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Abstract  

Operational optimization models are one of the 
main streams in modeling practices on energy 
systems. Agent-based modeling and simulations 
seems to be another rising stream in the field of 
modeling energy systems. In either optimization 
or agent-based modeling practices, technological 
change in energy systems is a very important and 
inevitable factor that modelers need to deal with. 
By introducing three modeling practices with a 
deliberately simplified energy system, this paper 
tries to explain how traditional optimization 
model, endogenous technological change opti-
mization model, and agent-based model treat 
technological change differently and compares 
different philosophy underlying the three mod-
eling practices and their advantages and disad-
vantages. 
 
Keywords: Technological change, energy sys-
tems, agent-based modeling 
 

1   Introduction 
 
In most traditional optimization energy models, 
technological change has been largely treated as 
exogenous. Technological change is either re-
duced to an aggregate exogenous trend parameter 
(the “residual” of the growth accounts) or intro-
duced in the form of numerous (exogenous) as-
sumptions on the costs and performance of future 
technologies. In such models, for triggering both 
adoption and penetration of otherwise uneco-
nomic technologies, most of time it is inevitable 
to include additional (e.g., environmental or ca-
pacity) constraints. Most traditional optimization 
models are linear optimization models, thus it is 
easy to get global optimal solutions, even energy 
systems modeled are quite large and complex, 

e.g., with hundreds of energy technologies and 
thousands of parameters.    

From the middle of 1990s, researchers started 
to develop optimization models of energy sys-
tems with endogenous technological change, e.g., 
see [7-9, 11]. The most important feature of en-
dogenous technological models is that, as ex-
perience in new technologies accumulates, the 
cost of using them tends to decrease—so-called 
technological learning which is a classical ex-
ample of increasing returns [2].  Endogenous 
technological change models are also called in-
duced technological change models [6], or LBD 
(learning by doing) models [1]. With endogenous 
technological change, it is not necessary to in-
clude additional (e.g., environmental or capacity) 
constraints which are actually at odds with his-
torical experience [4] for triggering the penetra-
tion of advanced but currently uneconomic new 
technologies. The resultant mathematical prob-
lems of endogenous technological change models 
are non-convex optimization problems. Some 
endogenous technological change models also 
consider uncertainties in technological learning, 
e.g. see [7], thus the resultant optimization 
problems are not only non-convex but also sto-
chastic. Comparing to the traditional optimiza-
tion models, it is much more difficult to find 
(especially global) solutions for endogenous 
technological change models, especially those 
considering uncertainties. It is necessary to apply 
some very specific searching techniques, e.g., see 
[1], for finding solutions.  

In recent years, agent-based modeling (ABM) 
and simulations have got increasing concerns by 
many researchers in the field of modeling energy 
systems. Agents in ABM can be simply defined 
as autonomous decision-making entities. ABM is 
thought as a powerful tool for studying complex 
adaptive systems which are systems with multi-
ple elements/entities adapting or reacting to the 
pattern these elements create together [3]. In real 



world energy systems, there are many heteroge-
neous participating entities involved, and those 
entities not only interact with each other but also 
adapt or react to the pattern they create. It is dif-
ficult to catch those features related to hetero-
geneous entities and their interaction and adap-
tive behaviors with conventional optimization 
approaches, equilibrium analysis, and other ana-
lytical techniques. ABM is not only a good tool 
for dealing with those features, but also provides 
a way for rethinking the dynamics of energy 
systems. Examples of the applications of 
agent-based modeling in energy systems include:   
Bunn and Oliveira [5] used agent-based simula-
tion to develop detailed insights into potential 
electricity market ahead of the introduction of 
new electricity trading arrangements of England 
and Wales, and Stephan and Sullivan [13] put 
forward an agent-based model to study the tran-
sition of a personal transportation system based 
on conventional fuels to one based on alternative 
fuel, such as hydrogen. Technological change in 
ABM can be in various forms. Comparing to 
optimization approaches, technological change in 
ABM is not any more the result of a long-term 
strategic planning, but the result of agent’s re-
acting and adaptive behaviors.    

