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Abstract  

The need for agility of production structures is 
continuously growing due to increasing com-
plexity of products and decrease of product life 
cycle. This paper proposes a distributed knowl-
edge-based architecture based on a multi-agent 
paradigm applied in the assembly domain. The 
proposed approach is modeled by a society of 
cognitive agents, which control a set of hetero-
geneous resources and cooperate together in or-
der to achieve their own aims as well as the sys-
tem’s aim. The assembly knowledge is encapsu-
lated in a rule-based system, which allows an 
efficient generation of assembly steps. Ontolo-
gies are semantic tools that provide a framework 
to represent this knowledge. The ontology is 
shared among agents and serves as the instrument 
to define the vocabulary used by the agents dur-
ing their interactions. 
 
Keywords: Multi-agent System, Assembly, 
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1   Introduction  
 
Current manufacturing systems are faced with the 
growth in the variety of products and at the same 
time with a decreasing product life cycle. This 
increases the complexity of the manufacturing 
and is especially presented in assembly domain, 
which involves a lot of manual work and is for a 
major part of the manufacturing cost responsible 
[26]. There has been a clear recognition of the 
need for agile, knowledge intensive assembly 
systems that can easily absorb the required 
changes in product volumes, variety and manu-
facturing organization [1]. Because of their rigid 
structure and limited adaptation capabilities cen-
tralized hierarchical architectures of conventional 
manufacturing systems can’t dynamically man-
age the high degree of complexity and change. 
Few approaches, Holonic [2], Multiagent [3] and 

Bionic architecture [4] are proposed as promising 
paradigms to handle the combinatorial complex-
ity of manufacturing systems using distributed 
autonomous decision building blocks (holons, 
agents and cells).  
In this paper, using the Multi-agent paradigm in 
combination with ontology-driven solutions, we 
present a distributed architecture in which sets of 
agents collaborate in order to achieve their own 
as well as the system goal. The proposed archi-
tecture offers the direction towards solving the 
interoperability problems among heterogeneous 
enterprise levels. We use the assembly domain as 
a test field.  
The paper is structured as follows. The 
multi-agent architecture is described in the sec-
ond section. The third section gives an overview 
on the ontology. The system architecture is 
elaborated in the forth section. The fifth section 
describes the workflow. Finally, the section six 
gives the conclusion and outlines the future work. 
 

2   Multi-agent system 
 
A multi-agent system is a society of autonomous 
agents, where each agent acts based on its en-
closed behaviors, which represent adequate 
agent’s responds to different inputs from the 
manufacturing environment [6,7,8]. In a 
multi-agent system, a number of heterogeneous 
agents work independently or in a cooperative 
and interactive manner to solve problems in a 
decentralized environment [5]. Agent technology 
provides a good framework for integration of 
knowledge within a production environment. In 
our multi-agent system, each agent is an 
autonomous semantic entity responsible for the 
commitment of the local data described in its 
knowledge base. Two different approaches for 
agent encapsulation in agent-based manufactur-
ing systems are known: the functional decompo-
sition approach and the physical decomposition 



approach [7]. In the functional decomposition 
approach, agents are used to encapsulate modules 
assigned to functions for order, supply, etc. In the 
physical decomposition approach, agents are 
used to represent entities in the physical world, 
such as robot, conveyor, pallet, etc. Each agent 
has individual behavior and the capacity to make 
its own local decisions. The agent has knowledge 
about his domain of application, about strategies, 
which can be used to achieve a specific goal, and 
knowledge about (other) agents involved in the 
system. The crucial element in the decision 
component is the rule-based system, which ap-
plies declarative knowledge, expressed in a set of 
rules, to regulate the agent’s behavior. Agents 
communicate and negotiate with each other in 
order to perform the operations based on the 
available local information or to solve possible 
conflicts. Inter-agent communication capability 
provides the essential means for agent collabora-
tion. In order to ensure the correct understanding 
of the exchanged messages, agents must have the 
same presentation of the environment, or at least 
that part of the shared environment about which 
they are exchanging information with each other. 
Ontologies are from vital importance for enabling 
knowledge interoperations between agents and at 
the same time for a fluent flow of different data 
from different entities. Ontology is defined as an 
explicit specification of conceptualization [9]. 
Explicit specification of conceptualization means 
that ontology is a description of the concepts and 
relationships that can exist within a multi-agent 
system. Ontologies define a formal semantic for 

information and provide a shared understanding 
of a domain, an understanding that can be com-
municated within application systems [27]. 

