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Abstract  

In this study, the wavelet transform is briefly 
described and is also compared with the popular 
Fourier transformation (FT), as well as a specific 
presentation of the continuous wavelet transform 
and the discrete wavelet transform. Different 
application of wavelet analysis in stock market is 
introduced, including decomposition of stock 
series with multi-resolution analysis, denoising 
of stock price series, characterizing abrupt 
changes in the stock prices, and detecting the 
self-similarity of stock series. In addition, Ex-
amples are given with the wavelet analysis on 
some real estate stock price data in China 
mainland. 
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1   Introduction to wavelet transforms 
 
Mathematical transformations are applied to time 
series to obtain further information that is not 
available in the original time-domain series, 
among which the Fourier transforms are probably 
the most popular since the 19th century. However, 
the FT gives only the frequency information of 
the series, but not the time information simulta-
neously. That means FT is suitable for stationary 
series whose frequency does not change in time, 
but not for non-stationary series. Wavelet trans-
form is of the types that can give the 
time-frequency representation of series, as well 
as short time Fourier transform (STFT). 

It is a long story to present the advantage and 
disadvantage of STFT. The wavelet transform is 
a relatively new concept (about 20 years old). It 
was developed to overcome the resolution prob-
lem of the STFT. Since in 1988 Mallat and Meyer 

presented the basic frame of multi-resolution 
analysis (MRA), a lot of wavelet functions have 
been developed, three common examples are 
shown in Figure 1. 
 

 

(a) morlet (b) db3 (c) db4 

Figure 1. Several mother wavelet 

 
In mathematics, the analyzing wavelet is de-

fined as follows: 
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For a series function 2 ( )f L R∈ , the continu-

ous wavelet transform (CWT) is defined 
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As seen in the above equations, ( )tψ  is the 

mother wavelet (as seen in Figure.1). The term 
“wavelet” means a small wave which refers that 
the function is oscillatory like a wave and is 
compactly supported. 

,{ }a bψ  is called the analyz-
ing wavelet, in which “a” is interpreted as a re-
ciprocal of frequency, or scale as called, and “b” 
represents time or space. As a decrease the os-
cillations of proceed series become more intense 
and show high-frequency behavior; similarly, it 
becomes drawn out and shows low-frequency 
behavior as a increase, i.e. the change of pa-



rameters “a” decides the WT window expanding 
or shrinking; and “b” is related to the location of 
the window. The coefficients of wavelet trans-
form of a series function f is symbolized “Wf ”, as 
seen in Equation 2. 

In CWT, the parameters a, b, and t are all con-
tinuous variables, so the CWT of a series yields a 
lot of information, as seen in the following Figure 
1. However, it is obviously that there is quite a 
few redundant data in the CWT. Thus the discrete 
wavelet transform (DWT) is advanced which can 
be regarded as subsamples that retain certain key 
features of CWT. 

As we pick a (in Equation 1) to be the form of 
0

ja − (here 0a is a constant, 0 1a > ), and generally 

0 2a = (which is called Dyadic Wavelet), the 
dyadic wavelet and the DWT are defined as fol-
lows: 
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As seen in all the above equations, the scale a 

and time b in CWT are discrete by integer pa-
rameter j and k in DWT. Recall that the CWT is a 
correlation between a wavelet at different scales 
and the series with the scale (or the frequency) 
being used as a measure of similarity. The CWT 
coefficients are computed by changing the scale 
of the analysis window, shifting the window in 
time, multiplying by the series, and integrating 
over all times. In the discrete case, filters of dif-
ferent cutoff frequencies are used to analyze the 
series at different scales. The DWT employs two 
sets of functions, called scaling functions and 
wavelet functions, which are associated with 
low-pass and high-pass filters, respectively. The 
series is passed through a series of high-pass 
filters to analyze the high frequencies, and it is 
passed through a series of low-pass filters to 
analyze the low frequencies, which is how the 
decomposition of the series into different fre-
quency bands is simply obtained.  

In a summary, the DWT is an important prac-
tical tool for series/ time series/or images analysis 
for the following basic reasons [1]: 

(1) The DWT re-expresses a time series in 
terms of coefficients that are associated with a 
particular time and a particular dyadic scale 22 j . 
These coefficients are fully equivalent to the 
original series in that we can perfectly reconstruct 
it from the DWT coefficients. 

