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Abstract  

This paper discusses the issue of how to solve 
multi-criteria decision making (MCDM) prob-
lems from the target perspective. In particular, 
instead of making use of the traditional nor-
malization method, it tries to calculate the prob-
ability of meeting some pre-designed targets for 
every criterion, where target values can be of 
different types: such as fuzzy number, fuzzy in-
terval numbers and so on, and then uses weighted 
aggregation method to calculate the overall value 
for each alternative, at last selects the alterna-
tive(s) maximizing these overall values. The 
method is illustrated by the same application 
example taken from literature to compare with 
previous methods. 
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1   Instruction 
 

Multi-criteria decision making (MCDM) refers to 
the problems of selecting among alternatives 
associated with multi-criteria. It is a problem 
with extensive theoretical and practical back-
grounds, and it has received a great deal of at-
tention from researchers in many disciplines for 
more than three decades [1; 2; 3; 4; 5]. In general, 
basically it involves the following three phases: 
z Collecting the information about criteria 

values and criteria weights; 
z Obtaining an overall value by weighted ag-

gregation of the criteria values across all the 
criteria for each alternative; 

z Ranking the overall values to get the best 
alternative(s). 

So far, there are numerous methods proposed 
in the MCDM literatures. In this paper, we aim at 
applying the target-based approach to solving 
MCDM problems. Practically, thinking about 

targets is very natural in many situations [6], 
therefore it is quite interesting to think of MCDM 
problems from the target-based point of view. 
For example, when someone wants to buy a car, 
based on his/her personal hobbies and financial 
capacity, he/she may firstly establish a targeted 
car which should have some desirable properties 
in terms of criteria for example as colors, features, 
functions and so on. 

In general, target-based approach has been 
used for decision making under uncertainty 
(DMUU) with a single criterion. Many methods 
and models have been proposed to solve the 
DMUU problems [6; 7; 8; 9; 10; 11]. Due to the 
mathematical and structural relation between 
DMUU and the MCDM models established in 
[12], we can apply the target-based decision 
model to MCDM problems. Bordely and Kirk-
wood [13] used performance targets to valuate 
the multi-criteria performance analysis, where 
the target-oriented decision maker has (DM in 
short) only two different utility levels, and these 
two utility levels can be set to one (if the target is 
achieved) or zero (if the target is not achieved). 
However, target achievements can be of different 
levels (i.e., from 0 to 1). As it is much easier and 
intuitively natural to define the fuzzy target, 
fuzzy target values can be of different types, such 
as fuzzy numbers, fuzzy interval numbers and so 
on. 

The main focus of this paper is to solve 
MCDM problems with fuzzy targets. Essentially, 
instead of using the traditional MCDM method, it 
tries to calculate the probabilities of meeting 
some predefined targets for every criterion, 
where the targets can be of different types, and 
then the weighted aggregation method is used to 
calculate the overall value for each alternative, at 
last selects the maximal overall values according 
to the optimization principle. 

The organization of this paper is as follows. In 
section 2 we present a general decision matrix. In 
section 3 we introduce the target-based decision 
making under uncertainty and in section 4 a 



multi-criteria decision making model with fuzzy 
targets has been proposed. The method is illus-
trated by the same application example taken 
from literature to compare with previous methods 
in section 5. This paper is concluded in the last 
section. 
 

2   Preliminaries  
 
In this section, we will enunciate the relation-
ships between multi-criteria decision making 
(MCDM) and decision making under uncertainty 
(DMUU) based on [17]. In general, for any kind 
of decision problem, the DM has to choose one 
alternative out of a set of m  mutually exclusive 
alternatives ),,2,1( miAi …= . 

In the case of a decision problem with 
multi-criteria, the quality of the different alter-
natives depends on the n  criteria ),,2,1( njC j …= . 
In general, given any criterion of the alternative, 
every criterion contribution to different alterna-
tives depends on k  states of na-
ture ),,2,1( klSl …= , which cannot be influenced 
by the DM and may lead, for each alternative, to 
possibly different and more or less favorable 
contributions. Thereby, a criterion 

),,2,1( njC j …=  is a real-valued function defined 
on the set of alternatives ),,2,1( miAi …=  param-
eterized by the set of states of na-
ture },,,{ 21 kSSSS …= . 

