
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Distributed Agents Architecture Applied in

Assembly Domain

Author(s)
Merdan, Munir; Koppensteiner, Gottfried; Zoitl,

Alois; Favre-Bulle, Bernard

Citation

Issue Date 2007-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/4119

Rights

Description

The original publication is available at JAIST

Press http://www.jaist.ac.jp/library/jaist-

press/index.html, Proceedings of KSS'2007 : The

Eighth International Symposium on Knowledge and

Systems Sciences : November 5-7, 2007, [Ishikawa

High-Tech Conference Center, Nomi, Ishikawa,

JAPAN], Organized by: Japan Advanced Institute of

Science and Technology

Distributed Agents Architecture Applied in Assembly Domain

Munir Merdan; Gottfried Koppensteiner; Alois Zoitl & Bernard Favre-Bulle

Automation and Control Institute
Vienna University of Technology, Austria

merdan@acin.tuwien.ac.at

Abstract

The need for agility of production structures is
continuously growing due to increasing com-
plexity of products and decrease of product life
cycle. This paper proposes a distributed knowl-
edge-based architecture based on a multi-agent
paradigm applied in the assembly domain. The
proposed approach is modeled by a society of
cognitive agents, which control a set of hetero-
geneous resources and cooperate together in or-
der to achieve their own aims as well as the sys-
tem’s aim. The assembly knowledge is encapsu-
lated in a rule-based system, which allows an
efficient generation of assembly steps. Ontolo-
gies are semantic tools that provide a framework
to represent this knowledge. The ontology is
shared among agents and serves as the instrument
to define the vocabulary used by the agents dur-
ing their interactions.

Keywords: Multi-agent System, Assembly,
Ontology, Knowledge-based Architecture

1 Introduction

Current manufacturing systems are faced with the
growth in the variety of products and at the same
time with a decreasing product life cycle. This
increases the complexity of the manufacturing
and is especially presented in assembly domain,
which involves a lot of manual work and is for a
major part of the manufacturing cost responsible
[26]. There has been a clear recognition of the
need for agile, knowledge intensive assembly
systems that can easily absorb the required
changes in product volumes, variety and manu-
facturing organization [1]. Because of their rigid
structure and limited adaptation capabilities cen-
tralized hierarchical architectures of conventional
manufacturing systems can’t dynamically man-
age the high degree of complexity and change.
Few approaches, Holonic [2], Multiagent [3] and

Bionic architecture [4] are proposed as promising
paradigms to handle the combinatorial complex-
ity of manufacturing systems using distributed
autonomous decision building blocks (holons,
agents and cells).
In this paper, using the Multi-agent paradigm in
combination with ontology-driven solutions, we
present a distributed architecture in which sets of
agents collaborate in order to achieve their own
as well as the system goal. The proposed archi-
tecture offers the direction towards solving the
interoperability problems among heterogeneous
enterprise levels. We use the assembly domain as
a test field.
The paper is structured as follows. The
multi-agent architecture is described in the sec-
ond section. The third section gives an overview
on the ontology. The system architecture is
elaborated in the forth section. The fifth section
describes the workflow. Finally, the section six
gives the conclusion and outlines the future work.

2 Multi-agent system

A multi-agent system is a society of autonomous
agents, where each agent acts based on its en-
closed behaviors, which represent adequate
agent’s responds to different inputs from the
manufacturing environment [6,7,8]. In a
multi-agent system, a number of heterogeneous
agents work independently or in a cooperative
and interactive manner to solve problems in a
decentralized environment [5]. Agent technology
provides a good framework for integration of
knowledge within a production environment. In
our multi-agent system, each agent is an
autonomous semantic entity responsible for the
commitment of the local data described in its
knowledge base. Two different approaches for
agent encapsulation in agent-based manufactur-
ing systems are known: the functional decompo-
sition approach and the physical decomposition