3   Ontology 
 
A mechanical assembly is a composition of parts 
interconnected forming a stable unit. Parts are 
defined as components, described by set of at-
tributes, properties, constrains and relations to 
other parts. A subassembly is a non-empty subset 
of parts that either has only one component or 
every part has at least one surface contact with 
another part in the subset [10]. Numerous on-
tologies covering a wide range of domains have 
been developed and presented [11]. As a basis for 
our ontology we take the “Machine Shop Infor-
mation Model” [12] developed at the National 
Institute of Standards and Technology (NIST) as 
a part of efforts that support the development of 
standard data interfaces. Our ontology is also 
heavily influenced by the OZONE ontology [13], 
the Enterprise Ontology [14] and ADACOR on-
tology [15]. The benefit of using an existing on-
tology is that the system is interoperable, in terms 
of passing data, with any other system that uses 
the same data model. We use the ontology to link 
product designs, assembly planning processes 
and required assembly equipment together. Our 
proposal is built on three basic layers: product, 
activity and resources (Figure 1). There is 
roughly correlation between our ontology and 
FABMAS ontology [16] as well as MASON 
ontology [17], which are also based on three 
layers.  

Figure 1. Basic ontology layers 
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A product is presented as hierarchy of subas-
semblies and parts together with all their proper-
ties and relationship between them. This rela-
tionship between parts represents how these parts 
should be assembled to complete the product. 
An activity is the basic action, which specifies 
how the world is changed. An activity describes 
how the product is going to be produced and how 
its production relates to all other entities in pro-
duction environment.  
Resources are represented as entities able to 
perform a certain activity.  
Our concept split up a product order activity into 
sets of work orders, each work order being de-
scribed as a list of operations. In order to simplify 
the generation operation of the process plan, we 
adopt a top-down function model of the product 
[18]. Each product type is described through its 
own assembly process plan. 
Assembly steps are presented as levels, what 
means that parts from the lower level will be 
assembled first (Figure 2).  

There is also a hierarchy within the same level, 
where it’s distinguished which part should be 
transported and assembled before others. An 
assembly process plan further contains work 
orders (steps), which are defined as a set of op-
erations. In our framework, we distinguish two 
types of operations: part transportation and part 
assembly.  

We assume that each assembly operation would 
be performed by another resource what means 
that between two assembly operations it will be 
necessary to transport a part to another destina-
tion. In the case that two sequenced assembly 
operations could be performed by the same ma-
chine, the transport operation will be automati-
cally deleted by the rule-based system.  
We use Protégé-2000 [19] as an integrated soft-
ware tool used by system developers and domain 
experts to develop the knowledge base.  

4   System Architecture 
 
In order to appropriately distribute the function-
ality and intelligence of the system into specific 
agents, we decided to generate specific agents 
based on the activities that could be done within 
the system (Figure 3). Our Testbed architecture 
consists of an automatic storage system with a 
handling unit for the extraction of the parts, a 
pallet transfer system with redundant paths, as 

well as a portal robot for the final 
assembly. The composite parts of 
the pallet transfer system are: 
switch units, index units that fix 
the pallet in a defined position 
for the handling units, identifi-
cation units (RFID) for identifi-
cation of passing pallet units and 
conveyors. Each unit is con-
trolled by its own machine agent. 
The communication framework 
and the strategy model have been 
built on top of Java Agent De-
velopment Environment (JADE) 
framework [24]. The Contact 
Agent is created at the start-up of 
the JADE system and it is always 
active. Its main responsibilities 
are to receive a product order and 
create the appropriate order and 
supply agents. This agent also 
creates a machine agent in Pro-

tege and one JADE agent for each resource in the 
system.  
The order agent is launched by the contact agent, 
which means a new order is received. The order 
agent is responsible for controlling and guiding a 
single order through the shop floor and for the 
shipment of finished order to the customer. The 
order agent queries the ontology for the produc-
tion plan of the ordered product. From this plan it 
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generates work orders and one for these work 
orders responsible supply agent. The supply 
agent splits each work order on specific opera-
tions. Suitable resources, controlled by machine 
agent, perform these operations. The control of 
the resources and negotiation with supply agent 
about operation allocation are the main respon-
sibilities of the machine agent. 
 

4.1   Agent Behavior 
 
Our architecture is based on agents that have a 
rule-based behavior. Rules are considered as 
if-then statements applied to the knowledge base. 
The knowledge base is constantly updated with 
new facts. If all defined conditions for a particu-
lar rule on the left hand side of the rule are satis-
fied the rule’s actions on the right hand side will 
be executed. This will again add new facts in the 
knowledge base and set conditions for firing of 
new rules.  
For an easer handling of rules and having a better 
overview over created rules, each rule is assigned 
to an appropriate agent.  
The simplified rule where a supply agent checks, 
if there are enough available parts for an order 
product in storage, is presented bellow. Once an 
order is issued, the order agent sends the message 
“Check_Parts” to the supply agent. It will check 
if there are enough available parts in storage and 
based on the results undertake appropriate ac-
tions. 
 