This paper uses three models as examples to 
explain how technological change could be 
treated differently in optimization and 
agent-based modeling practices and compare 
advantages/disadvantages of and different phi-
losophy underlying different modeling practices. 
The three models are namely traditional optimi-
zation model, endogenous technological change 
model, and agent-based model. For simplicity 
and comparable, all the three models are based on 
the same deliberately simplified energy system 
which is composed of three energy technologies. 
Each of the three models can be looked as an 
example of a stream in modeling energy systems.   

This paper neither aims to summarize or cover 
all modeling practices in energy systems, nor 
does it study the detailed behaviors of the three 
models. Instead, the main purpose is to explain 
how technological change is treated differently in 
different modeling practices. 

The rest of the paper is organized as follows. 
Section 2 describes the deliberately simplified 
energy system and introduces the three different 
models. Section 3 introduces initializations and 
analyzes results of the three models, and then 
compares different philosophy underlying the 

three modeling practices and their advan-
tage/disadvantages. Section 4 gives concluding 
remarks. 
 

2. The 3-Technology Energy System and the 
three Models 
 
2.1 The 3-technology energy system 
 
The deliberately simplified energy system as-
sumes the economy demands one kind of ho-
mogeneous goods (e.g., electricity) and the ex-
ogenous demand increases over time. There are 
three technologies, namely, existing technol-
ogy—T1, incremental technology—T2, and 
revolutionary technology—T3, that can be used 
to produce the goods. The existing technology 
has a low efficiency with a low initial investment 
cost, e.g., coal power plants; the incremental 
technology has a higher efficiency with a higher 
initial investment cost, e.g., gas turbines; and the 
revolutionary technology has a much higher ef-
ficiency with a much higher initial investment 
cost, e.g., photovoltaic cells.  The incremental 
and revolutionary technologies have learning 
potential, which means their initial investment 
cost could decrease in the future.  
 
2.2 The traditional optimization model 
 
The story of the traditional optimization model is: 
there is a global social planner who makes a 
long-term strategic (e.g., 100-year) plan for the 
energy system thus the discounted total cost is 
minimized for satisfying the given demand; the 
driving forces for the adoptions of “incremental” 
and “revolutionary” technologies could include: 
capacity constrains of the “existing” technology, 
environmental constrains, resource depletion, 
and gradually (exogenously) decreasing cost of 
“incremental” and “revolutionary” technologies.  
The demand is exogenous and increases over 
time as shown in Equation (1).   

 100(1 ) ,t tD α= +                        (1) 
where t  denotes time (year), tD  denotes the 
demand at t , and α  is the exogenous annual 
increasing rate of demand.  
Let t

ix  ( 1,2,3i = ) denote the annual production 
of technology i  at time t , and let iη  denote the 
efficiency of technology i ; then the annual ex-



traction tR  is the sum of resources consumed by 
all technologies, as shown in Equation (2) 

3

1

1 .t t
i

i i

R x
η=

=∑                              (2) 

Let t
iy  ( 1,2,3i = ) denote the annual new in-

stallation of technology i at time t ; then the 
total installed capacity of technology i  at time t , 
denoted by t

iC ( 1,2,3i = ) can be calculated 
according to Equation  (3).  
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where iτ  denotes the plant life of technology i . 
The following intertemporal optimization will be 
used to minimize the total discounted cost.  
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where:   
T denotes the scale of the problem;  
δ  denotes the discount rate;  

t
OMic denotes the operating and maintenance 

(O+M) cost of technology i  at time t ;  
t
Fic  denotes the cost of building unit capacity (or 

investment cost) of technology i  at time t ; 
t
Ec  denotes the cost of extracting each unit re-

source at time t ; 
The constraint function Eq. (5) denotes that 

the total annual production of all three technolo-
gies must satisfy the given demand; the constraint 
function Eq. (6) denotes that annual production 
for each technology does not exceed its total 
installed capacity; the constraint functions Eq. (7) 
and Eq. (8) denote that decision variables cannot 
be negative.  