approach [7]. In the functional decomposition
approach, agents are used to encapsulate modules
assigned to functions for order, supply, etc. In the
physical decomposition approach, agents are
used to represent entities in the physical world,
such as robot, conveyor, pallet, etc. Each agent
has individual behavior and the capacity to make
its own local decisions. The agent has knowledge
about his domain of application, about strategies,
which can be used to achieve a specific goal, and
knowledge about (other) agents involved in the
system. The crucial element in the decision
component is the rule-based system, which ap-
plies declarative knowledge, expressed in a set of
rules, to regulate the agent’s behavior. Agents
communicate and negotiate with each other in
order to perform the operations based on the
available local information or to solve possible
conflicts. Inter-agent communication capability
provides the essential means for agent collabora-
tion. In order to ensure the correct understanding
of the exchanged messages, agents must have the
same presentation of the environment, or at least
that part of the shared environment about which
they are exchanging information with each other.
Ontologies are from vital importance for enabling
knowledge interoperations between agents and at
the same time for a fluent flow of different data
from different entities. Ontology is defined as an
explicit specification of conceptualization [9].
Explicit specification of conceptualization means
that ontology is a description of the concepts and
relationships that can exist within a multi-agent
system. Ontologies define a formal semantic for

information and provide a shared understanding
of a domain, an understanding that can be com-
municated within application systems [27].

3 Ontology

A mechanical assembly is a composition of parts
interconnected forming a stable unit. Parts are
defined as components, described by set of at-
tributes, properties, constrains and relations to
other parts. A subassembly is a non-empty subset
of parts that either has only one component or
every part has at least one surface contact with
another part in the subset [10]. Numerous on-
tologies covering a wide range of domains have
been developed and presented [11]. As a basis for
our ontology we take the “Machine Shop Infor-
mation Model” [12] developed at the National
Institute of Standards and Technology (NIST) as
a part of efforts that support the development of
standard data interfaces. Our ontology is also
heavily influenced by the OZONE ontology [13],
the Enterprise Ontology [14] and ADACOR on-
tology [15]. The benefit of using an existing on-
tology is that the system is interoperable, in terms
of passing data, with any other system that uses
the same data model. We use the ontology to link
product designs, assembly planning processes
and required assembly equipment together. Our
proposal is built on three basic layers: product,
activity and resources (Figure 1). There is
roughly correlation between our ontology and
FABMAS ontology [16] as well as MASON
ontology [17], which are also based on three
layers.

Figure 1. Basic ontology layers

Product Order

Operation

Work Order

Product

Subassembly/
Part

Raw Material

Resource

Agent

physical
Component

is

controlled by

has

has

consists of

done by

work as

co
ntro

lle
d by

for

for

made of

for

product activity resource

A product is presented as hierarchy of subas-
semblies and parts together with all their proper-
ties and relationship between them. This rela-
tionship between parts represents how these parts
should be assembled to complete the product.
An activity is the basic action, which specifies
how the world is changed. An activity describes
how the product is going to be produced and how
its production relates to all other entities in pro-
duction environment.
Resources are represented as entities able to
perform a certain activity.
Our concept split up a product order activity into
sets of work orders, each work order being de-
scribed as a list of operations. In order to simplify
the generation operation of the process plan, we
adopt a top-down function model of the product
[18]. Each product type is described through its
own assembly process plan.
Assembly steps are presented as levels, what
means that parts from the lower level will be
assembled first (Figure 2).

There is also a hierarchy within the same level,
where it’s distinguished which part should be
transported and assembled before others. An
assembly process plan further contains work
orders (steps), which are defined as a set of op-
erations. In our framework, we distinguish two
types of operations: part transportation and part
assembly.

We assume that each assembly operation would
be performed by another resource what means
that between two assembly operations it will be
necessary to transport a part to another destina-
tion. In the case that two sequenced assembly
operations could be performed by the same ma-
chine, the transport operation will be automati-
cally deleted by the rule-based system.
We use Protégé-2000 [19] as an integrated soft-
ware tool used by system developers and domain
experts to develop the knowledge base.

