
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title On-the-fly Model Checking of Security Protocols

Author(s) 国強, 李

Citation

Issue Date 2008-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/4196

Rights

Description
Supervisor: Mizuhito Ogawa, School of Information

Science, Doctor

On-the-fly Model Checking of Security Protocols

by

Guoqiang LI

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Mizuhito OGAWA

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2008

Abstract

Security protocols, although each of them only contains several flows, easily cause
attacks even without breaking cryptography algorithms. Design and analysis of security
protocols prove to be a challenging problem over 30 years. Many formalisms have been
adopted to describe security protocols, and been analyzed by various automatic and semi-
automatic techniques. Due to the complication of the network, methodologies for the
analysis should be carefully designed to represent each infinity factor one assumed, such
as, an unbounded number of sessions one principal participates, an unbounded number
of principals one principal communicates with, and an unbounded number of messages
intruders and dishonest principals produce.

A dilemma has occurred when one tries to propose a methodology for security protocol
analysis, dealing with the infinity factors introduced above. On the one hand, a model
for security protocols should be strong enough in expressiveness to describe any possible
situation that a running protocol may reach, otherwise it may fail in detecting subtle
attacks. On the other hand, analyzing a property on a model strong in expressiveness
may be undecidable. Thus automatic techniques may not terminate when detecting flaws.

This thesis proposes a sound and complete model checking method to analyze various
security properties under certain assumptions. That is, when flaws are not detected, the
protocol is guaranteed to be secure under these assumptions. An environment-based pro-
cess calculus is introduced to describe behaviors of security protocols. Deductive systems
can be inserted freely in the model, to represent infinitely many messages intruders or
dishonest principals generate, due to different security assumptions. A trace semantics is
chosen for the calculus, so that each possible run of a security protocol can be represented
explicitly by a concrete trace. The main contributions and achievements are:

• When various security properties of security protocols are analyzed under different
assumptions, infinity factors are abstracted to be finite by several techniques, so that
security properties can be checked automatically by a sound and complete on-the-fly
model checking under these assumptions, including, (i) secrecy and authentication
properties in bounded sessions, (ii) authentication property for recursive protocols,
and (iii) non-repudiation and fairness properties in bounded sessions. Among them,
(ii) and (iii) are first analyzed by model checking methods.

• Protocol-independent specifications for secrecy and authentication properties are
proposed. In this approach, the specifications for secrecy and authentication prop-
erties can be generated automatically from a protocol description. In comparison,
other approaches, especially process calculi based approaches, define a security spec-
ification dependent on a given security protocol manually .

The methodology is implemented by Maude. By the facility of the reachability analysis
in Maude (implemented as search), each property can be checked at the same time when
a model is generated.

i

Key Words: Security Protocols, On-the-fly Model Checking, Secrecy, Authentication,
Non-repudiation, Fairness, Recursive Protocols, Maude

ii

Acknowledgments

I am greatly grateful to Professor Mizuhito Ogawa, my supervisor, for his guidance,
wisdom and support he has provided me throughout my doctoral education. He always
helps me to clarify my research issues, inspires new ideas and enhances my thinking ability.
Without him, this thesis would be impossible. The work presented in this thesis in effect
should be regarded as a result of collaborations with him.

I would like to thank the dissertation committee members, who gave me instructive
suggestions and comments in the evaluation of the preliminary version of the thesis.
They are Professor Takuya Katayama, Professor Kokichi Futatsugi, Associate Professor
Kazuhiro Ogata from JAIST, and Professor Shoji Yuen from the Nagoya University. I
also appreciate that Professor Yuen offered me a postdoctoral researcher position in the
Nagoya University after my graduation.

I wish to continue my sincere thanks to my sub-theme supervisor, Associate Professor
René Vestergaard, not only for conducting me to a very interesting field and widening my
view, but also for his two lectures, Formal Reasoning, and Formal Game Theory. The
lectures opened a door of formal methods in front of me. I have learned quite a lot from
the lectures and discussions with him.

I would like to thank Dr. Bochao Liu, for his continuous discussions with me, which
make me clear in concepts and knowledge we are both interested in. I also thank him for
his guide of the knowledge in type systems to me, and for his help with my English study.

I wish to continue my thanks to my colleagues in the laboratory. They are Dr. Xin
Li, Dr. Nao Hirokawa, Mr. Nguyen Van Tang and Ms. Do Thi Bich Ngoc. It is a great
pleasure to work with them everyday. They also offered me great assistances for this
thesis.

I wish to thank other friends in JAIST, with whom I spent a happy time here. They
are Dr. Jianwen Xiang, Dr. Jin Tian, Dr. Bochao Liu, Dr. Weiqiang Kong, and Ms.
Xiaoyi Chen. I would like to devote many thanks to them for inviting me to cook in their
apartments, which made me feel enjoyable; devote many thanks to Ms. Xiaoyi Chen for
driving me everywhere.

I also wish to thank those who gave me comments, and checked grammar mistakes
and typos for this thesis, especially Mr. Han Zhu, who almost read the whole thesis, and
gave me lots of comments.

I could not have come this far without the continuous support and encouragement
from my parents. I would like to devote this thesis to them.

iii

Funding. This research is supported by the 21st Century COE “Verifiable and Evolvable
e-Society” of Japan Advanced Institute of Science and Technology, funded by Japanese
Ministry of Education, Culture, Sports, Science and Technology.

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 A Brief Background . 1
1.2 Motivations and Objectives . 3
1.3 Achievements and Contributions . 4

1.3.1 Abstraction of Infinity Factors . 5
1.3.2 Protocol-Independent Security Specifications 6
1.3.3 Implementation by Maude . 6

1.4 Thesis Organizations . 6

2 Process Calculus and Its Trace Semantics 9
2.1 An Environment-Based Process Calculus 10

2.1.1 Messages . 10
2.1.2 Environmental Deductive System 12
2.1.3 Processes . 12

2.2 Operational Semantics . 16

3 Representing Security Protocols 19
3.1 Representing Principals . 20
3.2 Freshness of Messages . 20
3.3 Protocols in Bounded sessions . 22

3.3.1 Protocols with Server in One Session: The AG Protocol 22
3.3.2 Protocols without Server in One Session: The NSPK Protocol . . . 23
3.3.3 Protocols in Multiple Sessions: The WL Protocol 24

3.4 Recursive Protocols . 25
3.4.1 Recursive Ping-Pong Protocols . 25
3.4.2 The RA Protocol . 26

4 Parametric Semantics 31
4.1 Parametric Trace and Operational Semantics 32
4.2 Refinement Step . 35

5 Secrecy and Authentication in Bounded Sessions 39
5.1 Sub-Calculus for Bounded Sessions . 39
5.2 Action Terms . 41

v

5.3 Representing Security Properties . 42
5.3.1 Security Properties for the AG Protocol 42
5.3.2 Security Properties for the NSPK Protocol 43
5.3.3 Security Properties for the Multiple WL Protocol 44

5.4 Checking Security Properties . 45
5.5 Counterexamples and Attacks . 48

5.5.1 Results and Discussion of the AG Protocol 48
5.5.2 Attacks of the NSPK Protocol and Its Modification 49
5.5.3 Attacks of the Multiple WL Protocol and Its Modification 50

5.6 Compacting Parametric Traces with Type 51

6 Authentication in Recursive Protocols 53
6.1 Sub-Calculus for Recursive Protocols . 53
6.2 Representing Authentication for Recursive Protocols 54

6.2.1 A Subset of Action Terms . 54
6.2.2 Representing Security Properties for the RA Protocol 55

6.3 Model Checking by the Pushdown System 56
6.4 Attacks of the RA Protocol and Its Modification 59
6.5 Different Points of View to the Attack . 61

7 Non-repudiation and Fairness in Bounded Sessions 63
7.1 Extended Model for Non-repudiation Protocols 63

7.1.1 Extended Process Calculus and Concrete Trace 63
7.1.2 Operational Semantics . 65
7.1.3 Describing Fair Non-repudiation Protocols 65

7.2 Representing non-repudiation and fairness 67
7.2.1 Non-repudiation . 67
7.2.2 Fairness . 68

7.3 Parametrization and Refinement . 69
7.3.1 Parametric Trace and Operational Semantics 69
7.3.2 Refinement Step . 70

7.4 Attacks of the Simplified ZG Protocol and Its Modification 73

8 Protocol-Independent Security Specifications 75
8.1 Security Specification Transformations . 76
8.2 Syntax Tree of a Process . 76
8.3 Secrecy . 77

8.3.1 General Secrecy Definition . 77
8.3.2 Generating the Secrecy Specification 78
8.3.3 Examples for Generating Secrecy Specifications 78

8.4 Authentication . 80
8.4.1 General Authentication Definition 80
8.4.2 Generating the Authentication Specifications 81
8.4.3 Examples for Generating Authentication Specifications 81

8.5 Other Properties . 83

vi

9 Implementation Issues and Experimental Results 85
9.1 The Construction of Implementations . 86

9.1.1 Parametric Processes . 86
9.1.2 Sorts in Implementations . 87
9.1.3 Trace Generating System . 88

9.2 Implementation for Authentication . 90
9.2.1 Protocol Description . 90
9.2.2 Other Tested Protocols . 91
9.2.3 Experimental Results . 93

9.3 Implementation for Recursive Protocols . 94
9.3.1 Trace Generating System as the Pushdown System 94
9.3.2 Protocol Description . 96
9.3.3 Experimental Results . 97

9.4 Implementation for Non-repudiation and Fairness 97
9.4.1 Protocol Description . 97
9.4.2 Other Tested Protocols . 98
9.4.3 Experimental Results . 100

10 Related Work 101
10.1 Modeling and Specification . 101

10.1.1 Belief Logics . 101
10.1.2 CSP . 103
10.1.3 Spi and Spi-like Calculi . 104
10.1.4 Strand Space . 106
10.1.5 HLPSL . 107
10.1.6 Other Formalisms . 108