2.3 An endogenous technological change 
model 
 
The endogenous technological change model 
shares almost the same story of the traditional 
optimization model except that the investment 
costs of the incremental and the revolutionary 
technologies are now a function of the cumula-
tive experience in using them.     

The endogenous technological change model 
is still intertemporal optimization, with Eq. (4) as 
the objective functions and Eq. (5) ~ (8) as con-
strains. But now the investment costs of tech-
nologies ( t

Fic ) neither keep constant nor change 

with exogenous decreasing rates. Instead, t
Fic  

will decrease with the increase of cumulative 
installed capacity of the corresponding technol-
ogy, which can be looked as cumulated experi-
ence in it, as denoted by Eq. (9).  

0 ( ) ,ibt t
F i F i ic c C −= ×                         (9)          

where 2 ib−  is the progress ratio (1 2 ib−−  is the 
learning rate) of technology i, and 0

Fic  is the ini-

tial investment cost of technology i , t
iC is the 

cumulative installed capacity  of technology 
i by time t  and 

0
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Such endogenous mechanism can also be applied 
to resource depletion, which means the extraction 
cost t

Ec  in Eq. (4) is neither constant nor deter-
mined by an exogenous parameter; instead it 
depends on the accumulated extraction by time t . 
Suppose cumulative extraction by time t  is 

1

t
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j
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=

=∑ ,                                (11) 

the extraction cost of the resource is assumed 
increases over time as a linear function of re-
source depletion, as shown in Equation (12):  

0t t
E E Ec c k R= + .                     (12) 

 
2.4. The agent-based model 
 
Various agent-based models could be developed 
with different understandings of decision makers 
and their behaviors. Researchers commonly use 
agent-based models to study interactions among 
multi-decision entities, e.g., see [9], but for 



comparing with the two models introduced above, 
the story of the agent-based model introduced 
here is very simple: the same as above, there is 
only one decision maker (or we call it an agent), 
but now this agent is not so smart to minimize the 
total cost of a long-term, or we can say it is my-
opic, and its decisions are made for a short term, 
e.g., one-year; the agent is not clear about the 
future demand thus it could not be completely 
rational, i.e., it is possible that the agent would 
build more or less capacity than really needed; 
although the agent is myopic and not full-rational, 
it is adaptive, it will adjust its decision according 
to the pattern – resource depletion and demand 
dynamics – somehow created by itself; and the 
demand is not exogenous as that in the models 
introduced above, it is somehow influenced by 
the agent’s previous decisions.   The following 
are more details of the agent-based model.     

At each year, the decision agent calculates the 
average annual growth rate of extraction cost for 
the last three years, and then uses this growth rate 
to forecast the extraction cost for the next year. 
The agent uses each technology’s current cost – 
without considering the potential of technologi-
cal learning effect-- to evaluate which technology 
is cheapest for the next year. The agent’s expec-
tation on demand is also based on the last three 
years’ data, it calculates the average annual 
growth rate of demand for the last three years, 
and then uses this growth rate to forecast the 
demand rate for the next year. If the agent’s ex-
pected demand for the following year is higher 
than available capacity, it will build new capacity 
of the cheapest technology to fill the gap; other-
wise it will not build any new capacity.  

The exogenous increasing demand is influ-
enced by price for satisfying it which is decided 
by weighted average cost of technologies. Eq. 
(13) describes the dynamics of the demand.  

