
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Study on Acquiring and Using Linguistic Semantic

Information for Search Systems

Author(s) Nguyen, Tri Thanh

Citation

Issue Date 2008-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/4195

Rights

Description Supervisor:Akira Shimazu, 情報科学研究科, 博士

Study on Acquiring and Using Linguistic Semantic

Information for Search Systems

by

NGUYEN TRI THANH

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor AKIRA SHIMAZU

School of Information Science
Japan Advanced Institute of Science and Technology

March 2008

c©Copyright 2008 by
NGUYEN TRI THANH

All Rights Reserved

i

For my wife and family

ii

Abstract

Semantic search (a content-based search method) is an expected method of informa-
tion retrieval in the future. Semantic search aims at finding information that satisfies a
given question more than the results of keyword-based search (which is the method of cur-
rent search engines). Despite the improvements of the current semantic search systems,
they still return results in pages. In contrast to such page-based approaches, there are
researches for directly answering questions in form of concrete answers instead of pages.
In this research, we focus our attention on using semantic relations between terms or
between text spans in order to appropriately answer some types of questions. Especially,
in this study, we take up named-entity-related relations, and Rhetorical Structure Theory
(RST) [Mann & Thompson (1988)] relations as semantic relations, since these relations
can be clues for answering some typical question types such as who, list, why, suggestion
and how to, because we can see many such relations in sentences, and we relate such
relations to the question types.

Questions can be roughly classified into named-entity-related (NE-related) and non-
named-entity-related (non-NE-related) types. For NE-related questions, NE-related rela-
tions can be clues for extracting answers, and RST relations can be clues for answering
non-NE-related questions. The goal of this dissertation is to exploit such relations in
texts in order to extract answers to some typical question types. Concretely, the follow-
ing problems are targeted in this research:

• Since Named Entities (NEs) are important in many Natural Language Processing
(NLP) applications including semantic search, where queries related to named en-
tities occupy a relatively large portion of frequently asked queries, our first issue
is to extract some named-entity-related relations, then to utilize these relations to
answer some named-entity-related question types. The experiments of our relation
extraction algorithms on “Wall Street Journal” corpus give very good performance,
so the experiment with the utilization of the extracted information for answering
questions also provides promising results.

• There are a lot of question types besides named-entity-related questions. The second
issue is to exploit RST relations among text spans for extracting answers to some
other question types. We use the assumption that, in the relation between two text
spans, one text span can be the answer to a question that is related to the other.
Our experiments with “RST Treebank” corpus give promising results that are better
than baseline programs.

• In order to make a search system understand questions, given a question, the system
needs to identify question type to select appropriate relations as clues for extract-
ing answers. Thus, our next problem is question classification (QC). In question
classification, increasing the classification performance based on machine learning
is a promising approach. Since labeled questions are expensive, while unlabeled
questions are abundant and cheap to collect, we originally propose to use labeled
and unlabeled questions in semi-supervised approach to improve the performance of

iii

question classification. We also propose to use a hierarchy of classifiers in order to
reduce the number of question classes per classifier, since a big number of question
classes adversely affects the performance of classifiers. Different learning algorithms
for classifiers in the classifier hierarchy are also investigated. Our experiments with
the above proposals prove the significant improvements.

• Finally, based on the above issues, we build a prototype of a search system. Our
system can accept a question in the form of an English sentence from a user, and
classify the given question in order to carry out a suitable answer extraction method.
If found, the answer in form of a sentence or paragraph is returned to the user. The
results of our experiments show that this is a good direction.

In summary, the thesis focuses on exploiting the semantic relations in documents in order
to extract answers to questions. The solutions for the investigated, analyzed problems are
provided. The contributions of this thesis include both theoretical and empirical issues.
The theoretical issue is the development of algorithms for both extraction of named-entity-
related relations and for question classification. The empirical issue is the application of
the above algorithms, and the proposed method for extracting answers to questions. Our
experiments give promising results.

Key words: Computational Linguistic, Natural Language Processing, Information Ex-
traction, Information Search, Rhetorical Structure Theory, Fine Category Extraction,
Question Classification, Semi-supervised Learning.

iv

Acknowledgments

First of all, I wish to express my deepest respect and appreciation to my supervisor:
Professor Akira Shimazu, Natural Language Processing Laboratory, School of Information
Science, Japan Advanced Institute of Science and Technology (JAIST) for his kindly
guidance, warm encouragement, and supports before and during my study. He has given
me much invaluable knowledge not only how to formulate a research idea or to write
a good paper, but also the vision, and much useful experience in the academic life. I
am grateful for his patient supervision, and I am really lucky and proud to be one of
his students. Besides academic life, Professor Shimazu also cared about my daily life
whenever I have unexpected problems. I am really impressed by his kind consideration.

I wish to say sincere thanks to Professor Tatsunori Mori, Yokohama National Uni-
versity, Professor Satoshi Tojo, Professor Ho Tu Bao, and Associate Professor Kiyoaki
Shirai, JAIST for being the members of my dissertation committee, and giving me valu-
able comments. My dissertation is improved very much by these comments.

I wish to say deep thanks to Associate Professor Kiyoaki Shirai, School of Information
Science, JAIST for his a lot of helps during my study period, such as setting server
environments for my experiments.

I would also like to say my special thanks to Professor Ho Tu Bao for his valuable
discussions and supports. I would also like to express my gratitude to him for all his helps
not only for my study but also for my life from my first day till now in JAIST. Professor
Ho Tu Bao is also the one who set up the Machine Learning Seminar Group in JAIST,
from which I have learnt a lot of new knowledge.

I wish to convey sincere thanks to Professor Yoshiteru Nakamori, and Assistant Pro-
fessor Huynh Van Nam, Knowledge System Science Laboratory, School of Knowledge
Science, JAIST for their help in my sub-theme research. They have given me as good as
possible conditions for my work during this time.

I would also like to express my appreciation to Professor Ha Quang Thuy and Professor
Ho Sy Dam, College of Technology, Vietnam National University, Hanoi (VNUH), for their
kindly recommendations and constant encouragement before and during my research at
JAIST. Without their helps, I could not receive the permission to go to JAIST. Professor
Ha Quang Thuy was my former adviser who guided me since I was an undergraduate.
He was also the leader of a research group in College of Technology, Vietnam National
University, where I learned a lot of knowledge through several seminars.

I would like to thank the Lecture Mary Ann Mooradian, and the Technical Commu-
nication Reviewer Mark G. Elwell for their help in proof-reading and correcting errors in
my papers. I have learnt a lot from her corrections.

I have received a lot of help from colleagues and friends in Shimazu-Lab and Shirai-
Lab during last three years. Let me say special thanks to Assistant Professor Makoto
Nakamura, and Mr. Kenji Takano for all their helps for my life from the first day I came
to Japan. I would like to thank my colleagues in Shimazu-Lab: Mr. Nguyen Phuong

v

Thai, Mr. Nguyen Van Vinh, Dr. Le Anh Cuong, the post-doctoral fellow Nguyen Le
Minh, and others for sharing their research ideas, useful experiences, as well as valuable
discussions and comments. Especially, the post-doctoral fellow Nguyen Le Minh has given
me a lot of valuable discussions and constant supports in my study since the early days
when I came to JAIST.

I also wish to send my deep acknowledgements to “The 21st Century COE Program:
Verifiable and Evolvable e-Society” for supporting fund for me during the past three years;
and to JAIST staffs for their kind and convenient procedures and services.

I’d like to appreciate the authors of open source tools/packages such as Maximum
Entropy Models (MEM), Support Vector Machines (SVM), Sparse Network of Winnows
(SNoW), Charniak parser and Tri-training. Without these packages, my experiments were
hard to be completed.

Last, but not least, my family is really the biggest motivation behind me. My wife,
Tao Thi Thu Phuong, who always gives me encouragements, cares about my daily life. My
dear parents, my dear brother and sisters’ families, my father-in-law’s family together with
their unconditional sacrifices, love, and supports are always endless sources of inspiration
for me to move forwards, so this thesis is dedicated to them.

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 The need of semantic search . 1
1.2 Research Motivations . 2
1.3 Main Contributions . 4
1.4 Thesis Structure . 5

2 Current semantic search approaches 8
2.1 Latent Semantic Indexing . 8
2.2 Data Annotation . 9

2.2.1 Semantic Web . 10
2.2.2 Semantic Search Systems for Semantic Web 12
2.2.3 Knowledge and Information Management Platform 13
2.2.4 Simple HTML Ontology Extensions 14

2.3 XML Exploitation . 16
2.3.1 XSearch . 16
2.3.2 Semantic Search Via XML Fragments 16

2.4 Discussion . 18
2.5 Summary . 18

3 Extraction and Utilization of Named-Entity-Related Relations for In-

formation Search 20
3.1 Introduction . 20
3.2 Related Work . 22
3.3 Automatic Extraction of the Fine Category of Named Entities 26

3.3.1 Our Extraction Algorithm . 26
3.3.2 Clue and Seed Patterns . 28
3.3.3 Pattern Generation . 30
3.3.4 Category Validation . 33

3.4 Named-Entity-Related Relations Extraction 34
3.5 Utilization of Named-Entity-Related Relations for Information Search . . . 36

vii

3.6 Experiments and Evaluation . 36
3.6.1 Text dataset . 37
3.6.2 Experiments with NECE . 37
3.6.3 Experiments with NECOE . 41
3.6.4 Experiments with Information Search 42

3.7 Summary . 44

4 Application of RST Relations for Information Search 45
4.1 Introduction . 45
4.2 Related work . 45
4.3 Rhetorical Relation Exploration . 46

4.3.1 Rhetorical Relation Application . 48
4.4 Indexing Documents and Matching Questions 50

4.4.1 Indexing and Answering in START 51
4.4.2 Indexing in Our System . 52
4.4.3 Matching in Our System . 52

4.5 Experiments and Evaluation . 53
4.6 Summary . 56

5 Question classification 57
5.1 Introduction . 57
5.2 Related Work . 59

5.2.1 Previous Question Classification Studies 59
5.2.2 Semi-supervised Learning Algorithms 60

5.3 Modifications of Tri-training Algorithm . 64
5.4 Question Taxonomy and Hierarchical Classifiers 65
5.5 Hierarchical Classifiers and Semi-supervised Learning Combination 68

5.5.1 Supervised Learning Application 68
5.5.2 Supervised and Semi-supervised Learning Combination Application 68
5.5.3 Semi-supervised Learning Application 68

5.6 Question Hierarchy Expansion . 70
5.7 Question Dataset and Feature Selection . 70

5.7.1 Question Dataset . 70
5.7.2 Feature Selection . 71

5.8 Experiments with Tri-training and Its Modifications for Fine Question Classes 73
5.8.1 Experiments with Multiple Classifiers 74
5.8.2 Experiments with Two Different Algorithms and Two Views 75
5.8.3 Experiments with Co-training . 77
5.8.4 Experiments with Self-training . 79
5.8.5 Discussion . 79

5.9 Experiments with Hierarchical Classifiers 79
5.9.1 Supervised Learning Application 79
5.9.2 Experiments with the Original Tri-training and Its Modification for

Coarse Classes . 80
5.9.3 Supervised and Semi-supervised Learning Combination Application 80
5.9.4 Semi-supervised Learning Application 81

viii

5.9.5 Question Hierarchy Expansion . 82
5.10 Summary . 83

6 Building a Search System Based on Linguistic Semantic Information 84
6.1 System Architecture . 84
6.2 Experiments and Evaluation . 84

6.2.1 Dataset . 84
6.2.2 Experiments . 86

6.3 Summary . 86

7 Conclusions and Future Work 87
7.1 Summary of the Thesis . 87
7.2 Future Directions . 88

References 89

Publications 97

ix

List of Figures

1.1 The framework of our search system. 6

2.1 A segment of Semantic Web describing John Smith 11
2.2 The architecture of KIM . 14
2.3 The architecture of SHOE . 15
2.4 The architecture of XSearch . 17

3.1 Brin’s DIPRE model . 22
3.2 The DIPRE algorithm . 23
3.3 The GenPatterns procedure of DIPRE . 24
3.4 The GenOnePattern procedure of DIPRE 25
3.5 Named Entity, Category Extraction algorithm 27
3.6 Our (named entity, category) extraction model 28
3.7 Pattern generation procedure . 30
3.8 Tuples extraction with the validation function 34
3.9 Extracted tuples at different thresholds . 39
3.10 The growth of the number of distinct categories 40

4.1 Definition of the Non-volitional cause relation. 47
4.2 An example of a rhetorical relation. 47
4.3 Definition of the Solutionhood relation. 48
4.4 Definition of the Purpose relation. 49
4.5 Definition of the Volitional cause relation. 49
4.6 Definition of the Volitional result relation. 50
4.7 Definition of the Non-volitional result relation. 50
4.8 The search algorithm . 51
4.9 Finding an expected span. 51

5.1 Li and Roth’s hierarchical classifier . 59
5.2 The original Co-training algorithm . 61
5.3 The Self-training algorithm . 62
5.4 The original Tri-training algorithm . 63
5.5 Tri-training with multiple learning algorithms 65
5.6 Tri-training with multiple learning algorithms and views 66
5.7 System architecture . 67
5.8 Training data for fine classifier FC1 in supervised learning 68
5.9 Training data for fine classifier FC1 by adding one additional class label in

semi-supervised learning . 69

x

5.10 Unlabeled data for fine classifier FC1 by getting the result of the coarse
classifier in semi-supervised learning . 69

5.11 The difference between bag-of-word and bag-of-pos&word features 72

6.1 Our search system architecture . 85

xi

List of Tables

2.1 The characteristics of approaches . 19

3.1 Examples of the middle of exact patterns 31
3.2 Examples of the middle of sketch patterns 32
3.3 The middle of an extended sketch pattern 33
3.4 The distribution of related-to relations . 37
3.5 Results of NECE-Novalidation and the NECE with threshold of 3 38
3.6 Results of the NECE with threshold of 4 and 5 38
3.7 Some top, bottom categories with frequency and related-to relations 39
3.8 Middles of important patterns . 40
3.9 Results of the RNECE with threshold of 3 41
3.10 Number of generated middles . 41
3.11 Results of quadruple extraction . 42
3.12 Answers of who questions without objects 43
3.13 Answers of who questions with objects . 43
3.14 Answers of list questions without objects 44
3.15 Answers of list questions with objects . 44

4.1 The question types and corresponding rhetorical relations 49
4.2 The results of T-expression-based and keyword-based systems, where Avg

is the average answer per question . 55
4.3 The results of keyword-based system without using RST with different

threshold values, where Avg is the average answer per question 55

5.1 Question class taxonomy . 67
5.2 Question distribution. #Tr and #Te are the number of labeled and testing

questions. 70
5.3 Precision of classification of SVM with bag-of-word and bag-of-pos&word

features . 73
5.4 The best and average precision (%) of the original Tri-training with single

algorithm (TB, TP and TW) and the modified Tri-training with Bayes,
Perceptron and Winnow (TBPW) . 75

5.5 The best and average precision (%) of the original Tri-training with single
MEM, SVM algorithm (TMW and TSW) and the modified Tri-training
with both MEM and SVM (TSSM) . 76

5.6 The best precision (%) of the original Tri-training with single algorithm
(TMW, TMP, TSW and TSP) and the modified Tri-training with MEM,
SVM with two views (TSSM2) . 76

xii

5.7 The average precision (%) of the original Tri-training with single algorithm
(TMW, TMP, TSW and TSP) and the modified Tri-training with MEM,
SVM with two views (TSSM2) . 77

5.8 The size of Li in each round corresponding to the experiment in Table 5.6 . 77
5.9 The average size of Li in each round corresponding to the experiments in

Table 5.7 . 78
5.10 The precision of co-training with SVM . 78
5.11 The precision of self-training with SVM . 79
5.12 The precision (%) of flat and hierarchical classification with MEM and

SVM on fine classes. 80
5.13 The precision of the original Tri-training with SVM, MEM, and the modi-

fied Tri-training on coarse classes. 80
5.14 The precision of flat classification of MEM, SVM and 1 level semi-supervised

learning with SVM-MEM. 81
5.15 The precision of flat classification of MEM, SVM and 2 level semi-supervised

learning with SVM-MEM. 81
5.16 The precision of flat classification of MEM, SVM and hierarchical classifi-

cation with three levels by expanding the Entity coarse class. 82
5.17 The precision of flat classification of MEM, SVM and hierarchical clas-

sification with three levels by expanding the Entity and Numeric coarse
classes. 82

6.1 The precision (%) of the “Question classification” module. 86
6.2 The results of the system. 86

xiii

Chapter 1

Introduction

In this chapter we briefly introduce the research domain, the research motivations, and
the contributions of the thesis. We first introduce the need of semantic search. Secondly,
we state the research problems which the thesis targets to solve. Finally, we outline the
structure of the thesis.

1.1 The need of semantic search

With the rapid growth of the Internet, the volume of information is extremely large.
Almost documents are free-text such as text files or HyperText Markup Language (HTML)
files, or semi-structured such as eXtensible Markup Language1 (XML). These formats are
suitable for human reading and not suitable for machine understanding. It is difficult for
human to find what they need. In order to overcome this obstacle, Information Retrieval
(IR), a branch of Natural Language Processing (NLP) was born. The task of IR is to find
information within a large unstructured documents (e.g., web pages on the Internet) that
satisfies the users’ need (which is expressed via a query). Examples of applications resulted
from IR are search engines, such as google2,Yahoo3, Altavista4 and MSN5, which have
successfully served an uncountable number of users’ queries. The common characteristic of
these search engines is keyword-based. Given a query, a search engine finds all documents
that contain any words appearing in the query. After having found the list of documents,
these documents are ranked so that the documents more related to the query than the
others are shown to users first [Brin & Page(1998b)]. Though the results of search engines
are ranked, the number of documents containing words of the query is still very large,
and users have to read through (up to thousands of) pages to find what they need.

In order to overcome this problem, semantic search (a content-based search method)
is proposed [Heflin & Hendler (2000b), Popov, et al. (2003), Bonino, et al. (2004)]
[Chu-Carroll, et al. (2006)]. The motivation of semantic search is to find documents that

1http://www.w3.org/XML/
2http://www.google.com
3http://www.yahoo.com
4http://www.altavistar.com
5http://www.msn.com

1

related to the query in term of content not simply words, so it helps reduce the number
of returned pages while still retaining the quality of the results.

1.2 Research Motivations

Sematic search has been the interest of several studies. One emerged approach, which is
applied for World Wide Web (WWW), is Semantic Web. The mainstream of Semantic
Web is to add additional information into web pages so that computers can understand
these web pages. World Wide Web Consortium6 (W3C) is an organization that pioneers
in Semantic Web and proposes languages as well as tools for applying to Semantic Web.

An example of a search engine that follows Semantic Web approach is Simple HTML
Ontology Extension (SHOE) [Heflin & Hendler (2000b)]. In SHOE, terms and concepts
in a web page must be annotated according to SHOE specification, and the process of
annotating web resource into SHOE specification is done manually. In other words, there
must be a group of people to insert semantic information to web pages. This process is
tedious and time-consuming.

Another study that follows Semantic Web is Knowledge and Information Management
(KIM) platform [Popov, et al. (2003)]. This study exploits the advantages of named en-
tities (NE) in information retrieval. There is an ontology which consists of 250 entity
classes accompanied with a set of 100 attributes and relations among these classes. All
named entities in documents are identified and classified into appropriate classes. Based
on the set of named entities and their properties as well as relations, this platform can
help retrieve pages that related to queries.

The second approach for semantic search is Ontology driven semantic search which
exploits the Ontology in the searching process [Bonino, et al. (2004)]. In this search
engine, authors used the concept vector model, which is based on the classical vector
space model for matching queries with documents.

The third approach that uses statistical method is Latent Semantic Indexing (LSI)
[Deerwester, et al. (1990)]. The key idea of this approach is to map documents and queries
into a lower dimensional space which is composed of a higher level of concepts. The
number of concepts is smaller than that of the indexed terms. This method has advantages
over keyword-based searches, since in LSI the synonyms were mapped to the same concept,
so the results can contain pages that have no keywords occurring in the query.

One more search engine, which aims at data in eXtensible Markup Language (XML)
format - an intended version of WWW - is XML search (Xsearch) [Cohen, et al. (2003)].
This search engine explores the semantics of tags of XML, so it gives better results.
Nonetheless, currently, there is a huge source of information written in HTML and other
formats (e.g., pdf, ps), in this domain, XML search engine does not expose its actual
power. In addition, user queries must be given in the form of tag:keyword. This may be
inconvenient because users may not know exactly the correct tags to use.

In order to exploit the semantics of XML tags, [Chu-Carroll, et al. (2006)] proposed
to convert documents into XML formats. After that the semantics of the XML tags were
exploited in the process of finding answers.

Despite of the improvements in the above approaches, these semantic search systems

6http://www.w3c.org

2

still return results in the form of pages. There are several types of questions for which
users prefer to have direct answers (in the form of a sentence, or a paragraph) rather than
pages containing the answers. An example of such questions is “Why didn’t Mr. Bush
have to wait for a law?” From this observation, this study focuses on building a search
system which uses methods to extract answers to some question types based on linguistic
semantic information as follows:

• Firstly, named entities are now more and more widely used in many Natural Lan-
guage Processing (NLP) applications [Popov, et al. (2003), Li & Roth (2005)]
[Al-Onaizan & Knight (2001), Kumaran & Allan (2004), Kadri & Wayne (2003)]
[Hassel (2003)], including semantic search, where the number of queries concerning
about named entities comprises a significant proportion. Current Named Entity
Recognition (NER) systems usually rely on a predefined set of classes. The named
entity set presented by “The sixth Message Understanding Conference” (MUC6) for
application in business activities consists of 7 classes [Grishman & Sundheim (1996)],
while “Conference on Computational Natural Language Learning” (CoNLL) shared
task defined only 4 classes of named entities [Sang & Meulder (2003)]. Nonethe-
less, finer distinctions of named entity are needed in some applications, thus Sekine
proposed to extend the named entity hierarchy to about 150 classes (and currently
about 200 classes) [Sekine, et al. (2000a)], and [Popov, et al. (2003)] presented a
hierarchy of 250 named entity classes to support semantic search.

Though the named entity class sets of [Sekine, et al. (2000a)] and [Popov, et al. (2003)]
contain relatively large numbers of types, current named entity recognition systems
usually assign a unique type to a named entity [Chieu & Tou (2003)]. This ap-
proach does not reflect the real world, where a named entity can have more than one
type. For example, a person named entity can be both “executive vice president”
and “chief financial officer”. In addition, in real applications, such as question-
answering (QA) and semantic search systems, users may query the list of even finer
categories of named entities, such as “US presidents”.

In order to support searches of fine-grained categories of named-entities, the first
task of the thesis is to develop a new algorithm to extract fine-grained categories of
named-entities in the form of “named-entity ISA category”.

With the extracted categories, a named entity is described by its category itself, e.g.,
“named-entity ISA category”. For improving the performance of the algorithm, a
validation method is proposed to check whether or not a fine category of a named
entity is valid to be accepted.

A document may contain more information describing a named entity. Obviously,
the more information of a named-entity is extracted, the more complete the named
entity is described. With this observation, the next task of the thesis is to extend
the above algorithm to extract more complete information of a named entity. The
extracted information of named entities is used for answering named-entity-related
questions, such as who and list questions.

• Secondly, there are other questions other than named-entity-related ones. In order
to extract answers to these questions, we exploit RST relations which hold between
adjacent text spans. From our analysis, for some RST relations, one text span can
be clues for finding the answer to a question related to the other text span. We

3

exploit this characteristic of RST relations for extracting answers to some types of
questions, such as how to and why questions.

• Thirdly, corresponding to a question, there are certain semantic relations that are
clues for extracting the answer. Thus, given a question, its type must be identified
before the answer extraction step is carried out. The next task of this thesis is to
deal with question classification. For solving this task, statistical approaches are
dominant in comparison with rule-based approaches, in which an expert manually
constructs a number of regular expressions and keywords corresponding to each
question type. In statistical approach, a dataset of labeled questions are used for
training the classification algorithm. In general, a large dataset is required to get
high classification precision. Current question classification studies concentrate on
supervised learning which relies only on the labeled dataset. Labeled questions,
however, are expensive and time-consuming to collect as they need the efforts of
experienced annotators. Whereas, unlabeled questions are easily to collect (e.g.,
from the log file of search engines, or QA systems). Semi-supervised learning is a
good choice, in this situation, since it can exploit the unlabeled questions in com-
bination with labeled ones to build better precision models. Our proposal is to use
semi-supervised learning in the question classification task to improve the accuracy.
Another problem, when the number of question classes is large, the performance of
classification algorithm may be affected. In order to reduce the number of question
classes per classifier, we propose to use hierarchical classifiers corresponding to ques-
tion class hierarchy. Different learning methods are investigated in this hierarchy.
Also a method to automatically expand the nodes which consists of a large number
of question class in the hierarchy is presented.

• Finally, based on the above investigated issues, we build a prototype of a search
system. Our system can accept users’ questions in the form of complete natural
language sentences. Next, the system identifies the question type in order to carry
out a suitable answer extraction method. Finally, the concise answer (in the form
of a sentence or a paragraph) is returned to the user.

All in all, this thesis focuses on exploiting the semantic relations for building a semantic
system with both theoretical and empirical aspects. The theoretical aspect of this thesis
concerns about the design of new algorithms for pattern extraction, and a more suitable
semi-supervised learning algorithm for question classification based on Tri-training algo-
rithm. The other aspect is the application of these algorithms to solve real problems in
some modules of our search system.

1.3 Main Contributions

As stated earlier, the thesis aims at building a search system based on semantic relations.
The main contributions of this thesis are summarized as follows:

• Questions concerning about named entities take a relatively large percentage.
Though some studies the set of named entity classes up to 250, current named en-
tity recognition system usually assign a unique type to a named entity. This does

4

not reflect the real world where a named entity can belong to more than one class.
In this thesis, we developed a new algorithm to extract named-entity-related re-
lations (e.g., ISA relations) from documents. This work was published in “IEICE
Transactions on Information and Systems, Special section on Knowledge, Informa-
tion and Creativity Support System” [Nguyen & Shimazu (2007b)]. We extended
our algorithm to extract more information about a named entity besides ISA re-
lations. And we used the extracted named-entity-related relations for answering
some named-entity-related question types (e.g., list and who questions). This work
was presented at “The 21st Pacific Asia Conference on Language, Information and
Computation (PACLIC21)”, Korea [Nguyen & Shimazu (2007c)].

• The semantic relations between adjacent text spans in documents are exploited
to answer some other question types. We exploited the RST relations in text docu-
ments for solving this problem. This work was presented at “The 9th International
Conference on Text, Speech and Dialog”, Czech [Nguyen, et al. (2006a)].

• Semi-supervised learning was proposed to apply to Question Classification with the
purpose of exploiting the unlabeled questions to improve the performance of classi-
fication algorithm. We modified the Tri-training algorithm to make it more suitable
for question data. This work was presented at “The 21st International Conference on
the Computer Processing of Oriental Languages”, Singapore [Nguyen, et al. (2006b)].
The extended version of this work will be published in the “Journal of Natural
Language Processing” in January 2008 [Nguyen, et al. (2008)]. The hierarchical
classifier in combination with different learning methods were used to increase the
precision of question classification, and the method to automatically expand the
nodes consisting a large number of question classes. This work was presented at
“The 5th International Conference on Research, Innovation & Vision for the Fu-
ture: RIVF’07”, Vietnam. The proceedings of this conference are also available on
“IEEE Explore digital library7” [Nguyen, et al. (2007a)].

• Finally, we build a prototype of a semantic search system which can extract
answers to some typical question types based on previous studies. Our system can
accept questions in the form of plain-text. It classifies the given question to identify
the type of the question. From the discovered type, it can extract possible answers
based on the suitable semantic relations.