10.2 Validation . 108
10.2.1 Model Checking . 108
10.2.2 Resolution . 109
10.2.3 Theorem Proving . 110

11 Conclusions and Perspectives 113
11.1 Thesis Summaries . 113
11.2 Future Perspectives and Developments . 114

11.2.1 More on the Same Direction . 114
11.2.2 Affiliating to the Resolution Method 114
11.2.3 Analyzing from a Source Code . 115

Bibliography 117

Publications 127

A A Brief Introduction to Security Protocols 129
A.1 Security Protocols . 129

A.1.1 Authentication Protocols . 129
A.1.2 Fair Exchange Protocols . 130

A.2 Security Properties . 131
A.2.1 Secrecy . 131

vii

A.2.2 Authentication . 131
A.2.3 Key Distribution . 132
A.2.4 Non-repudiation . 133
A.2.5 Fairness . 133
A.2.6 Anonymity . 133

A.3 Vulnerabilities and Attacks . 133
A.3.1 Passive Attacks . 134
A.3.2 Active Attacks . 134

B Semantics of Process Calculi 137
B.1 CCS . 137

B.1.1 Labeled Transitional Semantics . 137
B.1.2 Strong and Weak Bisimulations . 138
B.1.3 Trace Semantics and Equivalence 139
B.1.4 Failure Semantics and Equivalence 139
B.1.5 Testing Semantics and Equivalence 139

B.2 π-calculus . 141
B.2.1 Early Semantics . 142
B.2.2 Late Semantics . 142
B.2.3 Symbolic Semantics . 145

C Compacting Parametric Traces with Type 147
C.1 Type System . 148
C.2 Translating to Parametric Processes . 153

D Implemented Maude Codes 159
D.1 Functions for Refinement Steps . 159
D.2 Protocol Description for the Yahalom Protocol 162
D.3 Protocol Description for the RA protocol 163
D.4 Protocol Description of FAIRO for the Simplified ZG Protocol 165

viii

List of Figures

2.1 Modeling a Network by Environment-Based Communication 10
2.2 Environmental Deductive System . 12
2.3 The Axioms of Structural Congruence . 16
2.4 Concrete Transition Rules . 17

3.1 The Recursive Authentication Protocol . 26

4.1 Parametric Transition Rules . 32

5.1 Concrete Transition Rules for Bounded Sessions 40
5.2 State-Transition Trees for Infinite Systems 41
5.3 Parametric Transition Rules for Bounded Sessions 45
5.4 State-Transition Trees for Abstracting Infinite Systems 46

7.1 P -deductive system . 64
7.2 Concrete Transition Rules for the Extended Model 65
7.3 Parametric Transition Rules for the Extended Model 69

8.1 Example Figures for Syntax Trees of Processes 77

9.1 Snapshot of Maude Result for the Yahalom Protocol 92
9.2 Snapshot of Maude Result for the Otway-Rees Protocol 93
9.3 Experimental Results for Authentication Protocols 94
9.4 Snapshot of Maude Result for the Recursive Authentication Protocol . . . 97
9.5 Experimental Results for Recursive Protocols 97
9.6 Snapshot of Maude Result for NRO of the Simplified ZG protocol 98
9.7 Snapshot of Maude Result for FAIRM of the Simplified ZG protocol 99
9.8 Experimental Results for Fair Non-repudiation Protocols 100

10.1 The Strand Space Bundle for the NSPK Protocol 106
10.2 HLPSL and IF Specifications of the Yahalom Protocol 108

B.1 Labeled Transition System of CCS . 138
B.2 Lattice on Result Sets . 140
B.3 The Early Transition Rules . 143
B.4 The Late Transition Rules . 144
B.5 The Symbolic Transition Rules . 146

C.1 Typing Rules . 149
C.2 Inference Rules for Parametric Processes 155

ix

C.3 Parametric Transition Rules for Parametric Processes 156
C.4 Concrete Transition Rules with Type Constraint 157

x

Chapter 1

Introduction

1.1 A Brief Background

In the world that is strongly dependent on distributed systems, the design of secure
and dependable infrastructures is a crucial task, in which designing security protocols 1,
core of these infrastructures, has received growing attention as a challenging problem.
In open networks, such as the Internet, protocols should work under worst case assump-
tions, namely, messages may be eavesdropped or modified by intruders, or other dishonest
principals. Attacks can be conducted even without breaking cryptography that protocols
adopted, but by exploiting flaws in the protocols. The history of security protocols de-
sign is full of examples, where expectedly correct protocols that had been implemented
and deployed in real applications were only found flawed years later. A most well-known
case is the Needham-Schroeder authentication protocol [90]. It becomes a legend in the
security protocol field.

• In 1978, R. Needham and M. Schroeder proposed Needham-Schroeder symmetric
key protocol (referred to as the NSSK protocol) [90]. It became the basis for many
similar protocols in later years. The authors suggested an alternative protocol based
on public key cryptography, which is named the Needham-Schroeder public key
protocol (referred to as the NSPK protocol).

• In 1981, Denning and Sacco demonstrated that the NSSK Protocol was flawed and
proposed a refined protocol [48].

• In 1994, Mart́ın Abadi demonstrated that the protocol that Denning and Sacco
refined was also flawed [9].

• In 1995, Lowe found an attack on the NSPK protocol. It is 17 years after its
publication [82, 83].

Let’s adopt the NSSK protocol as the first example [90] to generally understand secu-
rity protocols and attacks upon them. In the NSSK protocol, principal A and principal
B are intending to generate a session key through a key-generate server for later private
communications.

1For a brief introduction of security protocols, please refer to Appendix A.

1

CHAPTER 1. INTRODUCTION 2

In the first flow, A submits a request to the server S by sending its name, its expected
destination name, and a fresh nonce NA it generated for the later further validation.

A −→ S : A,B,NA

The server S then responds A by sending an encrypted message encrypted with the long-
term key shared by A and S. The contents of the encrypted message include the nonce
NA that S received, the name of A’s expected destination principal, a fresh session key
KAB generated by S, and another encrypted message {KAB, A}KBS

, encrypted by the
long-term key shared by B and S.

S −→ A : {NA, B,KAB, {KAB, A}KBS
}KAS

When A received this message, and decrypted it, it first validates whether NA is equal to
the nonce it generated. After validation, it forwards the encrypted message {KAB, A}KBS

to B.
A −→ B : {KAB, A}KBS

Then B generates a fresh nonce, adopts the key KAB it received to encrypt the nonce,
and sends it back to A.

B −→ A : {NB}KAB

After A decrypted the message it received with the key KAB, it sends {NB − 1}KAB
back

to B.
A −→ B : {NB − 1}KAB

After B validates the message it received, it then makes an agreement with A to KAB,
and use it for the later private communications.

We know that nonces are used to identify a fresh session. But in the NSSK protocol,
NA does not work: The messages in the last three flows can be “reused” by intruders.
That is, when A and B communicates once by running a session of the protocol, the
messages are recorded by an intruder I in the network. The intruder I can trigger B at
any time. Even worse, when KAB is compromised and discarded, I can make B reuse
KAB by sending {KAB, A}KBS

it recorded to B,

I(A) −→ B : {KAB, A}KBS

Then B faithfully follows the rules of the protocol, sending back the message,

B −→ I(A) : {N ′
B}KAB

Since I knows KAB, it can,

I(A) −→ B : {N ′
B − 1}KAB

Then B will reuse KAB to protect confidential messages for later communications. This
attack is firstly reported in by Denning and Sacco [48].

The attack for the NSPK protocol is more ingenious. Let us introduce the first three
flows of the NSPK protocol.

A −→ B : {A,NA}+KB

B −→ A : {NA, NB}+KA

A −→ B : {NB}+KB

CHAPTER 1. INTRODUCTION 3

Intuitively, principal A and B are intending to generate a fresh session key for later
private communications. A firstly initiates a communication by sending an encrypted
message to B, encrypting its name A and a fresh nonce NA with B’s public key. Then B
responds A by sending back NA it received and a fresh nonce NB with the protection of
A’s public key. After A validates NA in the received message, it sends back NB, with the
protection of B’s public key. B also validates the message after it received the message.
Then, they will use NB as a session key for confidential communications.

Principals can run several sessions of a protocol concurrently with any possible prin-
cipals, in which some are legitimate, while others are hostile. In the attack [83] below, A
communicates with a hostile intruder I.

A −→ I : {A,NA}+KI

Then I pretends to be A, initiating another session with B, by sending the message
received from A.

I(A) −→ B : {A,NA}+KB

B faithfully follows the rules of the protocol, sending back the message to I. I forwards
the message to A, as a response of the first session.

B −→ I(A) : {NA, NB}+KA

I −→ A : {NA, NB}+KA

After that, A sends the last message to I. I still pretends to be A, and sends the message
to B, as a response of the second session.

A −→ I : {NB}+KI

I(A) −→ B : {NB}+KB

After the validation, B thinks it makes an agreement with A, and uses NB as a session
key for later private communications. But I knows NB, and thus it can get confidential
messages sent by B.

To achieve security goals, researchers defined lots of security properties, such as au-
thentication, secrecy, non-repudiation, fairness, integrity, anonymity. However, security
protocols often fail to enforce the goals claimed by their designer due to various unpre-
dicted attacks. Hence, security protocol analysis becomes a critical task for researchers.
Both security protocol design and analysis prove to be challenging problems over 30 years.

1.2 Motivations and Objectives

Due to extreme importance of security protocols in the modern world, to ensure se-
curity protocols to be more reliable, and to speed up the development of new protocols,
it is important to have tools that support the activity of finding flaws in protocols, or
guaranteeing correctness of protocols. Various formalisms for the specification of security
protocols have been proposed based on, e.g. process calculi [7, 104], belief logic [37],
higher-order logic [99, 18], first-order logic [117], linear logic [53], equational logic [70],
hidden algebra [93], and tree automata [89, 78, 27]. They adopted different full-automatic

CHAPTER 1. INTRODUCTION 4

or semi-automatic techniques, such as model checking based on finite models [83, 29], res-
olution [23, 24, 5], and higher-order theorem proving [106, 18]. However, security protocol
analysis proves to be a rather difficult task, due to the complication of the network. Mod-
els for security protocol analysis should be carefully designed to depict factors of infinity
one assumed. The usual factors are,

• each principal in a protocol can initiate or respond to an unbounded number of
sessions;

• each principal in one session may communicate with an unbounded number of prin-
cipals;

• each intruder can produce, store, duplicate, hide, or replace an unbounded number
of messages based on the messages sent in the network, following the Dolev-Yao
model [50];

• each dishonest principal may disobey the prescription of the protocol, sending an
unbounded number of messages it can generate, and misbehaving the protocol.

