities are of two types: (1) pa-
rameters, values of which represent pertinent in-
formation (i.e. a collection of data), and (2) vari-
ables, values of which are assigned during the
model analysis. The model relations (conven-
tionally called constraints or functions) repre-
sent knowledge about the relationships among
the model entities.

A model integrates knowledge pertinent to
solving a particular problem on two levels:
• symbolic model specification;
• the model instances (also calledsubstantive

modelsor core models) composed of the model
specification and a selected set of data used
for instantiationof relations (through assigning
values to parameters of the relations).
In many situations, symbolic model specifi-

cation can be based on commonly known rules
of science. However, in other situations, knowl-
edge pertinent to a particular relation is so di-
versified that a definition of the relation requires
a dedicated study. To illustrate this problem let
us recall that the relation between trophosperic
ozone and its two precursors (nitrogen oxides
and volatile organic compound) can be defined in
very different ways, each having the correspond-
ing diversified advantages and disadvantages de-
pending on the content in which the relation is
applied, see e.g., [8].

For complex models handling a representation
of even very simple relations requires a rather
sophisticated modeling technology. To illustrate
this point let us consider a simple definition of
an auxiliary variable:

yipa =
∑
t∈Tpa

xiat, i ∈ I, p ∈ P, a ∈ Aip (1)

where indicesi, p, a, t denote a country, pol-
lution type, economic activity, and technology,
respectively. The complexity of this relation



is caused by the fact that indices are members
of sets which are indexed by the other indices.
Therefore, even if the size of each set is not
large, the structure of the corresponding indexed
subsets is pretty complex and requires effective
management. Such a management includes:
• efficient handling of the underlying data struc-

tures that in turn requires advanced use of
DBMS,5 which is inevitable for effective mod-
eling process of large scale models;
• analysis of semantic correctness of indexing

structures.
Note, that for a typical model6 instance there

are about 200 subsetsApa, and the eq. (1) is
represented in the corresponding optimization
problem by about 40,000 constraints with about
200,000 corresponding non-zero elements of the
Jacobian. The actual model is defined by dozens
of relations, most of them more complex than
eq. (1). This illustrates the need for qualitatively
more efficient modeling tools than those tradi-
tionally used.

For large scale models relations for each sub-
ject (represented by a submodel) are defined in a
close cooperation between specialists in the cor-
responding area and a team of modelers capable
of:
• assessing the consequences of the considered

relation types on the numerical complexity of
the resulting computational tasks;
• ensuring consistency of the whole model to

which the relation will be included.
Thus the development of symbolic model

specification requires:
• analysis of the relevant (for the purpose of the

model) knowledge about each modeled subject
(submodel), and a selection of these elements
of the knowledge which will be represented in
the model;
• representation of the selected knowledge in

a mathematical form consistent with relations
defined for all other submodels;
• integration of all submodels into a consistent

model that possibly best (in terms of both re-
quired accuracy and computational efficiency)
represents the relations between the decisions
and outcomes.
We should stress an important feature of a

properly developed model: it integrates knowl-
edge in a reliable way and thus provides an

5Database Management Systems.
6RAINS model, described e.g., in [8].

objective and justifiable way of analyzing the
relations between the decisions and the conse-
quences of their implementation. This objectiv-
ity can only be assured if:
• all model relations are actually based on

knowledge, i.e. on verifiable facts and rules;
• the assumptions for these facts and rules are

consistent with the assumptions agreed for the
model;
• semantic correctness is enforced not only for

each relation but also for the set of all relations
(e.g., the units and the accuracy/precision of all
entities are consistent);
• no representation of the preferential structure

is included in the substantive model;
• data used for model instantiation is consistent

with the model specification.
We briefly comment on one of the above sum-

marized issues that is crucial for model correct-
ness but is commonly neglected. Complex al-
gebraic models are composed of diverse enti-
ties (variables, parameters, relations) that cap-
ture the physical dimensions of the correspond-
ing entity (such asmass, or volume, or a trans-
fer coefficient). Often such dimensions7 have
rather complex structure (e.g.,[Eq(S)/kWh]×
[GWh/year], whereS stands for a pollution
type). A model developer should ensure the se-
mantic correctness of the model, which includes
consistency across physical dimensions and their
units of measure in the model relations. How-
ever, only one of the commonly used model-
ing environments8 supports definition of units.
Therefore there is practically no effective sup-
port for checking semantic correctness of mod-
els, which is clearly error-prone for development
of non-trivial models. Effective support for di-
mensional consistency analysis is rather com-
plex, see e.g., [10], and providing an effective
support requires further research and the corre-
sponding implementation effort.

Although a proper symbolic model specifi-
cation is certainly the most challenging part of
model building from the knowledge integration
point of view, we have to stress that the data used
for model instantiation also represents a neces-
sary part of knowledge which needs to be inte-
grated into the modeling process in a robust and
efficient way. Data maintenance for a large com-
plex model is by far the most risky element of

7Also referred to asunits.
8AIMMS, see e.g., [9].



any modeling process. Data for large models
comes from different sources (as do the results
from analysis of various models), and larger sub-
sets of data are maintained by teams. To reliably
maintain (collect, clean, verify, update) data for
complex model a structured approach based on
DBMSs is a must. A more detailed discussion of
this topic can be found in [6].