(2) The DWT allows us to partition the energy 
in a time series into pieces that are associated 
with different scales and times. 
(3) The DWT can be computed using an algo-
rithm that is faster than the celebrated fast Fourier 
transform algorithm. 

2   The application of wavelet analysis on 
stock market  
 
2.1 Decomposition and reconstruction of stock 
price series 
 
The DWT procedure decomposes a signal with a 
multi-resolution analysis, and the coefficients  
obtained in every scale includes two parts of the 
low frequencies and high frequencies corre-
sponding to the approximate part signal and de-
tail signal respectively. With the scale increase, 
the approximate signal becomes prominent 
which reveals the developing tendency of the 
signal, and the detail part becomes less and less. 
So, with a multi-resolution analysis, the DWT of 
a stock signal allow a prediction of the develop-
ing tendency of the signal.  

As seen in Figure 2, a) is the price series of a 
real estate stock in China mainland, b), c) and d) 
are the low frequencies DWT coefficients in 
scale 1, 3 and 5 respectively. Comparing with the 
original signal, the approximate part signal ap-
pears less coarse, which is helpful to determine a 
long term developing tendency of the signal. 
Figure.3 illustrates the reconstruction of the sig-
nal with the low frequency part coefficients in 
different scales. In Figure.3, the upper graphic is 
the return series of the real estate stock, the others 
are reconstruction signals in scale 1 to 5 from the 
up direction. It is usually quite difficult to detect 
the developing tendency from the upper original 
signal. As seen from the plot, it is easy to deter-
mine the sharp point in the lower scale and to 
distinguish the long term tendency in a higher 
scale (such as a4 and a5 in Figure.3). 
 
2.2 Characterization of self-similarity of stock 
series 
 



 

 

 
                      Figure 2. The low frequencies of signal with a DWT in different scales  

 
                      Figure 3. The reconstruction with the low frequency coefficients in different scale 
 

a) 

b) 

c) 

d) 



Many things in the nature have the property of 
self-similarity, such as snow-flake, map leaf, 
cloud, coastline, etc. In Mandelbrot's definition, 
self-similarity means that each piece is similar to 
the whole - not necessarily identical to the whole. 
His classic example of self-similarity is the 
coastline of Britain. From a satellite view, it 
looks similarly jagged at any altitude. The con-
cept of self-similarity doesn't require that the 
coastline looked exactly the same from each al-
titude, only that it was similar in its texture, ir-
regularity, or coarseness. 

Since wavelet transform is a representation of 
time-frequency of series in multi-resolution, it is 
often used in analysis of self-similarity of series 

or time series. The following figures are exam-
ples of analysis of self-similarity with a wavelet 
transform. In Figure.4, one is Koch curve which 
is obviously self-similar for it is a synthetic series 
built recursively, and the other is the grey figure 
of wavelet transforms coefficients in different 
scales. From the lower grey figure，it can be seen 
that it is similar in grey shape at any scale, and 
also has very clear profile as looks along the 
column of figure. The first one in Figure 5 is the 
real estate stock return series, and the second grey 
figure is its wavelet decomposition coefficients in 
different scale. It also can be concluded that the 
stock does own self-similar character. 

 
                     Figure4. Koch curve and its decomposition coefficients  

 
       Figure 5. The real estate stock return series and its decomposition coefficients 
 



2.3 Denoising of stock price series based on 
wavelet-filter 
 
Sometimes market participants can be divided 
into two parts: those making rational choices 
based on some adopted strategies and those 
making effectively random decisions (regarded 
as noise). Denoising price series will be helpful 
to understand the impact of rational strategies 
on stock market. A key problem is how to de-
fine a rigorous noise in performing denosing 
process. 

Compared with Fourier denoising method, 
the wavelet denoising can retain the peak and 
chop parts for its superior time-frequency lo-
calization property. In many studies, wavelet- 
based filters are widely used in multiscale de-
noising of stock price series; see e.g. [2, 3, 4, 5].  