( )
( ) ( )
( ) ( )

1
1

1

1 1
1

1 1

p t p t
t t

p t p t

e p e p
d d

e p e p
α

+
+

+

− + +
= +

+ + −
,   (13) 

where td  and 1td + denote the demand at time t  
and 1t + , respectively; α  is the exogenous an-
nual increasing rate; pe  is the price elasticity of 
demand; tp  and 1tp +  are the price of the goods 
at t  and 1t + , which is decided by weighted 
average cost of technologies at corresponding 
step, as denoted in Eq. (14). 
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where iw  denotes the share of technology i , and 
t
iC  denotes the cost1 of producing one unit goods 

with technology i  at time step t , which can be 
obtained according to Eq. (15)  
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τ η
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3. Initializations and Results of the three 
Models 
 
Table 1 shows initial values of common pa-
rameters in the three models.  
 
3.1 Results of the traditional optimization 
model 
 
As a simplest case of the traditional optimization 
model, we assume that extraction cost t

Ec  and 
investment cost for each technol-
ogy ( 1,2,3)t

Fic i=  does not change over time. 
With these assumptions, the problem denoted by 
Eq. 4 ~ Eq. 8 is a linear optimization model. And 
it is not surprising that the “incremental” and 
“revolutionary” technology do not appear in the 
optimal solution, which does not accords with 
historical observations that new technologies 
would replace old ones little by little, especially 
for a long-term. There are quite a lot of things we 
can do to force the adoption of the “incremental” 
and “revolutionary” technologies in the optimal 
solution, such as, adding capacity constrains, 
adding environmental constrains, assuming re-
source depletion, assuming exogenous techno-
logical change, and so on.  

Fig. 1 shows a result of the traditional opti-
mization model, with the assumption of an ex-
ogenous annual decreasing rate of 5% for the 
incremental technology, and an exogenous an-
nual decreasing rate of 10% for the revolutionary 
technology, and an exogenous annual increasing 
rate of 1% for the resource extraction cost. In Fig. 
1, the horizontal dimension denotes time, and the 
vertical dimension denotes the share of each 
technology’s installed capacity. From 1990 to 
2030 the share of the existing technology de-

                                                      
1 For a technology, its current initial cost for building 
unit capacity is used for all existing capacities.     



creases while that of the incremental technology 
increases. From 2030 to 2060, the incremental 
technology is the only technology in application. 
And from 2060, the share of the revolutionary 
technology increases, but then it starts decreasing 
from 2070. This is a result of exogenous tech-
nological learning, by which technological 
learning is treated outside the economy, which 
means decision makers do not need to consider 
investment on technological learning. They just 

fetch a new technology outside the “economy 
box” when they find the new technology is cheap 
(considering environmental cost) enough, and 
give it away when they see other technologies are 
cheaper. As shown in Fig. 1, the decision maker 
fetches the revolutionary technology at 2060 then 
his/her attention switch back to the incremental 
one.   
 

 
Table 1.  Initial values of parameters 

Parameters related to the three technologies  
 Existing Tech. Incremental Tech. Revolutionary Tech. 

Initial cost  (US$/kW) 0
1 1000Fc =  0

2 2000Fc =  0
3 40000Fc =  

Efficiency 
1 30%η =  2 40%η =  3 90%η =  

Plant life  (year) 
1 30τ =  2 30τ =  3 30τ =  

Initial Total Installed 
Capacity  (kW) 

0
1 100C =  0

2 0C =  0
3 0C =  

Initial Cumulative In-
stalled Capacity (kW) 

0
1 1000C =  0

2 1C =  0
3 1C =  

O+M cost (US$/kW) 
1 30OMc =  2 50OMc =  3 50OMc =  

Other parameters 
Increasing rate of annual demand  2.6%α=  
Initial extraction cost (US$/kW) 0 200Ec =  Extraction cost coefficient (for 

the second and third models) 
0 0.01EK =  

Scale of the problem  100T = , decision interval is 10 years 
Discount rate 5%δ =  

 

 
Figure 1 The result of the first model 

 
Assuming an exogenous decreasing rate of 

investment cost of new technologies will result 
in the adoption of new technologies. But in 
reality, technological change – decreasing cost 
here -- does not fall like “manna from heaven”, 
and it is the result of accumulated experi-
ence/practice in new technologies. By assuming 
an exogenous decreasing rate of investment 

cost, we allow such a situation to happen in the 
model: even there is no experience/practice at 
all in a new technology before a certain time, 
e.g. 2000, the investment cost of it still decrease, 
which means the technological change is 
treated as outside the economy or the energy 
system we are modeling, or we can say it is 
treated as “manna from heaven”. The model 
introduced in the following subsection treats 
technological change and also resource deple-
tion as inside the economy or the energy system 
we are modeling.   
  