1.4 Thesis Structure

The thesis consists of seven chapters. The main purposes and contents of the six remaining
chapters are as follows:

Chapter 2 presents the previous studies about semantic search.

Chapter 3 proposes a new nearly-unsupervised algorithm for extracting fine-grained cat-
egories of named entities from text documents. The algorithm exploits the fact that
the fine-grained category of a named-entity may occurs along with the named entity

7http://ieeexplore.ieee.org

5

Figure 1.1: The framework of our search system.

itself in frequent templates or expressions. Based on the proposed algorithm, we
extend it to extract more information that describes the named entities appeared in
documents. The experiments of the two algorithms on a large dataset give very good
results. The extracted information of named entities, in turn, is used for generating
answer to some named-entity-related questions. The experiments and evaluation
with good results are presented in this chapter.

Chapter 4 analyzes the RST relations to find what relations are clues for a certain
question type. A new method for indexing documents as well as a method for
matching questions with facts in order to improve the performance are proposed.
The experiments and evaluation are given with promising results.

Chapter 5 proposes to apply semi-supervised learning for question classification prob-
lem. The characteristic of question data and the drawback of Tri-training when it
is applied directly to classify questions are investigated and analyzed. The proposal
of modifying the Tri-training algorithm to make it more suitable for question data
is given. We also propose to use hierarchical classifiers for dataset which contains a

6

larger number of question classes in order to reduce the number of question classes
per classifier. Different learning methods are investigated in this hierarchy. Also a
method to automatically expand nodes which consists of a large number of question
classes is proposed. The experiments provide significant improvement.

Chapter 6 introduces the prototype of a semantic system which is built based on the
above studied issues. The results of experiments are also promising.

Chapter 7 first summarizes the main tasks of the thesis including the main achievements
and contributions, as well as the remaining problems. Next, open problems that are
interesting to be solved from this thesis will be mentioned as the future research
directions.

The framework of our search system and the corresponding tasks of the most important
chapters are shown in Figure 1.1.

7

Chapter 2

Current semantic search approaches

“Semantic search” is studies about methods that can search and discover the relevant
parts of texts or information which a user wants to find out. The semantic search methods
exploit the properties of words, their relations as well as linguistic information besides the
words themselves in order to roughly understand the questions, sentences or documents
at an abstract level.

Unlike the typical method of search engines which only search the occurrence of key-
word(s) on a Web page, semantic search finds information that satisfies the given query
more than pages containing the keywords of the query. In this chapter, we summarized
the current status of studies about semantic search. Current semantic search studies
can be classified into three main approaches: searching directly on text documents, data
annotation, and XML exploitation, which are briefly introduced in the next sections.

2.1 Latent Semantic Indexing

Search engines based on keywords can not solve some of the language related problems
such as synonymy. Synonymy is a case where an object can be referred in many ways.
People use different words to search for the same object, such as ‘car’ and ‘automobile’.
Latent Semantic Indexing (LSI) offers a better method which solves the synonymy problem
by allowing synonyms can be mapped into the same concept [Deerwester, et al. (1990)].
This is an approach that can be applied directly to plain-text. By using a Singular Value
Decomposition (SVD) on a term by document matrix of term frequency. The dimension
of the transformed space is reduced by selection of the highest singular values, where
the most of the variance of the original space is. The major associative patterns are
extracted from the document space and the small patterns are ignored. LSI can be briefly
introduced as follows [Yates, et al. (1999)]:

The main idea in the latent semantic indexing model is to map each document into
a lower dimensional space which is associated with concepts. This is accomplished by
mapping the index term vectors into this lower dimensional space. Let t be the number
of of index terms in the collection, and N be the total number of documents. Define
~M = (M ij) as a term-document association matrix with t row and N columns. To each
element M ij of this matrix is assigned a weight wi,j associated with the term-document

8

pair [ki, dj]. This wi,j weight could be generated using the Term Frequency/Inverse Docu-
ment Frequency (tf -idf) weighting technique commonly in the classic Vector Space Model

[Lewis (1991), Salton, et al. (1975)]. LSI proposes to decompose the ~M association ma-
trix in three component using SVD as follows:

~M = ~K~S ~Dt (2.1)

The matrix ~K is the matrix of eigenvectors derived from the term-to-term correlation
matrix given by ~M ~M t. The matrix ~Dt is the matrix of eigenvectors derived from the
transpose of the document-to-document matrix give by ~M t ~M . The matrix ~S is an r × r
diagonal matrix of singular values where r = min(t, N) is the rank of ~M . Consider

now that only the s largest singular values of ~S are kept along with their corresponding
columns in ~K and ~Dt (i.e., the remaining singular values of ~S are selected). The resultant
~Ms matrix is the matrix of rank s which is closest to the original matrix ~M in the least

square sense. This matrix is given by

~Ms = ~Ks
~Ss

~Dt
s (2.2)

where s (s < r) is the dimensionality of a reduced concept space. The selection of a
value for s attempts to balance two opposing effects. First, s should be large enough
to allow fitting all the structure in the real data. Second, s should be small enough to
allow filtering out all the non-relevant representational details. In information retrieval,
the similarity between two documents can be calculated as follows:

~M t
s

~Ms = (~Ks
~Ss

~Dt
s)

t ~Ks
~Ss

~Dt
s (2.3)

= ~Ds
~Ss

~Kt
s
~Ks

~Ss
~Dt

s

= ~Ds
~Ss

~Ss
~Dt

s

= (~Ds
~Ss)(~Ds

~Ss)
t

LSI can be applied for different domains including text classification and Information
Retrieval [Berry, et al. (1995), Letscher & Berry (1997)]. When applying LSI for infor-
mation retrieval, the query terms are also transform into this subspace to find the closest
documents as results. The returned documents, which contain expected information for
users, may contain no terms that appear in the given query. This is an advantage over
keyword-based search approach. Another advantage of LSI is that it is fully automatic to
compute, and does not use language expertise.

2.2 Data Annotation

Data annotation concerning about approaches in which data is represented in certain
ways so that it is understandable by computers. In this section, we briefly introduce the
Semantic Web, a typical semantic search system following Semantic Web, and another
proposal of data annotation to support semantic search as well as a semantic search system

9

pertaining to this proposal.

2.2.1 Semantic Web

Semantic Web is an emerging trend as an expected next version of HTML. As the name
stated, Semantic Web is applied to web pages as an extension of WWW. At present,
HTML is the formal language of WWW, which defines how the data should be presented
in a browser. However, it does not include the ability to describe the semantic of data.
Semantic Web overcomes this drawback by enabling the ability to describe the data.
Concretely, in semantic web, resources (e.g., web pages, images, audio clips, entities or
objects) in web pages are defined and linked in such a way that the web content can be
understood by computers. Thus, web content can be used for more effective discovery,
automation, integration or reused in various applications. The W3C has introduced the
philosophy, a set of design principles, and several languages as well as technologies for
enabling semantic web. One of the most important languages that is used for defining
resources and the relations among them is Resource Description Framework1 (RDF). The
Semantic Web information can be viewed as directed graphs. A segment of Semantic Web
pertaining to a person named “John Smith” is given in Figure 2.1, and the corresponding
RDF representation is as follows2:

<?namespace href="http://docs.r.us.com/bibliography-info" as="bib"?>

<?namespace href="http://www.w3.org/schemas/rdf-schema" as="RDF"?>

<RDF:serialization>

<RDF:assertions href="http://www.bar.com/some.doc">

<bib:author href="#John_Smith"/>

</RDF:assertions>

</RDF:serialization>

<RDF:resource id="John_Smith">

<bib:name>John Smith</bib:name>

<bib:email>john@smith.com</bib:email>

<bib:phone>+1 (555) 123-4567</bib:phone>

</RDF:resource>

In companion with RDF, W3C also introduces an additional language - RDF Schema3

(RDFS) - for defining vocabulary, constraints of resources presented in RDF files, and
validating RDF files.

Like Relational Database which is provided a declarative query language (e.g., Struc-
tured Query Language (SQL)), there are some proposals of specification of query lan-

1http://www.w3c.org/RDF
2The example is from http://www.w3.org/TR/WD-rdf-syntax-971002/
3http://www.w3.org/TR/rdf-schema/

10

Figure 2.1: A segment of Semantic Web describing John Smith

guages for manipulating RDF files, such as “Simple Protocol and RDF Query Language”4

(SPARSQL) of W3C, and “RDF Query Language” (RQL) of [Karvounarakis, et al. (2002)].
Currently, the implementation of these languages is still an open task, since these lan-
guages are rather complicated. Fortunately, there are some studies about organizing RDF
as initial steps to realize Semantic Web, such as [Matono, et al. (2004), Kim, et al. (2006),
Matono, et al. (2005)].

The task of adding annotations to web pages is tedious and time-consuming, and cur-
rently the dominant documents in the WWW are in the form of HTML and text. In order
to reduce efforts for annotation, some efforts have been concentrated on this problem,
such as [Kogut & Holmes (2001)]. [Kogut & Holmes (2001)] applied Information Extrac-
tion (IE) to build a tool called AeroDAML which automatically generate annotations for
a number of common domain-independent classes and properties. Another graphical tool
which allows authors to create annotation via drag and drop actions is OntoMat5.

Since the annotation of different sources may use different vocabulary, the integra-
tion or interoperability may face problem. Defense Advanced Research Projects Agency
(DARPA) and W3C solved this problem by focusing on machine-readable ontologies. On-
tologies are explicit semantic models, which include taxonomies of terms and semantic
relations among them. Based on the ontologies computers can reason with knowledge.
The integration of ontologies is a problem which attracts the interest of researchers, such
as [Pinto, et al. (2001)]. A proposal of language for representing ontologies is “DARPA
Agent Markup Language”6 (DAML). The practical applications of DAML are discussed
in [Kogut & Heflin (2003)]. Similarly to RDF language, a query language named “DAML
query language”7 (DQL) for DAML was proposed.

[Kogut & Heflin (2003)] discussed the potential applications of Semantic Web for Aerospace.
A Distributed Open Semantic Elaboration (DOSE) Platform, which includes ontology,
annotations, lexical entities and search functions, was proposed [Bonino, et al. (2003)].
The platform is still an ongoing task, and needs more efforts to be applied in real
world. A typical semantic search study that follows Semantic Web is introduced by

4http://www.w3.org/TR/rdf-sparql-query/
5http://annotation.semanticweb.org/ontomat/index.html
6http://www.daml.org/
7http://www.daml.org/dql/

11

[Guha, et al. (2003)] which will be described in the next section.

2.2.2 Semantic Search Systems for Semantic Web

[Guha, et al. (2003)] presented two semantic search engines called ABS and “W3C Se-
mantic Search” for different domains. These semantic search systems realize the Semantic
Web approach, i.e., the systems use W3C’s RDF and the schema vocabulary provided by
RDFS for describing resources and their inter-relations.

Users’ queries can be classified into two types: navigational and research searches.
Navigational searches concern about the queries which contain a phrase or combination
of keywords which users expect to find in the documents. The words in the queries do
not denote a concept (e.g., “mp3 open source conversion”), and users use a search engine
as a navigation tool to find a particular intended document. Whereas, research searches
concern about queries whose words denote an object (e.g., a person “John Smith”) about
which the user is trying to collect information. Maybe, there is no particular document
provides full information about the object. Rather the user is trying to collect a number
of documents which together will provide the expected information. Semantic Search
systems of [Guha, et al. (2003)] focuse on the research searches.

Current documents in WWW do not contain much semantic information, it is required
to generate the annotations for these documents. Though there exist some tools for doing
this task, such as AeroDAML [Kogut & Holmes (2001)], maybe these tools do not gener-
ate the expected annotations, [Guha, et al. (2003)] built HTML scrapers to dynamically
locate and convert the relevant documents into machine-readable semantic data. For stor-
ing and manipulating (e.g., querying) semantic data, they developed a knowledge base
called TAP [Guha & McCool (2002)]. TAP provides a set of simple mechanisms for sites
to publish data onto the Semantic Web with a minimalist query interface. The inter-
face is provided via an Apache HTTP server8 module called TAPache. The goal of this
module is to make it extremely simple to publish data, not intended to be a high end
solution for sites with large amounts of data and traffic, since such sites require flexibility
and scalability rather than simplicity. To enable remote machines to query data on a
server, the query interface can be accessed via Simple Object Access Protocol9 (SOAP).
SOAP provides a mechanism for performing Remote Procedure Call (RPC), and SOAP
is beginning to be widely accepted as a standard protocol.

For ABS semantic search system, the semantic data about people (musicians, ath-
letes, actors, politicians), organizations (companies, music groups, sport teams), places
(cities, countries, states) and products is collected (by scrapers) from a large number of
sources, such as AllMusic10, Ebay11, Amazon12, AOL shoppong13, TicketMaster14, People

8http://www.apache.org
9http://www.w3.org/TR/soap/

10http://www.allmusic.com
11http://www.ebay.com
12http://www.amazon.com
13http://shopping.aol.com
14http://www.ticketmaster.com

12

Magazine, Wheather.com15, Mapquest16, Carpoint17, Digital cities, and Walmart.com18.
In contrast to ABS, the semantic data for W3C Semantic Search system is collected

from a relatively small number of sources, which are all internal to W3C, such as people
(staff and authors of various documents), W3C activities (each is related to people),
Working groups and other committees (each is related to activities and staff), documents
(each is related to working groups and activities that produced them) and news (RSS19

news feeds about newsworthy events of W3C).
Both systems are incorporated a basic ontology about people, places, event, organiza-

tions, etc.
Recall that the semantic data describing resources can be viewed as directed graphs.

Given a query, the systems carry out the following steps to find the answer:

• Choosing a denotation: Analyze the query to find whether it contains any concept
(to conclude whether the query is a research search). If this is a research search,
then map the search term to one or more nodes in the graphs (of semantic data).
If several nodes corresponding to one are term found, the disambiguation step is
carried out to select the most preferred one.

• Determining what data to show : From the found node (called Anchor node), the
subgraph around the anchor node is extracted as the results.

• Formatting the results: This step is trivial in comparison with previous ones. A set
of templates is used to display the found results.

2.2.3 Knowledge and Information Management Platform

Similar to the previous approach, [Popov, et al. (2003)] proposed a platform called “Knowl-
edge and Information Management” (KIM) which applied Information Extraction to au-
tomatically annotate named entities in documents. The architecture of KIM is depicted
in Figure 2.2 [Popov, et al. (2003)]. KIM Server API, which can be used for remote ac-
cess, embedding and integration, provides functionality and infrastructure for semantic
annotation, indexing, and retrieval, as well as document management, and KB navigation.

With the discussion about the limitation of the set of named-entity classes which does
not satisfy the diversity of users’ queries, [Popov, et al. (2003)] constructed an ontology
which consists of about 250 named-entity classes and 100 attributes and relations. The
extraction module was customized from GATE [Cunningham, et al. (2002)]. Semantic
annotations, KIM ontology and Knowledge Base (KB) are stored in semantic repositories
which are based on RDFS repositories SESAME20 and ontology middleware21.

After semantic annotations, documents can be indexed with respect to the contained
named entities for later searching with respect to entities. In searching, users could specify
the named entities that are of users’ interest, and constraints of these named entities, KIM

15http://www.wheather.com
16http://www.mapquest.com
17http://www.carpoint.com.au
18http://www.walmart.com
19http://www.purl.org/rss/1.0
20http://www.openrdf.org/
21http://www.ontotext.com/omm

13

Figure 2.2: The architecture of KIM

returns documents containing named entities satisfying the query. To answer a query,
KIM applies semantic restrictions over the named entities in the KB. Then the documents
containing (or referring) the found named entities are retrieved and ranked according to
named entities. Lucene22 is adapted to perform full-text indexing and retrieval.

2.2.4 Simple HTML Ontology Extensions

Another approach that follows the data annotation is Simple HTML Ontology Extensions
(SHOE) [Heflin & Hendler (2000b)]. For supporting semantic search, terms, concepts and
objects in HTML documents must be annotated accordingly to the SHOE specification
[Luke & Heflin (1997)]. When annotating a web page, the user must select an appropriate
ontology, and then use the ontology’s vocabulary to describe the concepts on the page.
Below is a snippet of an annotation using SHOE specification:

<HTML> ... <BODY>

<ONTOLOGY ID="cs-dept-ontology" VERSION="1.1" BACKWARD-COMPATIBLE-WITH="1.0">

<USE-ONTOLOGY ID="univ-ontology" VERSION="1.0" PREFIX="u"

URL="http://ontlib.org/univ_v1.0.html">

...

<DEF-CATEGORY NAME="ComputerScience" ISA="u.ResearchArea">

...

<DEF-RELATION NAME="writtenIn">

22http://jakarta.apache.org/lucene/

14

<DEF-ARG POS=1 TYPE="Program">

<DEF-ARG POS=2 TYPE="ComputerLanguage">

</DEF-RELATION>

...

<DEF-RENAME FROM="u.Department" TO="Department">

<DEF-RENAME FROM="u.Chair" TO="DepartmentHead">

...

</ONTOLOGY>

</BODY>

</HTML>

For assisting users to annotate the data correctly, the Knowledge Annotator was built.
This is a tool that makes it easy to add annotation by making selection and filling in forms.
The tool also has the ability to check possible errors in the annotating process to ensure
the correctness, and converts inputs into legal SHOE syntaxes.

When SHOE pages are created, and placed on the Web, the knowledge from the pages
is extracted and stored in a Knowledge Base. This process is done by a web-crawler
called Exposé. Currently, SHOE stores knowledge in a Parka DB [Stoffel, et al. (1997)].
Since the all the SHOE-related tools were designed with a generic Application Program-
ming Interface (API), it is possible to use another Knowledge Representation (KR) (or
Knowledge Base).

Figure 2.3: The architecture of SHOE

For searching, SHOE provides a graphical tool called “SHOE Search” which allows a
user to select a context by choosing an appropriate ontology which the user is interested

15

in. After choosing an ontology, the system creates a list of categories existing in that
ontology. This list is organized so that the user can quickly locate the classes she/he
needs. The property list of a class is displayed, and the user can fill the constraints to
search. In case the system does not find any relevant document, it helps the user to
transform the given query into a query string that is commonly used by current search
engines for searching in these search engines.

Since SHOE operates based on ontologies, some studies related to ontologies have been
carried out, such as coping with changing ontologies [Heflin, et al. (1999b)]
[Heflin & Hendler (2000a)].

2.3 XML Exploitation

The next approach in semantic search is to exploit the semantics of XML tags. XML is
widely used as a mean for data interchange. In contrast to HTML which is a language
for defining how to display data on a browser, XML is a language for describing data.

2.3.1 XSearch

Current search engines do not exploit the advantage of XML, since they do not have the
ability to expose the query that refer to meta-data (i.e., the XML tags).

[Cohen, et al. (2003)] proposed a semantic search system to work on XML data called
XSearch. The architecture of XSearch as described in [Cohen, et al. (2003)] is shown in
Figure 2.4. Similarly to the current search engines, the XML documents are indexed
according to a method proposed by [Cohen, et al. (2003)] before serving queries. Given a
query, the “Search query processor” finds the possible answers from the repository. Then
the answers are ranked before being presented to users.

There exists a query language for processing XML data: XQuery23 which is a declara-
tive query language like SQL, and some XQuery-like languages [Chamberlin, et al. (2002) ,
Chinenyanga & Kushmerick (2002), Fuhr & Großjohann (2001)]. Since the syntax of these
query languages is rather complex, not suitable for the average users, [Cohen, et al. (2003)]
proposed a simple query language which can be used by naive users. In XSearch, a query
consists of a sequence of required and optional search terms t1, t2, . . . , tm. Each term ti
has the form l : k, l : or : k, where l is a label (an XML tag) and k is a keyword. If
a search term is preceded by a plus sign (‘+’), it is required, otherwise it is optional.
An example of a query is Q(title:, +author:Kempster) which searches for the list of books
whose author is Kempster. The query is matched again the XML trees, where each tree is
corresponding to an XML document, and the answers are nodes that satisfies the query.

2.3.2 Semantic Search Via XML Fragments

In another semantic search approach is of [Chu-Carroll, et al. (2006)] that annotates doc-
uments in form of XML documents, and applied XML searches to exploit the semantics

23http://www.w3.org/TR/xquery/

16

Figure 2.4: The architecture of XSearch

of XML tags. For example, the sentence “Clinton was graduated from Georgetown Uni-
versity and in 1968 won a Rhodes Scholarship to Oxford University.” will be annotated
as:

<AlmaMater> <Person> Clinton

</Person> was graduated from <College> Georgetown University

</College> </AlmaMater> and in <Date> 1968 </Date> won a Rhodes

Scholarship to <College> Oxford University </College>.

For querying the data, [Chu-Carroll, et al. (2006)] used XML fragment query language
[Carmel, et al. (2003), Broder, et al. (2004)]. An XML fragment has the form of [[<tag>
. . . </tag>]], where the double square brackets are used to denote the boundaries, and
one XML fragment can contain other fragments. An example of an XML fragment is
[[<Book>“Gone with the wind”</Book>]].

In order to enrich the query expressiveness, three operations were identified in the
process of finding answers [Chu-Carroll, et al. (2006)]:

• Conceptualization operation: generalizes a lexical string to an appropriate con-
cept in the type system represented by that string. For example, the query ani-
mal returns documents containing the word ‘animal’, while the conceptual query
[[<Animal></Animal>]] returns documents containing the tag Animal, which ap-
plies to all subtypes of the concept, such as lion, owl, and salmon.

• Restriction operation: constraints the XML tags, in which keywords must appear
to be considered relevant. For example, [[<Animal> bass </Animal>]] returns

17

documents in which the literal “bass” is used in its fish sense, while [[<Instrument>
bass </Instrument>]] retrieves those where it represents a musical instrument.

• Relation operation: the annotation represents a relation that holds between terms.
These relations include syntactic e.g., [[<SubjectVerb> Unabomber kill </SubjectVerb>]],
semantic, e.g., [[<Kill> Unabomber <Person></Person> </Kill>]], or pragmatic,
e.g., [[<HasNegativeOpinion> Clinton war on Iraq </HasNegativeOpinion>]]. In
addition, the XML Fragment query syntax allows the nesting of relation and en-
tity annotations, e.g., [[<Visit><Person> John </Person><Person> Victoria
</Person></Visit>]]. This generally matches documents where John and Vic-
toria visited one another but excludes those where John visited the city of Victoria.

These operations can be used with XML Fragment query syntax with its classical
operators which are described in [Broder, et al. (2004)]. The three operations have the
ability to express four different query-time semantic needs, i.e., to specify target infor-
mation type, to disambiguate keywords, to specify search term context, and to specify
relations between selected terms.

2.4 Discussion

Except the XSearch system which returns results in form of XML nodes, all other methods
give results in form of a list of pages. In our approach, we try in extract the answers to
questions from documents by exploiting the semantic relations in documents. The com-
parison of the above mentioned approaches and ours are shown in Table 2.1, where Query
indicates the characteristics of input queries; QC stands for “Question classification”.

2.5 Summary

In this chapter, we have classified and summarized the current approaches of semantic
search, and some typical semantic systems were described in more detail.

18

T
ab

le
2.

1:
T

h
e

ch
ar

ac
te

ri
st

ic
s

of
ap

p
ro

ac
h
es

A
p
p
ro

ac
h

H
u
m

an
eff

or
t

P
re

p
ro

ce
ss

in
g

E
x
p
lo

it
at

io
n

Q
u
er

y
fo

rm
Q

C
O

u
tp

u
t

L
S
I

N
o

C
om

p
u
te

co
n
ce

p
t

sp
ac

e
C

on
ce

p
t

K
ey

w
or

d
s

or
p
h
ra

se
s

N
o

P
ag

es

G
u
h
a

B
ot

h
m

an
u
al

ly
an

d
au

to
m

at
i-

ca
ll
y

A
n
n
ot

at
e

ob
je

ct
s

w
it
h

th
ei

r
p
ro

p
er

ti
es

an
d

re
la

ti
on

s

S
em

an
ti
c

of
an

n
ot

a-
ti

on
K

ey
w

or
d
s

or
p
h
ra

se
s

N
o

P
ag

es
w

it
h

ad
d
i-

ti
on

al
ly

en
ri

ch
ed

in
fo

rm
at

io
n

K
IM

N
o

A
n
n
ot

at
e

N
am

ed
en

ti
-

ti
es

an
d

th
ei

r
p
ro

p
er

-
ti

es
an

d
re

la
ti

on
s

ac
-

co
rd

in
g

to
an

on
to

lo
gy

N
am

ed
en

ti
ti

es
w

it
h

th
ei

r
p
ro

p
er

ti
es

an
d

re
la

ti
on

s

K
ey

w
or

d
s

or
p
h
ra

se
s

N
o

P
ag

es

S
H

O
E

Y
es

A
n
n
ot

at
e

ob
je

ct
s

an
d

th
ei

r
p
ro

p
er

ti
es

,
re

la
-

ti
on

s
ac

co
rd

in
g

to
on

-
to

lo
gi

es

S
em

an
ti
c

of
an

n
ot

a-
ti

on
C

on
ce

p
t

an
d

co
n
-

st
ra

in
ts

on
th

ei
r

p
ro

p
er

ti
es

an
d

re
la

-
ti

on
s

N
o

P
ag

es

X
se

ar
ch

N
o

N
o

T
h
e

se
m

an
ti

cs
of

X
M

L
ta

gs
X

M
L

fr
ag

m
en

t
w

it
h

co
n
st

ra
in

ts
N

o
X

M
L

n
o
d
es

C
h
u
-

C
ar

ro
ll

N
o

A
n
n
ot

at
e

n
am

ed
en

ti
-

ti
es

(w
it

h
a

p
re

d
efi

n
ed

se
t

of
cl

as
se

s)
,

ob
-

je
ct

s,
te

rm
s

an
d

co
n
-

ve
rt

d
o
cu

m
en

ts
in

to
X

M
L

fo
rm

at

T
h
e

se
m

an
ti

cs
of

X
M

L
ta

gs
,

n
am

ed
en

ti
ti

es

K
ey

w
or

d
s

or
p
h
ra

se
s

N
o

P
ag

es

O
u
r

N
o

E
x
tr

ac
t

n
am

ed
-e

n
ti

ty
-

re
la

te
d

re
la

ti
on

s
(t

h
e

se
t

of
N

E
cl

as
se

s
is

n
ot

fi
x
ed

,
b
u
t

d
ep

en
d
-

in
g

on
th

e
d
at

a)
,
co

n
-

st
ru

ct
R

S
T

tr
ee

of
d
o
cu

m
en

ts

T
h
e

se
m

an
ti

c
re

la
-

ti
on

s
of

R
S
T

an
d

n
am

ed
en

ti
ti

es

C
om

p
le

te
q
u
es

ti
on

s
Y
es

D
ir

ec
t

an
sw

er
s

19

Chapter 3

Extraction and Utilization of

Named-Entity-Related Relations for

Information Search

Named entities play important roles in many NLP applications including Information Re-
trieval. Discovering the relations related to named entities may contribute benefit to these
applications. In this chapter, firstly, we present a data-driven approach to extract named-
entity ISA category relations from documents. Secondly, we extend the algorithm to
extract the information that describes named-entities more completely. Finally, we utilize
the extracted information for answering some types of named-entity-related questions.

3.1 Introduction

Named entities play important roles in many Natural Language Processing (NLP) applica-
tions, including Machine Translation [Al-Onaizan & Knight (2001)], Text Summarization
[Nobata, et al. (2002), Hassel (2003)], Text/question Classification [Li & Roth (2005)]
[Kumaran & Allan (2004)], Question Answering [Srihari & Li (2000)], and Information
Retrieval [Popov, et al. (2003)]. The queries/questions related to named entities take a
significant portion as discovered in [Dumais, et al. (2003)]: “The most common query
types in our logs were People/Places/Things, Computers/Internet, and Health/Science.
In the People/Places/Things category, names were especially prevalent. Their importance
is highlighted by the fact that 25% of the queries involved peoples names, which suggests
that people are a powerful memory cue for personal content. In contrast, general infor-
mational queries are less prevalent.”