A dilemma has occurred when one tries to propose a methodology for security protocol
analysis, dealing with the factors of infinity above. On the one hand, a model for security
protocols should be strong enough in expressiveness to describe any possible situation
that a running protocol may reach, or it may fail in detecting subtle attacks of a security
protocol [91, 35, 98]. On the other hand, analyzing a property on a model strong in
expressiveness may be undecidable [53]. Thus automatic techniques may not terminate
when detecting flaws [111, 26].

Our choice is to propose a flexible and expressive model to represent behaviors of
security protocols. Deductive systems can be inserted freely to integrate the model, to
represent infinitely many messages intruders or dishonest principals generate according to
different security assumptions. Driven by different security requirements, various security
properties can be analyzed in the model. The analysis method is sound and complete
with respect to the analyzed property, under the assumption provided by the model. The
objectives of this thesis are listed as follows,

• to design a flexible expressive framework suited for analyzing various security prop-
erties under reasonable assumptions;

• to develop a fully automatic tool for security protocols analysis, sound and complete
under certain assumptions. That is, when flaws are not detected, it guarantees that
a protocol is secure under these assumptions;

• to find out a protocol-independent method to generate a specification from a pro-
tocol description automatically, making the tool easily usable.

1.3 Achievements and Contributions

This thesis adopts model checking as the execution engine, and introduces an environment-
based process calculus to describe behaviors of a security protocol. Deductive systems are
used to generate messages that intruders or dishonest principals can send [29, 107]. The
main contributions are the following points.

CHAPTER 1. INTRODUCTION 5

1.3.1 Abstraction of Infinity Factors

Model Checking Authentication and Secrecy in Bounded Sessions

When analyzing authentication and secrecy, each principal is assumed to be honest.
Thus only an environmental deductive system that generates intruders’ messages is in-
serted into the model.

A sound and complete model checking method under the restriction of bounded num-
ber of sessions is proposed to analyze authentication and secrecy properties, with the
ideas that:

• Due to the introduction of a binder, infinitely many principals that one principal
may communicate with are described finitely, while other model checking methods
need to impose an upper-bound to the number of principals that a principal may
communicate with [83, 29, 25].

• A parametric semantics is proposed, abstracting infinity factors in the original
model. Each variable is instantiated only when needed. The parametric semantics
enjoys sound and complete to the original model with respective to the represen-
tation. Thus properties can be checked in the parametric model. This parametric
approach is similar to the lazy intruder in the OFMC proposed by D. Basin [25].

Model checking of Recursive Protocols

A sound and complete model checking is proposed to analyze recursive protocols. It
makes the first step towards model checking of security protocols in an unbounded number
of sessions, with the following technical details.

• Identifiers [87, 88] are adopted to describe recursive processes. By a restriction
of occurrences of identifiers in a process, it allows to analyze protocols with one
recursive procedure, which can be naturally used to represent recursive protocols.

• An unbounded number of fresh messages is represented by nested binders. With
the restrictions above, the same context will not be repeated. Thus freshness of
messages will be guaranteed by the current context.

• The pushdown system [109], an infinite-state systems with a finite set of control
locations and an unbounded stack memory, is used to abstract the infinite model.
Security properties can be checked on the pushdown system.

To the best of my knowledge, this is the first model checking method applied to
recursive protocols. An attack for the protocol is first detected automatically in our
framework.

Model Checking Non-repudiation and Fairness in Bounded Sessions

By the introduction of another deductive system to describe the capability of dishonest
principals in the model, security properties, such as non-repudiation and fairness, of fair
non-repudiation protocols in bounded sessions can be analyzed by a similar parametric
approach. To the best of my knowledge, this is also the first model checking method
applied to the non-repudiation property.

CHAPTER 1. INTRODUCTION 6

1.3.2 Protocol-Independent Security Specifications

Protocol-independent specifications for secrecy and authentication properties are pro-
posed. In this approach, the specifications for secrecy and authentication properties can
be generated automatically from a protocol description. In comparison, other formal
methods for security protocols, especially process calculi based approaches [83, 29, 106],
generate a security specification dependent on a given protocol manually. Our choice is to
scan a formal protocol description statically by a syntax scanner, then the process for a
security specification, named a probing process, is generated automatically from a formal
protocol description. There are mainly two kinds of transformations.

A declaration process insertion inserts a process with only an output action, named
a declaration process, to a formal protocol description. It describes that a principal
provides a message it received, after validating this message. Declaration process
insertions are used to define authentication, non-repudiation, and fairness.

A guardian process composition composes a formal protocol description to a process
with only an input action, named a guardian process. It can be regarded as a fresh
principal inserted in the network, listening all the message leaked in the environment,
and trying to find out whether any confidential message is available. Guardian
process compositions are used for secrecy and fairness.

1.3.3 Implementation by Maude

Maude [42], a language and system supporting both equational and rewriting logic
computation for a wide range of applications, is chosen to testify our methodology. By
the facility of the reachability analysis in Maude (implemented as search), each property
can be checked at the same time while a model is being generated. Hence it is named an
on-the-fly model checking methodology.

1.4 Thesis Organizations

The rest of the thesis is organized as follows,

• Chapter 2 introduces an environment-based process calculus and its trace semantics
to describe security protocols.

• Chapter 3 adopts several running examples to illustrate how to describe a security
protocol “correctly” under different assumptions.

• Chapter 4 proposes an alternative parametric semantics to the calculus, by a refine-
ment step, it is proved that transitions in parametric semantics and trace semantics
are sound and complete with respect to their representations.

• Chapter 5 chooses a model for analyzing authentication and secrecy properties of
security protocols in bounded sessions by avoiding identifiers. A set of action terms
is defined to represent these security properties. Furthermore, a type-based statical
analysis is proposed to compact the parametric models.

CHAPTER 1. INTRODUCTION 7

• Chapter 6 allows the model has one recursive procedure, so that recursive protocols
are naturally described. By the pushdown system, an unbounded number of para-
metric traces are represented with a finite set of control locations and an unbounded
stack memory. Thus the authentication property is checked on the pushdown sys-
tem.

• Chapter 7 extends the model in Chapter 5 with a deductive system to generate
infinitely many messages dishonest principals may produce. In the similar way, a
finite parametric model with the same representative ability is proposed to abstract
all infinities. Thus security properties, such as non-repudiation and fairness, for fair
non-repudiation protocols are checked in the parametric model.

• Chapter 8 introduces Protocol-independent specifications generated from a formal
protocol description. A probing process is transformed automatically from a formal
protocol description, with the aim of representing a given security property. The
formal definition of the security property is automatically generated according to
the probing process. This chapter gives two algorithms to show how to generate
specifications for secrecy and authentication properties.

• Chapter 9 shows implementations of parametric models introduced in Chapter 5, 6,
and 7, by the on-the-fly model checking methodologies by Maude. Besides running
examples, various other security protocols are also tested as case studies. The
experimental results are summarized in this chapter.

• Chapter 10 gives a survey of security protocols analysis, categorized by formalisms
and verifications techniques.

• Chapter 11 concludes the thesis with a discussion of the future plans.

CHAPTER 1. INTRODUCTION 8

Chapter 2

Process Calculus and Its Trace
Semantics

Since security protocols work through interactions of a number of principals in parallel
that send each other messages, process calculi [64, 87, 105, 22] are therefore obvious
notations for describing both the principals in the network and the composition that puts
them together, like CSP [104], or the Spi calculus [7]. The latter is an extension of the π-
calculus [88, 105].

To describe behaviors of each principal in a security protocol, we choose an environment-
based process calculus. The syntax of the calculus mainly comes from the Spi calculus.
New syntax, the binder, and a new primitive that binds variables, new, are introduced.
A variable bound by the new primitive will range over a given name set. In the pro-
cess calculus, we use identifiers [88, 87], instead of replications [105], to describe infinite
operation in a process.

The use of identifiers is an “old-fashion” style to define recursive processes. In the
past, there was an agreement that any recursive process with identifiers can be derived by
replications [88]. However, recently some researches show that identifiers actually have
more expressiveness than replications [97, 14, 65]. We choose to use identifiers, since with
a sequential restriction (inspired by CCS [87]) upon an expression defining a recursive
process, it can be naturally described and analyzed by the pushdown system (see Chapter
6).

To model a hostile network, the calculus uses environment-based communication (see
Figure 2.1), instead of the standard channel-based communication. Principals exchange
the messages with the environment. Following the Dolev-Yao model, the environment
can store, duplicate, hide or replace messages that travel on the network. It can also
operate according to the rules followed by honest principals and synthesize new messages
by pairing, decryption, encryption and creation of fresh nonces and keys, or by arbitrary
combinations of these operations. Thus a principal waiting for an input at a given moment
may expect any of the infinitely many messages the environment can produce and send
in the network. These infinitely many messages are generated by a deductive system [29].

Usually, process calculi adopt channel-based communications [87, 88, 105]: two pro-
cesses communicate with each other via channels. A channel can be either public (any
process can access messages from the channel), or private (only authorized processes can
access messages from the channel). In the π-calculus, a private channel can be distributed
from a process to another process dynamically via open and close transitions. Thus it

9

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 10

Environment

A

B

C

Figure 2.1: Modeling a Network by Environment-Based Communication

is called a mobile calculus [88]. An environment-based process calculus can be roughly
regarded as a calculus with only a singleton public channel, through which processes
communicate with each other. The channel has a memory to record every messages, and
a deductive system to generate new messages. With only one channel (although more
expressive), an environment-based calculus is much weaker than a channel-based calcu-
lus. However, the environment-based calculus avoids the difficulty to describe a hostile
network by a specific process, with intention to represent an intruder in the network [104].