3.2 Results of the endogenous technological 
change model 
 
With the endogenous technological change 
model, we assume the learning rate of the in-
cremental technology is 10%, i.e., 

2 0.1520b =  and 21 2 10%b−− = , and that of 



the revolutionary technology is 30%, i.e., 

3 0.5146b = and 31 2 30%b−− = . Figure 2 
shows a result of the model in which adoption 
of new technologies is the result of techno-
logical learning and resource depletion. With 
technological learning, the decision maker has 
to consider the cost of technological change, 
thus when a decision is made to investment on a 
new technology, it is expected that this new 
technology will get continuous application in 
the future. Temporary technology adoption 
happened in Fig. 1 from 2060 is not expected to 
happen in this case.  

In order to see whether endogenous tech-
nological change itself can be a mechanism for 
the adoption of new technologies, we then as-
sumed there is no resource depletion, i.e., the 
resource extraction cost keeps constant, and the 
result is that the incremental technology takes 
over the existing technology at 2030, while the 
revolutionary technology does not appear by 
2090. This result proves that technological 
learning itself can be a mechanism for the 
adoption of new technologies, without any ad-
ditional constrains, but of course adoption of 
new technologies can be enhanced by other 
factors such as resource depletion. Endogenous 
technological change models improve tradi-
tional optimization models with the cost of 
increasing computing complexity. Running the 
two models on the same platform – Matlab7.0 -- 
with the same optimizer, and on the same com-
puter with a Pentium 4 CPU 3.00Ghz, it takes 
around 2.5 seconds for getting the result shown 
in Fig. 1, while it takes around 87 seconds for 
getting the result shown in Fig. 2. 

It is also widely accepted that technological 
learning is highly uncertain, as evidenced by 
investment cost distributions for biomass, nu-
clear and solar electricity generation in nu-
merous engineering studies, e.g., see [12].  A 
common way to modeling uncertainty in en-
dogenous technological learning is to let 
learning rates or progress ratios in Eq. (9) be 
random values, and adding the cost of overes-
timating it to the objective function with a risk 
factor [7, 10]. Following historical studies, 
random values of learning rates are commonly 
characterized by lognormal distributions based 
on empirical analysis of technological charac-
teristics using the IIASA technology inventory 
[14]. The risk factor denotes decision maker’s 

risk attitude which is a subjective parameters. 
There will be different optimal solutions with 
different values of the risk factor. The story of 
the endogenous technological change model 
with uncertainties is: the decision maker wants 
to find the hedging strategy depending on 
his/her risk attitude. With different risk atti-
tudes, we somehow moved from optimization 
to simulations, or we could say “simulations 
with optimization model”. Optimization mod-
els of endogenous technological change under 
uncertainties result in non-convex stochastic 
optimization problems. Comparing to the tra-
ditional optimization models, it is much more 
difficult to find (especially global) solutions. It 
is necessary, especially when the number of 
parameters is large, to apply some very specific 
searching techniques for finding solutions.         

 
Figure 2 The result of the second model 

 
With the endogenous technological change 

model, we further assume the learning rate of 
the incremental technology is a random value 
characterized by a lognormal distribution with 
mean as 10%, and standard deviation as 0.01, 
and the learning rate of the revolutionary tech-
nology is a random value characterized by a 
lognormal distribution with mean as 30%, and 
standard deviation as 0.03.  By considering the 
cost resulting from overestimating technologi-
cal learning as an additional cost in the objec-
tive function, we found the adoption of new 
technology will be delayed to some extent, 
depending on the decision maker’s risk attitude.            
 