The named entity (NE) set presented by the sixth Message Understanding Conference
(MUC6) for application in business activities consists of 7 types: organization, location,
person, date, time, money and percent [Grishman & Sundheim (1996)]. Nonetheless, finer
distinctions (finer-grained classes) of named entities are needed in some applications, thus
[Sekine, et al. (2000a)] proposed to extend the named entity hierarchy to about 150 types

20

(and currently about 200 types), and [Popov, et al. (2003)] presented a hierarchy of 250
named entity types to support semantic search.

Though the named entity sets of Sekine and Popov contain relatively large numbers of
types, current named entity recognition systems usually assign a unique type to a named
entity [Chieu & Tou (2003)]. This approach does not reflect the real world, where a named
entity can have more than one type. For example, a person named entity can be both
“executive vice president” and “chief financial officer”. In addition, in real applications,
such as Question-answering (QA) or search systems, users may query the list of even
finer categories of named entities, such as “US presidents”. Fortunately, the actual fine
category of a named entity may appear along with itself somewhere in the text, in certain
patterns, as in the following example, where “analyst” is the actual type of the named
entity “Bette Raptapoulos”:

There’s a generally more positive attitude toward the economy, said Bette Raptapou-
los, analyst for Prudential-Bache Securities Inc. . . . 1

He discussed a new strategy for the company . . .

Given which, a user may ask “Which analyst discussed a new strategy for the company?”
From the first sentence, if we could recognize the actual type of the named entity “Bette
Raptapoulos”, then from the second sentence with co-reference resolution, we can easily
answer the above question. This is a possible application of finely categorized named-
entities.

In this chapter, we, firstly, proposes to extract the actual fine categories of named
entities by exploiting valuable hidden patterns in text documents in a data-driven way
based on Brin’s model [Brin (1998a)]. We start with seed patterns instead of seed tuples,
so that the number of tuples extracted as well as the number of patterns generated in each
iteration is consequently large. We explore the generation of different pattern types for
further extracting tuples, and propose a method for checking whether a newly extracted
tuple (named entity, category) is valid to improve the performance of the algorithm.

Secondly, if from the sentence “There’s a generally more positive attitude toward the
economy, said Bette Raptapoulos, analyst for Prudential-Bache Securities Inc. . . . ”, we
only extract the tuple (“Bette Raptapoulos”, “analyst”), then “analyst” does not com-
pletely describe the person “Bette Raptapoulos”. From this observation we extend our
algorithm to extract (named entity, category, related-to, object) quadruples, each of them
describes that the named entity ISA category, and the category IS-RELATED-TO object.
We call such relations “named entity ISA category”, and “category related-to object” rela-
tions. An example of a quadruple, which is extracted from the above sentence, is (“Bette
Raptapoulos”, “analyst”, “for”, “Prudential-Bache Securities Inc.”).

Thirdly, a quadruple (named entity, category, related-to, object) is a useful, and can
be exploited in NLP applications including semantic search or QA systems, for example,
for answering WHO (e.g., “Who is Bette Raptapoulos?”), WHICH (e.g., “Which analyst
discussed a new strategy for the company?”), and LIST (e.g., “Give me the list of analyst
for Prudential-Bache Securities Inc.?”) questions.

1An example from the Wall Street Journal corpus

21

3.2 Related Work

Figure 3.1: Brin’s DIPRE model

Pattern extraction was proposed to solve many information extraction problems in-
cluding relation extraction [Brin (1998a), Agichtein & Gravano (2000), Pasca (2004)].
[Brin (1998a)] proposed an iterative model to extract relations that occur in certain pat-
terns in documents as described in details below.

Brin’s model: the model is called “Dual Iterative Pattern Relation Extraction” (DIPRE)
which is depicted in Figure 3.1, and detailed description of the algorithm is given in Fig-
ure 3.2, where GenPatterns(O) is the procedure for generating new patterns which is
given in Figure 3.3.

Brin used DIPRE to extract (author, title) tuples having the relation: the author
of the book title is author. Starting with a small number of (author, title) seed tuples,
DIPRE finds the occurrences of tuples in order to generate new patterns.

DIPRE’s occurrences: An occurrence of a (author, title) tuple is represented by a
7-tuple:

(author, title, order, url, prefix, middle, suffix)

where url is the URL of the document in which the occurrence appeared; order, a boolean
value, indicates the occurring order of the author and title in the text; if the author pre-
cedes the title, the order is true, otherwise it is false; prefix is m characters preceding
the author (or title if the title is first); middle is the string between the author and title;
and suffix is m characters following the title (or author if the author is last).

DIPRE’s patterns: A new pattern is a 5-tuple:

(order, urlprefix, prefix, middle, suffix)

is generated from a group of occurrences O having the same url (or prefix of url), if
all the occurrences in O have the same middle, order, prefix (or some last characters of
prefix) and suffix (or some first characters of suffix). New patterns are, then, used to

22

Input: The large collection D of Web documents;
The set Sample of seed tuples.

Output: The set R′ of tuples.

1. R′ ← Sample
Start with a small sample, R′ of the target relation. This sample is given by the user and
can be very small.

2. O ← FindOccurrences(R′, D)
Find all occurrences of tuples of R′ in D. Along with the tuple found, keep the context
of every occurrence (URL and surrounding text).

3. P ← GenPatterns(O)
Generate patterns based on the set of occurrences. This is the tricky part of the algorithm.
Roughly speaking, this routine must generate patterns for sets of occurrences with similar
context. The patterns need to have a low error rate, so it is important that they are
not overly general. The higher the coverage of the patterns the better. However, a low
coverage can be compensated for with a larger collection D.

4. R′ ←MD(P)
Search the collection D for tuples matching any of the patterns.

5. if R′ is large enough then return;
else go to Step 2.

Figure 3.2: The DIPRE algorithm

extract further (author, title) tuples.

DIPRE’s tuple extraction: A new (author, title) tuple is extracted if there is a docu-
ment having URL matching urlprefix∗2, and the document contains texts matching the
regular expression:

∗prefix, author,middle, title, suffix∗

which is constructed from the pattern (order, urlprefix, prefix, middle, suffix), where the
order (indicating the order of author and title) is true. Non-empty strings for prefix,
middle and suffix are used to determine the boundary of author and title.

DIPRE’s pattern generation procedure: this is an important step of the DIPRE
which is based on some heuristics, in order to generate patterns that extract few false
positives (tuples that are non-books). This constraint makes each pattern have a small
coverage, however, the total coverage of the patterns can still be substantial since the
Web is vast and there are many sources of information. The pattern generation proce-
dure is described in Figure 3.3, where GenOnePattern is the procedure for generating
one pattern as described in Figure 3.4. In procedure GenOnePattern, for guaranteeing
the above constraint, DIPRE considers the specificity of a pattern. The specificity of a

2‘*’ is a wild card of regular expression, which matches any sequence of characters in this context.

23

pattern p is measured as:

specificity(p) = |middle||p.urlprefix||p.prefix||p.suffix|

A pattern is generated iff its specificity satisfies the condition specificity(p)n > t, where
n is the number of books with occurrences supporting the pattern p, and t is a threshold.
This ensures that all the strings of a pattern are nonempty (otherwise the specificity is
zero). Also DIPRE requires n > 1, since generating a pattern based on one example is
very error-prone.

Input: The list O of occurrences;
Output: The patterns;

1. Group all occurrences o in O by order and then middle;
Let the resulting groups be O1, . . . , Ok;

2. for each group Oi

p← GenOnePattern(Oi);

if (p meets the specificity requirements) then output p;

else

if (all o in Oi have the same URL) then reject Oi;

else

Separate the occurrences o in Oi into subgroups grouped by the char-
acter in their URLs which is one past p.urlprefix;

Repeat the procedure in step 2 for these subgroups;

end for

Figure 3.3: The GenPatterns procedure of DIPRE

Based on DIPRE, by defining a new type of patterns as well as the constraints for
generating patterns, [Agichtein & Gravano (2000)] developed the Snowball system for ex-
tracting (organization, location) tuples expressing the relation: the headquarters of orga-
nization is in location.

Inspired by the hypernym extraction study of [Hearst (1992)], Pasca presented a model
based on DIPRE for acquiring (C, N) tuples (where C and N stand for category and
named entity, respectively) from web documents by matching sentences with the pattern
[Pasca (2004)]:

[StartOfSent] C [such as|including] N [and|,|.]

where C matches a plural noun; N matches consecutive proper nouns. Below are some
sentences that match the above template, where C and N are underlined [Pasca (2004)]:

- That is because software firewalls, including Zone Alarm, offer some semblance of

24

Input: The list O of occurrences;
Output: A pattern outpattern if possible;

1. Verify that the order and middle of all the occurrences is the same;
If not, it is not possible to generate a pattern to match them all;
Set outpattern.order and outpattern.middle to order and middle respectively.

2. Find the longest matching prefix of all the URLs;
Set outpattern.urlprefix to that prefix.

3. Set outpattern.prefix to the longest matching suffix of the prefix’s of the occur-
rences.

4. Set outpattern.suffix to the longest matching prefix of the suffix’s of the occur-
rences.

Figure 3.4: The GenOnePattern procedure of DIPRE

this feature.

- API Adapter can be written in other programming languages such as C++.

Based on extracted tuples, new patterns are generated to extract potential tuples. Pasca’s
model is interesting, because it is nearly an unsupervised approach. However, Pasca’s
model considers only categories that are expressed using plural nouns. In regular text
documents, potential categories can be available using singular nouns. In addition, sen-
tences that match this template do not appear frequently in all text corpora, e.g., the
Wall Street Journal (WSJ) corpus which is used in our experiments. In this case, the
approach may need a very large number of text documents in order to get a sufficient list
of (C, N) tuples for further generation of new templates, as seen in the experiments of
Pasca on a large dataset consisting of 500 million of web documents and news articles.

Our study can be seen as a complement to Pasca’s. We extract (named entity, cate-
gory, related-to, object) quadruples from text documents, in which categories are expressed
by singular nouns.

[Shinzato & Torisawa (2004)] targeted at extracting hyponymy relations, which are
presented in lists (or itemization) as exemplified below, from HTML documents.

Car Specification

Toyota

Honda

Nissan

25

[Fleischman, et al. (2003)] aimed at extracting concept-instance relations from docu-
ments by exploiting two patterns. The first pattern is common noun/proper noun con-
structions, such as “trainer Victor Valle”, in which the concept is “trainer” and the
instance is “Victor Valle”. The second pattern is appositions, such as “David Werner, a
real estate investor”, in which the concept is “real estate investor” and the instance is
“David Werner”. After extracting all concept-instance pairs from documents, they used
a method to filter the incorrect ones. However, the concept-instance relations can present
in several patterns other then the above two patterns. Thus, for improving the recall, a
large corpus (e.g., 15GB of newspaper text) was used in the experiments.

[Sumida, et al. (2006)] extracted concept-instance relations, that reside in two pat-
terns consisting of noun sequences, from Japanese documents. The first pattern is se-
quences in which the boundary between the concept name and the instance name is
explicitly marked by quotation marks, for example, “Monk Story” movie. The second
type is sequences in which no evident clues indicate the boundary, such as “Maruei hotel”.
Similarly to [Fleischman, et al. (2003)], after extracting the noun sequences satisfying the
two patterns, [Sumida, et al. (2006)] used some heuristics in combination with a search
engine to filter incorrect ones.

3.3 Automatic Extraction of the Fine Category of

Named Entities

In this section, we describe the drawbacks of DIPRE algorithm when applying to our
problem, and the proposal to modify DIPRE to be more suitable for our problem.

3.3.1 Our Extraction Algorithm

DIPRE starts with a small set of (author, title) seed tuples. The selection of these
tuples must be done carefully, because if we select tuples that do not appear in the target
corpus, then no pattern can be generated for extracting new tuples. If the seed tuples
do not frequently occur, there may be a small number of new patterns discovered for
further extraction, and the algorithm is time-consuming to scan the corpus several times
for extracting new (author, title) tuples. In our model, we start with seed patterns as
described in Section 3.3.2. By starting with seed patterns, the number of tuples extracted
in the first scan is relatively large, consequently, the number of new patterns discovered
for the next scan is large, and the algorithm may need fewer scans on the corpus.

In DIPRE, a new (author, title) tuple is extracted if there is a document with URL
matching urlprefix∗, and the document contains texts matching the regular expression:

∗prefix, author,middle, title, suffix∗

which is constructed from the pattern (order, urlprefix, prefix, middle, suffix), where the
order (indicating the order of author and title) is true. Non-empty strings for prefix,

26

middle and suffix are used to determine the boundary of author and title. If we use
DIPRE to extract (named entity, category) tuples, this regular expression fails to ex-
tract (named entity, category) tuples whose named entity (or category) appears at the
beginning (or the end) of a sentence. Moreover, all prefix, middle and suffix should not be
a space, since a space does not specify a clear boundary of named entity and category.
Thus, the pattern fails to work in situations where named entity and category are sepa-
rated by a space, such as “He demanded that Treasury Secretary Nicholas Brady appear
before the Senate Banking Committee to explain. . . ”3, where the category is “Treasury
Secretary”, and the named entity is “Nicholas Brady”.

To avoid the above problems, we use a named entity recognition (NER) system to
determine the boundary of named entities. Because the category of a (named entity,
category) tuple is a noun phrase, we use a shallow parser to identify the boundary of
category. Thus, our patterns do not need prefix and suffix components, and the
method for generating new patterns is different from Brin’s as discussed in Section 3.3.3.
For improving the performance of the algorithm, we propose to use a function to validate
a category in the extraction process as discussed in Section 3.3.4. We call our algorithm
“Named Entity, Category Extraction” (NECE), and it is described in Figure 3.5

Input: A seed pattern set P1; a text corpus D;
Output: The list L of (named entity, category) tuples;

1. Initiation: the pattern set P ← P1; L← ∅ (empty list)
Find named entities in every sentence in D;
D ← D - {sentence | sentence contains no named entity};
Add part-of-speech and chunks tags for every sentence in D;

2. Extract the list L′ of (named entity, category) tuples from sentences that match any
pattern in P ; L← L + L′;
Let D′ be the list of sentences, from which the (named entity, category) tuples in the list
L′ were extracted; D ← D - D′;
if (D is empty or L′ is empty) then return;

3. Find the list O of the occurrences of (named entity, category) tuples in D;

4. From the list of occurrences O, generate a new pattern set P ′; P ← P ′;
if (P is empty) then return;
else go to Step 2;

Figure 3.5: Named Entity, Category Extraction algorithm

In Step 2 of our algorithm, we remove sentences from which one or more tuples were
extracted, because if we keep them for later scans, then duplicate tuples can be extracted.
In Step 4, we replace P by P ′ (the set of newly generated patterns), since the old pattern
set P in the previous scan cannot extract new tuples in the next scan. The graphical
demonstration of our algorithm is depicted in Figure 3.6.

3An example taken from the WSJ corpus.

27

Figure 3.6: Our (named entity, category) extraction model

3.3.2 Clue and Seed Patterns

Our seed patterns are based on appositives. Grammatically, an appositive is a noun
phrase that renames or describes another noun phrase, with no word interposed between
the two phrases. For example, in the sentence “George Bush, the US president, announced
· · · ”, the appositive “the US president” describes more concretely the person named entity
“George Bush”, and “US president” can be regarded as the actual type of “George Bush”.
In another complex example of appositive: “Daniel Akerson, executive vice president and
chief financial officer, said MCI’s growth is being fueled by · · · ”4, two noun phrases:
“executive vice president” and “chief financial officer” describe “Daniel Akerson”, so two
tuples are expected to be extracted. We only consider appositives whose head is a singular
noun (tagged NN or NNP5), because a noun that describes a named entity should be in
singular form.

Because we work on sentences which have been parsed by a shallow parser, our pat-
terns may contain part-of-speech (POS) and chunk tags. A chunk is a syntactically related
non-overlapping group of words. A chunk is assigned a tag, such as NP (noun phrase),
and surrounded by a square bracket pair, e.g., “[NP executive/JJ vice/NN president/NN
]”.

Pattern: We define a pattern as a 4-tuple:

(order, named entity slot, middle, category pattern),

where order indicates the occurrence order of named entity and category in a sen-
tence. If named entity is before category, the order is named entity then category
(hereafter we call this NEC for short), otherwise order is category then named entity
(hereafter we call this CNE for short). named entity slot is a slot which will be re-
placed with a named entity (with POS tags) that appears in the sentence currently being
processed. For example, if the current sentence has the named entity “George Bush”, then
named entity slot is: George/NNP Bush/NNP. Let simple noun be a pattern matching a
noun phrase with POS tags which consists of one or zero determiner, adjectives, gerunds

4An example taken from the WSJ corpus.
5NN and NNP are used to tag singular lowercase and singular proper nouns, respectively.

28

and nouns, e.g., “a/DT managing/VBG director/NN”:

simple noun:=($word/DT)?($word/(JJ|VBG))*

($word/NNP?S?)*($word/NNP?)+6

Then category pattern is defined as:

category pattern:=simple noun1 (and/CC simple noun2)?
7

The sentence “George Bush, the US president, announced · · · ”, after having been parsed,
has the form: [NP George/NNP Bush/NNP] ,/, [NP the/DT US/NNP president/NN] . . . ,
so the middle component for the first seed pattern is: “] ,/, [NP ”, and the first seed
pattern is:

(NEC, named entity slot, “] ,/, [NP ” , category pattern)

A named entity may also lie in an appositive, e.g., “Semi-Tech’s president and chief
executive officer, James Ting, said it was likely that the Singer board would approve . . . ”.
In this example, the appositive “James Ting” renames “president and chief executive of-
ficer”. Thus, the second seed pattern is:

(CNE, named entity slot, “] ,/, [NP ” , category pattern).

If the order is NEC, then from a pattern:

(order, named entity slot, middle, category pattern),

where named entity slot is replaced with a named entity (with POS tags) that appeared
in a sentence s, the regular expression:

∗named entity slot, middle, category pattern∗

is constructed to match s. If the order is CNE, then named entity slot and category pattern
are reversed.

Let named entity be a named entity slot after removing POS tags. Let category
be a simple noun after removing the possible determiner (tagged DT) and POS tags.
If a match is found, the expected tuples are (named entity, category1) and possibly
(named entity, category2). This is an advance from DIPRE, because our method can
extract two tuples from a match if there are two.

6? stands for “there is zero or one”; | stands for “or”; + stands for “there is one or more”; * stands
for “there is zero or more”.

7This pattern covers the cases where there are two noun phrases in the appositive.

29

1. Group all occurrences in the list O by order and middle;
Let the resulting groups be O1, O2, . . . , ON ;

2. For each group Oi, if the middle satisfies the two conditions, generate a new pattern:
(order, named entity slot, middle, category pattern);

Figure 3.7: Pattern generation procedure

3.3.3 Pattern Generation

Similar to Brin’s model, our extraction model exploits the fact that (named entity, category)
tuples can be expressed in different lexical forms, which tend to appear in uniform pat-
terns repeated in collections of documents. For example, the tuple (“George Bush”, “US
president”) can be expressed in different ways as follows:

George Bush, the US president, announced . . .
US President George Bush announced . . .

Occurrence: Similarly to Brin’s model, we define an occurrence of a (named entity,
category) tuple as a 4-tuple:

(order, named entity,middle, category)

where order has the same meaning as that of our patterns; middle is the string sur-
rounded by named entity and category. Based on the list of occurrences, we explore the
method for generating different pattern types in the next subsections.

Exact Patterns

Occurrences of (named entity, category) tuples are used to generate new patterns. How-
ever, a middle of an occurrence is not necessarily reliable, we need a method to retain
reliable ones. Our first contraint is based on two criteria: repetition and diversity as
follows:

Repetition of a middle (repetition(middle)) is the number of times the middle appears
between the named entity and category of (named entity, category) tuples which have
the same named entity.

Diversity of a middle (diversity(middle)) is the number of times the middle appears
between the named entity and category of (named entity, category) tuples which have
different named entitys.

A middle that has repetition(middle)> thresholdR seems reliable and is kept. A
pattern seems specific if it is generated based on tuples of a named entity, so we only
keep middles that have diversity(middle) > thresholdD to make the generated patterns
general (Condition 1).

If a middle contains a verb phrase, the verb phrase should express the relation
named entity ISA category (Condition 2).

30

Some valid verbs are: ‘be’, ‘assign’, ‘elected ’, ‘take over ’, ‘name’, ‘continue’, ‘remain’.
We also care about the tense of these verbs. For some verbs, such as ‘be’, ‘assign’, and
‘elect ’, we do not accept their future or future perfect tenses. Because, for example, “a
named entity will be a category” does not certainly mean the named entity is a category.
The middle that contains a verb phrase is retained if it satisfies this constraint.

These two conditions are used in the pattern generation procedure described in Fig-
ure 3.7. We call these patterns exact patterns.

Examples of middle and sentences that match the corresponding exact patterns are
given in Table 3.1, where Order is the order of the exact patterns; named entities are
underlined and categories are in italics.

Table 3.1: Examples of the middle of exact patterns
Middle and matched sentences Order

Middle:] ,/, [NP Apple/NNP] [NP ’s/POS

Sentence: . . . [VP says/VBZ] [NP Randall/NNP NEC
Battat/NNP] ,/, [NP Apple/NNP] [NP ’s/POS
product-marketing/JJ vice/NN president/NN] ./.
Middle: A space

Sentence: [PP that/IN] [NP Treasury/NNP
Secretary/NNP Nicholas/NNP Brady/NNP] [VP
appear/VBP] [PP before/IN] [NP the/DT CNE
Senate/NNP Banking/NNP Committee/NNP]
[VP to/TO explain/VB] . . .

Exact patterns are relatively reliable; however, they have narrow coverage, so we
propose other ways for extending coverage, as given in the next subsections.

Sketch Patterns

For the middle of an exact pattern having the order NEC:

“] ,/, [NP ABC/NNP] [NP ’s/POS” (1)

its corresponding exact pattern can match the sentence:

[NP Harvey/NNP Dzodin/NNP] ,/, [NP ABC/NNP] [NP
’s/POS vice/NN president/NN] . . . (2)

However, this pattern cannot match a similar sentence that describes the “director” of
another company (organization), e.g., IBM, in the same syntax as (2):

[NP Alan/NNP Baratz/NNP] ,/, [NP IBM/NNP] [NP ’s/POS director/NN]. . . (3)

If we modify the middle (1) so that its pattern can match (3), then expected tuples
in both (2) and (3) can be extracted. In order to do this, we convert (1) into a template

31

Table 3.2: Examples of the middle of sketch patterns
Middle and matched sentences Order

Middle:] ,/, [NP who/WP] [VP is/VBZ]
[NP $word/NNP] [NP ’s/POS

Sentence: [NP Mr./NNP Petit/NNP] ,/, [NP NEC
who/WP] [VP is/VBZ] [NP
Healthdyne/NNP] [NP ’s/POS chairman/NN . . .
Middle:] [PP of/IN] [NP $word/DT $word/NNP
$word/NNP $word/NNP] ,/, [NP $word/NNP

Sentence: [NP A/DT former/JJ governor/NN] CNE
[PP of/IN] [NP the/DT Spanish/NNP Central/NNP
Bank/NNP] ,/, [NP Mr./NNP Rendueles/NNP] . . .

that can match other sequences having similar structure, except for nouns, adjectives,
cardinals or articles. Concretely, we replace nouns, adjectives, cardinals and articles in a
middle with a variable $word that matches a word. Below is the template constructed
from the middle (1):

“] ,/, [NP $word/NNP] [NP ’s/POS ” (4)

We keep other words in a middle intact, such as verbs, prepositions or conjunctions,
because their modification can make the context of the middle different. We call this
template the sketch of a middle. We produce a new pattern type that we call sketch
patterns, of which the middle component is replaced with a sketch.

Examples of middles of sketch patterns and matched sentences are given in Table 3.2.

Extended Sketch Patterns

Let’s consider the sketch (middle component) of a sketch pattern with order NEC:

“] ,/, [NP $word/NNP $word/NNP] [NP ’s/POS ” (5)

The pattern can match the sentence:

[NP Bill/NNP Gates/NNP] ,/, [NP Microsoft/NNP Corporation/NNP]
[NP ’s/POS chairman/NN] . . . (6)

However, this pattern can not match the sentence:

[NP Alfonso/NNP J./NNP Fanjul/NNP Jr./NNP] ,/, [NP Southeast/NNP
Banking/NNP Corp./NNP] [NP ’s/POS director/NN] . . . (7)

If the sketch (5) could be extended so that its corresponding pattern matches (7), then

32

expected tuples in (6) and (7) would be extracted. We do this by generalizing the noun
phrase of sketch (5) to enable it to match noun phrases which have one or more proper
nouns. Concretely, we replace consecutive (proper) nouns (or adjectives) template in a
sketch with another template that can match one or more consecutive (proper) nouns (or
adjectives). For example, (5) is generalized as:

“] ,/, [NP($word/NNP)+] [NP ’s/POS ” (8)

We call a generalized sketch an extended sketch, and introduce a new pattern type called
extended sketch pattern, of which the middle component is replaced with an extended
sketch.

Table 3.3 gives an example of the middle of an extended sketch pattern and a sentence
that matches the pattern.

Table 3.3: The middle of an extended sketch pattern
Middle and matched sentence Order

Middle:] ,/, [NP $word/DT($word/NNP)+] ,/,
[NP $word/NNP] ,/, [NP

Sentence: [NP James/NNP Bopp/NNP Jr./NNP] NEC
,/, [NP the/DT Terre/NNP Haute/NNP] ,/, [NP
Ind./NNP] ,/, [NP lawyer/NN] [NP who/WP]
[VP filed/VBD] [NP the/DT high-court/NN . . .

Pattern Generation Order

Obviously, the tuples extracted by exact patterns are a subset of those extracted by
sketch patterns; the tuples extracted by sketch patterns are a subset of those extracted
by extended sketch patterns. Thus, we give exact patterns highest priority and extended
sketch pattern the lowest priority, and run lower priority (or larger coverage) patterns only
on the remaining dataset, which is obtained after processing by higher priority patterns.

3.3.4 Category Validation

Though our algorithm runs on documents, in which named entities have been tagged by an
NER system, the NER system may incorrectly assign a type to a named entity (e.g., assign
type person to a named entity which is actually of type organization). Consequently, the
system may extract an incorrect tuple. Also, not all new patterns are 100% reliable, so
some extracted (named entity, category) tuples are incorrect, and should be discarded.

We propose an additional method for validating whether or not a newly extracted tu-
ple (named entity, category) is correct. Since named entities can be classified into some
rough (top level) classes, such as person, organization or location, and other fine cate-
gories of named entities can be subtype of the above rough classes. When we extract
(named entity, category) tuples of a rough class named entity type we can have the con-
straint: if a named entity is a category, then the head noun of the noun phrase describing

33

category must be a sort of named entity type. For example, if named entity type is per-
son, then category must be a sort of person. In other words, the category must be a
subtype (more specific type) of named entity type. The subtype relation is represented
as hyponym relation in WordNet [Fellbaum (1998)]. Thus, a category is valid if it is a
hyponym of named entity type. The reverse relation of hyponym is hypernym, so it is
equivalent to say a category is valid if its hypernym is a named entity type. Check-
ing whether named entity type is a hypernym of a category seems faster than checking
whether a category is a hyponym of named entity type, because the hyponym list of a
named entity type is relatively large. We used WordNet to check hypernym relations for
validation.

The validation function is integrated in Step 2 of the algorithm in Figure 3.5, and is
described in Figure 3.8. From each sentence, when the validation function is not used,
the algorithm extracts tuples only at the first match, which is not always the expected
match.