MCDM problems, in other words, are charac-
terized by the fact that, for each criterion 

),,2,1( njC j …=  of the alternative ),,2,1( miAi …= , 
the outcome of every criterion jC is characterized 
by a k-dimensional vector ija  of criteria values 
with ))(,),(),(( 21 kijijijij SaSaSaa …= . This vector 
denotes the criteria value if the DM chooses al-
ternative iA . Then we can get the general decision 
matrix SCAD ××= .  

According to the decision matrix, usually in 
the case of MCDM only one state of nature of 
each criterion is considered, i.e., with 1=k , then 
decision matrix reduces to a nm×  matrix; in the 
case of DMUU only one criterion is considered, 
i.e., with 1=n , then the decision matrix reduces 
to a km×  decision matrix. In this paper, in the 
context the MCDM problems, only one state of 
nature is considered. 

3   Target-oriented Decision Making Un-
der Uncertainty 
 
In this section, we will introduce the target-based 
method for DMUU. The DMUU problems can be 
effectively described by the decision matrix 
shown in Table 1. 
 

Table 1.  DMUU Problems 
State of Nature Alternatives 

1S  2S  … kS  

1A  11c  12c  … kc1  

2A  21c  22c  … kc2  

#  #  #  %  #  

mA  1mc 2mc  … mkc

 
In Table 1, the set ),,2,1( miAi …=  represents 

the alternatives available to a DM, one of which 
must be selected; ),,2,1( klSl "=  denotes the 
possible values or states associated with the state 
of nature S . Each element ilc of the matrix is the 
payoff the DM receives if the alternative iA is 
selected and state lS  occurs. Most often, it is 
assumed that there exist a probability distribution 

sP over },,,{ 21 kSSSS "= ， such that 

)( lSl SSPP == , where 0,1
1

>∀=∑
=

l

k

l
l PP . A 

bounded domain of the payoff variable can be 
restricted such that ],[ maxmin ccD = , i.e., 

maxmin ccc il ≤≤ . 
As is well known, the most common method to 

valuate alternatives iA  is to use the expected 
utility defined as: 

)()()(
1

l

k

l
Sili SPcUAv ∑

=

=                              (1) 

where U  is a utility function defined over D . 
On the other hand, each alternative iA  can be 

formally considered as a random payoff having 
the probability distribution iP  defined, with an 
abuse of notation as follows: 

}):({)( ccSPcAP illSii ===                      (2) 
Then, the target-based model [6; 8; 13] sug-

gests using the following value function: 

)()()()(
1

TcSPTAAv il

k

l
lSii ;; ∑

=

Ρ=Ρ==        (3) 



where )( Tcil;Ρ  is a formal notation indicting the 
probability of meeting the target of value ilc , or 
equivalently, the utility )()( TccU ilil ;Ρ=  in the 
utility-based language. 

Thus for a target-oriented DM it is not neces-
sary to assess a utility function; instead, it is 
necessary to determine the probability function of 
meeting the targets. In many situations, due to the 
lack of information or inability of DM to assess a 
probabilistic uncertain target, but based on his 
feeling or experience, he may be able to assess 
some fuzzy target instead. This motivated the 
authors in [11] to consider using fuzzy targets in 
the target-based decision model for DMUU. 

A direct way to define )( Tcil;Ρ  is to use 
Yager’s method [15] for converting the possibil-
ity distribution into an associated probability 
distribution. Then )( Tcil;Ρ  can be as follows 
according to [11]: 
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Then the fuzzy target-based model for DMUU 
can be defined as follows [11]: 
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where )(tTμ  denotes the membership function of 
the target T . 
 

4   Multi-criteria Decision Making with 
Fuzzy Targets 
 
In this section, we aim at solving MCDM prob-
lems from the target perspective. A general 
MCDM problem can be effectively described as 
in Table 2. 