4 System Architecture

In order to appropriately distribute the function-
ality and intelligence of the system into specific
agents, we decided to generate specific agents
based on the activities that could be done within
the system (Figure 3). Our Testbed architecture
consists of an automatic storage system with a
handling unit for the extraction of the parts, a
pallet transfer system with redundant paths, as

well as a portal robot for the final
assembly. The composite parts of
the pallet transfer system are:
switch units, index units that fix
the pallet in a defined position
for the handling units, identifi-
cation units (RFID) for identifi-
cation of passing pallet units and
conveyors. Each unit is con-
trolled by its own machine agent.
The communication framework
and the strategy model have been
built on top of Java Agent De-
velopment Environment (JADE)
framework [24]. The Contact
Agent is created at the start-up of
the JADE system and it is always
active. Its main responsibilities
are to receive a product order and
create the appropriate order and
supply agents. This agent also
creates a machine agent in Pro-

tege and one JADE agent for each resource in the
system.
The order agent is launched by the contact agent,
which means a new order is received. The order
agent is responsible for controlling and guiding a
single order through the shop floor and for the
shipment of finished order to the customer. The
order agent queries the ontology for the produc-
tion plan of the ordered product. From this plan it

TransportTra
ns

po
rt

Tr
an

sp
or

t

Level 1

Level 2

Tr
an

sp
or

t

Tra
ns

po
rt Transport

Part Part

Ass. Operation

Subassembly

Transport

Ass. Operation

Product

1

1

2

2

3

3

Part Part

Ass. Operation

Subassembly

1 2

3

Work Order 1 Work Order 2

Work Order 3

Figure 2. Assembly process plan

generates work orders and one for these work
orders responsible supply agent. The supply
agent splits each work order on specific opera-
tions. Suitable resources, controlled by machine
agent, perform these operations. The control of
the resources and negotiation with supply agent
about operation allocation are the main respon-
sibilities of the machine agent.

4.1 Agent Behavior

Our architecture is based on agents that have a
rule-based behavior. Rules are considered as
if-then statements applied to the knowledge base.
The knowledge base is constantly updated with
new facts. If all defined conditions for a particu-
lar rule on the left hand side of the rule are satis-
fied the rule’s actions on the right hand side will
be executed. This will again add new facts in the
knowledge base and set conditions for firing of
new rules.
For an easer handling of rules and having a better
overview over created rules, each rule is assigned
to an appropriate agent.
The simplified rule where a supply agent checks,
if there are enough available parts for an order
product in storage, is presented bellow. Once an
order is issued, the order agent sends the message
“Check_Parts” to the supply agent. It will check
if there are enough available parts in storage and
based on the results undertake appropriate ac-
tions.

(defrule SA_checks_available_Parts
(object (is-a Supply_Agent) (OBJECT ?sa) (re-
ceive ?message))
(object (is-a Message)(OBJECT ?message)(content
"check parts"))
(object (is-a Order_Agent)(OBJECT ?orderAgent)

 (responsible_for ?productOrder))
(object (is-a Product_Order)(OBJECT ?productOrder)
 (quantity ?q)(product ?product))
(object (is-a Product)(OBJECT ?product)(parts
$?part))

=>
(foreach ?part $?pl (bind ?pn (slot-get ?part name))
(bind ?x (count-query-results find_Part ?part))
(if (< ?x ?q) then
 (printout t "Not enough Parts of " ?pn " available")
 else (send_ message
 (make-instance of Message
 (performative "INFORM")
 (sender ?sa)
 (receiver ?orderAgent)
 (content "parts available")))))

The reasoning is implemented using the Jess
expert system shell [20]. Jess is essentially a Java
reimplementation of a subset of the earlier CLIPS
shell [21]. Jess is a simple but powerful tool, used
for building a number of industrial Expert System
applications [22]. We chose the Jess role engine
because of its active development and support, its
easy interaction with Java programs, its powerful
scripting language, and its expressiveness.
JessTab [23] is used as a plug-in for Protégé that
allows us to use Jess and Protégé together.
JessTab provides a Jess console window where
it’s possible to interact with Jess while running
Protégé.

4.2 Communication

The communication between the agents is done
by sending messages. The JADE architecture
enables agent communication through message
exchange based on agent communication lan-
guage (ACL) [25]. A message has two sections:
message header and message content. The header

Order Agent
Supply Agent

Contact Agent

Machine Agent
Product Order

Work Order

Operation Resource

receive

create

Product

for

Process Planhas

control

controlhas

create

create

work_as

do

create

defines

controls

has

create

Figure 3. The main agents classes of the system and their activities

contains the information regarding the sender,
receiver(s), subject, date, and time that the mes-
sage is sent by the sender, date and time that the
message is received by the receiver, and the pri-
ority. The message content contains information
regarding the intent. There are two types of con-
tent: illocutionary and perlocutionary [34]. The
illocutionary message is used to inform other
agents, such as the information about the action
that has been accomplished. The perlocutionary
message is used to request actions from other
agents, such as a call for proposal when the re-
source is available and would like to do some-
thing. An incoming message is asserted into the
knowledge base as an incoming message fact.