1. L′ ← ∅; //L′ is defined in the algorithm in Figure 3.5
2. for every sentence s in D do
3. for every named entity in s do
4. for every pattern p in P do
5. Construct a regular expression r from named entity and p;
6. if (r matches s) then
7. Extract possible (named entity, category) tuples;
8. if (category is valid) then
9. Let T the extracted tuples; L′ ← L′ + T ;
10. exit for; //Skip other patterns for the current named entity named entity
11. else Discard the tuples;
12. end for
13. end for
14.end for

Figure 3.8: Tuples extraction with the validation function

3.4 Named-Entity-Related Relations Extraction

The purpose of NECE is to extract (named entity, category) tuples, in which category
is the fine-grained categories of named entity, so the set of named entity classes can be
expanded by automatically extracting from texts. When we extract the tuple (“Bette Rap-
tapoulos”, “analyst”) from the sentence “There’s a generally more positive attitude toward
the economy, said Bette Raptapoulos, analyst for Prudential-Bache Securities Inc.,. . . ”,
we only have information: “Bette Raptapoulos” ISA “analyst”. If we can extract the rela-
tion: “analyst” for “Prudential-Bache Securities Inc.”, we will have complete information
about “Bette Raptapoulos”. In this section we extend the NECE to extract (named entity,
category, related-to, object) quadruples describing the relations: named entity ISA cate-
gory (or ISA relations for short), and category related-to object (or related-to relations for

34

short). From our observations, the related-to relations can be expressed in the following
ways8:

a) The category and object are linked by a preposition: “category preposition ob-
ject”, e.g., “analyst for Prudential-Bache Securities Inc.”

b) The category and object are connected by a possessive apostrophe: “object ’s
category”, e.g., “Semi-Tech’s chief executive officer”. This can be interpreted as
“category of object”, e.g., “chief executive officer of Semi-Tech”.

c) The object and named entity are linked by a preposition: “category named entity
preposition object”, e.g., ”. . . said economist David Littmann of Manufacturers Na-
tional Bank . . . ”, from which an expected quadruple is (“David Littmann”, “econo-
mist”, “of”, “Manufacturers National Bank”).

d) The object is embedded in category, e.g., “IBM president”. This can also be
interpreted as “category of object”, e.g., “president of IBM”.

e) The related-to relation is implicitly expressed, e.g., “Mr. Baird, who heads the
Manhattan U.S. attorney’s securities-fraud unit, denied the quote . . . ”, from which
an expected quadruple is (“Baird”, “head”, “of”, “securities-fraud unit”).

Since case e) does not have fixed expressions, we do not treat such cases. In case d),
because object is already embedded in category, we do not need to extract the object.
For cases a), b) and c), we construct regular expressions to extract the object. We modify
the procedure in Figure 4 to extract (named entity, category, related-to, object) quadruples
instead of (named entity, category) tuples. Let category str be the string containing the
category, the regular expressions corresponding to each case are (we omit POS and chunk
tags for readability):

a) * category str preposition noun phrase *

b) * noun phrase’s category str *

c) * named entity preposition noun phrase *

After extracting a valid category and a named entity (Step 8 of the algorithm in Fig-
ure 3.8), if the current processing sentence matches one of the above regular expressions,
the object is produced by removing POS tags in noun phrase; related-to is the prepo-
sition after removing POS tags in cases a) and c); related-to is “of” in case b), then,
(named entity, category, related-to, object) quadruples are returned instead of tuples. If
no regular expressions match the current processing sentence, then object and related-to
are null. We call our new algorithm NECOE which stands for ”Named Entity, Category,
Object Extraction”.

8All the below examples are from the WSJ corpus.

35

3.5 Utilization of Named-Entity-Related Relations for

Information Search

The extracted (named entity, category, related-to, object) quadruples are valuable for
NLP applications. In this section, we use them for answering some types of questions. If
named entity in a quadruple is a person, the quadruple helps answer the query: “Who
is named entity?”, e.g., “Who is Bette Raptapoulos?” If named entity is of another
type, such as organization or location, the quadruple helps answer the query: “What
is named entity?”, e.g., “What is IBM?” For answering the question, we just search for
quadruples having the same named entity as that of the question. If a quadruple is found,
then the answer is:

named entity is a category related-to object.

The extracted quadruples also help answer list questions, e.g., “Give me the list of analyst
for Prudential-Bache Securities Inc.” The general form of this question type is “Give me
the list of category [related-to object]”, where the part in square brackets is optional. For
answering this question type, we search for the list L of quadruples having the same cate-
gory, [related-to, and object] as those of the question. The answer is the list of named entity
of quadruples in L. If the related-to of a question is “of”, we also search for quadruples
whose object is embedded in category (case (d) as discussed in Section 3.4). For example,
if the question is “Give me the list of president of IBM”, we also search for quadruples
whose category is “IBM president”.

The next possible type is Which question as discussed in Section 3.1, e.g., “Which
analyst discussed a new strategy for the company?”

3.6 Experiments and Evaluation

Among named-entity-related questions, ones concerning about person named entities
comprise a relative large portion as seen in the question list in Text Retrieval Confer-
ence (TREC) 9, Question Answering track9, so this chapter concentrates on extracting
(name entity, category) tuples and (name entity, category, related-to, object) quadruples
of person named entities from plain-text corpora as a preliminary step, which can also be
applied for extracting other named-entity types, such as organization or location.

In the category validation function, a word may have more than one sense (or mean-
ing), and there may be multiple hypernyms for each sense. If all senses of a word are
checked whether their hypernyms are persons or not, we may get unexpected results. For
example, if all senses of the words: ‘study ’, ‘guide’ or ‘computer ’ are checked, then one
of their hypernyms is a person. For this reason, in the experiments, only the first sense
of a given word is checked whether its hypernyms be a person or not in the validation
function.

From our observations, for seed pattern, there may be an adverb which modifies an ad-
jective in the noun phrase. After having been processed by a shallow parser, the adverb is

9http://tangra.si.umich.edu/clair/NSIR/cgi-bin/trec-question.cgi?collection=9&script=html/nsir.cgi

36

separated from the noun phrase as in the example: “. . . and/CC [NP Edward/NNP A./NN
Masi/NNP] ,/, [ADVP formerly/RB] [NP vice/NN president/NN]. . . ” In this case the
appositive “formerly vice president” has an adverb “formerly”. In the experiments, we
consider about this issue for NECE, so seed patterns are treated a little different from
other patterns.

3.6.1 Text dataset

We used the Wall Street Journal10 corpus, which consists of 595 files, as the dataset.
After extracting the body part and removing other parts, e.g., the headers, we got a plain
text collection with the size of 308 MB consisting of nearly 3 million sentences. In the
initiation step of the algorithm in Figure 3.5, we tagged all named entities in this plain
text collection by an NER system. Through an investigation over free open source NER
systems, we considered two competitive systems: OpenNLP11 and LingPipe12. For NER
task, OpenNLP is rather slow in comparison with LingPipe, so we used LingPipe for
tagging named entities. After removing sentences that contained no person named entity,
667,981 sentences were collected, we call this the big dataset for later reference. Next
step was to add POS and chunk tags for each sentence. In this task, OpenNLP was used
because it has better performance than LingPipe.

The test set is 1,000 sentences which are randomly selected from the WSJ corpus. From
the test set, 385 (person, category) tuples were manually extracted. Among 385 tuples,
199 tuples have additional related-to relations. The distribution of related-to relations
accordingly to the cases discussed in Section 3.4 is given in Table 3.4.

We ran our programs on the big dataset to get patterns, and tested the precision and
recall of the patterns on a test set.

Table 3.4: The distribution of related-to relations
Case a) b) c) d) e)
% 74.87 17.74 2.05 3.59 2.05

3.6.2 Experiments with NECE

We used C++ with the regular expression library boost13 to build the NECE program.
We also wrote a similar program called “NECE-Novalidation” which has no category val-
idation function. We calculated precision (P), recall (R) and F-score (F) as follows:

P = Tcorrect

Textract
∗ 100%, R = Tcorrect

Tmanual
∗ 100%, F = 2RP

R+P

where Tcorrect was the number of tuples correctly extracted; Tmanual was the number

10The dataset is included in TIPSTER corpus and distributed by Linguistic Data Consortium (LDC):
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93T3A

11http://opennlp.sourceforge.net/
12http://www.alias-i.com/lingpipe/index.html
13http://www.boost.org

37

of tuples manually extracted; and Textract was the number of tuples extracted by the
program.

In general, the repetition threshold thresholdR can be different from the diversity
threshold thresholdD, so there are many combinations of the values of these variables.
In our experiments, for the sake of simplicity, we set thresholdR and thresholdD to the
same value. Later, we simply called them threshold for short. Table 3.5 shows the results
of different pattern types (seed, exact, sketch and extended sketch patterns) of the NECE-
Novalidation and NECE with the threshold of 3. This threshold is based on trying several
values. From the results, we can see the important effect of validation function to the
performance.

In order to investigate a proper threshold, we ran NECE with the thresholds of 4
and 5. Results in Table 3.6 show that 3 seems to be the proper value of the threshold.
Figure 3.9 shows the number of accumulated tuples extracted by NECE with different
thresholds and pattern types from the big dataset. Figure 3.9 also shows that the number
of tuples extracted by seed patterns is about 41.6% (a relatively large portion) of the
total number of extracted tuples. Especially, the precision of the seed patterns is very
high (99.26%) proving that the selection of seed patterns is good.

Figure 3.10 shows the growth of distinct categories of NECE with threshold of 3 from
the big dataset. The figure shows that the number of potential categories is relatively
large (it reaches 40,810 for extended sketch patterns). And though sketch patterns help to
extract only 5.5% of the total extracted quadruples, their discovered categories comprise
24% of total distinct categories.

Table 3.7 lists some top and bottom ranked categories along with their frequency that
are extracted by our system.

Excluding the processing time of the Initiation step of the algorithm in Figure 3.5, our
programs take about 40 hours.

Table 3.5: Results of NECE-Novalidation and the NECE with threshold of 3

Pattern
NECE-Novalidation NECE 3
P(%) R(%) F(%) P(%) R(%) F(%)

Seed 89.03 35.84 51.11 99.26 35.06 51.82
Exact 63.41 72.47 67.64 94.48 75.58 83.98
Sketch 62.88 74.81 68.33 94.50 80.26 86.80
E. sketch 62.88 74.81 68.33 94.50 80.26 86.80

Table 3.6: Results of the NECE with threshold of 4 and 5

Pattern
NECE 4 NECE 5

P(%) R(%) F(%) P(%) R(%) F(%)
Seed 99.26 35.06 51.82 99.26 35.06 51.82
Exact 94.46 75.32 83.82 94.46 75.32 83.82
Sketch 94.48 80.00 86.64 94.46 79.74 86.48
E. sketch 94.48 80.00 86.64 94.46 79.74 86.48

From the statistics, the patterns whose middles are listed in Table 3.8 contribute the
most of the extracted tuples. And the tuples whose categories are top-ranked categories
as in Table 3.7 contribute the most to generate new patterns.

38

Figure 3.9: Extracted tuples at different thresholds

Table 3.7: Some top, bottom categories with frequency and related-to relations
Top cate-
gories

President (22679), Chairman (12835), Analyst (6729), Vice Presi-
dent (6011), Director (5821), Chief Executive Officer (5326), Judge
(5050), Dr. (4931), Rep. (3479), Senior Vice President (3028), Ex-
ecutive Vice President (2698), Attorney (2537), Managing Director
(1904), Chief Executive (1834), Chief Economist (1706), Lawyer
(1601), Manager (1586), Economist (1510), Editor (1477)

Bottom
categories

part-time CIA employee (1), partnership analyst (1), parliament
deputy(1), parts marketing administrator (1), past finance director
(1), patent specialist (1), paintings specialist (1), personal transla-
tor (1), freight carrier (1)

Related-to
relations

managing director of investment bank, vice president for economic
research, president of Trans World International Inc., deputy of
Japanese equities, manager of sales

We also implemented another version of NECE called RNECE (Reverse NECE) which
starts with the seed tuples instead of seed patterns. A program similar to RNECE without
the category validation function was coded as the corresponding baseline which we called
RNECE-Novalidation. The seed set consisted of 20 (person, category) tuples that are
randomly selected from the WSJ corpus. The thresholds of both RNECE and RNECE-
Novalidation are 3. And the results of the experiment on the same dataset are given in
Table 3.9.

Except for the first scan, which took about 35 minutes, for generating new patterns
from seed (person, category) tuples, the computation time of RNECE was about the
same as that of NECE.

Table 3.10 records the number of middles generated by our programs, and this is
also the number of patterns. Some NEC middles of exact patterns that are detected by
NECE-3 but are not detected by RNECE-3 are listed below:

“] ,/, [NP Falconbridge/NNP] [NP ’s/POS”

39

Figure 3.10: The growth of the number of distinct categories

Table 3.8: Middles of important patterns
Pattern Middle
Seed Middle of seed patterns

] [VP is/VBZ] [NP (order NEC)
] ,/, [NP who/WP] [VP is/VBZ] [NP (order NEC)

Exact] [VP was/VBD] [NP (order NEC)
A space (order CNE)
] ,/, [NP Mr./NNP (order CNE)

Sketch] ,/, [NP $word/NNP] [NP ’s/POS (order NEC)
] ,/, [NP $word/NNP $word/NNP] [NP ’s/POS (order NEC)

“] ,/, [NP Fannie/NNP Mae/NNP] [NP ’s/POS”

We also implemented the DIPRE algorithm, and applied for extracting (person, category)
tuples. In our experiments with the big dataset, the precision of DIPRE is about 90%,
and the recall is about 4%. The low performance of DIPRE is understandable, since
the intention of DIPRE is to focus on the specificity of a pattern in order to increase its
reliability, and the recall of the algorithm can be significant with the compensation of
a very large dataset as seen in the experiments of [Brin (1998a)], in which a repository
consisting of 25 million web pages totalling 147 gigabytes was used. One more thing is
about the computation time of DIPRE is big. In our experiments with the big dataset,
DIPRE iterated 11 times in about 3.5 weeks.

From our observations, there are some factors that decrease the recall of NECE, as
follows:

40

Table 3.9: Results of the RNECE with threshold of 3

Pattern
RNECE-Novalidation RNECE 3
P(%) R(%) F(%) P(%) R(%) F(%)

Exact 61.70 69.87 65.53 94.28 72.73 82.11
Sketch 61.10 72.21 66.19 94.30 77.40 85.02
E. sketch 61.10 72.21 66.19 94.30 77.40 85.02

Table 3.10: Number of generated middles
Exact Sketch E.Sketch Total

N
E

C

C
N

E

N
E

C

C
N

E

N
E

C

C
N

E

NECE 3 198 57 84 31 15 0 385
NECE 4 150 46 73 25 12 0 306
NECE 5 118 44 68 22 12 0 264

RNECE 3 196 54 79 32 8 0 369

• There are some sequences which do not satisfy the criteria for generating a new
pattern.

• LingPipe incorrectly assigned some named entities as person named entities, while
they were actually of another type, such as organization.

• A person may be represented by a pronoun: “He is a worker”, where the pronoun
‘He’ refers to a person named entity in a preceding sentence. This sentence is ignored
because there is no person named entity.

• Person named entities that are not recognized by LingPipe can not be extracted,
because the sentences containing them are removed in Initiation step.

• The category validation function fails to validate a category whose head noun has
a meaning different from its first sense.

• Category may be expressed in plural form, such as “John is one of the well-known
leaders”. We do not treat such cases.

• A sentence may contain several tuples, however not all of them are extracted because
the pattern set in a certain iteration does not cover all tuples of that sentence, so
the sentence was removed in Step 2 of the algorithm in Figure 3.5.

Among the above reasons, the first reason is most often responsible, in comparison with
the rest.

The main reason that decreases precision is the generation of incorrect patterns.

3.6.3 Experiments with NECOE

We extended NECE into NECOE, and NECE-Novalidation into NECOE-Novalidation.
Since a related-to relation was extracted after an ISA relation was extracted, we evaluated
the results of the two relations in quadruples separately. In our experiments, we also set

41

the value of the threshold to 3. The results of our experiments are shown in Table 3.11.
Since extended sketch patterns did not increase the coverage much, we do not show their
results. Some related-to relations are given in Table 3.7.

Table 3.11: Results of quadruple extraction
ISA relations

Pattern NECOE-Novalidation NECOE
P(%) R(%) F(%) P(%) R(%) F(%)

Seed 89.03 35.84 51.11 99.26 35.06 51.82
Exact 63.41 72.47 67.64 94.48 75.58 83.98
Sketch 62.88 74.81 68.33 94.50 80.26 86.80

Related-to relations
P(%) R(%) F(%) P(%) R(%) F(%)

Seed 92.13 41.21 56.94 97.53 39.7 56.43
Exact 79.34 48.24 60.00 97.03 49.25 63.97
Sketch 76.64 52.76 62.50 96.64 57.64 72.33

From our observations, the reason that decreases the precision of related-to relations
is derived from the extraction of incorrect ISA relations. The precision of related-to
relations is 100%, if it is calculated on correctly extracted ISA relations. Since the related-
to relations has a relatively large portion in ISA relations that can not be extracted by
NECE, this is the reason that decreases the recall of related-to relations.

3.6.4 Experiments with Information Search

In this section, we carried out the experiments to consume the extract quadruples for
answering some named-entity-related questions, as discussed Section 3.5. Since we con-
centrated on extracting the relations related to person named-entities, the experiments
can answer person named-entity-related questions: who and list. Because freely existing
co-reference resolution tools (e.g., Lingpipe and OpenNLP), when applied to the WSJ
corpus, did not give reasonable results, we do not try to answer which questions. For
the sake of reference, we call the system which consumes the quadruples extracted by
NECOE to answer who and list questions PSearch (standing for Person Search). A sim-
ilar system that uses quadruples extracted by NECOE-Novalidation to answer questions
was also written, and called PSearch-Novalidation.

Answering who questions

From the test set, we randomly selected 50 person to construct 50 who questions (e.g.,
“Who is Jeffrey Feiner?”). We separated two types of answers:

• Answers without objects : when a quadruple (named entity, category, related-to,
object) having the same named entity as that of question was found, an answer:
named entity is a(n) category (e.g., “Jeffrey Feiner is a(n) analyst”) was constructed.

• Answers with objects : when a quadruple (named entity, category, related-to, ob-
ject) having the same named entity as that of question was found, an answer:

42

named entity is a(n) category related-to object (e.g., “Jeffrey Feiner is a(n) analyst
at Merrill Lynch Capital Markets”) was constructed.

In general case, several people may have the same name, so the answer to a who question
may be a list of named entity is a(n) category related-to object. Since the answer of a
question of our system may include some incorrect named entity is a(n) category related-
to object, we used cosine to measure the similarity between the returned answer and
the correct answer. Let A = (r1, r2, . . . , rn) be a returned answer of a question, where
ri is “named entity is a(n) category [related-to object]”. Let C = (c1, c2, . . . , cm) be the
answer of that question, where ci is “named entity is a(n) category [related-to object]”.
The cosine(A, C) is defined as:

cosine(A, C) =

l∑
i=1

1√
n∑

j=1

1
m∑

k=1

1

(3.1)

where l is the number of correct ri (ri is the same as a certain cj).
Suppose, for an answer A, if cosine(A, C) ≥ threhold, then A is an correct answer,

the results of the experiments with who questions are shown in Table 3.12 and 3.13.

Table 3.12: Answers of who questions without objects

Threshold
PSearch PSearch-Novalidation

Precision% Recall% F1% Precision% Recall% F1%
0.5 97.44 76.00 85.39 87.80 72.00 79.12
0.7 97.44 76.00 85.39 80.49 66.00 72.53
0.8 89.74 70.00 78.65 73.17 60.00 65.93
1.0 87.18 68.00 76.40 73.17 60.00 65.93

Table 3.13: Answers of who questions with objects

Threshold
PSearch PSearch-Novalidation

Precision% Recall% F1% Precision% Recall% F1%
0.5 92.31 72.00 80.90 92.68 76.00 83.52
0.7 92.31 72.00 80.90 85.37 70.00 76.92
0.8 89.74 70.00 78.65 73.17 60.00 65.93
1.0 87.18 68.00 76.40 73.17 60.00 65.93

Answering list questions

We separated two types of list questions:

• list questions without objects, e.g., “Give me the list of analyst?”

43

• list questions with objects, e.g., “Give me the list of analyst at Merrill Lynch Capital
Markets?”

We also used cosine to measure the similarity of the returned answers and correct ones.
For list questions without objects, we randomly selected 30 different categories to construct
questions. The results of the experiment is shown in Table 3.14.

For list questions with objects, we randomly constructed 40 questions which have
different category related-to object. The results of the experiment is shown in Table 3.15.
Since all the cosine value in this experiment were 1, we did not used the threshold.

Table 3.14: Answers of list questions without objects

Threshold
PSearch PSearch-Novalidation

Precision% Recall% F1% Precision% Recall% F1%
0.5 100.00 86.67 92.86 96.15 83.33 89.29
0.7 88.46 76.67 82.14 88.46 76.67 82.14
0.8 84.62 73.33 78.57 76.92 66.67 71.43
1.0 69.23 60.00 64.29 65.38 56.67 60.71

Table 3.15: Answers of list questions with objects
PSearch PSearch-Novalidation

Precision% Recall% F1% Precision% Recall% F1%
100 77.50 87.32 100 62.50 76.92

3.7 Summary

In this chapter, we proposed a method for automatically extracting actually categories of
named entities from text documents in a data-driven way. We proposed new constraints
for generating new patterns, as well as a method for validating whether a new tuple is
correct or not.

The extension of the algorithm was applied to extract (named entity, category, related-
to, object) quadruples, each of them describes the relations: named entity ISA category,
and category related-to object. These two relations give detail information about the
named entity, so they are consumed to answer some named-entity-related question types.

We performed experiments on the Wall Street Journal corpus, and obtained good
results.

In the current implementation, we have not taken the priority of patterns in the same
pattern set, so that more reliable pattern is selected before less reliable ones with the
purpose to improve the precision. This is a possible problem for future study.

Our model can be applied to extract fine categories of other named entity types, such
as organization and location, so that it can help answer what questions.

44

Chapter 4

Application of RST Relations for

Information Search

In this chapter, we present a method to extract answers to some non-named-entity-related
questions based on the Rhetorical Structure Theory. We exploit the fact that one text
span can be the answer to a question related to its adjacent text span.

4.1 Introduction

There are various question types beside named-entity related questions, e.g., “Why didn’t
Mr. Bush need to wait for a law?” or “How to preserve the integrity of the Arby’s system?”

This chapter proposes a method for extracting answers (not pages) to some question
types from documents by exploiting the structure of documents. The structure of docu-
ments includes the characteristic that one text span can be an answer to a question related
to the adjacent text span. The structure of documents can be represented by Rhetorical
Structural Theory proposed by [Mann & Thompson (1988)]. In their proposal a docu-
ment is represented in form of a tree, in which there are relations between adjacent text
spans. Each relation has a specified meaning and some relations are clue for extracting
answers to some types of questions.

To preserve the local order of words in a sentence, we propose to represent sentences
of documents and questions in the form of Ternary expressions. The indexing and match-
ing process is based on Ternary expressions [Katz (1991)]. Our experiments prove this
method to be better than keyword-based indexing and matching.

4.2 Related work

The Rhetorical Structure Theory has been applied to solved some NLP problems such as
query-based summarization [Bosma (2004)], Information Retrieval [Marir & Haouam (2004)],
news program generation [Lindley, et al. (2001)] or question answering [Fukumoto (2007)].

45

[Lindley, et al. (2001)] exploits the RST to develop a interactive video system in which
a linear video presentation is generated dynamically and adaptively from an underlying
database having no predetermined linear structure. The system targets at creating a
presentation tuned to the needs and interests of a particular viewer. For example, the
system can be applied for narrative which, basically, is about a telling a story, and hence
involves a system of causally interrelated events, actions and situations.

[Bosma (2004)] studied RST for removing unimportant part of a paragraph in order to
generate a concise answer to a query. In other words, [Bosma (2004)] focused on creating
an extractive summarization or to extract the most salient sentences from a document.

[Marir & Haouam (2004)] used RST for information retrieval. Since the rhetorical re-
lation between units of text can be identified based on cue phrases, [Marir & Haouam (2004)]
saved the discovered rhetorical relations into the database. In the serving mode, for a
given query, the system can search the collection of documents not only keywords (as
traditional Information Retrieval systems), but also rhetorical relations. The technique
gives improvements over keyword-based search system.

[Fukumoto (2007)]1 developed a question answering system (for Japanese) which can
answer some non-factoid question types, e.g., why, definition and how to. [Fukumoto (2007)]
identified patterns for extracting answer candidates for each question type. For why-type
questions, the inter-sentential relations proposed in RST (e.g., the causal and manner
relations) were chosen as the clues for extracting answers. If one element of these rela-
tions matches the question, the other element will be the answer. If one sentence matches
extraction patterns, the sentence is deemed as an answer candidate. The semantic clue
words which mean ‘reason’, ‘cause’ and ‘background’ were also used as clues for extracting
answers. For definition-type questions, [Fukumoto (2007)] analyzed the question answer
data and newspaper articles, and extracted patterns for this question type. These patterns
are descriptive patterns which consist of some terms and their definition or descriptions.
For how-type questions, some kinds of approach as the definition-type questions were
applied. The patterns of these questions are description of procedures. For extracting
answers to why-type questions [Fukumoto (2007)] did not identify the rhetorical relations
between the units of text. This is different from our approach in which we need to identi-
fied the rhetorical relations, and index the documents with respect to these relations for
later answer extraction as discussed in the subsequent sections.

4.3 Rhetorical Relation Exploration

This section introduces the Rhetorical Structure Theory (RST), and how RST can help
to extract answers to some question types. Rhetorical Structure Theory was proposed by
[Mann & Thompson (1988)], which is a method to present the coherence of texts so that
the reader can understand the discourse structure. [Mann & Thompson (1988)] defined
a set of 23 rhetorical relations. This model represents the structure of a text in the form
of a tree (called “rhetorical tree”, “discourse tree” or “RST tree”) that labels relations
between adjacent text spans, such as clauses (lowest level), sentences, or paragraphs. The
smallest text spans (leaves of the discourse tree) are called elementary discourse units
which correspond to clauses or clause-like units with independent functional integrity.

1The Fukumoto’s study was published in 2007, and our study in this chapter was published in 2006.

46

Internal nodes of a discourse tree are non-overlapping spans that are larger than clauses,
and the root node spans the entire document.

Constraints on N : presents a situation that is not a volitional action.
Constraints on S : none.
Constraints on the N+S combination:

S presents a situation that, by means other than motivat-
ing a volitional action caused the situation presented in N;
without the presentation of S, reader might not know the
particular cause of the situation;
a presentation of N is more central than S to Writer’s pur-
pose in putting forth the N-S combination.

The effect : Reader recognizes the situation presented
in S as a cause of the situation presented in N.

Figure 4.1: Definition of the Non-volitional cause relation.

There is a relation (called “rhetorical relation”) between adjacent spans (spans having
the same parent), e.g., solutionhood, elaboration or purpose. This relation can be asymmet-
ric or symmetric. An asymmetric relation, also called a nuclear-satellite relation, involves
two spans, one of which is more essential to the writers goals than the other. The more
important span in a rhetorical relation is called a nucleus (N); whereas the less important
one is called a satellite (S). The nucleus of a rhetorical relation is comprehensive and
independent of the satellite, but not viceversa. For example, the sentence “[Because the
car broke down], [John was late for the meeting.]” can be divided into two text spans:
“Because the car broke down”(denoted as SP1), and “John was late for the meeting” (de-
noted as SP2). The deletion of the clause SP1 does not significantly affect the meaning of
the whole text. The clause SP2 is still understandable without the clause SP1. Whereas,
the clause SP1 is is not understandable without the clause SP2. Hence, the clause SP1 is
more important than the second clause in respect to the writers purpose, so it serves as
the nucleus, and the clause SP1 is the satellite. There is an asymmetric rhetorical rela-
tion “non-volitional cause” between the two spans according to the definition in Figure 4.1
[Mann & Thompson (1988)]. The rhetorical structure of this sentence is represented in
Figure 4.2.