In this decision matrix, the set ),,2,1( miAi …=  
represents the alternatives available to a DM, one 
of which must be selected; ),,2,1( nlC j "=  de-
notes criteria. Each element ija  of the matrix is 
the payoff the DM receives if the alternative iA  
is selected with respect to criterion j , 
where njmi "" ,2,1;,,2,1 == . T

nwwww ),,,( 21 "=

denotes the vector with criteria weights (or 

weights thereafter), where jww j

n

j
j ∀≥=∑

=

,0,1
1

. 

Here a bounded domain of the variable 
],[ maxmin

jjj aaD =  is defined, where mi ,,2,1 "= , 

nj ",2,1= , },,max{ 1
max

mjjj aaa "=  and 

},,min{ 1
min

mjjj aaa "= . 
 

Table 2.  MCDM Problems 
The criteria of alternatives Alternatives

1C : 1w  … nC : nw

1A  11a  … na1  

2A  21a  … na2  
#  #  %  #  

mA  1ma  … mna  

 
In MCDM, we assume that each criterion is 

defined either as benefit criterion (i.e., the larger 
the criterion value, the greater the preference) or 
cost criterion (i.e., the smaller the criterion value, 
the greater the preference). Usually the criteria 
values need to be normalized, one common 
normalization method [14] is as follows: 
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b  (6) 

where mi ,,2,1 "= and nj ",2,1= . 
Now let’s focus on the target-based model for 

MCDM problems. Motivated from [12], by the 
structural relation between DDMU and MCDM 
models, we can apply the target-based model 
mentioned in Section 3 to MCDM in a similar 
way. Assume that DM assesses for each criterion 

jC  a target jT  having membership func-
tion ]1,0[: →jT D

j
μ , where ),,,( 21 nTTTT "=  

represents the target set. 
As the benefit criteria in MCDM is similar 

with the payoff variable in MDUU, according to 
[7; 11; 12], firstly, we consider a simple case, a 
random target jT which has a uniform distribu-
tion on jD  with the probability density function 

jTP defined by 
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Then under the assumption that the random 
target jT  is stochastically independent of any 

alternative iA ， for a benefit criterion we have  

∫ ∞−
=Ρ=

a
Tjijij dttPTaAv

j
)()()( ;                       (8a) 

In the situation of a cost criterion, we can de-
fine the cumulative distribution function for 

)( jij Ta ≺Ρ   as follows: 
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According to (7), (8a), and (8b), we can get the 
probability of iA  meeting the target jT at the 
criterion jC  as follows: 
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From (6) and (9), we can easily see that there is 
no way to tell if the DM selects an alternative by 
traditional method or by maximizing the prob-
ability of meeting the uncertainty target, in other 
words, the target-based decision model with the 
decision function )( ij Av  is equal to the tradi-
tional normalization function. 

Now let us turn to the problem of MCDM us-
ing fuzzy targets. Based on the target model for 
DMUU [11], we use Yager’s method [15] to 
define the probability of iA  meeting the target jT  
at the benefit criterion jC  as follows: 
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 For benefit criteria                                  (10a) 
Similarly we can get the probability of iA  

meeting the target jT  at the cost jC  as follows: 
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For cost criteria                                   (10b) 
Then the problems here are how to define the 

target membership function )(t
jTμ  for target jT  . 

Bordley nd Kirkwood [13] used the crisp per-
formance targets to valuate the multi-criteria 
performance analysis where he target-oriented 
DM has only two different utility levels, and 
these two utility levels can be set to one (if the 
target is achieved) or zero (if the target is not 
achieved). However, target achievements can be 
of different levels (i.e., from 0 to 1). Furthermore 
target values can be of different types, such as 
fuzzy numbers, fuzzy interval numbers and so on. 
In the following, we will discuss two special 
cases: fuzzy numbers and fuzzy interval num-
bers. 
 