Supposing the series nf  with length n is 
denoised by noise signal ne , then the signal 
observed including noise is n n nX f e= + . So 
the objective is to optimize the approximation 
of signal nf , that is, preserving the local char-
acters with sharp, but not blurring brink while 
denoising. 

Basic strategy is： 
For the linear character of wavelet transform, 

it follows: 
WX Wf We= +  
So denoised signal can be obtained by a 

converse transform to the residual effective 
wavelet transform coefficients Wf after defin-

ing and removing the ones We  controlled by 
noise signal.  

The filtering procedure discussed is based on 
the universal threshold wavelet filtering [6,7], 
because it is most effective and simple among 
the several denoising approaches of wavelet 
transform. Its theoretical supporting is that the 
amplitude of wavelet coefficients of effective 
series may be larger than those including noise. 
Then the specific filtering process includes 
three parts: first, keep the whole coefficients in 
large scale after a multiscale wavelet decom-
position of the series including noise; secondly, 
for the left small scale coefficients, by setting a 
threshold keep the part which is larger than it or 
perform a shrinkage process, and take the co-
efficients which is lower than the threshold as 
zero; finally, reconstruct the processed coeffi-
cients by a reverse wavelet transform, and ef-
fective series without noise is obtained. The 
universal method of choosing the threshold is 
VisuShrink, which gives an overall thresh-
old 2lognσ  for Gaussian-type noise. How-
ever, a further study is still needed on the type 
of noise signals, which is basis of the threshold 
representation. 

The following figures are two examples of 
denoising results. Figure.6 is cited from litera-
ture [8], and Figure.7 illustrates the denoising 
of a real estate stock return series with the 
universal threshold wavelet filtering method. 

 
Figure.6 Raw versus wavelet-filtered price dynamics 



 
                 Figure 7. Denoising of a real estate stock return series with wavelet filtering 
 

 
2.4 Characterizing abrupt changes in the 
stock prices with a wavelet analysis 
 
Abrupt changes in the stock prices, either up-
wards or downwards, are usually preceded by 
an oscillatory behavior with frequencies that 
tend to increase as the moment of transition 
becomes closer.  

Stock Markets have experienced rapid 
growth during recent years in many countries 
and efforts have been directed into studying 
their dynamic behavior. One group of research 
attempts to adapt physical and mathematical 
modeling techniques with a view on character-
izing trends in the stock market prices (as in 
Refs. [9,10,11]). 

A successful characterization of the dynam-
ics of the stock prices, particularly of sudden 
large drops, can have a profound impact on risk 
management. Some of the many quantitative 
concepts and tools that are used to assist the 
decision making process include: moving av-
erage modeling, intra-day maximum and 
minimum price estimates, volume analysis, 
linear regression, correlation, support and re-
sistance, moment sensor, cycle study, relative 
force index and others. 

One very interesting approach considers that 
the stock prices have a dynamic behavior that 
resembles, very closely, some physical phe-
nomena [11-13]. In particular, Johansen [11] 

showed that the behavior of the prices in the 
stock market, just prior to abrupt changes, 
present a profile very similar to those observed 
in the earthquake phenomenon. In many studies, 
it is frequently mentioned about the onset of 
small amplitude and high frequency fluctua-
tions in the buy–sell actions, as an abrupt 
change (crash) becomes imminent. 

Mathematical models have been presented to 
describe abrupt changes in the stock market; 
however, it is difficult to obtain the numerical 
values for the model parameters. In the wavelet 
transform, the function must satisfy the condi-
tion: , so it is required to remove the linear trend 
from stock price data. It is also available to 
remove the cyclic term with very low frequen-
cies for the study of abrupt changes. After the 
first pre-processing of the stock price data, the 
wavelet decomposition technique is applied. 
The resulting coefficients are then presented on 
a grey graph. Then, it is possible to visualize 
graphically the dynamic behavior of data mod-
eled by Johansen (as in Ref. [11]), so that some 
simple rules based on thresholds can be heuris-
tically established to detect the eventual oc-
currence of short-time abrupt changes in the 
stock prices. 