A symmetric relation, also called a multi-nuclear relation, involves two or more spans,
each is equally important in respect to the writers intention in producing texts, such as

Figure 4.2: An example of a rhetorical relation.

47

the two clauses “Three seats currently are vacant” and “and three others are likely to be
filled within a few years” in the sentence “[Three seats currently are vacant][and three
others are likely to be filled within a few years.]”. Every node in a symmetric relation is
a nucleus.

Each rhetorical relation has a specified meaning and constraints, as the definition of
the non-volitional cause rhetorical relation given in Figure 4.1. From the definition, in
the rhetorical relation in Figure 4.2, SP1 is the cause of the situation presented in SP2.
Therefore, span SP1 is an answer to the question “Why was John late?” which relates
to the situation stated in SP2. In general, SP2 may consist of smaller text spans. When
the question is related to a child node of SP2, how to extract the answer in this case is
a problem. Fortunately, according to [Marcu (2000)], “If a rhetorical relation R holds
between two text spans of the tree structure of a text, that relation also holds between the
most important units of the constituent spans”. Hence, if the question is related to one
of the most important descendants of span SP2, then SP1 is still an answer.

The process of constructing the discourse tree of a document can be automatic as
presented in [Marcu (2000), Le (2004), Nomoto (2004)].

4.3.1 Rhetorical Relation Application

RST relations can be applied to extracting answers to a questions of some specific types.
As discussed in Section 4.3, the span SP2 has a non-volitional cause relation with span
SP2, so if given a question “Why was John late?”, then the span SP1 is an answer. This
is the idea how to apply rhetorical relations to extract the answers to questions.

The types of question given in the TREC [Voorhees (1999)] are divided into 3 types:
list, definition and factoid questions. These are all factual questions and the answers can
be directly extracted from the sentences that match the questions. There can be more
types of questions which are frequently asked as seen in the Frequently Asked Questions
(FAQ)2:

• How to questions: e.g., “How can I recover space after installing updates?”.

• Suggestion questions: e.g., “What should I do about compilation error in V6.1.b10?”.

• Why questions: e.g., “Why is the machine is booting over and over?”.

• Yes/no questions: e.g., “Are there any ftp sites?”

Constraints on N : none.
Constraints on S : represents a problem.
Constraints on the N+S combination: the situation presented in N

is a solution to the problem stated in S.
The effect : Reader recognizes the situation presented in N

as a solution to the problem presented in S.

Figure 4.3: Definition of the Solutionhood relation.

2http://www.faqs.org

48

As defined in Figure 4.3 [Mann & Thompson (1988)], Solutionhood relation indicates the
situation presented in nucleus is a solution to the problem stated in satellite. Also as

Constraints on N : presents an activity.
Constraints on S : presents the situation that is unrealized.
Constraints on the N+S combination: S presents a situation to be realized

through the activity in N.
The effect : Reader recognizes that the activity in N is initiated in

order to realize S.

Figure 4.4: Definition of the Purpose relation.

defined in Figure 4.4 [Mann & Thompson (1988)], Purpose relation indicates that satellite
presents a situation to be realized through the activity in nucleus. Thus, solutionhood and
purpose relations are clues for extracting answers to “How to” questions.

For “suggestion” questions, solutionhood relation gives a possible solution, and is suit-
able for extracting answers.

As defined in [Mann & Thompson (1988)], Volitional cause (Figure 4.5), non-volitional
cause (Figure 4.1), Volitional result (Figure 4.6), and Non-volitional cause (Figure 4.7) all
are related to causal relation, therefore they are clues for extracting answers to “Why”
questions.

For “yes/no” questions, we can extract the answers based on the facts, no rhetorical
relation is needed.

Constraints on N : presents a volitional action or else a situation that could
have arisen from a volitional action.

Constraints on S : none.
Constraints on the N+S combination:

S presents a situation that could have caused the agent
of the volitional action in nuclear to perform that action;
without the presentation of S, R might not regard the ac-
tion as motivated or know the particular motivation; N is
more central to writer’s purpose in putting forth the N-S
combination than S is.

The effect : Reader recognizes the situation presented in S as a cause
for the volitional action presented in N.

Figure 4.5: Definition of the Volitional cause relation.

Table 4.1: The question types and corresponding rhetorical relations
Question types Rhetorical relations
How to Solutionhood, purpose

Suggestion Solutionhood

Why Volitional cause, non-volitional cause, volitional result,
non-volitional result

49

Constraints on N : none.

Constraints on S :
presents a volitional action or situation that could have
arisen from a volitional action.

Constraints on the N+S combination:
N presents a situation that could have caused the situation
presented in S;
the situation presented in N is more central to writer’s
purposes than is that presented in S.

The effect :
Reader recognizes that the situation presented in N could
be a cause for the action or situation presented in S.

Figure 4.6: Definition of the Volitional result relation.

Constraints on N : none.
Constraints on S : presents a situation that is not a volitional action.
Constraints on the N+S combination:

N presents a situation that caused the situation presented
in S; presentation of N is more central to writer’s purposes
in putting forth N-S combination than is the presentation
of S.

The effect :
Reader recognizes that the situation presented in N could
have caused the situation presented in S.

Figure 4.7: Definition of the Non-volitional result relation.

The question types and corresponding helpful rhetorical relations are listed in Ta-
ble 4.1. Other types irrelevant to rhetorical relations are not listed. In order to use
rhetorical relations for extracting answers, we need to construct the rhetorical structure
of documents and then index documents in such a way that the rhetorical structure of
documents remains. The technique for indexing documents is mentioned in Section 4.4.
The method for retaining rhetorical structure of documents is described in Section 4.5.
After these steps, we have a knowledge base for answering questions. In answering mode,
the system operates as the algorithm described in Figure 2, where Answers.add(span,d)
means to add text belonging to span in the document d to the answer list. The method
for matching the question against the knowledge base is described in Section 4.4.

4.4 Indexing Documents and Matching Questions

This section gives details on how we represent text segments, index documents and
match questions. We borrow the sentence representation style used by natural language
Question and Answering system “SynTactic Analysis using Reversible Transformation”
(START3) [Katz (1991)], which successfully answers a series of questions by using this
representation style.

3START is serving at http://start.csail.mit.edu/

50

Search(Question q)
1. Identify the type of question q;
2. Identify a set of rhetorical relations R corresponding to this question type;
3. if (is empty(R)) then
4. return “This type of question is not supported!”;
5. else
6. Match the question q against the knowledge base;
7. if (no matches found) then return “Not found!”;
8. else
9. for (each match m) do
10. for (each relation r in R)do
11. Find a span sp2 (in the rhetorical structure of a document d containing
12. the match m) having the relation r with the span sp1 which contains
13. the match m (or one of its most important constituents contains the
14. match m);//As depicted in Fig 4.9.
15. if (found) then Answers.add(sp2, d);
16. end for
17. end for
18. return Answers;

Figure 4.8: The search algorithm

Figure 4.9: Finding an expected span.

4.4.1 Indexing and Answering in START

A sentence, in START, is divided into kernel sentences which usually contain one verb.
For example, the sentence “If the orator wants to persuade people, he must speak the
things people wish to hear.” can be broken up into five smaller units [Katz (1991)], where
the subscripts are used to marked the same entities:

(S1) The oratori wants S2.
(S2) The oratori persuades peoplej.
(S3) He must speak thingk.
(S4) Peoplek wish S5.
(S5) Peoplek hear the thingsk.

A kernel sentence is represented by a Ternary expression (T-expression) which is a triple
of 〈subject relation object〉, where relation is an infinitive verb, a preposition or some

51

special words (e.g., describe relation). Other information of the sentence (such as tense,
voice, negation, auxiliary verbs and adverbs) is stored in another place called history.
For example, the kernel sentence S2 can be represented as 〈orator speak thing〉. For
complex sentences, START allows any T-expression to take another T-expression as its
subject or object, as seen in the above example, S5 serves as the object of the T-expression
representing S4.

In answering mode, START converts questions into T-expressions and performs the
search against its knowledge base. For example, if given the above fact “John Adams dis-
covered Neptune”, START creates the T-expression 〈“John Adams” discover Neptune〉
and stores it in its knowledge base. Then if a user asks the question “Who discovered Nep-
tune?”, it converts the question into the T-expression 〈$who discover Neptune〉, where
$who serves as a matching variable. This T-expression is matched against the knowl-
edge base, in this case, $who is matched with “John Adams”, then START uses the
T-expression 〈“John Adams” discover Neptune〉 with its history to restore the sentence
“John Adams discovered Neptune” as the answer.

4.4.2 Indexing in Our System

We propose a new way of indexing based on T-expressions. The idea is to group T-
expressions of a sentence (or a text segment) together so that we can use cosine measure
to calculate the similarity of a text segment and a question as described in the next
section. The method for grouping T-expressions of the same text segment is mentioned
in Section 4.5. We use T-expressions for the indexing and matching processes, not for
the purpose of generating answers. When a span is found to be an answer, all the text
segments belonging to this span are collected and returned.

4.4.3 Matching in Our System

We use cosine measure for scoring the similarity between a question and a text segment.
Suppose a question q is converted into T-expressions (tq1, tq2, . . . , tqn) and a text segment
s is converted into T-expressions (ts1, ts2, . . . , tsl). In general cases, n and l are not equal,
thus we have to normalize them to be the same size. Let m be the total of unique T-
expressions of q and s. Let (tc1, tc2, . . . , tcm) be the vector of unique T-expressions of q
and s. Then s and q can be represented as vectors of size m (t1, t2, . . . , tm), where ti = 1
if T-expression tci is present in its T-expression list, otherwise ti = 0. If one T-expression
of the question q contains a variable, we must treat that T-expression differently from
ordinary T-expressions in comparison. When two T-expressions are the same except for
a variable, they are regarded as being matched. For example, if there is a T-expression
〈$who be worker〉, this T-expression and T-expressions like 〈John be worker〉 and 〈James
be worker〉 (in the knowledge base) are said to be matched. Finally, the cosine between

52

the question q and the text segment s is defined as follows:

cosine(q, s) =

m∑
k=1

tk(q)tk(s)√
m∑

k=1

tk(q)2
m∑

k=1

tk(s)2

(4.1)

where tk(s), tk(q) are the presence of the kth element of T-expressions of the text segment
s and question q correspondingly.

This method provides the flexibility for matching process, and users have an option to
adjust the threshold to filter the result with respect to a degree of similarity in the range
(0, 1].

There can be history (tense, negation, auxiliary verbs and adverbs) attached to a T-
expression. In the matching process we must consider this issue. For yes/no questions,
we just measure the similarity between the question and a sentence without considering
negation and tense because a match is always an answer. For example, if we have the
fact “John bought a new car in June”, and the question is any one of “Did John buy
a car in June?”, “Didn’t John buy the car in June” or “Has John bought a car?” that
sentence is still the answer. For other types of questions, if the question and a sentence
do not match regarding the negation or tense, we will not consider that sentence to be
a candidate as an answer. For example, given a question “File access is denied. How to
fix this problem?” it is incorrect to match the T-expressions of “File access is denied”
with the T-expression of the fact “File access is not denied”. We do not take adverbs into
account because they do not affect the precision of answers.

4.5 Experiments and Evaluation

We used the RST Discourse Treebank4 [Carlson, et al. (2001)] for testing because the task
of building RST trees of documents is outside the scope of this study, and there are some
studies on this issue [Marcu (2000), Le (2004), Nomoto (2004)]. This Treebank contains
a subset of documents from the Wall Street Journal which are annotated according to
RST theory. We used database management system (DBMS) MySQL5 for storing data.
A tree can be represented by parent-child relation. A text span may consist of multiple
T-expressions, so this can be represented as a 1-N (one-to-many) relation. Thus, the
technique for retaining RST structure, and grouping T-expressions of the same text span
is implemented using the relational DBMS MySQL.

The module of converting sentences into T-expressions is a rule-based system. We
firstly used the Charniak parser6 [Charniak (2000)] (whose F-score is 90%) to parse
sentences, and secondly the T-expressions were built based on the output of Charniak
parser. Starting from a set of basic conversion rules from a sequence of part-of-speech
(POS) tags to T-expressions, e.g., “Noun1+(Preposition+Noun2)” was converted into

4The corpus is distributed by LDC:
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002T07

5The software is available at http://www.mysql.com
6The source code is available at http://www.cs.brown.edu/people/ec/

53

〈Noun1 Preposition Noun2〉, complex sequences of POS tags were recursively processed
at the lowest level. For example: for Noun1+(Preposition1+(Noun2 + (Preposition2 +
Noun3))), after having generated 〈Noun2 Preposition2 Noun3〉, the head noun Noun2

was kept for generating 〈Noun1 Preposition1 Noun2〉. The complexity of this module is
that of Charniak parser, because the converter of a parsed sentence into T-expressions
can run in real time. The precision, recall and F-score of this module are 92%, 90% and
91%, respectively.

We built another similar system, which used keywords instead of T-expressions as a
baseline. We created a question set consisting of 91 how to, 64 why, 25 suggestion and
259 factual questions. In keyword-based system, we set the threshold for cosine measure
to 0.30 for factual questions and 0.20 for other questions, while in the T-expression-based
system we set the threshold to 0. Non-factual questions have corresponding rhetorical re-
lations to filter the results while factual questions do not. In order to reduce the number
of answers returned to factual questions, we set a higher threshold for factual questions
in the keyword-based system. We calculated the precision (P), recall (R), and F1-score
(F) as follows:

P =
P

AcorrectP
Areturned

∗ 100%, R =
P

Acorrect

Total Questions
∗ 100%, F= 2RP

R+P

where Areturned is a returned answer; Acorrect is a correctly returned answer; Total Questions
is the total number of questions of a certain question class. The results are shown in Ta-
ble 4.2. Using cosine in the matching process, we can not preserve the order of words in
the whole sentence, however, the local order of words in a T-expression is still retained.
This characteristics made T-expression-based experiments give better results than those
of keyword-based ones.

In order to see how effectively the RST contributes to the performance of our system,
we implemented another system which extracts answers based on clue phrases that signal
a rhetorical relation. For example, the clue phrases that usually connect text segments
of causal relations are ‘because’, ‘since’ or “as the results”. Since the causal relations are
clue for answering why-questions, the above clue phrases are also the clues for extracting
answers to why-questions. Similarly, the clue phrases for extracting answers to how-to-
questions are “in order to” or ‘to’. For each question, we extract sentences that are close
to the question. We do this by calculating the cosine(q, s) between the question q and a
sentence s. If cosine(q, s) > threshold and s contains a clue phrase with respect to the
type of question q, the sentence s is selected as an answer candidate. If in one document,
there are more than one sentence satisfying the above conditions, the sentence having
the highest cosine(q, s) is selected. The best result of the experiments were recorded in
Table 4.2, and the results of the experiments with different threshold values are shown in
Table 4.3. With this approach, we can only extract answers in cases both the question and
its answer reside in the same sentence. Since in the dataset used in our experiments, the
solutionhood relations (that are clue for extracting answers to suggestion questions) hold
between two sentences (or paragraphs), not between two clauses of the same sentence, in
addition, we did not find any typical clue phrases that signal a solutionhood relation, we
can not extract answers to suggestion questions. From our observations of the experiments
in Table 4.3, when used a small value of threshold, the keyword-based system without
using RST can extract answers to some questions which are not found by the T-expression-
based system with using RST. The reason of this problem is not from RST. This happened

54

Table 4.2: The results of T-expression-based and keyword-based systems, where Avg is
the average answer per question

Type #
T-expression with RST Keyword with RST

P(%) R(%) F(%) Avg P(%) R(%) F(%) Avg
Why 64 83.8 96.9 89.9 1.16 68.9 93.8 79.4 1.36
How to 91 80.1 97.8 88.1 1.21 73.9 96.7 83.8 1.35
Suggestion 25 95.2 80.0 86.9 0.84 77.8 84.0 80.8 1.08
Fact 259 80.6 98.4 88.6 1.22 30.6 85.7 45.1 2.79

Type #
Keyword without RST

P(%) R(%) F(%) Avg
Why 64 30.93 32.97 31.91 1.07
How to 91 45.45 31.25 37.04 0.69

Table 4.3: The results of keyword-based system without using RST with different thresh-
old values, where Avg is the average answer per question

Threshold
How to Why

P(%) R(%) F(%) Avg P(%) R(%) F(%) Avg
0.35 0.56 91.21 1.11 164 0.84 70.31 1.66 83.91
0.40 1.99 75.82 3.89 38.03 3.09 51.56 5.84 16.67
0.45 8.33 54.95 14.47 6.59 12.05 42.19 18.75 3.50
0.50 30.93 32.97 31.91 1.07 45.45 31.25 37.04 0.69

when a question that is paraphrased so that its corresponding T-expressions are totally
different from those of the related sentence in the database.

The limitations that make the T-expression-based system fail to find answers in some
situations are:

• When a question relates to more than one adjacent text segments of a sentence and
T-expressions of the question are different from those of related text segments, the
matching process will fail.

• The question does not match an important constituent of a span which has the
expected relation with the span containing the answer.

• The module for converting a question into T-expressions incorrectly adds a matching
variable in some situations.

• Questions contain proper names which are replaced by pronouns in the knowledge
base.

• Questions are expressed in different ways from the original sentences used to build
the knowledge base.

A possible solution to relieve some limitations is to build T-expressions from the original
sentences (by concatenating text segments of the same sentence), and perform co-reference
on original documents to resolve pronouns.

55

From our observations, not all instances of rhetorical relations listed in Table 4.1 can
help construct answers. The reason is that from a rhetorical relation between two spans,
there hardly be a question related to either spans. For example, in a non-volition-cause
relation in the sentence “Earthquakes cause tidal waves” [Girju (2002)], there hardly be
a causal question related to this sentence.

By representing text segments in T-expressions, we can support for entailment relation.
From one text segment we can entail another one which omits some adjectives. For
example, from the text segment “John bought a new car” is converted into 〈John buy
car〉 and 〈new describe relation car〉, so we can infer the text segment which has the T-
expression 〈John buy car〉 by omitting the T-expressions having describe relation relation.

Another possible improvement is to generate finer-grained T-expressions. In the cur-
rent implementation, the sentence “John and Jane bought a new car” is converted into
two T-expressions 〈“John Jane” buy car〉 and 〈new describe relation car〉. If we convert
the above sentence into three T-expressions: 〈John buy car〉, 〈Jane buy car〉 and 〈new
describe relation car〉, then we can answer a question that is written in a different order,
such as “Did Jane and John buy a new car?”.

4.6 Summary

In this chapter, we proposed a method for finding and extracting answers to some types of
questions based on the rhetorical structure of documents. We exploited the characteristics
of document structure in which one span of text can be an answer to a question related to
the adjacent text span. According to each question type, we identified related rhetorical
relations which help in finding answers. T-expressions were used to index documents and
cosine measure was used in the matching process. Comparison of the two experimental
systems showed that the results of the T-expression-based system were better that those
of keyword-based one.

We currently considered only six rhetorical relations, other ones are still valuable for
further study.

Though the relation definitions of Mann and Thompson are only one well-known case,
we may define any kind of relations that help answer an arbitrary type of question.

In a future study, we intend to apply an ontology, such as WordNet, in the matching
process in order to be able to answer questions that have different linguistic expressions
but the same meaning as some facts.

56

Chapter 5

Question classification

For each question type, a certain strategy is used to extract the answer. Given a question
the system needs to know its type before continuing the next actions. In this chapter,
we study the question classification problem to identify the question type for the system.
Though semi-supervised learning has been studied and applied to many NLP problems
(e.g., text classification), it is not yet studied for question classification. Our first issue
in this chapter is to apply semi-supervised learning for question classification in order
to exploit the unlabeled questions to improve the classification precision. In situations
where the number of question classes is big, the performance of classification algorithms
is adversely affected. Our second issue is to apply hierarchical classifiers for reducing the
number of question classes per classifier. We also applied different learning methods in
this hierarchy as well as the proposal to automatically expand the hierarchy of question
classes for nodes consisting of a large number of classes.

5.1 Introduction

Though in this chapter, question classification is an important step in our final system,
we study it generally and thoroughly so that it can also applied to other systems that
need such functionality, such as Question Answering. Question classification is the task
of identifying the type of a given question among a predefined set of question types. The
type of a question can be used as a clue to narrow down the search space to extract the
answer, and used for query generation in a QA system [Li & Roth (2002)]. Therefore, it
has a significant impact on the overall performance of QA systems.

There have been several studies to solve this problem focusing on supervised learn-
ing [Zhang & Lee (2003), Kadri & Wayne (2003), Li & Roth (2002)]. However, the cost
of making labeled (training) data is high, and a large training data set is needed to
make significant impact on the performance. Also the above methods do not use unla-
beled questions, which are readily available to improve the performance of classification.
In order to utilize both labeled and unlabeled data, firstly, we propose to use semi-
supervised learning. For the semi-supervised learning algorithm, we adopted the Tri-
training [Zhou & Li (2005)], since it has a simple but efficient method of deciding how
to label an unlabeled instance. Tri-training uses three classifiers of the same algorithm,

57

and if any two classifiers of the three classifiers predict the same label for an unlabeled
instance, while the confidence of the labelling of the classifiers are not needed to be ex-
plicitly measured, then that instance is used for further training the other classifier. Such
simplicity gives Tri-training advantages over other Co-training algorithms, such as the
Co-training algorithm presented by [Goldman & Zhou (2000)], which frequently uses 10-
fold cross validation on the labeled set to determine how to label the unlabeled instances
and how to produce the final hypothesis. If the original labeled set is rather small, cross
validation will give high variance and is not useful for model selection.

The simplicity also makes Tri-training faster than the algorithm of Goldman, in which
the frequent use of cross validation makes the learning process time-consuming. At the
beginning, Tri-training bootstrap-samples the labeled data to generate different train-
ing sets for three classifiers in order to make the three classifiers diverse enough so that
the Tri-training algorithm does not degenerate into self-training [Nigam & Ghani (2000)]
with a single classifier. However, question data is sparse and imbalanced. A question
class may include only a few questions in a corpus, so if the bootstrap-sampling pro-
cedure duplicates some questions while omitting some questions in the classes with few
questions, then classifiers being trained on these bootstrap-sampled sets have higher error
rates than those of classifiers being trained on the labeled set. In order to avoid this
drawback, while still keeping classifiers diverse, we propose to use more than one clas-
sifier with different algorithms. The original training set is initially used by the three
classifiers without bootstrap-sampling. Another proposal is to apply more than one views
(feature spaces) in the learning process. This allows the three classifiers to initially be
trained from the labeled set with different feature spaces and still have diversity. In the
second proposal, for the sake of simplicity, in the experiments, we used two different
classification algorithms: Support Vector Machines [Cortes, et al. (1995)] and Maximum
Entropy Models [Berger, et al. (1996)] in combination with two views: bag-of-word and
bag-of-pos&word features. Two classifiers which use the first algorithm are assigned dif-
ferent views, i.e., the first classifier gets bag-of-word and the other gets bag-of-pos&word
features. The third classifier uses the second algorithm with bag-of-word features. With
this strategy, three classifiers have initially different hypotheses.

Question answering track in TREC defines six coarse-grained classes of questions:
abbreviation, description, entity, human, location and numeric which have been used in
several studies [Ittycheriah, et al. (2001)]. However, six classes of questions for a question
answering system in open domain are not sufficient enough. The larger the number of
question classes the better performance of a QA system is. The second problem we con-
sider is in cases where the number of question class is big, the performance of classification
algorithms is affected. In order to reduce the number of question classes for each classifier,
we propose to apply hierarchical classifiers in accordance with question class taxonomy.
Each classifier in the hierarchy identifies a finer-grained class from an input question or
an output of the preceding classifier. The final classifier in the chain of classifiers deter-
mines the fine class (a class at the leaves of the question taxonomy) of a given question.
Another proposal, we try to further expand nodes in the question taxonomy that consist
of a large number of question classes. Because clustering is a unsupervised method to
group classes that are closed (in a certain distance) to each other, we use clustering to
solve this problem.

58

5.2 Related Work

5.2.1 Previous Question Classification Studies

There are two broad classes of approaches to question classification: rule-based and sta-
tistical. In rule-based approaches, an expert manually constructs a number of regular
expressions and keywords corresponding to each type of question. Meanwhile, in statis-
tical approaches, a model is assumed and trained on a sufficiently large set of labelled
questions in order to automatically find out useful patterns for classification.

Statistical approach have advantages over rule-based approach, because they require
less expert labor and are easily portable to other domains. Thus, recent work has concen-
trated on the approach, especially on the supervised learning approach which is a branch
of the statistical approach.

[Kadri & Wayne (2003)] employed error correcting codes in combination with sup-
port vector machine to improve the results of classification. [Zhang & Lee (2003)] and
[Li & Roth (2002)] explored different types of features for improving the classification
accuracy. Zhang and Lee considered bag-of-word, bag-of-ngram (all continuous word se-
quences in a question) features. Especially, they proposed a kernel function called tree
kernel to enable support vector machine (SVM) to take advantage of the syntactic struc-
tures of questions.

Figure 5.1: Li and Roth’s hierarchical classifier

[Li & Roth (2002)] focused on several features: words, pos tags, chunks (non overlap-
ping phrases), named entities, head chunks (e.g. the first noun chunk in a question) and
semantically related words (words that often occur in a specific question type). They
also applied hierarchical classifiers, in which a question is sequentially classified by two
classifiers: coarse classifier and fine classifier. [Li & Roth (2002)] called the set of all

59

possible class labels for a given question a confusion set. The initial confusion set of
any question is C0 = {c1, c2, . . . , cn}, the set of all the coarse classes. The coarse classi-
fier determines a set of preferred labels C1 = Coarse Classifier(C0), C1 ⊆ C0 so that
|C1| ≤ 5. Each coarse class label1 in C1 is then expanded to a fixed set of fine classes
according to the class hierarchy. Concretely, suppose the coarse class ci is mapped into
the set ci = {fi1, fi2, . . . , fim} of fine classes, then C2 =

⋃
ci∈C1

ci. Finally, the fine clas-
sifier identifies a set of preferred labels of fine classes C3 = Fine Classifier(C2) so that
C3 ⊆ C2 and |C3| ≤ 5. The [Li & Roth (2002)]’s of the hierarchical classifier is depicted
in Figure 5.1. The main purpose of their approach is to allow one question to be possible
to belong to more than one classes. However, when C1 (with |C1| ≤ 5) is mapped into
C2, the number of fine classes in C2 may be still large. Therefore, their purpose is not the
same as ours in which we try to reduce the number of classes for each classifier.

5.2.2 Semi-supervised Learning Algorithms

Co-training Algorithm

The co-training paradigm applies when accurate classification hypotheses for a task can
be learned from either of two sets of features of the data, each called a view. The intuition
behind [Blum & Mitchell (1998)]’s co-training algorithm is that two views of the data can
be used to train two classifiers that can help each other. Each classifier is trained using
one view of the labeled data, and then used to predicts labels for unlabeled examples.
The most confident predictions of each classifier are selected and adding the corresponding
examples with their predicted labels to the other’s available training data. According to
[Blum & Mitchell (1998)], the condition for co-training algorithm works exactly is that
the two views have to satisfy the two assumptions: firstly each view itself is sufficient to
label task (or is sufficient to build a good classifier); the second is independent assumption
of the two views. In the original definition of co-training, [Blum & Mitchell (1998)] stated
conditional independence of the views as a required criterion for co-training to work.

In particularly, suppose that each example is represented by a feature vector x drawn
from a set of possible values (an instance space) X. The task is to learn a classification
function f : X → Y where Y is a set of possible labels. The characteristics of co-training
can be described as follows.