To represent an unbounded number of principals with which one may communicate,
we assume that a principal may send a message to any of the principals. A binder is
introduced, in which a bound variable is regarded as the index of possible destinations of
the message. The variable ranges over a set of principals’ names. For example,

(newx : I) a1 {M}k[A,x]

represents that the principal may send the M to any possible other principals under the
encryption of the encrypted key shared with the principal and the one with which it
intends to communicate. The usual way to restrict this kind of infinity is by bounding the
number of principals in the network, so that each principal is described as only explicitly
communicating with finitely many principals, including an intruder [13, 83, 29, 17].

We choose a trace semantics [104, 29] for the model, so that each possible run of
a protocol can be represented explicitly by a concrete trace. Security properties will
be defined as a reachability problem on traces generated by the model that describes a
protocol.

2.1 An Environment-Based Process Calculus

The syntax of our calculus is based on the Spi calculus [7]. We also introduce new
syntax, binder and new.

2.1.1 Messages

Assume three countable disjoint sets: L for labels, B for binder names and V for
variables. Let a, b, c, . . . indicate labels, let m, n, k, . . . indicate binder names, and let
x, y, z, . . . indicate variables.

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 11

Definition 2.1 (Messages). Messages M,N, L . . . in a set M are defined iteratively as
follows:

pr ::=
x variable
m[pr, . . . , pr] binder

M,N, L ::=
pr prime message
(M,N) pair
{M}L encrypted message
H(M) one-way hash message

A message is ground, if it does not contain any variables.

• pr ranges over a set of undecomposable primary messages.

• A binder, m[pr1, . . . , prn] is an atomic message indexed by its parameters, pr1, . . . , prn.
For simplicity, we usually use m[p̃r] to denote a binder if regardless its arity. A binder
with 0 arity is named a name, which ranges over a set N (N ⊆ B). Let m,n, k, . . .
denote names.

• (M,N) represents a pair of messages.

• {M}L is an encrypted message where M is its plain message and L is its encryption
key.

• H(M) represents a one-way hash function message, where M is its parameter.

We say a message M is in a message N , if M is a subterm of N .

Remark 2.1. There are three usages of binders in this thesis,

• to represent and parameterize encryption keys. For instance, a binder k[A, S] repre-
sents a symmetric key shared with principals A and S; +k[A] and −k[A] represent
A’s public key and private key, respectively.

• to represent an unbounded set of distinguished messages with finite symbols when
describing recursive processes. These messages are described by nested binders. For
instance, by Na[Null], Na[Na[Null]], . . ., we represent an infinite set of names in the
different context.

• to represent a confidential message for the secrecy property. A confidential message
will be represented as a binder when defining the secrecy property, and the param-
eters of the binder denote the names of the principals who shared the message. For
instance, we use m[A,B] to represent a confidential message only shared by principal
A and B.

Remark 2.2. The first usage of binders is to represent infinitely many principals that a
principal may communicate with, since we assume a principal who intends to send a mes-
sage is supposed to send the message to anyone of the possible principals in the network,
if it cannot obtain the name of the principal it communicates with. An abstraction will be
employed by using binders to finitely describe such an assumption. That is, the principal

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 12

may send the same fresh message to different principals, and such a sending procedure is
performed only once. In essence, binders are used to parameterize keys and messages.

An alternative way to describe the communication is by using infinite processes. By
this way, a principal with intention to communicate with infinitely many principals can
be described as the principal that communicates with each principal in different sessions.

2.1.2 Environmental Deductive System

Messages that the environment can generate are started from the current finite knowl-
edge, denoted by S (⊆M), and deduced by an environmental deductive system. Further-
more,We presuppose a countable set E (⊆ M), for those ground binders, such as each
principal’s name, public keys, intruders’ names. For example, I, k[I, S], +k[A] . . . ∈ E .
The environmental deductive system produces, encrypts/decrypts, composes/splits, and
hashes messages. Let ` be the least binary relation generated by the environmental
deductive system in Figure 2.2.

S ` M
M ∈ E Env

S ` M
M ∈ S Ax

S ` M S ` N
S ` (M,N)

Pair intro

S ` (M,N)
S ` M

Pair elim1
S ` (M,N)

S ` N
Pair elim2

S ` {M}k[A,B] S ` k[A,B]
S ` M

Senc elim
S ` M S ` k[A,B]

S ` {M}k[A,B]
Senc intro

S ` {M}±k[A] S ` ∓k[A]
S ` M

Penc elim
S ` M S ` ±k[A]

S ` {M}±k[A]
Penc intro

S ` M
S ` H(M)

Hash intro

Figure 2.2: Environmental Deductive System

2.1.3 Processes

Behaviors of each principal in a security protocol are described by a process.

Definition 2.2 (Processes). Let P be a countable set of processes, which is indicated by

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 13

P,Q, R, The syntax of processes is defined as follows:

P,Q, R ::=
0 Nil
aM.P output
a(x).P input
[M = N] P match
(new x : A)P new
(ν n)P restriction
let (x, y) = M in P pair splitting
case M of {x}L in P decryption
P‖Q composition
P + Q summation
P ; Q sequence
A(p̃r) identifier

Variables x and y are bound in a(x).P , (newx : A)P , let (x, y) = M in P , and
case M of {x}L in P . Sets of free variables and bound variables in P are denoted
by fv(P) and bv(P), respectively. A process P is closed if fv(P) = ∅. A name is free in
a process if it is not restricted by a restriction operator ν. Sets of free names and local
names of P are denoted by fn(P) and ln(P), respectively.

Intuitively understanding,

• 0 is the Nil process that does nothing.

• aM.P sends message M to the environment and then behaves like P .

• a(x).P awaits an input message M and behaves like P{M/x}.
• If M = N , [M = N] P acts as P ; otherwise it will be stuck.

• (new x : A)P behaves like P except that x ranges over A in P .

• (ν n)P means that the name n is local in P . Other processes will not know n before
P sends it to the environment.

• If M is a pair (N,L), let (x, y) = M in P is reduced to P{N/x, L/y}; Otherwise it
will be stuck.

• Process case M of {x}L in P is reduced to P{N/x} when M it an encrypted
message {N}L′ that L can decrypt; Otherwise is will be stuck.

• P‖Q means that P and Q run concurrently.

• P + Q behaves like P or Q.

• P ; Q behaves like P if P does not terminate. Otherwise behaves as Q.

• For any identifier A(pr1, . . . , prn), there exists a unique definition, A(pr1, . . . , prn) ,
P , where the pr1, . . . , prn are distinct and are the only free names and variables.
A(pr′1/pr1, . . . , pr

′
n/prn) behaves like P{pr′1/pr1, . . . , pr

′
n/prn}. An identifier without

any parameters is usually named a constant.

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 14

Note that labels in the input and the output processes are not channels, but tags
attached to the messages of input and output actions. Furthermore, these labels are
assumed to be distinct from each other.

A recursive process is defined by analogy with CCS [87], by proposing process expres-
sion. We assume a set of schematic identifiers [88], each having a nonnegative arity. In
the following, X and Xi will range over schematic identifiers.

Definition 2.3 (Process expression). A process expression is like a process, but may
contain schematic identifiers in the same way as identifers. E, F will range over process
expressions. That is, an expression is iteratively as follows,

E, F ::= 0 | aM.E | a(x).E | [M = N] E | (new x : A)E | (ν n)E
| let (x, y) = M in E | case M of {x}L in E
| E‖F | E + F | E; F | X

Definition 2.4 (Replacement [88]). Let X have arity n, let p̃r = pr1, pr2, . . . , prn be
distinct primary messages, and assume that fn(P) ⊆ {pr1, pr2, . . . , prn}. The replacement
of X(p̃r) by P in E, written E{X(p̃r) := P}, means the result of replacing each subterm
X(p̃r′) in E by P{p̃r′/p̃r}. This extends in the obvious way to simultaneous replacement
of several schematic identifiers, E{X1(p̃r1) := P1, . . . , Xm(p̃rm) := Pm}.

It is convenient to write E{X1(p̃r1) := P1, . . . , Xm(p̃rm) := Pm} simply as E(P1, . . . , Pm)
or as E(P̃). If each Pi is Ai(x̃), we also write E(A1, . . . ,Am) or E(Ã).

Definition 2.5 (Recursive processes). A recursive process is defined as an identifier, with
the following format,

Ai(p̃r) , E(Ã)

If a process is not a recursive process, we name it a flat process.

Definition 2.6 (Sequential). Let E be any expression. We say that a schematic identifier
X is sequential in E if it does not occur with composition combinators in E.

This definition is inspired by the similar definition in CCS [87].

Remark 2.3 (Identifiers VS. Replications). Infinite behaviors are ubiquitous in concur-
rent systems. Hence, they ought to be represented by processes in process calculi. There
are two standard process representations, identifiers and replications.

To represent a recursive process by identifiers is by using expressions (see Definition
2.3) and a replacement (see Definition 2.4). It is an “old fashion” of representing infinite
behaviors in process calculi [64, 87, 88].

Replications, syntactically simpler than recursive process by identifiers, take the form
!P [105]. Intuitively !P means P‖P‖ . . .; an unbounded number of copies of the process.

It is common that a given process calculus, originally presented with one form of defin-
ing infinite behaviors, is later presented with the other. For example, the π-calculus was
originally presented with identifiers [88], and later with replications [105]. The Ambient
calculus was originally presented with replications [38], and later with identifiers [79].

From the above intuitive description it should be easy to see that an identifier A , A‖P
expresses the unbounded parallel behaviors of !P . It is less clear, however, whether repli-
cation can be used to express the unbounded behaviors of identifiers. It is through long

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 15

time that people think they have the same expressiveness, especially in π-calculus [105].
However, recently, some researches show that identifiers actually have more expressiveness
than replications [97, 14, 65]. A discussed counterexample is A , (ν n)(A‖P).

We choose to use identifiers, since with a sequential restriction upon a process with
recursive processes, this process can be naturally described and analyzed by the pushdown
system (see Chapter 6).