5 Workflow

When a product order comes into the system, it is
received by the contact agent. The product order
contains information about the costumer, the
product, the quantity and the due date. The con-
tact agent sets the status of the order and issues
the system ID that will escort the order and will
be contained in the names of correlated order and
supply agent as well as work orders and opera-
tions. After this, the supply and order agent are
being created. The created order agent checks if
the due date of the order is achievable, calculates
a priority for the product order, and sends the
message "check parts" to the supply agent. When
it receives this message, the supply agent checks
if all parts for the orders are available and re-
serves these parts, otherwise the order must be
pending and waits for the parts arriving. After the
order agent receives the message that all parts are
available, it uses the process plan to decompose
the assembly process of the product in work or-
ders and informs the supply agent to take control
over them. The supply agent decomposes each
work order into operations and starts negotiation
with available resources about the completion of
these operations. As said before, each of the work
orders consists at least one transport operation
and one assembly operation. Operations have to
be accomplished by different resources located at
different places at the shop floor. Each resource
possesses its own schedule and its own capabili-
ties to perform different operations. The schedule
is not calculated in advance, but arises from the
concurrent and contingent interactions. In order
to achieve optimal utilization agents negotiate

with each other. For example, the assembly op-
eration will be allocated to the resource with the
smallest utilization. For the same reason, as soon
as pallets are free it will send the message “free”
to all supply agents looking for available trans-
port operation. When there are more operations
from different product orders, which are com-
peting for the resource, the one with highest pri-
ority will be performed. Since the agents in our
architecture are self-centered and suffer from the
lack of global perspective, it is hart to predict the
performance of the whole system. In order to
achieve best possible scheduling, there is still
more work to be done on optimization of the rules
that govern the agent behavior. Further research
and experiments are needed to extend the current
work and to address its possible shortcomings.

6 Conclusion

In this paper we presented a multi-agent system
that uses the ontology driven solution in combi-
nation with intelligent agents in order to solve the
interoperability problems within the manufac-
turing life cycle. This system has been applied in
an assembly domain. The main advantage of our
concept is that in this knowledge-based system it
does not have to be said, how a problem has to be
solved, but the problem and the goal have to be
described. Further advantage of this type of
knowledge-based system is related to the simple
and very comprehensive way to represent the
reasoning capability of one agent. There is also
no need to explicitly program the interactions of
the whole system since this emerges as a
by-product of the individual goals and capabili-
ties of the constituent agents.
The work presented represents only the first step
of our effort toward achieving knowledge-based
agent system in an assembly domain. The future
work will be conducted to integration of this
system with our transport system and experi-
ments in the real world. Furthermore, it will be
also necessary to design appropriate scheduling
algorithms to face the dynamic scheduling prob-
lems of modern manufacturing systems.

Acknowledgment

The authors would like to acknowledge the fi-
nancial support from the Austrian Science Fund
(FWF), Projects No. FWF-P19644-N13.