• The features can be separated into two types: X = X1 × X2 where X1 and X2

correspond to two different views of an example. In the named entity task, X1

might be the instance space for the spelling features, X2 might be the instance
space for the contextual features. By this assumption, each element x ∈ X can also
be represented as (xl, x2) ∈ X1 ×X2.

• Each view of the example is sufficient for classification. That is, there exist functions
fl and f2 such that for any example x = (xl, x2), f(x) = fl(Xl) = f2(x2). We never
see an example x = (xl, x2) in training or test data such that fl(xl) 6= f2(x2).

Thus the method makes the fairly strong assumption that the features can be par-
titioned into two types such that each type alone is sufficient for classification (xl and

1In this chapter, the terms: question class, question label, class label, class, label are used interchange-
ably

60

x2 are not correlated too tightly). Now assume we have n pairs (xl,i, x2,i) drawn from
X1×X2, where the first m pairs have labels yi, whereas for i = m+1, . . . , n the pairs are
unlabeled. In a fully supervised setting, the task is to learn a function f such that for all
i = 1, . . . ,m, f(xl,i, x2,i) = yi. In the co-training case, [Blum & Mitchell (1998)] argued
that the task should be to induce functions fl and f2 such that:

1. f1(x1,i) = f2(x2,i) = yi, for i = 1, . . . ,m

2. f1(x1,i) = f2(x2,i), for i = m + 1, . . . , n

So fl and f2 must (1) correctly classify the labeled examples, and (2) must agree
with each other on the unlabeled examples. The key point is that the second con-
straint can be remarkably powerful in reducing the complexity of the learning problem.
[Blum & Mitchell (1998)] gave an example that illustrates just how powerful the second
constraint can be. Consider the case where |X1| = |X2| = N and N is a “medium”
sized number so that it is feasible to collect O(N) unlabeled examples. Assume that the
two classifiers are “rote learners”: that is, fl and f2 are defined through look-up tables
that list a label for each member of X1 or X2. The problem is a binary classification
problem. The problem can be represented as a graph with 2N vertices corresponding
to the members of X1 and X2. Each unlabeled pair (xl,i, x2,i) is represented as an edge
between nodes corresponding to xl,i and x2,i in the graph. An edge indicates that the
two features must have the same label. Given a sufficient number of randomly drawn
unlabeled examples (i.e., edges), we will induce two completely connected components
that together span the entire graph. Each vertex within a connected component must
have the same label – in the binary classification case, we need a single labeled example
to identify which component should get which label. The original co-training algorithm
of [Blum & Mitchell (1998)] is presented in Figure 5.2.

co-training(L, U,K)
Input: The labeled set L;

The unlabeled set U ;
The number of iteration K;

Output: The augmented labeled set L;
1. Create a pool U ′ of examples by choosing u examples at random from U ;
2. k ← 0;
3. repeat until k > K
4. k ← k + 1;
5. use L to train a classifier h1 that considers only the x1 portion of x;
6. use L to train a classifier h2 that considers only the x2 portion of x;
7. allow h1 to label p positive and n negative examples from U ′;
8. allow h2 to label p positive and n negative examples from U ′;
9. add these self-labeled examples to L;
10. randomly choose 2p + 2n examples from U to replenish U ′;
11. end repeat

Figure 5.2: The original Co-training algorithm

61

Self-training Algorithm

This is also another approach of semi-supervised learning. In self-training, a single clas-
sifier is used to label questions in the unlabeled set to augment the labeled set for
further training. The pseudo-code of the self-training algorithm is depicted in Fig-
ure 5.3 [Nigam & Ghani (2000)], where L, U are the labeled and unlabeled sets, cor-
respondingly; θ is a threshold in the range of [0,1]; m is the number of iterations (m is
20 in our experiments); Learn is a classification algorithm; U ′ is a subset of unlabeled
questions (U ′ ⊆ U); L′ is a set of questions that are labeled at each iteration. In the
training loop, we select a pool U ′ of unlabeled questions smaller than U , as suggested
by [Blum & Mitchell (1998)].

In each iteration, a subset U ′ of unlabeled questions is selected, and the set L′ is created
by selecting questions from U ′ which are predicted by the hypothesis h with confidence
(prediction probability) greater than a threshold θ (θ is 0.9 in our experiments). The
union of L′ and L is used to train the classifier. Note that L′ is not merged with L in each
iteration. Instead, it is regarded as unlabeled questions, and put back into the unlabeled
set U again. The training process terminates after m iterations.

self-training(L,U,Learn, θ,m)
Input: The labeled set L;

The unlabeled set U ;
The threshold θ;
The number of iteration m;
The learning algorithm Learn;

1. Create a subset U ′ by randomly selecting examples from U ;
2. h← Learn(L);
3. repeat m times
4. L′ ← ∅ ;
5. for every x ∈ U ′

6. if the prediction h(x) has the confidence greater than θ then
7. L′ ← L′ ∪ {(x, h(x))} ;
8. end for
9. h← Learn(L ∪ L′) ;
10. Re-create the subset U ′ by randomly selecting examples from U ;
11. end repeat
12. Output: the learned hypothesis h;

Figure 5.3: The Self-training algorithm

The Tri-training Algorithm

This is also another semi-supervised learning algorithm proposed by [Zhou & Li (2005)].
In the Tri-training algorithm, three classifiers: h1, h2 and h3 are initially trained from
a set by bootstrap-sampling the labeled set L. For any classifier, an unlabeled instance
can be labeled as long as the other two classifiers predict the same label. For example, if
h1 and h2 agree on the labelling of an instance x in the unlabeled set U , then x can be
labeled for h3. Obviously, in this scheme, if the prediction of h1 and h2 on x is correct,

62

then h3 will receive a valid new instance for further training; otherwise, h3 will get an
instance with a noisy label. Nonetheless, as claimed in [Zhou & Li (2005)], even in the
worse case, the increase in the classification noise rate can be compensated for, if the
number of newly labeled instances is sufficient.

tri-training(L,U ,Learn)
Input: The labeled set L;

The unlabeled set U ;
The classification algorithm Learn;

1. for i ∈ {1..3} do
2. Si ← BootstrapSample(L);
3. hi ← Learn(Si);
4. e′i ← 0.5; l′i ← 0;
5. end for
6. repeat until none of hi (i ∈ {1..3}) changes
7. for i ∈ {1..3} do
8. Li ← ∅;updatei ← FALSE;
9. ei ←MeasureError(hj&hk) (j,k 6=i);
10. if (ei<e

′
i) then

11. for every x ∈ U do
12. if hj(x)=hk(x) (j, k 6= i)
13. then Li ← Li ∪ {(x, hj(x))};
14. end for
15. if (l′i=0) then l′i ← b ei

e′
i−ei

+ 1c;
16. if (l′i<|Li|) then
17. if(ei|Li|<e

′
il
′
i) then updatei ← TRUE;

18. else if l′i>
ei

e′
i−ei

19. then Li ← Subsample(Li, d e′
il

′
i

ei
− 1e);

20. updatei ← TRUE;
21. end for
22. for i ∈ {1..3} do
23. if updatei = TRUE then
24. hi ← Learn(L ∪ Li);e

′
i ← ei;l

′
i ← |Li|;

25. end for
26. end repeat
27. Output:h(x)← arg max

y∈label

∑
i:hi(x)=y

1;

Figure 5.4: The original Tri-training algorithm

Also in the algorithm, each classifier is initially trained from a data set generated
by bootstrap-sampling the original labeled set, in order to make classifiers diverse. If
all the classifiers are identical, then for any of three classifiers, the unlabeled instances
labeled by the other two classifiers will be the same as those labeled by itself, thus, Tri-
training becomes self-training with a single classifier. The pseudo-code of the algorithm
is described in Figure 5.4, where Learn is a classification algorithm; Si is a labeled set
bootstrap-sampled from the labeled set L. e′i is the error rate of hi in the (t-1)th round.

63

With the assumption that the beginning error rate is less than 0.5, therefore e′i is initially
set to 0.5; ei is the error rate of hi in the tth round; Li is the set of instances that are
labeled for hi in the tth round; l′i is the size of Li at (t-1)th round, and in the first round
it is estimated by b ei

e′
i−ei

+ 1c; Subsample(Li, s) function randomly removes |Li| − s

number of instances from Li in order to make current round have better performance
than that of the previous round, as proved in [Zhou & Li (2005)]; MeasureError(hj&hk)
function attempts to estimate the classification error rate of the hypothesis derived from
the combination of hj and hk. Because it is difficult to estimate the classification error
rate on the unlabeled instances, the algorithm only estimates on the labeled set with the
assumption that both the labeled and unlabeled instance sets have the same distribution.
In each iteration, Li is not merged with the original labeled set L. It is put into the
unlabeled set U as unlabeled instances.

The interesting point in the Tri-training algorithm is that, in order to ensure that the
current round of training has better performance than that of the previous round, the

size of each newly labelled set Li must not be greater than d e′
il

′
i

ei
− 1e. If it is greater

than this value, the function Subsample(Li, s) is used to randomly remove redundant
instances. The three classifiers are refined in the training process, and the final hypothesis
is produced via majority voting. For the sake of saving space, other details can be seen
in [Zhou & Li (2005)].

5.3 Modifications of Tri-training Algorithm

In this section, we describe the problem of the original Tri-training algorithm when ap-
plying to question classification, and give two proposals to improve it.

Due to its nature, question data type is very sparse and imbalanced as shown in
Table 5.2. As stated in [Joachims (1998)], text data type, when represented in the vector
space model, is very sparse. For each document, the corresponding document vector
contains only a few entries which are non-zero. A question contains quite a few words
in comparison with a document, so question data is even more sparse than text data.
Because of the imbalance, after bootstrap-sampling, each newly created labeled set misses
a number of questions as compared to the original labeled set. If the missed questions are
in a class which contains only few questions, then the initial error rate of each classifier
increases when being trained from these data sets. The final improvement after learning
sometimes does not compensate for this problem. In order to avoid this drawback, we
propose to use more than one algorithm for the three classifiers. Each classifier is initially
trained on the labeled set. Our experiments showed that, if the performance of one of the
three classifiers is much better (or worse) than that of the others, the final result is not
improved. For this reason, a constraint on three classifiers is that their performances are
similar. The modified version is depicted in Figure 5.5, where Learni stands for different
algorithms.

Another proposal to avoid bootstrap-sampling is to use more than one views, such
as two or three views in the learning process, so that each classifier can be trained from
the original labeled set with different feature spaces while still making sure that they are
diverse enough. The modified algorithm seems to have the standard Co-training style in
the framework of Tri-training. The modified version according to this proposal is given

64

tri-training(L,U ,Learn1, Learn2, Learn3)
Input: The labeled set L;

The unlabeled set U ;
Different classification algorithms Learn1, Learn2, Learn3;

1. for i ∈ {1..3} do
2.
3. hi ← Learni(L);
4. e′i ← 0.5; l′i ← 0;
5. end for
6. repeat until none of hi (i ∈ {1..3}) changes
7. for i ∈ {1..3} do
8. Li ← ∅;updatei ← FALSE;
9. ei ←MeasureError(hj&hk) (j,k 6=i);
10. if (ei<e′i) then
11. for every x ∈ U do
12. if hj(x)=hk(x) (j, k 6= i)
13. then Li ← Li ∪ {(x, hj(x))};
14. end for
15. if (l′i=0) then l′i ← b

ei
e′
i−ei

+ 1c;
16. if (l′i<|Li|) then
17. if(ei|Li|<e′il

′
i) then updatei ← TRUE;

18. else if l′i>
ei

e′
i−ei

;

19. then Li ← Subsample(Li, d
e′
il

′
i

ei
− 1e);

20. updatei ← TRUE;
21. end for
22. for i ∈ {1..3} do
23. if updatei = TRUE then
24. hi ← Learni(L ∪ Li); e′i ← ei;l′i ← |Li|;
25. end for
26. end repeat
27. Output:h(x)← arg max

y∈label

∑
i:hi(x)=y

1;

Figure 5.5: Tri-training with multiple learning algorithms

in Figure 5.6, where viewi(L) is the ith view of the data set L. One important aspect of
Tri-training algorithm is the needless of redundant views, so it can be applied to problems
which have only one view. In this domain, it is easy to get redundant views, that is the
reason of this proposal.

5.4 Question Taxonomy and Hierarchical Classifiers

The TREC’s question answering track [Voorhees (1999), Voorhees (2000), Voorhees (2001)]
defined six coarse classes, namely, abbreviation, description, entity, human, location and
numeric. Almost TREC’s QA systems rely on this set of question classes. Other QA
systems [Hovy, et al. (2001), Ittycheriah, et al. (2001), Singhal, et al. (1999)] rely on the
set of question classes whose size is less than 20. For example, [Singhal, et al. (1999)]

65

tri-training(L,U ,Learn1, Learn2, Learn3)
Input: The labeled set L;

The unlabeled set U ;
Different classification algorithms Learn1, Learn2, Learn3;

1. for i ∈ {1..3} do
2.
3. hi ← Learni(viewi(L));
4. e′i ← 0.5; l′i ← 0;
5. end for
6. repeat until none of hi (i ∈ {1..3}) changes
7. for i ∈ {1..3} do
8. Li ← ∅;updatei ← FALSE;
9. ei ←MeasureError(hj&hk) (j,k 6=i);
10. if (ei<e′i) then
11. for every x ∈ U do
12. if hj(x)=hk(x) (j, k 6= i);
13. then Li ← Li ∪ {(x, hj(x))};
14. end for
15. if (l′i=0) then l′i ← b

ei
e′
i−ei

+ 1c;
16. if (l′i<|Li|) then
17. if(ei|Li|<e′il

′
i) then updatei ← TRUE;

18. else if l′i>
ei

e′
i−ei

19. then Li ← Subsample(Li, d
e′
il

′
i

ei
− 1e);

20. updatei ← TRUE;
21. end for
22. for i ∈ {1..3} do
23. if updatei = TRUE then
24. hi ← Learni(viewi(L ∪ Li)); l′i ← |Li|;
25. end for
26. end repeat
27. Output:h(x)← arg max

y∈label

∑
i:hi(x)=y

1;

Figure 5.6: Tri-training with multiple learning algorithms and views

used a set of simple answer entity types consisting of person, location, organization, date,
quantity, duration and linear measure. Obviously, with a finer-grained set of question
classes a system can be more accurate to locate answers.

[Li & Roth (2002)] proposed a two-layer taxonomy in which a coarse-grained class is
further expanded into a number of fine-grained classes as shown in Table 5.1. In this
taxonomy, the maximum number of fine classes of coarse classes is 22 (in entity coarse
class).

As stated in [Li & Roth (2002)], there is ambiguity while classifying question. Because
there is no completely clear boundary between question classes, thus, a question can be
assigned to more than one class. For example, the question “What do ladybugs eat?” can
be assigned to food, plant or animal fine classes. Nonetheless, each question in the data
sets created in TREC [Voorhees (1999), Voorhees (2000), Voorhees (2001)] is assigned a
single label, e.g. the label food for above question. For this reason, we assume that one

66

Coarse Fine class #

ABBR abbreviation, expansion 2

DESC definition, description, manner, reason 4

ENT animal, body, color, creation, currency, 22

decease/medical, event, food, instrument,

language, latter, other, plant, product,

religion, sport, substance, symbol,

technique, term, vehicle, word

HUM description, group, individual, title 4

LOC city, country, mountain, other, state 5

NUM code, count, date, distance, money, 13

order, other, percent, period, speed,

temperature, size, weight

Table 5.1: Question class taxonomy

question can belong to only one question class. In other words, we select the label with
highest probability among possible labels to assign to unlabeled questions.

As briefly described in Section 5.1, we employed a hierarchical architecture (in the
form of a tree) of classifiers. According to the question taxonomy listed in Table 5.1, we
construct a hierarchical classifiers as depicted in Figure 5.7. The coarse classifier lies in
the first level while six fine classifiers, namely FC1, FC2,..., FC6 lie in the second level of
the hierarchy. In this hierarchy, a question is sequentially classified by the coarse classifier
and a fine classifier.

Figure 5.7: System architecture

67

5.5 Hierarchical Classifiers and Semi-supervised Learn-

ing Combination

We use three ways to apply learning methods for classifiers in the system as described in
next three subsections.

5.5.1 Supervised Learning Application

Figure 5.8: Training data for fine classifier FC1 in supervised learning

The first way of employing classifiers is to use supervised learning for all classifiers. It
is easy to create training set for the coarse classifier. Each of the six fine classifiers needs
a subset of the labeled set. Thus, we have to extract the corresponding subset for training
each fine classifier. For example, for creating the training set for FC1 classifier, we select
questions having the label of either abb or exp as depicted in Figure 5.8.

5.5.2 Supervised and Semi-supervised Learning Combination

Application

With the purpose to consume unlabeled questions to in the learning process, the next
proposal is to apply a semi-supervised learning for the first level classifier. Other classifiers
still follow supervised learning approach. The method for generating training sets for fine
classifiers is the same as that of Section 5.5.1.

5.5.3 Semi-supervised Learning Application

The third approach we try to apply the semi-supervised learning for classifiers at all
levels. The method of getting unlabeled questions for fine classifiers must be taken into
account. Because each fine classifier FCi (i=1..6) performs on only a subset of fine classes,
while the unlabeled questions can belong to any fine class. We tried two methods for using

68

Figure 5.9: Training data for fine classifier FC1 by adding one additional class label in
semi-supervised learning

unlabeled questions. In the first method, for each training set of FCi we add one additional
class label. For example, for FC1, we add one more class ‘others ’ to the set of classes
{abb, exp} to create a new class set {abb, exp, others} for training the classifier. Questions
having labels different from abb and exp are mapped into the label ‘others ’ as depicted
in Figure 5.9.

The second method for applying semi-supervised learning for each fine classifier: the
training sets for fine classifiers are created in the same way as that of Section 5.5.1; the
unlabeled set for FCi is created by using the coarse classifier to classify the unlabeled set
to get questions having the coarse label where the fine classifier is attached. The method
for creating these sets for FC1 is depicted in Figure 5.10.

Figure 5.10: Unlabeled data for fine classifier FC1 by getting the result of the coarse
classifier in semi-supervised learning

Because semi-supervised learning for fine classifiers is not so good as shown in Sec-
tion 5.9, we do not apply semi-supervised learning for fine classifiers and supervised learn-
ing for coarse classifier.

69

5.6 Question Hierarchy Expansion

In this section, we consider nodes consisting of a large number of classes in the taxonomy.
It is worth expanding the taxonomy by dividing these nodes into smaller groups in order
to gain precision. A possible solution is to group classes that are closed to each other
in a certain distance measure. For this reason, we take clustering method into account.
Each class label can be seen as a vector of frequency of words appearing in the questions
belonging to this class.

5.7 Question Dataset and Feature Selection

This section gives details about the dataset, feature selection for the experiments.

5.7.1 Question Dataset

Table 5.2: Question distribution. #Tr and #Te are the number of labeled and testing
questions.

Class #Tr #Te Class #Tr #Te Class #Tr #Te
ABBREV. 86 9 letter 9 0 country 155 3
abb 16 1 other 217 12 mountain 21 3
exp 70 8 plant 13 5 other 464 50
DESC. 1162 138 product 42 4 state 66 7
definition 421 123 religion 4 0 NUMERIC 896 113
description 274 7 sport 62 1 code 9 0
manner 276 2 substance 41 15 count 363 9
reason 191 6 symbol 11 0 date 218 47
ENTITY 1250 94 technique 38 1 distance 34 16
animal 112 16 term 93 7 money 71 3
body 16 2 vehicle 27 4 order 6 0
color 40 10 word 26 0 other 52 12
creative 207 0 HUMAN 1223 65 period 27 8
currency 4 6 group 47 6 percent 75 3
dis.med. 103 2 individual 189 55 speed 9 6
event 56 2 title 962 1 temp 8 5
food 103 4 description 25 3 size 13 0
instrument 10 1 LOCATION 835 81 weight 11 4
lang 16 2 city 129 18

We follow [Li & Roth (2002)]’s proposal to classify questions into 50 fine-grained
classes. In the experiments, the data sets were those used in [Li & Roth (2002)] with
the total of about 6000 questions (the exact number is 5952), of which 500 questions from
TREC 10 [Voorhees (2001)] were the test set, and 4 subsets of size 1000, 2000, 3000 and
4000 were created by randomly selecting from other 5500 questions2. We used the 4 sub-

2These data sets are all available on http://L2R.cs.uiuc.edu/∼cogcomp/

70

sets as labeled sets, and created 4 correspondingly unlabeled sets by selecting questions
that do not belong to the labeled sets.

The distribution of training and testing data is shown in Table 5.2, where the coarse
classes are in capitals, followed by the corresponding fine classes. As listed in the table,
some classes consist of few questions, such as 4 questions in the currency and religion
classes.

5.7.2 Feature Selection

In experiments, we used two primitive feature types which were automatically extracted
for each question, namely, bag-of-word and bag-of-pos&word.

Question classification is a little different from text classification, because a question
contains a small number of words, while a document can have a large number of words.
In text classification, common words like ‘what’, ‘is’, etc. are considered to be “stop-
words” and omitted as a dimension reduction step in the process of creating features.
This is an important step in improving the performance of classification as proven in
[Joachims (1998)]. However, these words are very important for question classification.
Also, word frequencies play an important role in document classification, whereas those
frequencies are usually equal to 1 in a question, thus, they do not significantly contribute
to the classification precision. In order to keep these words while still reducing the di-
mension space, we used a preprocessing step: all verbs were restored into their infinitive
forms. For example, the verb forms ‘is’, ‘were’, ‘was’, ‘are’ and ‘am’ were converted to
‘be’; plural nouns were changed to their singular forms, such as ‘children’ was converted
to ‘child’; words having the CD (cardinal number) part-of-speech were made the same
value, such as ‘1998’, ‘2000’, ‘12’ were changed into ‘100’. Given the question:

Who was President of Afghanistan in 1994?

After the reduction step, it becomes:

Who be President of Afghanistan in 100?

After the reduction step, the vector (or vocabulary) V of all distinct words of questions in
the corpus was constructed. Let the size of V be N, then each question q was converted
into a vector (q1, q2, . . . , qN), where qi is 1 if the word wi in V appears in q, otherwise qi

is 0. These vectors of numbers were the input of classifiers.
Interestingly, this dimension reduction step makes SVM reach the precision of 81.4%

training on 5500 questions, while the same features with SVM used in [Zhang & Lee (2003)]
gives the precision of 80.2% training on the same data set and with the same linear kernel.

For bag-of-pos&word features, each word in a question was converted into the form of
POS-word, where POS is the part-of-speech tag of word. We also used the preprocessing
step similarly to what applied to the process to generate bag-of-word features, for exam-
ple ‘how’ was transformed into ‘WRB-how’, ‘who’ was converted to ‘WP-who’, ‘are’, ‘is’,
‘am’, ‘were’ and ‘was’ were converted to ‘AUX-be’, etc. Given the question:

Who was President of Afghanistan in 1994?

71

After the reduction step, it becomes:

WP-Who AUX-be NN-president IN-of NN-Afghanistan IN-in CD-100?

The process of converting questions into vectors of numbers was similar to that of

Figure 5.11: The difference between bag-of-word and bag-of-pos&word features

bag-of-word features. There is a difference between bag-of-word and bag-of-pos&word
features. A word, such as ‘plan’ may play different roles in different questions. It can be
a verb in this question while being a noun in another one. The role of the word can be
distinguished in bag-of-pos&word features, because it is converted into ‘VB-plan’ (if it is
a verb) or ‘NN-plan’(if it is a noun) as depicted in Figure 5.11. The bag-of-word features
do not have this ability, so the bag-of-pos&word features provide a richer set of features.
Concretely, for the dataset used in our experiments, the size of the vocabulary V for
bag-of-word and bag-of-pos&word features is 7953 and 9876, respectively. Thus, bag-of-
pos&word features may make classification algorithms perform better than bag-of-word
features.

We tested the supervised learning with SVM algorithm on the labeled set of size 4000
with bag-of-word and bag-of-pos&word features. The statistics is recorded in Table 5.3,
where #T shows the number of test questions belonging to each question class; #W
and #P, respectively, show the correctly predicted questions of each question class with
bag-of-word and bag-of-pos&word; %W and %P, respectively, are precisions of classifica-
tion with bag-of-word and bag-of-pos&word. The table shows that SVM fails to classify
some question classes, such as currency, event or product with bag-of-word and bag-of-
pos&word features. SVM fails to classify the currency class because in the labeled set of
size 4000, there is only one question belonging to the class currency. Another possible
reason that make SVM fails to correctly classify other classes is the lack of semantics of
bag-of-word and bag-of-pos&word as seen in the three questions from the labeled set:

+ What is a fear of shadows? in the class ENTITY:disease.medicine.

+ What is the origin of head lice? in the class DESCRIPTION:description.

+ What is the nickname for the state of Mississippi? in the class LOCATION:state.

Though these three questions belong to different classes, they have relatively similar
forms. This causes ambiguity for classification algorithms. For improving classification

72

precision, semantic features should be added, such as class-specific related words used
in [Li & Roth (2002)]. For each question class, class-specific related words are a list of
words that frequently appear in this class. With this method, a word in a question may
have both syntactic and semantic roles, thus the feature is better, and the classification
precision is improved.

Table 5.3: Precision of classification of SVM with bag-of-word and bag-of-pos&word
features

Class #T #W %W #P %P Class #T #W %W #P %P
abb 1 1 100 1 100 term 7 7 100 7 100
exp 8 6 75 6 75 vehicle 4 1 25 1 25

definition 123 123 100 123 100 HUM:desc 3 3 100 3 100
description 7 6 85.7 6 85.7 group 6 3 50 3 50

manner 2 2 100 2 100 individual 55 52 94.5 53 96.7
reason 6 5 83.3 5 83.3 title 1 0 0 0 0
animal 16 8 50 9 56.3 city 18 15 83.3 14 77.8
body 2 1 50 2 100 country 3 3 100 3 100
color 10 10 100 10 100 mountain 3 2 66.7 2 66.7

currency 6 0 0 0 0 LOC:other 50 41 82 41 82
dis.med 2 0 0 1 50 state 7 7 100 7 100
event 2 0 0 0 0 count 9 9 100 9 100
food 4 1 25 1 25 date 47 44 93.6 44 93.6

instrument 1 1 100 1 100 distance 16 9 56.3 8 50
lang 2 2 100 2 100 money 3 0 0 0 0

ENT:other 12 6 50 5 41.7 NUM:other 12 5 41.7 5 41.7
plant 5 1 20 1 20 percent 3 0 0 1 33.3

product 4 0 0 0 0 period 8 7 87.5 7 87.5
sport 1 1 100 1 100 speed 6 3 50 3 50

substance 15 6 40 5 33.3 temp 5 0 0 0 0
technique 1 1 100 1 100 weight 4 1 25 1 25

TOTAL 500 393 78.6 395 79

5.8 Experiments with Tri-training and Its Modifica-

tions for Fine Question Classes

This section gives details about the implementation and evaluation with the Tri-training
and our modified Tri-training algorithms3. Because the function Subsample(.) (in line 20
of Figure 5.4, 5.5 and 5.6) uses randomness to remove redundant questions, so the set Li

generated for each hi may be different in each run; the final result of each run may be
different, and the result of the first run is not always the best one. Thus, in experiments
about Tri-training, each algorithm was run 4 times and the best as well as the average
results were recorded.

3Our implementation of Tri-training algorithms was based on the existing implementation of Tri-
training’s authors at http://lamda.nju.edu.cn/datacode/tritrain/tritrain.htm

73

5.8.1 Experiments with Multiple Classifiers

In the first experiment, we developed our programs based on the Sparse Network of
Winnows (SNoW) learning architecture4 [Carlson, et al. (1999)], which implements three
learning algorithms: Perceptron, Bayes and Winnow. We used these three learning al-
gorithms to apply for the three classifiers of the Tri-training algorithm. Besides, we im-
plemented the original Tri-training algorithm with a single classification algorithm, such
as Bayes, Perceptron or Winnow. All the parameters of these algorithms, such as the
learning rate α, threshold and the initial weight of Perceptron and Winnow were default
values. The bag-of-word features were used in the experiment.