Remark 2.4 (Channel-based communication VS. environment-based communication).
Usually, process calculi adopt channel-based communications [87, 88, 105]: two processes
communicate with each other via channels (In π-calculus, a channel is also a name).
A channel can be either public (any process can access messages from the channel), or
private (only authorized processes can access messages from the channel).

In π-calculus, a private channel/name can be distributed from a process to another
process dynamically via open and close transitions. Thus it is called a mobile calculus [88].

An environment-based calculus is similar to a calculus in which each process commu-
nicates with each other through a public “unreliable” channel. The channel has a memory
to record every messages, and a deductive system to generate new messages.

An environment-based calculus is much weaker than a channel-based communication
in expressiveness. Some emphases should be pointed out.

• An environment-based calculus has no synchronized operations (two processes act
simultaneously). In usual process calculi, a synchronized operation is represented by
an internal action. That is, a process with an output action at an outside channel
will make a τ -action with a process with an input action at the same channel. For
instance, in π-calculus, am.P | a(x).Q −→ P | Q{m/x} (Here by |, we means a
composition with internal actions).

• Without synchronized operations, describing an order of actions among composed
processes becomes impossible. For instance, in a process, (ν n)(am.
n t.P | n(x).bm′.Q) in the π-calculus, the private channel n can be regarded as
a trigger. The action bm′ can only be performed after am is performed and the
trigger is precipitated. This cannot be defined in an environment-based process
calculus, in which each process freely sends and receives messages from the environ-
ment.

• Computations and complex structures cannot be defined in an environment-based
calculus. The π-calculus has the same computation ability as the Turing machine.
Each computation and complex structure can be defined via generating private
channels and mobile computations by sending and receiving names through the
privates channels. However, actions in an environment-based calculus just represent
sending and receiving messages. We cannot define any complex computations on the
calculus (Note that decryption and splitting are explicitly defined in our calculus by
primitives). For instance, when the recursive authentication protocol is represented
(see Subsection 3.4.2), the computation to generate a recursive message cannot be
defined by our calculus. Thus it has to be defined separately.

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 16

2.2 Operational Semantics

Definition 2.7 (Structural congruence). Structural congruence, ≡, is the smallest con-
gruence on closed processes that satisfies the axioms in Figure 2.3. Processes P and Q
are structurally congruent if P ≡ Q can be inferred from the axioms listed in Figure 2.3,
together with the rules of equivalence relation, that is, reflexive, symmetric, and transitive
equations.

Sc-comp-assoc P‖(Q‖R) ≡ (P‖Q)‖R
Sc-comp-comm P‖Q ≡ Q‖P
Sc-comp-inact P‖0 ≡ P

Sc-sum-assoc P + (Q + R) ≡ (P + Q) + R
Sc-sum-comm P + Q ≡ Q + P

Sc-res (νm)(νn)P ≡ (νn)(νm)P
Sc-res-inact (νn)0 ≡ 0
Sc-res-comp (νn)(P‖Q) ≡ P‖(νn)Q if n /∈ fn(P)

Sc-new (new x : A)(new y : B)P ≡ (new y : B)(new x : A)P
Sc-new-inact (new x : A)0 ≡ 0
Sc-new-comp (new x : A)(P‖Q) ≡ P‖(new x : A)Q if x /∈ fv(P)

Sc-seq-inact 0; P ≡ P

Figure 2.3: The Axioms of Structural Congruence

An action is a term of form aM or a(M). It is ground if its attached message is
ground. Act is defined as a set of actions. A string of ground actions represents a possible
run of the protocol if each input message is deduced by messages in its prefix string. We
named such a kind of string concrete trace, denoted by s. The messages in a concrete
trace s, denoted by msg(s), are those messages in output actions of the concrete trace s.
We use s ` M to abbreviate msg(s) ` M .

Definition 2.8 (Concrete trace and configuration). A concrete trace s is a ground action
string s ∈ Act∗ that satisfies each decomposition s = s′.a(M).s′′ implies s′ ` M . A
concrete configuration is a pair 〈s, P 〉, in which s is a concrete trace and P is a closed
process.

The transition relation of concrete configurations is defined by the rules in Figure 2.4.
Note that in rules LCOM and RCOM , no reactions are provided between two composed
processes, and both processes communicate with the environment.

A function Opp is predefined for generating complemental key in decryption and en-
cryption. we have Opp(+k[A]) = −k[A], Opp(−k[A]) = +k[A] and Opp(k[A,B]) = k[A,B].
Furthermore, V is the set of free names in the source configuration. freshN(V) is a func-
tion that generates a fresh name that does not occur in V .

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 17

(INPUT) 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉 s ` M
(OUTPUT) 〈s, aM.P 〉 −→ 〈s.aM,P 〉

(DEC) 〈s, case {M}L of {x}L′ in P 〉 −→ 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M,N) in P 〉 −→ 〈s, P{M/x,N/y}〉
(NEW) 〈s, (new x : A)P 〉 −→ 〈s, P{m/x}〉 m ∈ A

(RESTRICTION) 〈s, (νn)P 〉 −→ 〈s, P{m/n}〉 m = freshN(V)
(MATCH) 〈s, [M = M]P 〉 −→ 〈s, P 〉

(LSUM) 〈s, P + Q〉 −→ 〈s, P 〉
(RSUM) 〈s, P + Q〉 −→ 〈s,Q〉

(LCOM)
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P‖Q〉 −→ 〈s′, P ′‖Q〉
(RCOM)

〈s,Q〉 −→ 〈s′, Q′〉
〈s, P‖Q〉 −→ 〈s′, P‖Q′〉

(LSEQ)
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P ; Q〉 −→ 〈s′, P ′; Q〉
(RSEQ)

〈s,Q〉 −→ 〈s′, Q′〉
〈s,0; Q〉 −→ 〈s′,0; Q′〉

(IND)
〈s, P{p̃r′/p̃r}〉 −→ 〈s′, P ′〉
〈s,A(p̃r′)〉 −→ 〈s′, P ′〉 A(p̃r) , P

(STR)
P ≡ P ′ 〈s, P ′〉 −→ 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→ 〈s′, Q〉

Figure 2.4: Concrete Transition Rules

For convenience, we say a concrete configuration 〈s, P 〉 reaches 〈s′, P ′〉 , if 〈s, P 〉 −→∗

〈s′, P ′〉. A concrete configuration is a terminated configuration if no transition rules can
be applied to it. A sequence of consecutive concrete configurations is named a path. A
concrete configuration 〈s, P 〉 generates a concrete trace s′, if 〈s, P 〉 reaches 〈s′, P ′〉 for
some P ′.

Remark 2.5 (Restriction). In the side-condition of (RESTRICTION) rules, V is the
set of free names in the source configuration. Note that V 6= fn(P). The reason is that
when a composition P‖Q occurs, a fresh name in P generated by (RESTRICTION)
rule may clash with names free occurred in Q.

This rule comes originally from [29], which is different from the traditional open and
closed rules in π-calculus [105] (for semantics of π-calculus, please see Appendix B). In
π-calculus, (ν n)an.P | a(x).Q | R can be reduced to ((ν n)P | Q{n/x}) | R. After
communications between P and Q. They share the name n, which is still “untouched”
by R (The scope of n is enlarged). However, in our environmental-based calculus, when
a process is intending to send a local message to another process. It will be “touched” by
all the processes. In another word, it becomes a public and fresh name to all processes.

Remark 2.6 (Sequence). By the axiom Sc-seq-inact in the structural congruence, we
know that in P ; Q, Q will be performed when P is reduced to 0, or structurally equivalent
to 0. By the structural congruence, processes such as (0‖0); P can perform the same
actions that P can perform. Actually, without the sequence operator (for instance, the

CHAPTER 2. PROCESS CALCULUS AND ITS TRACE SEMANTICS 18

sub-calculi in Chapter 5, and Chapter 7), the transition rules in Figure 2.4 is enough
for each process. This is the reason that we did not introduce structural congruence in
[80, 81].

Furthermore, we did not consider processes in the opposite situation. That is, when
P is ill-terminated, such as stuck, deadlock, or divergence. Q will never be performed.
Various researches are focused in this field, proposing lots of techniques, such as successful
termination [11], and negative premises [60, 28], and so on. Our calculus has a simple
feature. That is, when a process is correctly terminated, it will reduce to 0, or structurally
equivalent to 0. Thus, we can syntactically distinguish a correct termination from an ill
one.

Remark 2.7 (Trace semantics and testing semantics). We adopt the trace semantics,
instead of traditional late/early semantics for our calculus. The reason is simple: To
analyze security properties, we need to record the history a process performed. When a
specific action is performed, a comparison between the message in this action and messages
in the previous history will be executed. However, the traditional late/early semantics
are memory-free semantics. They just consider the current actions a process can perform.

An alternative way by Abadi, et. al. is to propose testing semantics (for a simple
introduction of testing semantics, see Subsection B.1.5 in Appendix B) for analyzing se-
curity protocols [7]. During testing semantics, historical messages will be kept by the
observer. Thus it can execute any comparison among messages. Abadi, et. al. adopted
testing equivalence [7] to define and analyze security properties. Later, various bisimu-
lations [8, 32, 25, 115] are adopted for this purpose, in which the implementation and
the specification of a security protocol are described by two processes. If they satisfy
the equivalence for a security property, the protocol guarantees the property. Testing
equivalence is defined by quantifying the environment with which the processes interact.
Intuitively, the two processes should exhibit the same traces under arbitrary observers (as
intruders).

Chapter 3

Representing Security Protocols

The syntax introduced in Chapter 2 is used to represent behaviors of each principal
in a security protocol. However, how to describe a security protocol “correctly”, so that
attacks can be explored in the set of traces is not so obvious. We take the wide-mouthed
frog protocol as the first example.

Example 3.1. In the wide-mouthed frog protocol, principal A shares a symmetric key
k[A, S] with a server S; principal B shares a symmetric k[B, S] with S. The purpose of
the protocol is to establish a new symmetric key k[A,B] between A and B, with which A
encrypts and sends a confidential datum M to B. The protocol flows are represented as
follows.

A −→ S : {KAB}KAS

S −→ B : {KAB}KBS

A −→ B : {M}KAB

Generally, principals A, B, and S run the protocol recursively infinitely many sessions.
Thus three recursive processes are used to describe these three principals. A composition
is used to compose three principals who run the protocol concurrently.