References

[1] Heilala J, & Volvo P, “Modular Reconfigur-
able Flexible Final Assembly Systems In Elec-
tronic Industry”, Assembly Automation Work-
shop, Netherlands, 11’-12” May 2000
[2] Brussel H. V., Wyns J., Valckernaers P., and
Bongaerts L., “Reference architecture for holonic
manufacturing systems: PROSA,” Comput. Ind.,
vol. 37, pp. 255–274, 1998.
[3] Jennings N. R. and Wooldridge M., “Appli-
cations of intelligent agents,” in Agent Technol-
ogy, N. R. Jennings and M. J. Wooldridge, Eds:
Springer, 1998, pp. 3–28.
[4] Okino N., Bionic Manufacturing System-
Flexible Manufacturing Systems
Past-Present-Future, 1993, pages 73–95.
[5] Brenner, W.; Zarnekow, R.; Wittig, H.: In-
telligent Software Agents, Springer Verlag,
Heidelberg, 1998
[6] Parunak H.V.D.: Practical and Industrial
Applications of Agent-Based Systems, Envi-
ronmental Research Institute of Michigan
(ERIM), 1998.
[7] Shen W., Norrie D.H.: Agent-based Systems
for Intelligent Manufacturing : A State-of-the-Art
Survey, Knowledge and Information Systems, an
International Journal, Vol.1, No.2, 1999, p.
129-156.
[8] Parunak H.V.D. Manufacturing experience
with contract net, distributed artificial intelli-
gence. London: Pitman; 1987. p. 285–310.
[9] Gruber T. R., „A translation approach to
portable Ontologies” Knowledge Acquisition,
1993
[10] Homem de Mello L.S. and Sanderson A.C.,
"Representations of Assembly Sequences'' 1 l*
IJCAI, 1989, pp. 1035-1040.
[11] http://www.daml.org/ontologies/ Accessed
January 2006.
[12] McLean, C., Lee Y. T., Shao G. and F. Rid-
dick. 2005. Shop Data Model and Interface
Specification, NISTIR 7198. National Institute of
Standards and Technology, Gaithersburg, MD.
[13] Smith S. and Becker M., An Ontology for
Constructing Scheduling Systems; Working
Notes of 1997 AAAI Symposium on Ontological
Engineering, AAAI Press, March, 1997
[14] Uschold M., King M., Moralee S. and. Zor-
gios Y (1998) The Enterprise Ontology The
Knowledge Engineering Review , Vol. 13, Spe-
cial Issue on Putting Ontologies to Use (eds.
Mike Uschold and Austin Tate).

[15] Leitão P., An Agile and Adaptive Holonic
Architecture for Manufacturing Control, doctoral
dissertation, Dept. Electrical and Computer Eng.,
Univ. of Porto, Portugal, 2004.
[16] Mönch L., Stehli M., „ManufAg: a
multi-agent-system framework for production
control of complex manufacturing systems”
Springer-Verlag 2005
[17] Lemaignan, S. Siadat, A. Dantan, J.-Y.
Seme-nenko, A. „MASON: A Proposal For An
Ontology Of Manufacturing Domain” IEEE
Workshop on Distributed Intelligent Systems:
Collective Intelligence and Its Applications
(DIS'06) pp. 195-200
[18] Zhu D., Zhao L., Zhang J.. “A Method of
Generating Assembly Plan Based on Level Hi-
erarchy Connection Relation Model”, Journal of
East China Shipbuilding Institute.14(1): 71-75,
Jan 2000.
[19] Stanford Medical Informatics, Stanford
University. Prot´eg´e Website. http:// pro-
tege.stanford.edu. Accessed December 2006.
[20] Sandia National Laboratories, Jess: the Rule
Engine for the JavaTM Platform. Available at:
http:liherzberg.ca.sand~agovljessi, last visited
March 2007.
[21] CLIPS, a tool for building exprt systems.
Available at: http:ilwww.ghg.netlclipsi
CLIPS.html, last vis. September 26th 2003.
[22] Friedmm-Hill E. J., “Jess, the expert system
shell for the Java Platform, Y. 6.la4, user’s
manual”, available at:
hnp:iihenberg.casmdia.govljessi, last visited
September 26th 2003.
[23] Eriksson H. The JESSTAB Approach to
Protégé and JESS Integration. In Proceedings of
the IFIP 17th World Computer Congress - TC12
Stream on Intelligent Information Processing,
pages 237–248. Kluwer, B.V., 2002.
[24] JADE - Java Agent Development Frame-
work, http://jade.tilab.com/, Accessed January
2006.
[25] Bellifemine F. L., Caire G., Greenwood D.,
Developing Multi-Agent Systems with JADE,
Wiley & Sons; 2007
[26] Delchambre, A. (1996). CAD Method for
Industrial Assembly: Concurrent Design of
Products, Equipment, and Control Systems, John
Wiley & Sons Ltd.
[27] Fensel, D. Ontologies: A Silver Bullet for
Knowledge Management and Electronic Com-
merce, Springer-Verlag 2004.