The best and average precision (of 4 runs) of the experiment is listed in Table 5.4,
where TB, TP and TW respectively stand for the original Tri-training with a single
classification algorithm Bayes, Perceptron and Winnow; TBPW stands for the modi-
fied Tri-training with Bayes, Perceptron and Winnow following the algorithm depicted
in Figure 5.5. For the original Tri-training with a single classification algorithm Bayes,
Perceptron or Winnow, we compare their precision with the baseline produced by the
correspondingly supervised learning algorithm being trained on the same labeled set. For
example, the baseline of the original Tri-training with Bayesian algorithm is the precision
of the supervised learning of Bayes on the same labeled set. For our modified algorithm
TBPW, we compared its precision with the best precision of individually supervised learn-
ing of the three classifiers (values in italic) as the baseline. We also carried out the sign
test [Kanji (1994)] for our modified Tri-training algorithm, with a total number of 25
subsets at the 95% significance level (p=0.05), in which the corresponding critical value
is 7. The column ‘N ’ shows the number of tests on subsets in which the precision of
semi-supervised learning is less than the baseline. According to the sign test theory, a
test is significant if the value in the column ‘N ’ is less than or equal the critical value.
The sign test shows that our algorithm is significant at the level of 95% for all tests.

The results show that the precision of supervised learning of Bayes, Perceptron and
Winnow is not sensitive to the size of labeled sets. Concretely, when the size of the labeled
set increases, the corresponding precision does not increase. Maybe, question data type
and bag-of-word features are not suitable for these learning algorithms.

In the second experiment, we used two algorithms: Maximum Entropy Model5(MEM),
and SVM6 which has been proven to perform well for text classification [Joachims (1998)].
The selection of MEM is based on our investigation. It has better performance than
Bayes, Winnow and Perceptron. In this domain, SVM classifier has better performance
than that of MEM classifier, thus, we used two SVM classifiers and one MEM classifier
in the implementation with the expectation of making two SVM classifiers to have high
degree of decision on final hypothesis. With SVM classifiers, we used linear kernel, and
other parameters (e.g., parameter C) were default. In this domain, other kernels of SVM,
such as polynomial, radial basic function or sigmoid, give poor performance. For MEM
classifier, we used Gaussian smoothing, and all default values of parameters (e.g., L-
BFGS parameter estimation). Bag-of-word features were used for all classifiers. In this
configuration, the two SVM classifiers are identical at the beginning. In the learning loop,
because of the randomness, the Subsample(.) procedure (in the line 20 of the algorithm

4The software is freely available at http://L2R.cs.uiuc.edu/∼cogcomp/software.php
5We used a free open source implementation of Maximum Entropy Model available at

http://homepages.inf.ed.ac.uk/s0450736/pmwiki/pmwiki.php
6We used a free implementation of SVM available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

74

Table 5.4: The best and average precision (%) of the original Tri-training with single
algorithm (TB, TP and TW) and the modified Tri-training with Bayes, Perceptron and
Winnow (TBPW)

The best precision
Bayes Perceptron Winnow Mod. TriTraining

Base. TB Base. TP Base. TW TBPW N
1000 59.8 58.0 60.2 60.4 58.0 60.4 65.8 0
2000 58.4 58.0 67.2 67.8 67.0 64.8 68.8 1
3000 57.2 56.4 68.4 70.0 49.4 65.4 72.0 2
4000 51.8 51.8 66.4 65.8 71.6 71.4 72.0 6

The average precision
Bayes Perceptron Winnow Mod. TriTraining

Base. TB Base. TP Base. TW TBPW
1000 59.8 55.85 60.2 60.15 58.0 59.85 64.15
2000 58.4 57.80 67.2 66.80 67.0 64.15 68.60
3000 57.2 56.30 68.4 69.35 49.4 65.00 70.35
4000 51.8 51.65 66.4 65.50 71.6 69.65 69.70

in Figure 5.5) creates different Li sets for the two SVM classifiers. As the results, the
two SVM classifiers have different hypotheses when they are re-trained (in line 24 of the
algorithm in Figure 5.5.

Table 5.5 shows the best and the average precision (of 4 runs) of different algorithms,
where TSW and TMW, respectively, stand for the original Tri-training algorithm with
SVM and MEM algorithms; TSSM stands for the modified Tri-training with two SVM
classifiers and a MEM classifier following the algorithm described in Figure 5.5. We used
the precision of supervised learning with MEM and SVM on the same labeled sets as
the baseline to compare with the precision of TMW and TSW. For TSSM, we selected
the best precision of supervised learning with MEM and SVM on the same labeled sets
(values in italic) as the baseline. Similar to our first experiment, we carried out the sign
test on 25 subsets and at the significance level 95%. The column ‘N ’ records the number
of tests on subsets, in which the precision of semi-supervised is less than the baseline.
Except for the test on the labeled set size of 1000 which is not improved, our other tests
are significant at the level of 95%.

As shown in the table, MEM and SVM are sensitive to the size of the labeled sets.
The precision is increased when the size of labeled set increases. This indicates that MEM
and SVM are suitable for question data with bag-of-word features.

5.8.2 Experiments with Two Different Algorithms and Two Views

In the third experiment, we implemented the second proposal of using more than one
views following the algorithm described in Figure 5.6. In theory, we can use three dif-
ferent algorithms with distinct views, however, our primary purpose is to make the three
classifiers diverse at the initial step, so two different algorithms, two views and a suitable
assignment of views to classifiers are sufficient. Concretely, among the three classifiers,
two of them were SVM classifiers and the third one was a MEM classifier. The first view
(feature space) was bag-of-word, and the second view was bag-of-pos&word. We set two

75

Table 5.5: The best and average precision (%) of the original Tri-training with single
MEM, SVM algorithm (TMW and TSW) and the modified Tri-training with both MEM
and SVM (TSSM)

The best precision
MEM SVM Mod. Tritraining

Base. TMW Base. TSW TSSM N
1000 67.6 68.0 68.4 67.6 68.4 -
2000 74.8 75.2 75.6 76.2 76.4 4
3000 76.8 76.4 78.2 78.4 78.6 6
4000 77.2 78.2 78.6 78.6 78.8 7

The average precision
MEM SVM Mod. Tritraining

Base. TMW Base. TSW TSSM
1000 67.6 67.40 68.4 66.95 68.25
2000 74.8 74.10 75.6 75.75 76.10
3000 76.8 76.20 78.2 78.00 78.20
4000 77.2 77.40 78.6 78.50 78.50

SVM classifiers two different views, while the MEM classifier used either of them. Con-
cretely, the first SVM classifier used bag-of-word features, the second SVM classifier used
bag-of-pos&word features and the MEM classifier used bag-of-word features.

Table 5.6: The best precision (%) of the original Tri-training with single algorithm (TMW,
TMP, TSW and TSP) and the modified Tri-training with MEM, SVM with two views
(TSSM2)

MEM-word MEM-pos SVM-word SVM-pos Two views
Base. TMW Base. TMP Base. TSW Base. TSP TSSM2 N

1000 67.6 68.0 68.8 69.0 68.4 67.6 69.2 66.6 68.4 -
2000 74.8 75.2 75.4 74.2 75.6 76.2 75.2 74.6 76.0 5
3000 76.8 76.4 76.8 76.2 78.2 78.4 77.0 77.0 79.0 3
4000 77.2 78.2 77.8 77.8 78.6 78.6 79.0 78.4 80.4 2

Let TMW and TMP be the original Tri-training algorithm with MEM using bag-
of-word and bag-of-pos&word features, respectively; Let TSW and TSP respectively be
the original Tri-training with SVM using bag-of-word and bag-of-pos&word features; Let
TSSM2 be the modified Tri-training with two SVM and a MEM classifiers following the
algorithm described in Figure 5.6 using two views: bag-of-word and bag-of-pos&word.
For TMW, TMP, TSW and TSP, the baseline is the precision of supervised learning with
corresponding algorithm and feature space. The best precision of the experiment is given
in Table 5.6. The sign test similar to previous experiments is also carried out. Except for
the test with the size of 1000, the other tests are significant at the level of 95%.

We recorded the average precision (of 4 runs) of each algorithm of the experiment in
Table 5.7. Table 5.8 recorded the number of new questions (Li) added for each classifier
in each iteration of the experiment in Table 5.6, where ‘Iter.’ stands for iteration. The
average values (in 4 tests) of these Li are recorded in Table 5.9. In these experiments,
TMW, TMP, TSW and TSP took two iterations while TSSM2 took at most two iterations.
The initial classifiers were very different because of the use of function BootstrapSample(.)

76

Table 5.7: The average precision (%) of the original Tri-training with single algorithm
(TMW, TMP, TSW and TSP) and the modified Tri-training with MEM, SVM with two
views (TSSM2)

MEM-word MEM-pos SVM-word SVM-pos Two views
Base. TMW Base. TMP Base. TSW Base. TSP TSSM2

1000 67.6 67.40 68.8 68.55 68.4 66.95 69.2 66.30 67.90
2000 74.8 74.10 75.4 73.55 75.6 75.75 75.2 74.30 75.85
3000 76.8 76.20 76.8 75.90 78.2 78.00 77.0 76.85 78.45
4000 77.2 77.40 77.8 77.45 78.6 78.50 79.0 78.30 79.65

Table 5.8: The size of Li in each round corresponding to the experiment in Table 5.6

Iter.
TMW TMP TSW

L1 L2 L3 L1 L2 L3 L1 L2 L3

1000
1 30 30 5 42 42 5 26 30 30
2 4262 4262 4452 4122 4122 4452 489 492 496

2000
1 50 50 6 32 47 30 34 23 28
2 3199 3199 3452 3198 3216 3309 489 486 493

3000
1 41 36 48 54 81 42 41 33 32
2 1491 1486 1471 2294 2351 2316 748 732 734

4000
1 40 41 43 65 47 55 46 39 42
2 648 245 196 990 665 332 391 395 390

Iter.
TSP TSSM2

L1 L2 L3 L1 L2 L3

1000
1 32 23 27 3226 499 499
2 4256 4258 4236 - - -

2000
1 29 24 31 999 499 499
2 984 974 975 - - -

3000
1 29 46 32 187 750 187
2 1497 1497 1480 373 373 0

4000
1 29 39 37 222 399 199
2 993 997 986 - - -

in Line 2 of Figure 5.6, however after having been re-trained in Line 24 of Figure 5.6, the
three classifiers became very similar, and took many unlabelled questions in the second
iteration, and stopped.

5.8.3 Experiments with Co-training

This section implemented the co-training algorithm as in Figure 5.2 to compare the results
with our modified Tri-training algorithm. SVM with bag-of-word and bag-of-word&pos
features were used in the experiments.

The Co-training algorithm in Figure 5.2 is applied for binary classification. In the
experiments of [Blum & Mitchell (1998)], both positive and negative examples were added
to the labeled set after having been assigned labels, and the parameters were set to p = 1,
n = 3, k = 30 and u = 75. In our problem, the question data set consists of 50 classes.
The questions not belong to a class can be treated as negative examples for it. However,

77

Table 5.9: The average size of Li in each round corresponding to the experiments in Table
5.7

Iter.
TMW TMP TSW

L1 L2 L3 L1 L2 L3 L1 L2 L3

1000
1 22 30.5 13.5 4.75 22 22 24 33 28.25
2 4273 4212.25 4288 4018 3973 3979.5 490 494 488.5

2000
1 32.25 47.25 31.5 34.25 45.5 50 29 33 26.75
2 3220.75 3203.25 3335.25 3221.5 3240.75 3225 488.25 490.5 488.75

3000
1 43 44 44 48.25 60 42 36 33.75 36.75
2 1485.5 1480.75 1479.75 2297.75 2325.75 1904.5 740 733.75 741.5

4000
1 46.5 41 46 49.75 45 47 41.25 41.75 36
2 655.25 554.5 512.25 527.5 641.75 672.25 395.5 395 390.5

Iter.
TSP TSSM2

L1 L2 L3 L1 L2 L3

1000
1 30.25 28.75 25.75 3226 499 499
2 4244.25 4236.75 4233.25 - - -

2000
1 26.75 30.25 28 999 499 499
2 980 980 986.25 - - -

3000
1 29.75 31.25 34 187 750 187
2 1474.25 1485.25 1476 302 283.5 0

4000
1 35.75 36.25 35 222 399 199
2 983 982.5 988.25 - - -

we can not keep the ratio between the negative examples n and positive examples p as
in [Blum & Mitchell (1998)]’s experiments. Instead, at each iteration, we add only one
unlabeled question for each question class (if there is). The parameters of our experiments
were set to: p = 1, k = 30 and u = 50 ∗ 5. We carried out Co-training on labeled sets
of different size (1000, 2000, 3000 and 4000), and results are shown in Table 5.10, where
Sup. and Final are, respectively, the precision of supervised learning the co-training of
each classifier.

Table 5.10: The precision of co-training with SVM

#
bag-of-word bag-of-word&pos
Sup. Final Sup. Final

1000 68.4 69.2 69.2 69.0
2000 75.6 75.8 75.2 75.6
3000 78.2 78.2 77.0 77.4
4000 78.6 79.0 79.0 78.4

The results in Table 5.10 showed that the classifier with bag-of-word&pos often helped
to improve the other classifier. Whereas, the precision of classifier with bag-of-word&pos
was rarely improved. We tried to increase the number of iteration k to 100, however, the
results were also worse.

We also tried a different method of adding unlabeled questions into the labeled set: the
number of unlabeled questions added to a class is directly proportional to its percentage
in the training set. However, the results were worse than those in Table 5.10.

78

5.8.4 Experiments with Self-training

This section implemented the self-training algorithm as in Figure 5.3 to compare the
results with our modified Tri-training algorithm.

We carried out self-training on labeled sets of different size (1000, 2000, 3000 and
4000), and the classification algorithm is SVM with bag-of-word features. The results
of our experiments are given in Table 5.11, where ‘Base.’ is the precision of supervised
learning which is used as the baseline; ‘Self.’ is the precision of the self-training. The
results show that most final precision of self-training is not improved. Though only
questions in the unlabeled set U ′ with high prediction probability are selected to form the
labeled set L′, it can not guarantee that those questions are correctly predicted as our
observation. Thus, in each iteration, the newly created labeled set may contain mislabeled
questions, and the error rate may consequently increase. In general, the self-training is
not well suitable for question data type with bag-of-word features.

Table 5.11: The precision of self-training with SVM

#
1000 2000 3000 4000

Base. Self. Base. Self. Base. Self. Base. Self.
Precision 68.4 65.8 75.6 73.4 78.2 76.2 78.6 78.4

5.8.5 Discussion

Through experiments we can see that self-training is not suitable for solving this task,
because its method to add unlabeled questions for further training the classifier is not
good. The co-training algorithm does not work well for this domain, either. The original
Tri-training algorithm has a better method of adding unlabeled questions based on the
agreement of two classifiers. However, the bootstrap-sampling step may decrease the
initial precision of each classifier and the final precision is hard to be improved. Our two
proposals remove the bootstrap-sampling while still ensure the three classifiers to have
different hypotheses, and the experiments have proved the proposals to be suitable.

5.9 Experiments with Hierarchical Classifiers

In this section, we used bag-of-words features for all experiments.

5.9.1 Supervised Learning Application

Experiments in this section follow the approach discussed in Section 5.5.1. We use super-
vised learning for all classifiers. The first experiment, MEM is used for all classifiers in the
Figure 5.7. The system is tested on 4 pre-divided training sets as stated in Section 5.7.1.
Another similar experiment with SVM used for all classifiers is also carried out. The
results of two experiments in comparison with flat classifications are given in Table 5.12,
where FMEM and HMEM are the precision of flat and hierarchical classification with
MEM, respectively; N is the number of tests, in which the hierarchical precision is less

79

Table 5.12: The precision (%) of flat and hierarchical classification with MEM and SVM
on fine classes.

FMEM HMEM N FSVM HSVM N
1000 67.6 68.8 4 68.4 69.0 5
2000 74.8 74.8 8 75.6 75.8 5
3000 76.8 77.2 5 78.2 78.4 7
4000 77.2 77.4 4 78.6 78.6 11

Table 5.13: The precision of the original Tri-training with SVM, MEM, and the modified
Tri-training on coarse classes.

#
MEM-word SVM-word Mod. Tritraining

Base. Ini. TMW Base. Ini. TSW Ini. SVM Ini. MEM TSSM N
1000 77.6 76.2 78.4 78.6 75.6 77.6 78.6 77.6 79.2 0
2000 84.6 79.6 81.4 83.6 81.6 84.0 83.6 84.6 85.0 2
3000 85.2 84.2 85.4 86.2 83.4 86.2 86.2 85.2 87.0 3
4000 84.6 85.4 85.8 87.6 85.6 87.8 87.6 84.6 88.2 1

than that of flat classification. FSVM and HSVM are flat and hierarchical classification
with SVM. Table 5.12 shows that when the size of training set is small, the error rate of
flat classification is high and hierarchical classification exposes its advantages.

5.9.2 Experiments with the Original Tri-training and Its Mod-

ification for Coarse Classes

Experiments in this section follow the original Tri-training algorithm listed in Figure 5.4,
and our modified version listed in Figure 5.4. We used two SVM classifiers and one MEM
classifier similar to the experiments in Section 5.8.1.

We tested these algorithms on 4 training sets of coarse classes. We also carried out
the sign test at the significance level 95%.

Similar to Section 5.8.1, for the original Tri-training algorithm, we implemented two
programs: one with MEM (called TMW) and the other with SVM (called TSW). The
precision of the experiments is listed in Table 5.13, where Super column is the precision
of supervised learning; Ini. column is the precision of the worst classifier (among the
three classifiers) calculated after having trained on a bootstrap-sampled set at line 4 of
the algorithm in Figure 5.4.

The results of our modified Tri-training for coarse classifiers are listed in Table 5.13,
where ‘Ini. SVM ’, ‘Ini. MEM ’ and TSSM are the initial precision of SVM, MEM
classifiers and the final output of the algorithm, respectively.

5.9.3 Supervised and Semi-supervised Learning Combination

Application

Experiment in this section follows the discussion in Section 5.5.2. We applied semi-
supervised learning for the coarse classifier at the first level and supervised learning for

80

Table 5.14: The precision of flat classification of MEM, SVM and 1 level semi-supervised
learning with SVM-MEM.

FMEM Msemi1 N FSVM Ssemi1 N
1000 67.6 69.2 0 68.4 69.6 1
2000 74.8 75.2 2 75.6 77.0 0
3000 76.8 78.6 0 78.2 78.6 3
4000 77.2 80.4 0 78.6 79.0 4

Table 5.15: The precision of flat classification of MEM, SVM and 2 level semi-supervised
learning with SVM-MEM.

FMEM FSVM Semi2-1 Semi2-2
1000 67.6 68.4 63.4 69.2
2000 74.8 75.6 71.0 75.8
3000 76.8 78.2 74.8 78.4
4000 77.2 78.6 75.0 78.6

fine classifiers in the second level. We used our modified version of Tri-training as discussed
in the preceding section.

We tested the system on 4 training sets, for each of them, all questions not belonging
to the training set are used as unlabeled ones. In addition, we carried out the sign test
for the experiments at the significance level 95%.

The precision of the experiment in comparison with flat classification is shown in
Table 5.14, where FMEM and FSVM are flat classification with MEM and SVM; Msemi1
and Ssemi1 are hierarchical classification with semi-supervised learning for coarse classifier
and supervised learning for fine classifiers which use MEM and SVM, respectively; N is
the number of tests, in which the precision of hierarchical classifier is less than that of flat
classification. The results show that the improvement of semi-supervised learning help
to improve the final precision. Interestingly, when the size of training sets increase, the
performance of fine classifiers with MEM is improved better than that of fine classifiers
with SVM. Consequently, the overall performance of the hierarchical classifiers in which
fine classifiers using MEM is improved significantly with the training set of the size 4000.

5.9.4 Semi-supervised Learning Application

This section implements the method discussed in Section 5.5.3. We applied semi-supervised
learning for all classifiers. We used the same semi-supervised learning as that of Sec-
tion 5.9.2. The results of two methods for employing semi-supervised learning for fine
classifiers are given in Table 5.15, where Semi2-1 is the semi-supervised learning, in which
we add one more class label to the class set of each classifier as depicted in Figure 5.9;
Semi2-2 is the semi-supervised learning for all classifiers, in which we use coarse classifier
to generate unlabeled questions for each fine classifier as depicted in Figure 5.9. The
results show that the addition of one more fine class label for each coarse (Semi2-1) class
has bad effect on the performance of the system. The second method (Semi2-2) does not
improve the precision of fine classifiers. The reason is the erroneous unlabeled questions
for each fine classifier generated by the coarse classifier. Because of not promising results,

81

we did not carry out the significant tests.

Table 5.16: The precision of flat classification of MEM, SVM and hierarchical classification
with three levels by expanding the Entity coarse class.

FMEM HMEM N FSVM HSVM N
1000 67.6 69.6 0 68.4 69.6 2
2000 74.8 75.8 6 75.6 76.4 5
3000 76.8 77.4 6 78.2 79.0 1
4000 77.2 77.4 8 78.6 79.0 6

Table 5.17: The precision of flat classification of MEM, SVM and hierarchical classification
with three levels by expanding the Entity and Numeric coarse classes.

FMEM HMEM N FSVM HSVM N
1000 67.6 70.0 6 68.4 70.8 1
2000 74.8 75.4 4 75.6 76.4 8
3000 76.8 77.2 6 78.2 78.8 10
4000 77.2 76.8 - 78.6 79.0 4

5.9.5 Question Hierarchy Expansion

Experiments in this section follow the discussion in Section 5.6. We expand nodes
consisting of a large number of classes. For clustering algorithm, we consider K-mean
[Jarvis & Patrick (1973)], and for distance metric, we use Euclid measure.

The first experiment, we expanded the Entity coarse class, which consists of 22 fine
classes. We selected a number of clusters so that the number of classes per cluster is
approximate. In this case, the number of cluster is 3, so the Entity coarse class is divided
into 3 subclasses as follows:

• Subclass 1: animal, creation, decease/medical, food, other, term

• Subclass 2: body, currency, instrument, language, letter, plant, religion, symbol

• Subclass 3: color, event, product, sport, substance, technique, vehicle, word

After this step, the question taxonomy is expanded into three levels at Entity branch. The
results of the experiment on the newly created taxonomy is given in Table 5.16, which
show that the precision of each test is better than that of original taxonomy in Table 5.12.

The second experiment, besides Entity coarse class, we expanded one more coarse
class, that is Numeric which consists of 13 fine classes. The number of clusters in this
situation is also 3. The three subclasses are as follows:

• Subclass 1: code, order, speed, temperature, size, weight

• Subclass 2: distance, money, other, percent, period

• Subclass 3: count, date

The results of the experiment given in Table 5.17 indicate that when the size of training
set is small, the hierarchical classifiers with new taxonomy give better results that those
of new taxonomy in the first experiment when the size of training set is small.

82

5.10 Summary

This chapter applied semi-supervised learning to explore unlabeled questions to improve
the performance of question classification task and proposed two ways of modifying the
Tri-training algorithm presented by [Zhou & Li (2005)] to make it more suitable for ques-
tion data type. The proposals dealt with a problem at the initial step of Tri-training,
where the original labeled set is bootstrap-sampled to generate three different labeled
sets, in order to make the three classifiers have different hypotheses, which may make the
initial error rate of each classifier increase. With the purpose of using the original labeled
set for all classifiers, while ensuring that they are still diverse, in the first proposal, we
used more than one learning algorithm for the three classifiers and the second proposal
is to use multiple learning algorithms in combination with more than one views. Our
experiments indicated that the performance is improved, and our approach was more
suitable for this task in comparison with other semi-supervised learning approach, such
as Co-training and Self-training.

The second effort, we proposed to applied hierarchical classifiers to reduce the number
of question classes per classifier in order to improve the performance. Several learning
approaches were investigated in the hierarchical classifiers. And a proposal to automati-
cally expand nodes (in the question hierarchy) that consists of a large number of question
classes. The experiments showed promising results.

In the current implementation, we have not considered to select other better feature
types, such as those used in [Li & Roth (2002)]. This is one interesting issue to explore
in future to achieve higher precision.

Our modified versions of Tri-training algorithm do not have any constraints on data
types, therefore, one more issue which is worth studying in the future is to apply these
algorithms in other domains, such as text classification.

83

Chapter 6

Building a Search System Based on

Linguistic Semantic Information

In this chapter, we present a prototype of a semantic search system based on semantic
relations. Our semantic system was built based on the studies in previous chapters.

6.1 System Architecture

The architecture of our system is depicted in Figure 6.1. In the preprocessing step,
documents are processed by “Relations extractor” (investigated in Chapter 3) which ac-
quires named-entity-related relations and store in a Knowledge Base. Documents are
parsed to construct RST trees (this study does not cover this parser, so it is marked by
a dotted rectangle). After that, documents are indexed in the form of T-expressions by
“Document Indexer” (investigated in Chapter 4) which indexes documents in the form of
T-expressions.

In the serving mode, when a user types in a question, it is firstly classified by “Question
classification” module (investigated in Chapter 5). Next, based on the type of the question
given by “Question classification”, the “Answer extractor” (investigated in Chapter 3 and
4) will find the answer in either “Indexed database” or “Relation KB” with respect to the
question type. Finally, the found answer is returned to the user.

6.2 Experiments and Evaluation

6.2.1 Dataset

Since our system supports a different set of question classes in comparison with that of the
experiments in Chapter 5, another question dataset is needed for “Question classification”
module. From the question set in Chapters 3 and 4, we randomly divided into two sets
for training and testing. After this step, the dataset consists of 6 of question classes:

84

Figure 6.1: Our search system architecture

fact, how to, suggestion, why, who and list. The training set after the division is rather
small, so we manually collected and labeled Frequently Asked Questions (FAQ) from the
site http://www.faqs.org. Since the algorithm in Chapter 3 can be applied to extract
information of other named entity types, such as organization and location, our system
can support to answer what question (e.g., “What is IBM?”). In addition, users may type
in questions that are not supported by our system, these questions should be of another
question class, so we added two more question classes: what and other. After this step,
we the question dataset consists of 4027 training and 341 testing questions. The training
set is randomly divided into two subsets. The first subset consists of 3000 questions was
used as the labeled set, while the subset of 1027 questions was used as the unlabeled set.
Because of set of question classes is small, we only applied semi-supervised learning for
“Question classification” module, and the hierarchical classifiers were not suitable for this
task. We used the same datasets as those in Chapters 3 and 4 for answering questions.

85

6.2.2 Experiments

For “Question classification” module, we used our modified version of Tri-training as
described in Figure 5.6, and followed the experiment in Section 5.8.2. Two SVM clas-
sifiers (one with bag-of-word feature and the other with bag-of-word&pos feature) with
a MEM classifier (with bag-of-word feature) were used. The results of the experiment
with “Question classification” module are shown in Table 6.1, where SVMW, SVMP and
MEMW are the precision of the supervised learning of classifier SVM with bag-of-word,
SVM with bag-of-word&pos and MEM with bag-of-word features, respectively. ‘Final ’ is
the precision of the modified Tri-training algorithm.

The datasets for extracting answers were those of Chapters 3 and 4. Concretely, the
RST Discourse Treebank and Wall Street Journal corpus were used in our experiments.
The results of our search system are shown in Table 6.2, where the cosine thresholds (the
cosine measures the similarity between a returned answer and the correct answer of a
question as discussed in Chapter 3) of who and list questions were set to 1. We compare
the results of our search system with one that used manual question classification (the
precision of question classification is 100%).