A ,(ν M)a1 {k[A,B]}k[A,S].a2 {M}k[A,B].A
B ,b1(x).case x of{y}k[B,S] in b2(z).case z of {u}y in B
S ,s1(x).case x of {y}k[A,S] in s2 {y}k[B,S].S

SY SWMF ,A‖S‖B

However, It is impossible to define properties on the description, since two principals
has no explicit relations between each other. In another word, principals A and B we
describe above may never communicate with each other. So we need further concerns for
descriptions.

Furthermore, to generate a fresh message, we adopt the restriction operator ν to bind a
name (like (ν M) above). When representing protocols in bounded sessions, the number of
fresh messages that principals generate is also bounded. It is enough to use a bounded set
of distinguished symbols to describe each fresh message. However, when we representing

19

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 20

recursive protocols, the number of fresh messages is unbounded. Our choice is to encoded
an unbounded number of messages by nested binders.

This chapter gives several examples for descriptions of security protocols. These ex-
amples will be taken as running examples in later chapters.

3.1 Representing Principals

When describing a protocol, We need to emphasize some rules. Otherwise, security
properties cannot be defined and analyzed properly. Firstly, the principals we described
should explicitly communicate with each other in one session (Thus security properties can
be defined within that session). Secondly, when a principal initiates a session, we assume
that it can communicate with any of the principals in the network. Let us consider two
arbitrary principals A and B who are willing to communicate with each other, as well as
with any other principals through a protocol.

Firstly, as a sender, a principal who intends to send a message is supposed to send the
message to anyone of the possible principals in the network, if it cannot obtain the name
of the principal to which it intends to send the message. An abstraction will be employed
by using binders to finitely describe such an assumption. That is, the principal may
send the same message to different principals, and such a sending procedure is performed
only once. An alternative way to describe communications is by using infinite process
definition. By this way, a principal with intention to communicate with infinitely many
principals can be described as the principal that communicates with each principal in
different sessions.

Secondly, as a receiver, its potential sender will be fixed if we only describe one session
of protocols. That is, a receiver will “think” it has received the message from a principal it
has known. Such an assumption is necessary when defining security properties. Otherwise
the described sender and receiver may have no connections with each other, and thus
security properties between them cannot be defined. For example, if A sent a message
to C, and B received a message from D, it is certain that the message B received is
different from the message A sent. Hence we cannot define authentication between A and
B. Similarly, other properties also cannot be defined properly.

When we define the security properties in multiple sessions, the restriction will be
loosened, assuming that other than in one session, a receiver can communicate with any
principal. With these assumptions, security properties can be defined generally in multiple
sessions.

3.2 Freshness of Messages

In the security protocol analysis, freshness of messages is one of critical points that
one should consider.

In the protocol point of view, freshness problems will include freshness of sessions,
freshness of principals, freshness of keys, and so on. Here by freshness of sessions, we
mean a principal initiates a new sessions with other principals; by freshness of principals,
we mean a new principals initiates or responds to a sessions; by freshness of keys, we
mean that a server or a principal generates new keys for later communications.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 21

There are several relations between these factors. For instance, a bounded number of
sessions implies only a bounded number of principals attending the protocol, and implies
only generating a bounded number of fresh keys; freshness of principals implies freshness
of sessions, etc.

When modeling security protocols formally, freshness of sessions is usually captured by
fresh nonces; freshness of principals is usually characterized by fresh names of principals;
and freshness of keys is also usually characterized by generating fresh names. Thus all of
freshness problems can be described by freshness of messages. There are several ways to
handle freshness of messages. For instance, in Athena, freshness of messages is expressed
at the meta-level in the protocol model, and it is controlled during the analysis with special
checks on the origin of messages [111]. In logical approaches, the BAN logic defines a new
formula for the fresh messages [37]. Other logical approach uses universal quantification
that allows one to reason about freshness inside the logic [33].

In calculus-based security protocol analysis, freshness of messages is described by the
local name restriction operator, for instance, ν n in our calculus. Thanks to the alpha-
conversion, each fresh name is guaranteed to be distinct.

When analyzing protocols in bounded sessions, the number of nonces is thus bounded,
so it is with number of principals’ names, and number of generated keys. It is enough to
use a bounded number of distinguished symbols to represent these messages. For example,
for nonces, we usually take a bounded number of names, NA, NB, . . .; for principals’ names,
we use A,B, S, I, . . ., whose number is also bounded. Note that in our calculus, keys are
described by binders, terms that relate to names of principals. Thus freshness of keys is
guaranteed by freshness of principals.

When analyzing protocols in unbounded sessions, the number of messages is thus
unbounded. Our choice is to encoded an unbounded number of messages by iterative
applying binders, say, nested binders. For instance, nonces can be described by N[null],
N[N[null]], N[N[N[null]]], Later, by applying the pushdown system (for the detail of
encodings, please refer to Chapter 6), these nested binders is described by length of stack.
In the protocol point of view, we can say freshness of sessions is captured by stack contents
of the pushdown system. When push the stack is performed, it means a fresh session is
generated; when pop is performed, it means the protocol is returned back to the previous
session.

However, such an abstraction is restrictive, since a protocol can only return to the
nearest previous session captured by the nonce in the stack top. Thus the pushdown
system only describes an unbounded number of sessions that run sequentially or recur-
sively. For instance, the recursive protocols we analyzed in this chapter. Generally, an
unbounded number of sessions of a protocol should run concurrently, which cannot be
straightforwardly described by the pushdown system.

Another matter that should be pointed out is, with one stack, we can only capture
one type of fresh messages. That is, if the stack represents the freshness of a type of mes-
sages by the context (for instance, freshness of nonces for the session context), it cannot
simultaneously describe another context characterized by other type of fresh messages
(for instance, freshness of names of principals for the principal context), due to indepen-
dence of two types of messages. To the best of my knowledge, several other approaches
sometimes neglect the freshness of principals [83, 29]. In other words, they always assume
there are only bounded principals in the network.

Different types of fresh messages usually characterize different contexts. However, it is

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 22

enough to only use two stacks, one for the types of fresh messages, the other as a counter,
to describe general freshness of messages. However, We know that a two-stack pushdown
system is equal to the Turing machine, and thus undecidable. This partly indicates that
analyzing security protocol in unbounded sessions is generally undecidable.

Recursive protocols are special. There are two types of fresh messages, nonces and
names of principals, in recursive protocols. These two types of messages coincide with
each other. That is, when a fresh nonce is generated, the attending principal is also a fresh
one; when the protocol returns back to the previous session by using the previous nonce,
so it is with the principal. Thus by one stack we can absolutely describe all types of fresh
messages. This valuable characterization of recursive protocols allows us to analyze them
with the pushdown system.

As we explained in this subsection, besides recursive protocols, the pushdown system
based model checking can also describe and analyze security protocols with bounded
principals in sequential or recursive unbounded sessions.

3.3 Protocols in Bounded sessions

3.3.1 Protocols with Server in One Session: The AG Protocol

Security protocols that exchange messages by the symmetric key system (also know as
shared key) usually communicate via a server, Let’s consider the Abadi-Gordon protocol
(referred to as the AG protocol) [7] as a running example.

Example 3.2. The informal description of the AG protocol is given flow-by-flow as fol-
lows:

A −→ S : A, {B, KAB}KAS

S −→ B : {A,KAB}KSB

A −→ B : A, {A,M}KAB

Intuitively interpreting, the principal A is intending to send a message M to B en-
crypted by a fresh key KAB it generates. Firstly, it sends the KAB and B’s name, with a
protection of long-term key shared by A and S to a server S. After the S forwards the
key to B, A sends its name, and a confidential message M , encrypted by the key KAB to
B.

When the sender A initiates the protocol, it cannot obtain any information of its
corresponding receiver. Thus a binder k[A, x] is used to describe the symmetric key shared
by A and any one of principals A can communicate with in the network. Furthermore,
primitive (new x : I) is used to bind x to an infinite set I, which contains the names of
all principals in the network. M is a confidential message. It is represented by a local
name within A, restricted by ν. Sender A is described as follows:

A ,(new x : I)(ν M)a1(A, {x, k[A, x]}k[A,S]).a2(A, {A,M}k[A,x]).0

The receiver B firstly accepts a message from the environment. After validates the
message comes from the server, it then accepts another message, which are also validated.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 23

B is described as follows:

B ,b1(x).case x of {x′}k[B,S] in let (y, z) = x′ in [y = A] b2(w). let (w′, w′′) = w

in [w′ = A] case w′′ of {u}z in let (u′, u′′) = u in [u′ = A]0

The server accepts an encrypted message from a principal. It first decrypts the mes-
sage, and then sends a fresh encrypted message according to the principal’s name in the
former plain message.

S ,s1(x).let (y, z) = x in case z of {u}k[y,S] in let (u′, u′′) = u in s2{y, u′′}k[u′,S].0

The AG protocol can be described as a composition of A, B and S.

SY SAG ,A‖S‖B

3.3.2 Protocols without Server in One Session: The NSPK Pro-
tocol

The AG protocol relies on a server S to establish a key between two principals by
the symmetric key system. In comparison, by the asymmetric key system (also known as
public key and private key), two principals can communicate with each other without a
server. Here, we take the well-known NSPK protocol [90] as another running example.

Example 3.3. The informal description of the NSPK protocol is given flow-by-flow as
follows, in which NA and NB are nonces generated by A and B, respectively.

A −→ B : {A,NA}+KB

B −→ A : {NA, NB}+KA

A −→ B : {NB}+KB

In our calculus, the NSPK protocol is represented as follows:

A ,(new xa : I)(ν NA)a1{A,NA}+k[xa].a2(ya). case ya of {y′a}−k[A] in

let (za, z
′
a) = y′a in [za = NA] a3{z′a}+k[xa].0

B ,(ν NB) b1(xb).case xb of {x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB}+k[A].b3(zb). case zb of {ub}−k[B] in

[ub = NB]0

SY SNSPK ,A‖B

Note that when A sends the first message, it does not with which it will communicate.
Thus a bounded variable xa in the binder +k[xa] with the range of I (a set of principals’
names) is adopted. This is the key of the description. Without the binder, we cannot
detect counterexamples of the NSPK protocol in one session.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 24

3.3.3 Protocols in Multiple Sessions: The WL Protocol

Attacks for protocols may occur between two sessions, which is called a man-in-middle
attack. Thus, we also need to describe protocols in multiple sessions. Here we take a
version of Woo-Lam protocol (referred to as the WL protocol) [119] as the third running
example.