3.3 Results of the agent-based model 
 
With the agent-based model, we assume the 
price elasticity is 0.5, i.e,  0.5pe = . Fig. 3 
shows a result of the agent-based model in 
which the decision maker is myopic, techno-
logical leaning and the demand are treated as 



endogenous, the same as in the second model. 
In this modeling practice, decisions are not 
made only once at the beginning year as in the 
first and the second model, instead decisions 
are made every short period based on the deci-
sion maker’s knowledge about the past and 
his/her expectation (which is also based on 
his/her knowledge about the past and his/her 
expectation model). The decision maker’s 
knowledge about the past and his/her expecta-
tions about the future are updated every step, so 
we could say the decision maker denoted in this 
model are adaptive agents. Figure 3 shows that 
with myopic and adaptive agent, technological 
change could also happen, but the revolutionary 
technology are not adopted, partly resulting 
from the decision maker’s myopia, and partly 
resulting from the revised (actual) demand 
which is lower than the exogenous demand 
projection used in the first and second models, 
as shown in Figure 4. Figure 4 shows the ex-
ogenous demand versus the endogenous (or 
revised) demand. The endogenous demand 
increases more slowly than that of the exoge-
nous demand, which means, the high cost of 
satisfying demand cuts down expected demand.  

Table 2 summarizes different philosophy 
underlying the three modeling practices and 
their advantages and disadvantages 

 
Figure 3 The result of the third model 

 
Figure 4 The exogenous demand and the re-

vised demand. 

4. Concluding Remarks 
 
The optimization models can tell us “what 
should be” in terms of reaching some objectives, 
e.g., to minimize the total cost of energy sys-
tems meanwhile satisfying (exogenously) given 
demands and environmental and economic 
constrains.  While the agent-based models can 
tell us “what could be” under various assump-
tions. Unlike optimization models, agent-based 
simulations can not give us solutions for stra-
tegic planning, while it can aid intuitions.  
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Table 2 Philosophies underlying the three modeling practices and their advantages and disadvantages 
Modeling pratices Philosophy Advantages Disadvantages 
Traditional (linear) optimi-
zation models 

A decision maker 
makes a long-term 
strategic plan under 
perfect foresight 
without considering 
the cost of techno-
logical change 

Easy to get optimal 
solution and com-
paratively small 
computing com-
plexity 

Technological 
change is treated as 
outside the “econ-
omy box” -- the 
economic energy 
system being mod-
eled. 

With deter-
ministic 
technological 
learning 

A decision maker 
makes a long-term 
strategic plan under 
perfect foresight con-
sidering the cost of 
technological change 

The model includes 
technological 
learning as a 
mechanism for the 
adoption of new 
technologies. 

Endogenous 
technological 
change mod-
els  

With uncer-
tain techno-
logical 
learning 

A decision maker 
makes a long-term 
hedging strategic plan  
(according to his/her 
risk attitude) consid-
ering uncertain cost of 
technological change 

Decision makers’ 
risk attitudes are 
introduced into 
models 

Nonlinear, 
non-convex (and 
stochastic with un-
certain learnings) 
optimization  prob-
lems, thus high 
computing complex-
ity and difficult to get 
optimal (especially 
global) solutions. 

Agent-based models A decision maker 
makes adaptive plans 
based on the situation 
created by he/she (or 
with other decision 
makers), and techno-
logical change is the 
result of decision 
makers’ adaptive be-
haviors. 

It is very natural to 
model adaptive be-
haviors and interac-
tions among deci-
sion agents, tech-
nological learning 
and uncertainties 
can easily be intro-
duced in the model.  

Results are not opti-
mal solutions but 
scenarios with vari-
ous assumptions.  

 