The proposed method (as in [9]) was applied 
to a number of actual data from the Sa˜o Paulo 
Stock Exchange (BOVESPA) and draw downs 
in the IBOVESPA and other minor abrupt 
changes were shown to be successfully de-



tectable. Moreover, the proposed method was 
also shown to be of use in the analysis of in-
traday behavior of the market. 

2.5 Approximation and forecasting of stock 
series 
 
Forecasting of financial time series is often 
difficult and complex due to the interaction of 
many variables involved, but it is full of chal-
lenge for its practical prospect. It is well known 
that linear models are inadequate for financial 
time series as in practice almost all economic 
processes are nonlinear to some extent.  

During the last three decades, various 
nonlinear approaches have been developed for 
time series prediction. Of the nonlinear meth-
ods, neural networks have become very popular. 
Many different types of neural networks such as 
MLP and RBF have been proven to be universal 
function approximators, which make neural 
networks attractive for time series modeling, 
and for financial time-series forecasting in par-
ticular. However, an important prerequisite for 
the successful application of some modern ad-
vanced modeling techniques such as neural 
networks, however, is a certain uniformity of 
the data [14]. 

In financial time series, such an assumption 
of stationarity has to be discarded. Generally 
speaking, there may exist in different kinds of 
nonstationarities. To overcome the problems of 
monolithic global models, another efficient way 
is to design a hybrid scheme incorporating 
multiresolution decomposition techniques such 
as the wavelet transform, which can produce a 
good local representation of the signal in both 
the time and the frequency domain. 

Recently some financial forecasting strate-
gies have been discussed that used wavelet 
transforms to preprocess the data(as Ref. [15], 
[16]). In some literatures(as Ref. [17, 18]), a 
neuro-wavelet hybrid system had been devel-
oped that incorporates multiscale wavelet 
analysis into a set of neural networks for a 
multistage time series prediction. Article [19] 
uses wavelet packet theory to decompose price 
series into several subseries whose rule is rela-
tively easy to learn by NN, so the task of fore-
casting stock price is decomposed into fore-
casting in the decomposed series using NN.  

On the other side, many other approaches 
except neural network are employed to the pre-

diction of financial time series, such as genetic 
algorithm, grey system model, fractal theory, 
etc. It was testified that the stock series owns a 
self-similar behavior, as mentioned in many 
literature, so a fractal theory may be effective in 
approximation and prediction of stock series. A 
linear fractional interpolation is introduced as 
following:  

For a given observe data 
( , ), 0,1,2,...,i ix y i n= , in an iterated function 
system (IFS) { }2; , 1,2,...iR w i n= , every func-

tion iw  is determined by an affine transforma-
tion  
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where iiiii fedca ,,,,  are real parameters, and 
meets the requirements that 
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               (6) 

Then all the parameters except id  can be ob-
tained by the above equations as follows: 
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where id  is a free parameter undetermined, as 
called “vertical scale factor”. 
With Eq. (5) and (7), { }iw  forms an iterated 
function system, whose attractor is the figure of 
fractal iterated function of the observed data 
series.   

Some literatures have reported quite a good 
approximation of stock data with linear fractal 
theory after a multiple iteration of IFS (see e.g. 
[20-22]). The key problem in constructing the 
IFS is the choice of the free parameter id , which 
is usually defined as the ration of given data in 
vertical. To predict the stock data 1iy + , id is 

assumed to be the average value
1

/
n

i
i

d n
=
∑ , which 

results in the difference between the predicted 
and observed data. 

 



3   Conclusion 
 
(1) The wavelet transform is described by 
comparing the specific presentation of the con-
tinuous wavelet transform with the discrete 
wavelet transform.  
(2) Then the applications of wavelet analysis in 
stock price series are summarized in several 
parts, including decomposition of stock series 
with multiresolution analysis, denoising of 
stock price series, characterizing abrupt 
changes in the stock prices, and detecting the 
self-similarity of stock series. Examples are 
given with the wavelet analysis using some real 
estate stock price data in China mainland. 
(3) As for the forecasting of financial signal, 
neuro-wavelet hybrid system is simply intro-
duced. Since it has been well accepted that 
stock price series own a self similar property, 
the fractal interpolation method could be em-
ployed to approximate and predict it, which is 
also presented. 
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