(defrule SA_checks_available_Parts  
(object (is-a Supply_Agent) (OBJECT ?sa) (re-
ceive ?message)) 
(object (is-a Message)(OBJECT ?message)(content 
"check parts"))  
(object (is-a Order_Agent)(OBJECT ?orderAgent) 

    (responsible_for ?productOrder))  
(object (is-a Product_Order)(OBJECT ?productOrder) 
    (quantity ?q)(product ?product))  
(object (is-a Product)(OBJECT ?product)(parts 
$?part))  

=> 
(foreach ?part $?pl (bind ?pn (slot-get ?part name)) 
(bind ?x (count-query-results find_Part ?part)) 
(if (< ?x ?q) then 
   (printout t "Not enough Parts of " ?pn " available" )  
   else (send_ message  
           (make-instance of Message 
        (performative "INFORM") 
            (sender ?sa) 
               (receiver  ?orderAgent) 
  (content "parts available"))))) 
 
The reasoning is implemented using the Jess 
expert system shell [20]. Jess is essentially a Java 
reimplementation of a subset of the earlier CLIPS 
shell [21]. Jess is a simple but powerful tool, used 
for building a number of industrial Expert System 
applications [22]. We chose the Jess role engine 
because of its active development and support, its 
easy interaction with Java programs, its powerful 
scripting language, and its expressiveness. 
JessTab [23] is used as a plug-in for Protégé that 
allows us to use Jess and Protégé together. 
JessTab provides a Jess console window where 
it’s possible to interact with Jess while running 
Protégé. 
 

4.2   Communication 
 
The communication between the agents is done 
by sending messages. The JADE architecture 
enables agent communication through message 
exchange based on agent communication lan-
guage (ACL) [25]. A message has two sections: 
message header and message content. The header 

 

Order Agent
Supply Agent

Contact Agent

Machine Agent
Product Order

Work Order

Operation Resource

receive

create

Product

for

Process Planhas

control

controlhas

create

create

work_as

do

create

defines

controls

has

create

Figure 3. The main agents classes of the system and their activities 



contains the information regarding the sender, 
receiver(s), subject, date, and time that the mes-
sage is sent by the sender, date and time that the 
message is received by the receiver, and the pri-
ority. The message content contains information 
regarding the intent. There are two types of con-
tent: illocutionary and perlocutionary [34]. The 
illocutionary message is used to inform other 
agents, such as the information about the action 
that has been accomplished. The perlocutionary 
message is used to request actions from other 
agents, such as a call for proposal when the re-
source is available and would like to do some-
thing. An incoming message is asserted into the 
knowledge base as an incoming message fact. 
 

5   Workflow 
 
When a product order comes into the system, it is 
received by the contact agent. The product order 
contains information about the costumer, the 
product, the quantity and the due date. The con-
tact agent sets the status of the order and issues 
the system ID that will escort the order and will 
be contained in the names of correlated order and 
supply agent as well as work orders and opera-
tions. After this, the supply and order agent are 
being created. The created order agent checks if 
the due date of the order is achievable, calculates 
a priority for the product order, and sends the 
message "check parts" to the supply agent. When 
it receives this message, the supply agent checks 
if all parts for the orders are available and re-
serves these parts, otherwise the order must be 
pending and waits for the parts arriving. After the 
order agent receives the message that all parts are 
available, it uses the process plan to decompose 
the assembly process of the product in work or-
ders and informs the supply agent to take control 
over them. The supply agent decomposes each 
work order into operations and starts negotiation 
with available resources about the completion of 
these operations. As said before, each of the work 
orders consists at least one transport operation 
and one assembly operation. Operations have to 
be accomplished by different resources located at 
different places at the shop floor. Each resource 
possesses its own schedule and its own capabili-
ties to perform different operations. The schedule 
is not calculated in advance, but arises from the 
concurrent and contingent interactions. In order 
to achieve optimal utilization agents negotiate 

with each other. For example, the assembly op-
eration will be allocated to the resource with the 
smallest utilization. For the same reason, as soon 
as pallets are free it will send the message “free” 
to all supply agents looking for available trans-
port operation. When there are more operations 
from different product orders, which are com-
peting for the resource, the one with highest pri-
ority will be performed. Since the agents in our 
architecture are self-centered and suffer from the 
lack of global perspective, it is hart to predict the 
performance of the whole system. In order to 
achieve best possible scheduling, there is still 
more work to be done on optimization of the rules 
that govern the agent behavior. Further research 
and experiments are needed to extend the current 
work and to address its possible shortcomings. 
 

6   Conclusion 
 
In this paper we presented a multi-agent system 
that uses the ontology driven solution in combi-
nation with intelligent agents in order to solve the 
interoperability problems within the manufac-
turing life cycle. This system has been applied in 
an assembly domain. The main advantage of our 
concept is that in this knowledge-based system it 
does not have to be said, how a problem has to be 
solved, but the problem and the goal have to be 
described. Further advantage of this type of 
knowledge-based system is related to the simple 
and very comprehensive way to represent the 
reasoning capability of one agent. There is also 
no need to explicitly program the interactions of 
the whole system since this emerges as a 
by-product of the individual goals and capabili-
ties of the constituent agents.  
The work presented represents only the first step 
of our effort toward achieving knowledge-based 
agent system in an assembly domain. The future 
work will be conducted to integration of this 
system with our transport system and experi-
ments in the real world. Furthermore, it will be 
also necessary to design appropriate scheduling 
algorithms to face the dynamic scheduling prob-
lems of modern manufacturing systems. 
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