4.1   Fuzzy numbers 
 
In the target-based model with a target jT  with a 

fuzzy number 0
ja , for example, when a consumer 

wants to buy a house with “size is 100 2m ”, then 
we can view this as “about 100 2m ”. Unlike [13], 
the target-oriented DM can have more than 2 
different utility levels. We can define the fol-
lowing membership function for )(t

jTμ . 
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Then according to (10a) and (7), we can get the 
probability of iA  meeting the fuzzy target jT at 
the benefit criterion jC as follows: 
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(12a) 
If the criterion jC  is a cost criterion, then we 

can get the probability of iA  meeting the crisp 



target jT at the cost criterion jC  according to (6b) 
and (7) as follows: 
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 (12b) 

 
4.2   Fuzzy Interval Values 
 
In practice, based on the DM’s feel-
ing/experience, the DM may also assess his/her 
target with interval numbers. For example, usu-
ally, when a consumer wants to buy a car, he/she 
may define the price target as a interval number, 
such as from 1p  to 2p . 

We can define an fuzzy interval value target 
for criterion jC  as ],[ U

j
L
jj aaT = . The interval 

value target can be viewed as at least L
ja  and at 

most U
ja . Then we can define (13) as the mem-

bership function )(t
jTμ  of the target jT : 
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Then according to (10a), (10b), and (13), we 

can get the probability of iA  meeting the target 
jT at the criterion jC for different types of criteria 

as follows: 
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It should be noted that, there are two special 
cases: at least 0

ja  (at most max
ja  ) and at most 0

ja  

(at least min
ja ). Similarly we firstly define the 

membership function )(t
jTμ  of target jT  for a 

criterion as follows: 
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And then according to (10a), (10b) and (15), 
we can get the probability of iA  meeting the 
target jT at the criterion jC as follows: 
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                 For a benefit criterion at least 0
ja (16a) 
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                 For a cost criterion at least 0
ja (16b) 

Now let us turn to at most 0
ja . Firstly, we can 

define the membership function of target jT  for a 
criterion as follows: 
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And then according to (10a), (10b) and (17), 
we can easily get the cumulative probability 
function as follows: 
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         For a benefit criterion at most 0
ja (18a) 
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                  For a cost criterion at most 0
ja (18b) 

 
4.3   Decision Procedure 
 
After getting the probability of meeting the target 
for each alternative iA  with respect to crite-
rion jC , we can aggregate the probabilities using 
different methods. Bordley and Kirkwood [13] 
had formulated the target-oriented multi-criteria 
decision making, in this paper; we use the addi-
tive target method. Then we can aggregate the 
probabilities to get the following function: 

∑
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j
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)()(                                 (19) 

At last we maximize the probability of 
iA meeting the target T  by the following func-

tion: 
)}({maxarg*

i
A

AvV
i

=                                        (20) 

Thus the algorithm for MCDM with targets has 
the following steps: 
z Collecting alternatives information and 

weight information. 
z Setting up targets for every criterion.  

For a target-oriented DM, targets can be 
different targets, fuzzy targets, fuzzy interval 
targets (both common interval and special inter-
val).  
z Calculating the probability of target 

achievements of every criterion.  
Fuzzy targets If the target jT  for criterion 

jC  is of fuzzy number, then calculate the prob-
ability of iA  meeting the target jT  according to 
(12a) for benefit criteria, and according to (12b) 
for cost criteria. 

Fuzzy Interval targets If the target for crite-
rion jC is fuzzy interval type, then calculate the 
probability of iA  meeting the target according to 
(14a) ~ (18b) depending on the criterion type and 
target value. 
z Aggregating target probability for every 

alternative according to (19). 
z Selecting the maximal probability the target 

has been achieved according to (20). 
 

5 A Numeric Experiment 
 
5.1   An Illustrative Example 
 
Example: Consider the following decision matrix 
with alternatives and eight criteria, where 1C , 2C , 
and 3C are cost criteria and 4C ~ 8C  benefit cri-
teria. The example was ever examined by [14], 
and effectively described as in Table 3. 