3 Knowledge Creation

Knowledge can be created by diverse methods
of model analysis. However, the methodology of
model analysis is probably the least researched
element of the modeling process. This is be-
cause each modeling paradigm has a specific
type of analysis. However, the essence of model-
based decision-making support is precisely the
opposite; namely, to support diversified ways of
model analysis, and to provide efficient tools for
various comparisons of solutions. Such an ap-
proach can be called Integrated Model Analysis.

Actually, the primary goal of modeling for
problem solving is to create knowledge about the
modeled problem. In fact, model-based learning
about the problem is typically even more impor-
tant than findingthe bestsolution, see e.g., [11].
Thus, a huge amount of knowledge has been cre-
ated by various types of analyses of a countless
number of models. Unfortunately, this knowl-
edge is often difficult to use beyond the mod-
eling process. The main reason for it the lack
of semantic descriptions of model results. These
are typically consumed for the analysis of the de-
cision problem at hand, and are not documented
sufficiently for re-use in different contents.

A typical model for supporting decision-
making has an infinite number of solutions, and
users are interested in analyzing trade-offs be-
tween a manageable number of solutions that
correspond to various representations of their
preferences, often called the preferential struc-
ture of the user. Thus, an appropriate integrated
analysis should help users to find and analyze
a small subset of all solutions that correspond
best to their preferential structures that typically
change during the model analysis. There are
three types of problems that call for innovative
research:
1. integration of various paradigms of model

analysis;
2. extracting knowledge from large sets of solu-

tions;

3. efficient solution of computational tasks (ei-
ther resource demanding, or numerically diffi-
cult, or large sets of simple jobs).
We briefly summarize each of them below.
For a truly integrated problem analysis one

should actually combine different methods of
model analysis, such as: classical (determinis-
tic) optimization (and its generalizations, includ-
ing parametric optimization, sensitivity analysis,
fuzzy techniques), multicriteria model analysis,
stochastic optimization and Monte Carlo simu-
lations, classical simulation, soft simulation, and
several of its generalizations (e.g. inverse simu-
lation, softly constrained simulation). However,
no modeling tool supports such a complete anal-
ysis, and development of separate versions of a
model with tools supporting different modeling
paradigms is typically too expensive.

The second challenge is to develop and imple-
ment a methodology for a comprehensive analy-
sis of large sets of solutions. One needs to ex-
plore applicability of various data mining and
knowledge engineering techniques, and either
adapt some of them, or develop new methods to
extract and organize knowledge from large sets
of solutions, and supply users with this knowl-
edge in a form that will help further problem
analysis.

The third set of issues is related to efficient
and robust organization of computational tasks
typically needed for large-scale models, and in-
cludes:
• efficient support for handling of a large number

of results, possibly coming from various types
of analyses of large models;
• adaptation of specialized optimization algo-

rithms for badly conditioned problems;
• support for exploiting the structure of huge op-

timization problems that need to be solved on
computational grids.9

There is a lot of experience related to these
three types of problems. However, the rele-
vant knowledge is fragmented and distributed
amongst modelers that concentrate rather on the
modeling processes than on documenting and
sharing the model-analysis knowledge. The lat-
ter is not only due to the lack of time but also due
to the complexity of diverse paradigms of model
analysis.

9This item is contingent on additional resources, and on
availability of external collaboration with partners having
suitable experience.



To illustrate the complexity of model analy-
sis we mention here the type of analysis which
appears to be simple for not experienced mod-
elers, namely multicriteria analysis of large sets
of discrete alternatives characterized by a large
number of criteria. There is a large number of
books and articles dealing with analysis of dis-
crete alternatives however actually none of the
documented methods is methodologically cor-
rect for analysis of the class of problems de-
scribed in [12]. In other words, even experienced
modelers face new challenges also in the area of
model analysis, including types of problems that
are considered standard. Moreover, some prob-
lems require rather specific methods of model
analysis, see e.g., [8; 13]. This observation is
another justification of the statement presented
in [14]: modeling has been, and will remain to
be a combination of science, art, and craft.

4 Modeling for Knowledge Integration
and Creation

The complexity of an appropriate knowledge in-
tegration, and of creation of knowledge that pos-
sibly best supports problem understanding and
solving, requires an adequate support for the cor-
responding modeling process, which in turn de-
termines the requirements for modeling technol-
ogy that are substantially different from the tech-
nologies successfully applied for modeling well-
structured and relatively simple problems. In
most publications that deal with modeling, small
problems are used as an illustration of the pre-
sented modeling methods and tools. Often, they
can also be applied to large problems. However,
as discussed above, the complexity is charac-
terized not primarily by the size, but rather by:
the requirements of integrating heterogeneous
knowledge, the structure of the problem, and
the requirements for the corresponding modeling
process. Moreover, efficient solving of complex
problems requires the use of a variety of models
and modeling tools; this in turn will require even
more reliable, re-usable, and shareable modeling
resources (models, data, modeling tools). The
complexity, size, model development process,
and the requirements for integrated model anal-
ysis form the main arguments in justifying the
needs for the new modeling methodology.