Example 3.4. The Woo-Lam protocol is defined flow-by-flow as follows:

A −→ B : A

B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS
}KBS

S −→ B : {NB}KBS

We will analyze two sessions of the Woo-Lam protocol. A(2) is composed of two
concurrent sessions of a sender. We assign each session a unique set of labels.

A(2) ,a1 A.a2(xa).a3 {xa}k[A,S].0‖a′1 A.a′2(x′a).a′3 {x′a}k[A,S].0

B(2) is composed of two parallel sessions of a receiver. In one of the sessions, B intends
to communicate with A, so that security properties can be focused and defined in this
session. Without loss of generality, we assume that in the another session, B is willing to
communicate with any principal, rather than the specific principal A.

B(2) ,(ν NB) b1(xb).[xb = A] b2 NB.b3(yb).b4 (B, {xb, yb}k[B,S]).b5(zb).case zb

of {ub}k[B,S] in [ub = NB]0‖(ν N ′
B)b′1(x′b).b′2 N ′

B.b3(y′b).

b4 (B, {x′b, y′b}k[B,S]).b5(z′b). case z′b of {u′b}k[B,S] in [u′b = N ′
B]0

S(2) is just composed of two sessions of a server. We need not to distinguish sets of
labels of the two session.

S ,s1(xs).let (x′s, x
′′
s) = xs in case x′′s of {ys}k[x′s,S] in let (zs, ws) = ys in

case ws of {us}k[zs,S] in s2 {us}k[x′s,S].0

S(2) ,S‖S

The two-session Woo-lam protocol is described as the composition of two-session prin-
cipals.

SY S(2) ,A(2)‖S(2)‖B(2)

In this example, two principals A and B act as the same roles in two sessions: A as
a sender, and B as a receiver. We also can describe two sessions in which two principals
act as the different roles, which may also lead to attacks.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 25

3.4 Recursive Protocols

Similar to security protocols introduced in Subsection 3.3, most of security protocols
consist of a certain sequence of messages exchanged by the principals, in which each
principal received a message replies with a new generated message that is computed from
the previous messages without the need of complex methods as iteration or recursion.

But some protocols, named recursive protocols, contain complex actions or data struc-
tures. For instance, there are group protocols providing services not only for two prin-
cipals, but for a potentially an unbounded number of principals. Such protocols often
contain data structures, such as arbitrary length lists. One important example of recur-
sive protocols is the Internet Key Exchange (IKE) protocol.

3.4.1 Recursive Ping-Pong Protocols

Ping-pong protocols are first investigated by D. Dolev, et. al [49, 50], as a computation
model. They gave an O(n3) algorithm that determines the security of a given ping-pong
protocol in bounded sessions (of number n) [49]. The security property they considered is
the secrecy property against only “passive” eavesdroppers, which merely listen and try to
decrypt intercepted messages. Recently, J. Srba, et. al. proved ping-pong protocols with
recursive operations, but without any active intruder, are a Turing powerful model [66, 47].

Ping-pong protocols are a class of protocols, for two principals, in which the sender
applies a sequence of operators to a messages M , and sends it to the other principals; in
each step, one of the principal applies a sequence of operators to the message received
last, and sends it back. The set of operators include encryptions and decryptions [49].
Generally, we have the following definition.

Definition 3.1 (Recursive Ping-pong protocols [49]). A ping-pong protocol P (S, R) is a
sequence Γ = (α1, α2, . . .) of operator-words, such that if i is odd then α ∈ Σ∗

S and if it is
even than α ∈ Σ∗

R.

If a ping-pong is bounded, then the length of Γ is bounded [49]. A recursive ping-pong
protocol means that the length of Γ is unbounded [66]. Note that operator sets of S and
R are both bounded. In [66], they only includes encryption and decryption operators.

It is easy to describe a given ping-pong protocol. Here we will try to describe a
general recursive ping-pong protocol by identifiers. Let’s assume that each operator set
only contains encryption and decryption operators. Firstly, we define an identifier A(x),
who has bounded number of nondeterministic choices, such as encrypts, decrypts and
sends the message. x is used to describe current messages.

A(x) , Aenc(x) + Adec(x) + a1(x).Arec

Aenc(x) is easy to define, it just like A(x) handle an encrypted message {x}k.

Aenc(x) , A({x}k)

Adec(x) describes that the principal decrypts the message, then behaves like A.

Aenc(x) , case x of {y}k in A(y)

Arec describes the principal receives a message, then behaves like A.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 26

Arec , b1(x).A(x)

In sum,

A(x) , A({x}k) + case x of {y}k in A(y) + a1(x).b1(x).A(x)

A ping-pong protocol that satisfies Definition 3.1 is defined as follows

A(M)

More precisely, if one considers a set of plain messages T that the sender can send [66],
A ping-pong protocol can be defined as

(new x : T)A(x)

3.4.2 The RA Protocol

In [36], a recursive protocol named the recursive authentication protocol (referred to
as the RA protocol) is proposed, which is further explained in [98]. This protocol operates
over an arbitrarily long chain of principals, terminating with a key-generated server.

Assuming there are infinitely many principals, A1, . . . , An, . . ., who intend to generate
session keys between each two adjacent principals by contacting the key-generated server
only once. During the communication, each principal has two choices, it either contacts
the key-generated server, or forwards messages and itself information to its next principal
to continue the protocol.

The protocol has three stages (see Figure 3.1).

A0 A1 An−1 An

S

Req0(Null)

Resn(k0)

Reqn−1(Null)

Res1(k0 , . . . , kn−1)

S
u

b
.
R

e
q
n

(
N
u
l
l
)

R
e

s
0
(
k
0

.
.

.
k

n
)

Figure 3.1: The Recursive Authentication Protocol

• The first stage is the communication stage. Each principal forwards a request that
composes its information and information it accepted from the previous principal
to its next principal.

• The second one is the submission stage. One principal stops communicating with
its next principal, and submits the whole request information to the server.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 27

• The third one is the distribution stage. The server recursively generates a group
of session keys, and sends back to the principal who submitted the principals’ in-
formation to the server. Each principal distributes the session keys to its previous
principal.

For simplicity of representations, we use a convenient abbreviation of the hash message.

HK(X) = (H(K, X), X)

Example 3.5. The RA protocol is given informally as follows:

Communication Stage

A0 −→ A1 : HKA0S
(A0, A1, NA0 , Null)

Ai −→ Ai+1 : HKAiS
(Ai, Ai+1, NAi

, X)

where X is the message Ai has received from Ai−1. For example,

A1 −→ A2 HKA1S
(A1, A2, NA1 ,HKA0S

(A0, A1, NA0 , Null))

Submission Stage

An −→ S : HKAnS
(An, S, NAn ,HKAn−1S

(An−1, An, NAn−1 ,HKAn−2S
(. . . Null) . . .))

whereHKAn−1S
(An−1, An, NAn−1 ,HKAn−2S

(. . . Null) . . .) is the message An received from
An−1.

Distribution Stage

S −→ An : {Kn, S, NAn}KAnS
, {Kn−1, An−1, NAn}KAnS

,
{Kn−1, An, NAn−1}KAn−1S

, {Kn−2, An−2, NAn−1}KAn−1S
,

. . .
{K1, A2, NA1}KA1S

, {K0, A0, NA1}KA1S
,

{K0, A1, NA0}KA0S

Ai −→ Ai−1 : {Ki−1, Ai, NAi−1
}KAi−1S

, {Ki−2, Ai−2, NAi−1
}KAi−1S

, . . .

A1 −→ A0 : {K0, A1, NA0}KA0S

When considering to describe the RA protocol, the first problem is that the number
of fresh names is unbounded. In security protocols descriptions under bounded number
of sessions, messages that principals generated are also bounded, which are explicitly
represented by distinguished symbols. These messages include nonces, which usually are
denoted by NA, NB, . . .; principals’ names, which usually are denoted by A,B,C, I,
When describing a recursive protocol, we have to represent an unbounded number of
messages. These messages are nonces, and principals’ names and keys, which will be
represented by nested applications of binders.

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 28

An originator (here we do not use terminologies sender and receiver, but originator
and recipient, since each principal acts as a sender and a receiver simultaneously) will send
a special name Null to show it initiates a session. Thus, its name will be represented
by A[Null]; its long-term symmetric key shared with the server will be represented by
lk[A[Null], S]; the nonce it generates will be represented by N[Null].

For the first recipient, we use A[A[Null]] to represent its name, lk[A[A[Null]], S] to
represent its long-term symmetric key shared with the server, and N[N[Null]] to represent
the nonce it generates.

Messages of other recipients are represented similarly. Thus with finitely many binders
and names, an unbounded number of messages are represented.

For the simplicity of descriptions, we use several convenient abbreviations. Firstly,
pair splitting is applied to input and decryption.

a(x1, x2).P , a(x).let (x1, x2) = x in P

case M of {x1, x2}L in P , case M of {x}L in let (x1, x2) = x in P

The messages of a protocol may have more than two components. We use the fol-
lowing standard abbreviation to generalize the syntax of pairs to arbitrary tuples, given
inductively for any k ≥ 2.

(M1,M2, . . . , Mk,Mk+1) , ((M1,M2, . . . , Mk),Mk+1)

Similarly, we also use
let (x1, x2, . . . , xn) = M in P

a(x1, x2, . . . , xn).P

case M of {x1, x2, . . . , xn}L in P

which can be straightforwardly translated into our standard syntax.
We assume there are an unbounded number of principals in the network, each principal

can attend the protocol at most once. In a run of the protocol, the number of attended
principals is unbounded, yet finite. The last principal will communicate with a server,
and accept finitely many fresh keys the server generates.