Now let us solve this decision problem based 
on the decision procedure. The weights informa-
tion and criteria value for each alternative have 
been collected. The target assigned by DM with 
respect each criterion can be described as 

),,,( 21 nTTTT "= . With the targets, we can cal-
culate the probability of iA  meeting the target 

jT at the criterion jC . And then by weighted ag-
gregating method, we can get the overall value 
for each alternative iA , see Table 4. It is clear 



that 123 AAA ;; , and 3A  is the best choice 
for ),,,( 21 nTTTT "= . 
 
5.2   A Comparative Study 
 
Here, as a comparative analysis, we will briefly 
comparer our method with other two methods: 
traditional MCDM methods and Bordley’s 
method by using the example showed in Table 3. 
To compare our proposed method with Bordley’s 
method, here we assume that the DM assigned 
fuzzy value target for each criterion. The targets 
are ),,,( 21 nTTTT "= = (19000, 4.5, 350, 110, 350, 
0.85, 45, 1.4). 
z Traditional MCDM Method 

According to (6), we can get the normalized 
value ijb  for ija , and then by using aggregated 

method ∑
=

×=
n

j
ijji bwAv

1

)(  we get the overall 

value. The result and ranking order is as follows: 
1A  2A  3A  Ranking Order

0.357 0.532 0.622 123 AAA ;;  
z Bordley’s Method 

In [13], Bordley and C. Kirkwood used the 
crisp performance targets to valuate the 
multi-criteria performance analysis. We use the 
targets defined before. In their model, they de-
fined the probability )( jij Ta ;Ρ  of iA  meeting the 
target jT at the criterion jC as follows: 

⎪⎩

⎪
⎨
⎧

<

≥
=Ρ

ijj

ijj
jij aT

aT
Ta

,0

,1
)( ;  for benefit criteria 
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⎪
⎨
⎧

>

≤
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ijj

ijj
jij aT

aT
Ta

,0

,1
)( ≺  for cost criteria 

And then according to the pre-defined targets, 
by using Bordely’s method, the overall value for 
each alternative and ranking order is as follows: 

1A  2A  3A  Ranking Order 
0.327 0.165 0.622 213 AAA ;;  

z Our Proposed Method 
By using our method proposed above, the 

overall value for each alternative and ranking 
order is as follows: 

1A  2A  3A  Ranking Order 
0.349 0.459 0.622 123 AAA ;;  
Based on the overall value for each alternative 

and ranking order of different method, it is clear 
that 3A  is the best choice. It is possible that with 
the change of target value, the ranking order of 
our method will change. 

 
Table 3.  MCDM: Example 

Alternatives 
Criteria: weight 

1A  2A  3A  

1C : 0.2126 18400  19600 29360 

2C : 0.0713 3 4 6 

3C : 0.0417 100 120 540 

4C : 0.1605 80 100 120 

5C : 0.0524 300 400 150 

6C : 0.1115 0.6 0.8 1.0 

7C : 0.15 40 40 50 

8C : 0.20 1.2 1.3 1.5 

 
 

 
Table 4.  Multi-criteria Decision Making with Targets 

Alternatives Target achievements 
Criteria: weight 

1A  2A  3A  
Target 

1A  2A  3A  

1C : 0.2126 18400  19600 29360 19000 1.0 0.8389 0.0 

2C : 0.0713 3 4 6 [3,5] 1.0 0.4444 0.0 

3C : 0.0417 100 120 540 at least 300 1.0 0.9706 0.0 

4C : 0.1605 80 100 120 [90,110] 0.0 0.6667 1.0 

5C : 0.0524 300 400 150 at most 200 0.8333 1.0 0.0 

6C : 0.1115 0.6 0.8 1.0 0.7 0.0 0.6667 1.0 

7C : 0.15 40 40 50 at least 40 0.0 0.0 1.0 

8C : 0.20 1.2 1.3 1.5 1.2 0.0 0.5556 1.0 
Overall Value 0.3693 0.5954 0.6220 



6   Conclusion 
 

In this paper, we have proposed a new method to 
solve multi-criteria decision making problems 
with fuzzy targets. In particular, instead of using 
the traditional MCDM problems, we calculate the 
probability for each criterion of meeting specified 
target, and then calculate the overall value using 
weighted aggregation method. Unlike [13], the 
target achievement can range from 0 to 1. And 
the target value type can be of different types, 
such as fuzzy numbers and fuzzy interval num-
bers. As illustrated by the example taken from 
[14], the proposed method has been compared 
with two other methods. 
 