Structured Modeling Technology (SMT)has
been developed for meeting such requirements.
SMT supports distributed modeling activities for

models with a complex structure using large
amounts of diversified data, possibly from dif-
ferent sources. A description of SMT is beyond
the scope of this paper, therefore we only sum-
marize its main features here:
• SMT is Web-based, thus it supportsany-where,

any-timecollaborative modeling.
• It follows the principles of Structured Model-

ing proposed by Geoffrion, see e.g., [15]; thus
it has a modular structure which supports the
development of various elements of the mod-
eling process (model specification, processing
(subsets of) data, integrated model analysis) by
different teams.
• It provides automatic documentation of all

modeling activities.
• It uses a DBMS for all persistent elements of

the modeling process, which results in effi-
ciency and robustness; moreover, the capabili-
ties of DBMSs allow for the efficient handling
of huge amounts of data.
• It ensures the consistency of: model specifica-

tion, meta-data, data, model instances, compu-
tational tasks, and the results of model analy-
sis.
• It automatically generates a Data Warehouse

with an efficient (also for large amounts of
data) structure for:
? data, and the tree-structure of data updates,
? definitions of instances,
? definitions of preferences for diversified

methods of model analysis,
? results of model results,
? logs of all operations during the modeling

process.
This conforms to the requirement for the per-
sistency of all elements of the modeling pro-
cess.
• It exploits computational grids for large

amounts of calculations.
• It also provides users with easy and context-

sensitive problem reporting.
More detailed arguments (including an

overview of the standard modeling methods and
tools) supporting this statement are available
in [16].

Mathematical modeling of a complex problem
is actually a network of activities involving in-
terdisciplinary teams collaborating closely with
experts in modeling methods and tools. Dantzig
summarized in [17] the opportunities and limita-
tions of using large-scale models for policy mak-



ing. Thanks to the development of algorithms
and computing power today’s large-scale mod-
els are at least 1000-times larger; thus, large-
scale models of the 1970s are classified as rather
small today. This, however, makes Dantzig’s
message relevant to practically all models used
today, not only for policy-making but also in
science and management. Today’s models are
not only large, but the modeled problems are
more and more complex (e.g., by including the
representation of knowledge coming from vari-
ous fields of science and technology), and many
models are developed by interdisciplinary teams.
Moreover, the modeling processes supporting
policy-making have to meet strict requirements
of: credibility, transparency, replicability of re-
sults, integrated model analysis, controllability
(modification of model specification and data,
and various views on, and interactive analysis of,
results), quality assurance, documentation, con-
trollable sharing of modeling resources through
the Internet, and efficient use of resources on
computational Grids.

These requirements demand a qualitative
jump in modeling methodology: from support-
ing individual modeling paradigms to support-
ing aLaboratory World10 in which various mod-
els are developed and used to learn about the
modeled problem in a comprehensive way. The
truth is that there are no simple solutions for
complex problems, thus learning about complex
problems by modeling is in fact more important
than finding an“optimal” solution. Such a Lab-
oratory World requires integration of various es-
tablished methods with new (either to be devel-
oped to properly address new challenges, or not
yet supported by any standard modeling environ-
ment) approaches needed for appropriate (in re-
spect to decision-making process, and available
data) mathematical representation of the prob-
lem and ways of its diversified analyses. There-
fore, to be able to adequately meet the demand
for advanced modeling support one indeed needs
to develop and apply novel modeling methodolo-
gies.

5 Conclusions

The traditional approach to modeling is based
on the assumption that a small team can orga-
nize and document a modeling process. How-

10Originally proposed by Dantzig, see e.g. [17; 18].

ever, this approach is neither reliable nor effi-
cient for complex models developed by several
(or more) teams working intensively11 at distant
locations. Despite the countless number of suc-
cessful applications, there is also well-justified
criticism of various critical aspects of modeling,
e.g., in [20; 21; 22; 8; 23]. The role of mod-
els in modern decision-making, a view shared
by the author of this paper, is discussed in de-
tail in [1], which also presents the methodology
and tools for model-based decision-making sup-
port, and illustrates them with several applica-
tions to complex environmental policy-making
problems. A more focused discussionof selected
elements of modeling for decision support is pro-
vided in [11], which also includes an updated
bibliography on modeling for decision support.

A number of methods have been developed
for dealing with each of the above listed issues.
The craft of decision-making support consists
of adopting an appropriate approach to support
each element of the decision-making process
while remembering that the strength of a chain
is determined by its weakest link. Given the het-
erogeneity and amount of the pertinent model-
ing knowledge, effective collaboration between
scientists working on various fields (including
knowledge creation and integration, knowledge
engineering, operations research) is a neces-
sary condition for effective and truly knowledge-
based problem-solving support.
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