Table 6.1: The precision (%) of the “Question classification” module.
SVMW MEMW SVMP Final

95.3 79.8 95.6 97.1

Table 6.2: The results of the system.

Type
Our search system Search with manual QC

P(%) R(%) F(%) P(%) R(%) F(%)
Who with objects 87.18 68.00 76.40 87.18 68.00 76.40
Who without objects 87.18 68.00 76.40 87.18 68.00 76.40
List with objects 100.00 77.50 87.32 100.00 77.50 87.32
List without objects 69.23 60.00 64.29 69.23 60.00 64.29
Suggestion 93.33 60.00 73.04 95.20 80.0 86.90
How to 80.10 97.80 88.10 80.10 97.80 88.10
Why 81.08 93.75 86.96 83.78 96.88 89.86
Fact 79.43 96.91 87.30 80.60 98.40 88.60

6.3 Summary

In this chapter, we have presented our prototype of a search system based on linguistic
semantic information. The components of the system were investigated in Chapters 3, 4
and 5. A new question dataset was created for question classification module. And our
experiments showed promising results.

86

Chapter 7

Conclusions and Future Work

7.1 Summary of the Thesis

In this thesis, we have presented a study of building a search system which can extract
answer to some typical question types by exploiting the semantic relations in documents.
The study considers the research problems in both theoretical and practical views. The
theoretical view concerns about the proposal of a new algorithm for extracting relations
in documents, and modification of the semi-supervised Tri-training algorithm for more
suitable for imbalanced data. The practical views comes from the effective application of
these algorithms in building the final semantic system. Among the seven chapters of the
thesis, the main chapters are 3, 4, 5 and 6. And main contributions of the thesis can be
summarized as follows:

• Firstly, we analyzed the need of fine-grained categories of named-entities, and
proposed a new algorithm to automatically extract the fine-grained categories of
named-entities. The fine-grained category of a named-entity expresses the relation
“named entity” ISA category, in which the category partially describes the “named
entity”. In documents, there may be more information describing a “named entity”,
so we extended the algorithm to extract more complete information related to named
entities. These relations were consumed to answer some question types related to
named entities, namely, who and list. Our experiments gave very good results.

• Secondly, in order to answer some other question types that are not relevant to
named entities, such as why, how and suggestion, we analyzed the RST relations in
documents, and proposed to exploit their characteristics to extract answers to the
above question types. The characteristics of the RST relations are: in some RST
relations between two text spans, the content of this span may be the answer to
a question related to the other span. Our experiments showed promising results
proving this is a good direction.

• Thirdly, one of the most important step in any system (e.g., semantic search or
QA system) that needs to know the type of a given question as the clue for ex-
tracting/finding the answer. We considered to use statistical machine learning for

87

question classification. In order to utilize unlabeled questions, which are available
with large volumes and and cheap to collect, to improve the performance of ques-
tion classification, we proposed to apply semi-supervised learning. We adopted the
Tri-training algorithm, because it has advantages over other semi-supervised learn-
ing algorithms. After analyzing the characteristics of question data, as well as the
drawbacks of Tri-training when applying to this domain, we proposed two methods
to modify Tri-training to make it more suitable for this problem. Our experiments
has proved our proposals are promising. Another effort to improve the classifica-
tion performance, we noticed that when the number of question classes is large, the
performance of classification algorithm is affected. We proposed to apply hierarchi-
cal classifiers in order to reduce the number of question classes per classifier. Our
experiments showed significant improvement. Different ways of applying learning
methods (supervised and semi-supervised learning) were investigated in the hierar-
chical classifiers. A method to automatic to expand the question hierarchy was also
proposed with the motivation to sub-group the nodes consisting of a large number
of classes. Our experiments gave promising improvements.

• Finally, a search system based on the semantic relations was built with the methods
investigated in the chapters 3, 4 and 5. A new question dataset, which consists of
the supported question types of the system, was collected for the experiments with
the datasets of other modules. Our experiments showed promising results.

7.2 Future Directions

Each semantic relation can help answer certain question types. Currently, our search
system considers only some semantic relations so the number of supported question types
is still small. Fortunately, there are various valuable relations in documents, and our
system is open, so we can continue to incrementally develop the system by extracting new
relations for supporting new question types. For example, the very first issue to do in the
future is to used the algorithm in chapter 3 to extract information of other named entity
types, such as organization and location.

Another possible improvement of the system is to apply a good co-reference resolution
tool so that the system can help answer the which questions.

The method for matching T-expressions in chapter 4 may be not sufficient enough,
since it does not have the ability to match questions that are expressed differently from
the fact. Another issue for future is to use other method or additional knowledge base
(e.g., WordNet) to solve the mentioned problem.

In the current system, we do not have the RST parser, the possible problem for future
is to build this module so the system can work in the real world.

An interesting direction in the future is to make the system have the ability to reason
by exploiting other semantic relations in documents, such as entailment relation.

88

Bibliography

[Agichtein & Gravano (2000)] Agichtein, E., and Gravano, L., 2000. Snowball: Extract-
ing Relations from Large Plaintext Collections. Proceedings of the 5th ACM Interna-
tional Conference on Digital Libraries, pp. 85-94.

[Al-Onaizan & Knight (2001)] Al-Onaizan, Y., and Knight, K., 2001. Translating Named
Entities Using Monolingual and Bilingual Resources. Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pp. 400-408.

[Berger, et al. (1996)] Berger, A., Pietra, S. D., and Pietra, V. D., 1996. A Maximum
Entropy Approach to Natural Language Processing. Computational Linguistics, Vol.
22, No. 1, pp. 39-71.

[Berry, et al. (1995)] Berry, M. W., Dumais, S. T., and O’Brien, G. W., 1995. Using
Linear Algebra for Intelligent Information Retrieval. SIAM Review, Vol. 37, No. 4,
pp. 573-595.

[Blum & Mitchell (1998)] Blum, A., and Mitchell, T., 1998. Combining Labeled and Un-
labeled Data with Co-training. Proceedings of the 11th Annual Conference on Com-
putational Learning Theory (COLT), pp. 92 - 100.

[Bonino, et al. (2003)] Bonino, D., Corno, F., and Farinetti, L., 2003. DOSE: a Distrib-
uted Open Semantic Elaboration Platform. Proceedings of The 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI 2003), pp. 3-5.

[Bonino, et al. (2004)] Bonino, D., Corno, F., Farinetti, L., and Bosca, A., 2004. On-
tology Driven Semantic Search. WSEAS Transaction on Information Science and
Application, Vol. 1, Issue 6, pp. 1597-1605.

[Bosma (2004)] Bosma, W., 2004. Query-based Summarization Using Rhetorical Struc-
ture Theory. Proceedings of the 15th Computational Linguistics in the Netherlands,
pp. 29-44.

[Brin (1998a)] Brin, S., 1998. Extracting Patterns and Relations from the World Wide
Web. Proceedings of WebDB Workshop at 6th International Conference on Extending
Database Technology (EDBT’98), pp. 172-183.

[Brin & Page(1998b)] Brin, S., and Page, L., 1998. The Anatomy of a Large-scale Hy-
pertextual Web Search Engine. Computer Networks and ISDN Systems, Vol. 30, pp.
107-117.

89

[Broder, et al. (2004)] Broder, A., Maarek, Y., Mandelbrod, M., and Mass, Y., 2004.
Using XML to Query XML from Theory to Practice. Proceedings of Recherche
d’Information Assistée par Ordinateur (RIAO’04).

[Carlson, et al. (1999)] Carlson, A., Cumby, C., and Roth, D., 1999. The SNoW Learn-
ing Architecture. Technical Report UIUC-DCS-R-99-2101, UIUC Computer Science
Department.

[Carlson, et al. (2001)] Carlson, L., Marcu, D., and Okurowski, M., 2001. Building a
discourse-tagged corpus in the framework of Rhetorical Structure Theory. Proceedings
of the 2nd SIGdial Workshop on Discourse and Dialogue, Vol. 16, pp. 1-10.

[Carmel, et al. (2003)] Carmel, D., Maarek, Y., Mandelbrod, M., Mass, Y., and Soffer,
A., 2003. Searching XML Documents via XML Fragments. Proceedings of 26th SIGIR
Conference, pp. 00-00.

[Chamberlin, et al. (2002)] Chamberlin, D., Fankhauser, P., Florescu, D., Marchiori, M.,
and Robie, J., 2002. XML query use cases. At http://www.w3.org/TR/2002/ WD-
xmlquery-use-cases-20020816.

[Charniak (2000)] Charniak, E., 2000. A Maximum-entropy-inspired Parser. Proceedings
of the 1st Meeting of the North American Chapter of the Association for Computa-
tional Linguistics, pp. 132-139.

[Chieu & Tou (2003)] Chieu, H., and Tou, N., 2003. Named Entity Recognition with a
Maximum Entropy Approach. Proceedings of Conference on Natural Language Learn-
ing 2003 (CoNLL-2003), pp. 160-163.

[Chinenyanga & Kushmerick (2002)] Chinenyanga, T., and Kushmerick, N., 2002. An
Expressive and Efficient Language for XML Information Retrieval. Journal of the
American Society for Information Science and Technology, Vol. 53, No. 6, pp. 438-
453.

[Chu-Carroll, et al. (2006)] Chu-Carroll, J., Prager, J., Czuba, K., Ferrucci, D., and
Duboue, P., 2006. Semantic Search via XML Fragments: a High-precision Approach
to IR. Proceedings of the 29th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp. 445-452.

[Cohen, et al. (2003)] Cohen, S., Mamou, J., Kanza, Y., and Sagiv, Y., 2003. XSearch: A
Semantic Search Engine for XML. Proceedings of the 29th International Conference
on Very Large Databases, pp. 45-56.

[Cortes, et al. (1995)] Cortes, C., and Vapnik, V., 1995. Support Vector Networks. Ma-
chine Learning, Vol. 20, No. 3, pp. 273-297.

[Cunningham, et al. (2002)] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V., 2002. GATE: A Framework and Graphical Development Environment for Robust
NLP Tools and Applications. Proceedings of the 40th Anniversary Meeting of the
Association for Computational Linguistics (ACL’02), pp. 168-175.

90

[Deerwester, et al. (1990)] Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G.
W., and Harshman, R. A., 1990. Indexing by Latent Semantic Analysis. Journal of
the Society for Information Science, Vol. 41, No. 6, pp. 391-407.

[Dumais, et al. (2003)] Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., and
Robbins, D., 2003. Stuff I’ve Seen: A System for Personal Information Retrieval and
Re-use. Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Informaion Retrieval, pp. 72-79.

[Fellbaum (1998)] Fellbaum, C., editor, 1998. WordNet: An electronic Lexical Database
and Some of Its Applications. MIT Press.

[Fleischman, et al. (2003)] Fleischman, M., Hovy, E., and Echihabi, A., 2003. Offline
Strategies for Online Question Answering: Answering Questions before They are
Asked. Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics, pp. 1-7.

[Fuhr & Großjohann (2001)] Fuhr, N., and Großjohann, K., 2001. XIRQL: a Query Lan-
guage for Information Retrieval in XML Documents. Proceedings of the 24th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retreival, pp. 172-180.

[Fukumoto (2007)] Fukumoto, J., 2007. Question Answering System for Non-factoid Type
Questions and Automatic Evaluation based on BE Method. Proceedings of the 4th
Question Answering Challenge (QAC-4) at NTCIR Workshop 6, pp. 441-447.

[Girju (2002)] Girju, C. R., 2002. Text Mining for Semantic Relations. Doctoral Disser-
tation, University of Texas at Dallas.

[Goldman & Zhou (2000)] Goldman, S., and Zhou, Y., 2000. Enhancing Supervised
Learning with Unlabeled Data. Proceedings of the 17th International Conference on
Machine Learning, pp. 327-334.

[Grishman & Sundheim (1996)] Grishman, R., and Sundheim, B., 1996. Message Under-
standing Conference 6: A Brief History. Proceedings of COLING-96, pp. 466-471.

[Guha & McCool (2002)] Guha, R., and McCool, R., 2002. TAP: Towards a Web of Data.
At http://tap.stanford.edu Rada Mihalcea.

[Guha, et al. (2003)] Guha, R., McCool, R., and Miller, E., 2003. Semantic Search. Pro-
ceedings of the 12th International Conference on World Wide Web, pp. 700-709 .

[Hearst (1992)] Hearst, M. A., 1992. Automatic Acquisition of Hyponyms from Large
Text Corpora. Proceedings of the 14th Conference on Computational Linguistics, pp.
539 - 545.

[Hassel (2003)] Hassel, M., 2003. Exploitation of Named Entities in Automatic Text Sum-
marization for Swedish. Proceedings of the 14th Nordic Conference on Computational
Linguistics.

91

[Heflin, et al. (1999a)] Heflin, J., Hendler, J., and Luke, S., 1999. SHOE: A Knowledge
Representation Language for Internet Applications. Technical Report CS-TR-4078
(UMIACS TR-99-71), Dept. of Computer Science, University of Maryland at College
Park.

[Heflin, et al. (1999b)] Heflin, J., Hendler, J., and Luke, S., 1986. Coping with Changing
Ontologies in a Distributed Environment. Proceedings of the AAAI Workshop, WS-
99-13, AAAI Press, pp. 74-79.

[Heflin & Hendler (2000a)] Heflin, J., and Hendler, J., 2000. Dynamic Ontologies on the
Web. Proceedings of the Seventeenth National Conference on Artificial Intelligence
(AAAI-2000), AAAI/MIT Press, pp. 443-449.

[Heflin & Hendler (2000b)] Heflin, J., and Hendler, J., 2000. Searching the Web with
SHOE. Proceedings of Artificial Intelligence for Web Search, AAAI Press, pp. 35-40.

[Heflin (2001)] Heflin, J., 2001. Towards the Semantic Web: Knowledge Representation in
a Dynamic, Distributed Environment. Doctoral dissertation, University of Maryland.

[Hovy, et al. (2001)] Hovy, E. H., Gerber, L., Hermjakob, U., Lin, C. Y., and Ravichan-
dran, D., 2001. Toward Semantics-based Answer Pinpointing. Proceedings of the
DARPA Human Language Technologies Conference (HLT), pp. 339-345.

[Ittycheriah, et al. (2001)] Ittycheriah, A., Franz, M., Zhu, W. J., Ratnaparkhi, A., Mam-
mone, R. J., 2001. IBM’s Statistical Question Answering Systems. Proceedings of the
9th Text Retrieval Conference, pp. 229-235.

[Jarvis & Patrick (1973)] Jarvis, R. A., and Patrick, E. A., 1973. Clustering Using a Sim-
ilarity Measure Based on Shared Near Neighbors, IEEE Transactions on Computers,
Vol. C22, pp. 1025-1034.

[Joachims (1998)] Joachims, T., 1998. Text Categorization with Support Vector Ma-
chines: Learning with Many Relevant Features. Proceedings of ECML-98, the 10th
European Conference on Machine Learning, pp. 137-142.

[Kadri & Wayne (2003)] Kadri, H., and Wayne, W., 2003. Question Classification
with Support Vector Machines and Error Correcting Codes. Proceedings of
NAACL/Human Language Technology Conference, pp. 28-30.

[Kanji (1994)] Kanji, G. K., 1994. 100 Statistical Tests. SAGE Publications.

[Karvounarakis, et al. (2002)] Karvounarakis, G., Christophides, V., Plexousakis, D., and
Scholl, M., 2002 . RQL: a Declarative Query Language for RDF, Proceedings of the
11th international conference on World Wide Web, pp. 592-603.

[Katz (1991)] Katz, B., 1991. Using English for Indexing and Retrieving. Artificial Intel-
ligence at MIT Expanding Frontiers, MIT Press, pp. 134-165.

[Kim, et al. (2006)] Kim, Y., Kim, B., and Lim, H., 2006. The Index Organizations for
RDF and RDF Schema. Proceedings of the 8th International Conference on Advanced
Communication Technology (ICACT 2006), pp. 1871-1874.

92

[Kogut & Holmes (2001)] Kogut, P., and Holmes, W., 2001. AeroDAML: Applying Infor-
mation Extraction to Generate DAML Annotations from Web Pages. Proceedings of
the First International Conference on Knowledge Capture (K-CAP 2001) Workshop
on Knowledge Markup and Semantic Annotation.

[Kogut & Heflin (2003)] Kogut, P., and Heflin, J., 2003. Semantic Web Technologies for
Aerospace. Proceedings of IEEE Aerospace Conference, Vol. 6, pp. 2887-2894.

[Kumaran & Allan (2004)] Kumaran, G., Allan, J., 2004. Text Classification and Named
Entities for New Event, Proceedings of the 27th Annual International ACM SIGIR
Conference, Sheffield: ACM Press, pp. 297-304.

[Le (2004)] Le, T. H., 2004. Investigation into an Approach to Automatic Text Summa-
rization. Doctoral dissertation, Middlesex University.

[Letscher & Berry (1997)] Letscher, T. A., and Berry, M. W., 1997. Large-scale Infor-
mation Retrieval with Latent Semantic Indexing. Information Sciences Applications,
Vol. 100, No. 105, pp. 105-137.

[Lewis (1991)] Lewis, D., 1991. Representation and Learning in Information Retrieval.
Doctoral Dissertation, University of Massachusetts.

[Li & Roth (2002)] Li, X., and Roth, D., 2002. Learning Question Classifiers. Proceedings
of the 19th International Conference on Computational Linguistics, pp. 556-562.

[Li & Roth (2005)] Li, X., and Roth, D., 2005. Learning Question Classifiers: The Role
of Semantic Information. Journal of Natural Language Engineering, Vol. 12, Issue 3,
pp. 229-249.

[Lindley, et al. (2001)] Lindley, C. A., Davis, J. R., Nack, F., and Rutledge, L. W., 2001.
The Application of Rhetorical Structure Theory to Interactive News Program Gen-
eration from Digital Archives. Technical Report: INS-R0101, CWI Centrum voor
Wiskunde en Informatica.

[Luke & Heflin (1997)] Luke, S., and Heflin, J., 1997. SHOE 1.0, Proposed Specification.
At http://www.cs.umd.edu/projects/plus/SHOE/spec.html.

[Mann & Thompson (1988)] Mann, C., and Thompson, S. A., 1988. Rhetorical Structure
Theory: A Theory of Text Organization. At http://www.sfu.ca/rst/

[Marcu (2000)] Marcu, D., 2000. The Rhetorical Parsing of Unrestricted Texts: A
Surface-Based Approach, Computational Linguistics, Vol. 26, Issue 3, pp. 395-448.

[Marir & Haouam (2004)] Marir, F., and Haouam, K., 2004. Rhetorical Structure Theory
for Content-based Indexing and Retrieval of Web Documents. Proceedings of the 2nd
International Conference on Information Technology: Research and Education, pp.
160-164.

[Matono, et al. (2004)] Matono, A., Amagasa, T., Yoshikawa, M., and Uemura, S.,
(2004). An Indexing Scheme for RDF and RDF Schema Based on Suffix Array. Trans-
actions of Information Processing Society of Japan, Vol. 45, No. SIG4(TOD21), pp.
50-62.

93

[Matono, et al. (2005)] Matono, A., Amagasa, T., Yoshikawa, M., and Uemura, S., 2005.
A Path-based Relational RDF Database. Proceedings of the 16th Australasian Data-
base Conference, pp. 95-103.

[Mulenbach, et al. (2004)] Mulenbach, F., Lallich, S., and Zighed, D. A., 2004. Identifying
and Handling Mislabelled Instances. Journal of Intelligent Information Systems, Vol.
22, No. 1, pp. 89-109.

[Nguyen, et al. (2006a)] Nguyen, T. T., Shimazu, A., Le, A. C., and Nguyen, L. M., 2006.
Applying RST Relations to Semantic Search. Proceedings of the 9th International
Conference on Text, Speech and Dialog, pp. 189-196.

[Nguyen, et al. (2006b)] Nguyen, T. T., Nguyen, L. M., and Shimazu, A., 2006. Using
Semi-supervised Learning for Question Classification. Proceedings of the 21st Inter-
national Conference on the Computer Processing of Oriental Languages, pp. 31-41.

[Nguyen, et al. (2007a)] Nguyen, T. T., Nguyen, L. M., and Shimazu, A., 2007. Improving
the Accuracy of Question Classification with Machine Learning. Proceedings of the 5th
International Conference on Research, Innovation & Vision for the Future: RIVF’07,
IEEE Explore Digital Library, pp. 234-241.

[Nguyen & Shimazu (2007b)] Nguyen, T. T., and Shimazu, A., 2007. Automatic Extrac-
tion of the Fine Category of Person Named Entities from Text Corpora. IEICE
Transactions on Information and Systems, Special section on Knowledge, Informa-
tion and Creativity Support System, Vol. E90-D, No. 10, pp. 1542-1549.

[Nguyen & Shimazu (2007c)] Nguyen, T. T., and Shimazu, A., 2007. Acquisition of
Named-Entity-Related Relations for Searching. Proceedings of the 21st Pacific Asia
Conference on Language, Information and Computation (PACLIC21), pp. 349-357.

[Nguyen, et al. (2008)] Nguyen, T. T., Nguyen, L. M., and Shimazu, A., 2008. Using
Semi-supervised Learning for Question Classification. Journal of Natural Language
Processing, Vol. 15, No. 1, (to appear).

[Nigam & Ghani (2000)] Nigam, K., and Ghani, R., 2000. Analyzing the Effectiveness
and Applicability of Co-training. Proceedings of the 9th International Conference on
Information and Knowledge Management, pp. 86-93.

[Nomoto (2004)] Nomoto, T., 2004. Machine Learning Approaches to Rhetorical Pars-
ing and Open-domain Text Summarization. Doctoral Dissertation, Nara Institute of
Science and Technology.

[Nobata, et al. (2002)] Nobata, C., Sekine, S., Isahara, H., and Grishman, R., 2002. Sum-
marization System Integrated with Named Entity Tagging and IE Pattern Discovery.
Proceedings of the 3rd International Conference on Language Resources and Evalua-
tion.

[Pinto, et al. (2001)] Pinto, H. S., and Martins, J., 2001. A Methodology for Ontology
Integration. Proceedings of the 1st International Conference on Knowledge Capture,
pp. 131-138.

94

[Popov, et al. (2003)] Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D.,
and Goranov, M., 2003. KIM - Semantic Annotation Platform, Proceedings of the
International Semantic Web Conference (ISWC), pp. 834-849.

[Pasca (2004)] Pasca, M., 2004. Acquisition of Categorized Named Entities for Web
Search. Proceedings of the 13th ACM Conference on Information and Knowledge
Management (CIKM-04), pp. 137-145.

[Reitter (2003)] Reitter, D., 2003. Rhetorical Analysis with Rich-Feature Support Vector
Models. Diplomas Thesis in Computation Linguistics, University of Potsdam.

[Salton, et al. (1975)] Salton, G., Wong, A., and Yang, H. S., 1975. A Vector Space Model
for Automatic Indexing. Communications of the ACM, Vol. 18, No. 11, pp. 613-620.

[Sang & Meulder (2003)] Sang, E. F. T. K., and Meulder, F. D., 2003. Introduction to
the CoNLL-2003 Shared Task: Language-independent Named Entity Recognition.
Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL
2003, Vol. 4, pp. 142-147.

[Sekine, et al. (2000a)] Sekine, S., Sudo, K., and Nobata, C., 2000. Extended Named
Entity Hierarchy. Proceedings of the 3rd International Conference on Language Re-
sources and Evaluation, pp. 1818-1824.

[Sekine & Isahara (2000b)] Sekine, S., Isahara, H., 2000. IREX: IR and IE Evaluation
Project in Japanese. Proceedings of the Second International Conference on Language
Resources and Evaluation, Vol. 1, pp. 1475-1480.

[Shinzato & Torisawa (2004)] Shinzato, K., and Torisawa, K., 2004. Acquiring Hyponymy
Relations from Web Documents. Proceedings of HLT-NAACL 2004, pp. 73-80.

[Singhal, et al. (1999)] Singhal, A., Choi, J., Hindle, D., Lewis, D. D., and Pereira, F. C.
N., 1999. AT&T at TREC-8. Proceedings of the 8th Text Retrieval Conference, pp.
186-198.

[Srihari & Li (2000)] Srihari, R., and Li, W., 2000. A Question Answering System Sup-
ported by Information Extraction. Proceedings of the 6th Applied Natural Language
Processing Conference, pp. 166-172.

[Stoffel, et al. (1997)] Stoffel, K., Taylor, M., and Hendler, J., 1997. Efficient Manage-
ment of Very Large Ontologies. Proceedings of American Association for Artificial
Intelligence Conference (AAAI-97), pp. 442-447.

[Sumida, et al. (2006)] Sumida, A., Torisawa, K., and Shinzato, K., 2006. Concept-
Instance Relation Extraction from Simple Noun Sequences Using a Full-text Search
Engine. Proceedings of the Web Content Mining with Human Language Technologies
workshop on the fifth International Semantic Web, pp. 442-447.

[Voorhees (1999)] Voorhees, E., 1999. The TREC-8 Question Answering Track Report.
Proceedings of the 8th Text Retrieval Conference (TREC-8), pp. 77-82.

[Voorhees (2000)] Voorhees, E., 2000. The TREC-9 Question Answering Track. Proceed-
ings of the 9th Text Retrieval Conference (TREC-9), pp. 71-80.

95

[Voorhees (2001)] Voorhees, E., 2001. Overview of the TREC 2001 Question Answering
Track. Proceedings of the 10th Text Retrieval Conference (TREC-10), pp. 157-165.

[Yates, et al. (1999)] Yates, R. B., and Neto, B. R., 1999. Modern Information Retrieval.
Addison-Wesley.

[Zhang & Lee (2003)] Zhang, D., and Lee, W. S., 2003. Question Classification Using
Support Vector Machines. Proceedings of the 26th Annual International ACM SIGIR
Conference, pp. 26-32.

[Zhou & Li (2005)] Zhou, Z. H., and Li, M., 2005. Tri-training: Exploiting Unlabeled
Data Using Three Classifiers. IEEE Transactions on Knowledge and Data Engineer-
ing, Vol. 17, No. 11, pp. 1529-1541.

96

Publications

Journals

[1] Nguyen, T. T., and Shimazu, A., 2007. Automatic Extraction of the Fine Category
of Person Named Entities from Text Corpora. IEICE Transactions on Information
and Systems, Special section on Knowledge, Information and Creativity Support
System, Vol. E90-D, No. 10, pp. 1542-1549.

[2] Nguyen, T. T., Nguyen, L. M., and Shimazu, A., 2008. Using Semi-supervised
Learning for Question Classification. Journal of Natural Language Processing, Vol.
15, No. 1, (to appear).

Refereed International Conferences

[3] Nguyen, T. T., Shimazu, A., Le, A. C., and Nguyen, L. M., 2006. Applying RST
Relations to Semantic Search. Proceedings of the 9th International Conference on
Text, Speech and Dialog, pp. 189-196.

[4] Nguyen, T. T., Nguyen, L. M., and Shimazu, A., 2006. Using Semi-supervised
Learning for Question Classification. Proceedings of the 21st International Confer-
ence on the Computer Processing of Oriental Languages, pp. 31-41.

[5] Nguyen, T. T., Nguyen, L. M., and Shimazu, A., 2007. Improving the Accuracy
of Question Classification with Machine Learning. Proceedings of the 5th Interna-
tional Conference on Research, Innovation & Vision for the Future: RIVF’07, IEEE
Explore Digital Library, pp. 234-241.

[6] Nguyen, T. T. and Shimazu, A., 2007. Acquisition of Named-Entity-Related Rela-
tions for Searching. Proceedings of the 21st Pacific Asia Conference on Language,
Information and Computation (PACLIC21), pp. 349-357.

[7] Nguyen, M. L., Nguyen, T. T., and Shimazu, A., 2007. Subtree mining for question
classification problem. Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1695-1700.

97