References 
 
[1]. Ching-Hsue Cheng and Yin Lin. Evaluat-

ing the best main battle tank using fuzzy 
decision theory with linguistic criteria 
evaluation. European Journal of Opera-
tional Research, 142:174–186, 2002. 

[2]. F. Chiclana, F. Herrera, and E. 
Herrera-Viedma. A consensus model for 
multiperson decision making with different 
preference structures. IEEE Transactions 
on Systems, Man and Cybernetics, Part A: 
Systems and Humans, 32(3):394–402, 
2002. 

[3]. F. Chiclana, F. Herrera, and E. 
Herrera-Viedma. Integrating three repre-
sentation models in fuzzy multipurpose 
decision making based on fuzzy preference 
relations. Fuzzy Sets and Systems, 
97:33–48,1998. 

[4]. S.J.Chen and C.L. Hwang. Fuzzy Multiple 
Attribute Decision Making: Methods and 
Applications. Springer, New York, 1992. 

[5]. C.L. Hwang and K. Yoon. Multiple At-
tribute Decision Making: Methods and 
Applications. Springer, Berlin, 1981. 

[6]. Robert Bordley. Foundations of tar-
get-based decision theory. In: U.Derigs 
(Ed.), Optimization and Operations Re-
search, from Encyclopedia of Life Support 
Systems(EOLSS), Developed under the 
Auspices of the UNESCO, Eolss Publishers, 

Oxford, UK, 2002. 
[7]. Robert Bordley and Marco LiCalzi. Deci-

sion analysis using targets instead of utility 
functions. Decisions in Economics and 
Finance, 23(1):53–74, 2000. 

[8]. E. Castagnoli and M. LiCalzi. Expected 
utility without utility. Theory and Decision, 
3:281–301, 1996. 

[9]. Ali E. Abbas and James E. Matheson. 
Utility-probability duality. Available at 
http://arxiv.org/abs/cs.AI/0311004, 2004. 

[10]. Ali E. Abbas and James E. Matheson. 
Normative target-based decision making. 
Managerial and Decision Economics, 
26:373–385, 2005. 

[11]. V.N. Huynh, Y. Nakamori, M. Ryoke, and 
T.B. Ho. Decision making under uncer-
tainty with fuzzy targets. Fuzzy Optimiza-
tion and Decision Making, Springer, to 
appear, 2007. 

[12]. D. Dubois, M. Grabisch, F. Modave, and H. 
Prade. Relating decision under uncertainty 
and multicriteria decision making models. 
International Journal of Intelligent Systems, 
15(10):967–979, 2000. 

[13]. R. Bordley and C. Kirkwood. Multiattrib-
ute preference analysis with performance 
targets. Operations Research, 52:823–835, 
2004. 

[14]. D.F. Li. Fuzzy multiattribute decision 
making models and methods with incom-
plete preference information. Fuzzy Sets 
and Systems, 106:113–119, 1999. 

[15]. R.R. Yager. On the instantiation of possi-
bility distributions. Fuzzy Sets and Systems, 
128(2):261–266, 2002. 

[16]. F. Herrera and E. Herrera-Viedma. 
Linguistic decision analysis: Steps for 
solving decision problems under linguistic 
information. Fuzzy Sets and Systems, 
115:67–82, 2000. 

[17]. H.W. Brachinger and P.-A. Monney. De-
cision Analysis. In: U. Derigs (Ed.), Opti-
mization and Operations Research, from 
Encyclopedia of Life Support Systems 
(EOLSS), Developed under the Auspices of 
the UNESCO, Eolss Publishers, Oxford, 
UK, 2002[http://www.eolss.net]. 

 