We define an originator as an identifier O(x1, x2), in which x1 and x2 are the originator
and its expected communicator’s name. O(x1, x2) is defined as follows:

O(x1, x2) ,a1Hlk[x1,S](x1, x2, N[Null], Null).a2(x).case x of {y1, y2, y3}lk[x1,S].

[y3 = N[Null]]0

By our “name-representing” rules, a principal A[Null] which acts as an originator can
be described as

O(A[Null], A[A[Null]])

A recipient has two choices, it can either forward the message it received and its own
information to the next principal, which activates actions of its next recipient, or can
submit the message to a server. It is thus described by a recursive process, an identifier

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 29

R(x1, x2). Variables x1 and x2 in the identifier R(x1, x2) are names of its own and the
previous recipient who sent it the message.

R(x1, x2) ,(b1(x).let (y1, y2, y3, y4, y5) = x in [y2 = x1]

(b2Hlk[x1,S](x1, A[x1], N[y3], x).R(A[x1], x1)+

b3Hlk[x1,S](x1, S, N[y3], x).0));

(b4(x).let (z1, z2, z3) = x in

case z1 of {z4, z5, z6}lk[x1,S] in [z6 = N[y3]]

case z2 of {z7, z8, z9}lk[x1,S] in [z8 = x2] [z9 = N[y3]] b5z3.0)

For instance, a principal A[A[Null]] which acts as an recipient can be described as

R(A[A[Null]], A[Null])

A server, S is represented as

S ,s1(x).s2 (F (x)).0

in which F : M→M is an iterative procedure that generates an arbitrarily long message.
We name this kind of messages recursive messages.

F is defined as follows:

F (x) = let (y1, y2, y3, y4, y5) = x;
let t = ε;
while (y1 = H(y2, y3, y4, y5, lk[y2, S])&&y5! = Null)

let (z1, z2, z3, z4, z5) = y5;
if (z1 = H(z2, z3, z4, z5, lk[z2, S])&&z3 == y2)
then t = (t, {k[y4], y3, y4}, {k[y3], z2, z4});
else raise error

endif

(y1, y2, y3, y4, y5) := (z1, z2, z3, z4, z5);
endwhile

t := (t, {k[y4], y3, y4});
return t;

The system of the RA protocol is defined as a composition of the three processes.

SY SRA ,O(A[Null], A[A[Null]])‖R(A[A[Null]], A[Null])‖S

CHAPTER 3. REPRESENTING SECURITY PROTOCOLS 30

Chapter 4

Parametric Semantics

In the concrete model that describes a security protocol in Chapter 2, infinitely many
messages the environment produces, and infinitely many principals that a principal com-
municates with, lead to a state explosion that makes the protocol model infinite (more
precisely, infinite-branching). Another infinity factor, recursive processes that leads to
infinite-depth, will be considered later.

When applying a model checking method as an execution engine, some existing works
cut down the model to a convenient finite size by imposing upper-bounds to the critical
parameters, such as number of messages, number of principals, or number of pairing and
encrypting operations in messages etc. [83, 13, 29].

In this chapter an alternative semantics is explored to abstract the concrete model,
named parametric semantics, which abstracts an unbounded number of branches of a
concrete model’s state-transition tree to be bounded.

In the concrete model, all messages in concrete traces generated by transition rules
in Figure 2.4 are guaranteed to be ground, since when a concrete trace is increased by
INPUT OUTPUT rules, each variable in the action added to the tail is substituted
to a ground message. This is also the reason that the branches of the concrete model’s
state-transition tree are unbounded.

Concrete traces are given parametric counterparts, parametric traces, during paramet-
ric transitions, which may contain free variables. Each variable will only be substituted
to a message (not always be ground) when they are required to satisfy some patterns. For
instance, a pair, or an encrypted message. Furthermore, by a refinement step that reduces
each parametric trace to a so-called satisfiable normal form, we can prove transitions in
two semantics are sound and complete with respect to their representations.

This abstract methodology is slightly different from the traditional one, so-called ab-
stract interpretation [45, 46], which is a theory of sound approximation of the semantics of
a computer programs, based on monotonic functions over ordered sets, especially lattices.
It can be viewed as a partial execution of a computer program which gains informa-
tion about its semantics without performing all the calculations. Our methodology is
to propose two independent semantics, then to prove transitions of two semantics have
corresponding relations with respect to representations.

31

CHAPTER 4. PARAMETRIC SEMANTICS 32

4.1 Parametric Trace and Operational Semantics

Definition 4.1 (Parametric trace and configuration). A parametric trace ŝ is a string of
actions. A parametric configuration is a pair 〈ŝ, P 〉, in which ŝ is a parametric trace and
P is a process.

The transition relation of parametric configurations is given by the rules in Figure
4.1. A substitution θ mapping from variables to messages is a unifier of M1 and M2 if
M1θ = M2θ. A function Mgu(M1,M2) returns the most general unifier of M1,M2, which
is a unifier θ such that any other unifier can be written as a composition of substitution
θθ′ for some θ′.

(PINPUT) 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉
(POUTPUT) 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉

(PDEC) 〈ŝ, case {M}L of {x}L′ in P 〉 −→p 〈ŝθ, Pθ〉
θ = Mgu({M}L, {x}Opp(L′))

(PPAIR) 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu((x, y),M)
(PNEW) 〈ŝ, (new x : A)P 〉 −→p 〈ŝ, P{y/x}〉 y /∈ fv(P) ∪ bv(P)

(PRESTRICTION) 〈ŝ, (νn)P 〉 −→p 〈ŝ, P{m/n}〉 m = freshN(V)
(PMATCH) 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu(M,M ′)

(PLSUM) 〈ŝ, P + Q〉 −→p 〈ŝ, P 〉
(PRSUM) 〈ŝ, P + Q〉 −→p 〈ŝ, Q〉
(PLCOM)

〈ŝ, P 〉 −→p 〈ŝ′, P ′〉
〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

(PRCOM)
〈ŝ, P 〉 −→p 〈ŝ′, Q′〉

〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 P ′ = Pθ if ŝ′ = ŝθ else P ′ = P

(PLSEQ)
〈ŝ, P 〉 −→p 〈ŝ′, P ′〉

〈ŝ, P ; Q〉 −→p 〈ŝ′, P ′; Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

(PRSEQ)
〈ŝ, Q〉 −→p 〈ŝ′, Q′〉

〈ŝ,0; Q〉 −→p 〈ŝ′,0; Q′〉
(PIND)

〈ŝ, P{p̃r′/p̃r}〉 −→p 〈ŝ′, P ′〉
〈ŝ,A(p̃r′)〉 −→p 〈ŝ′, P ′〉 A(p̃r) , P

(PSTR)
P ≡ P ′ 〈s, P ′〉 −→p 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→p 〈s′, Q〉

Figure 4.1: Parametric Transition Rules

Remark 4.1 (Parametric semantics). The parametric semantics above, or the symbolic
semantics for the variation of spi calculus introduced in [29], is a traditional semantics for
process calculi 1. The first typical characterization of this kind of semantics is that each
input variable is kept un-instantiated as a placeholder, avoiding infinitely instantiation to
messages. This is also a characterization of the late semantics (The concrete semantics
is similar to early semantics. For simple introductions of early and late semantics for the
π-calculus, see Subsection B.2.1 and B.2.2 in Appendix B). Another characterization of

1For a simple introduction of typical semantics for process calculi, please refer to Appendix B.

CHAPTER 4. PARAMETRIC SEMANTICS 33

symbolic semantics, also its difference from the late semantics, is that symbolic semantics
does not perform match operations explicitly. Instead, it regards these operations as
boolean formulae. A boolean formula collects the conditions on the free names of a
process necessary for an action to take place (for the symbolic semantics for π-calculus,
see Subsection B.2.3 in Appendix B). Our parametric semantics takes an alternative way.
It also does not perform match (also splitting and description) explicitly. Instead, we
use unification when these operations are met. Transitions may generate spurious states.
Then by a refinement step, all spurious states will be gotten rid of. The parametric
semantics is slightly different from the traditional symbolic semantics (although in essence
they are same), and thus we adopt an alternative name.

Definition 4.2 (Concretization and abstraction). Given a parametric trace ŝ, if there
exists a substitution ϑ that assigns each variable to a ground message, and satisfies s = ŝϑ,
where s is a concrete trace, we say that s is a concretization of ŝ, and ŝ is an abstraction
of s. ϑ is named a concretized substitution.

According to the definition of parametric configurations, a concrete configuration 〈ε, P 〉
is also a parametric configuration. We name such a configuration an initial configuration.
We hope that from an initial configuration, each concrete trace generated by the concrete
transition rules in Figure 2.4, has an abstraction generated by the parametric transition
rules in Figure 4.1, and that each parametric trace has at least one concretization. Thus
a bisimulation relation can be defined between them.

However, although each concrete trace does have an abstraction, some parametric
traces may have no concretizations. Fortunately, parametric traces can still cover its
concrete traces. That is, if a parametric trace has a concretization, then the concretization
is a concrete trace generated by concrete transition rules. Otherwise the parametric
trace cannot be instantiated to any concrete trace. Here we have the soundness and
completeness theorem.

Theorem 4.1 (Soundness and completeness). Let 〈ε, P 〉 be an initial configuration, and
let s be a concrete trace. 〈ε, P 〉 generates s, if and only if there exists ŝ, such that
〈ε, P 〉 −→∗

p 〈ŝ, P ′〉 for some P ′, and s is a concretization of ŝ.

Proof. “⇒”: By an induction on the number of transitions −→ and −→p, the proof is
trivial in the zero-step. We assume in the n-th step the property holds. That is, for each
trace s gained in the n-th −→ step, there exists an ŝ obtained by the n-th −→p step, and
ŝϑ = s holds for a substitution ϑ from variables to ground messages. Now, we perform a
case analysis on the n + 1 step:

1. Case 〈s, 0〉: Obviously.

2. Case 〈s, a(x).P 〉: If 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉, where M is a ground
message, then we have 〈ŝ, a(x).P ′〉 −→p 〈ŝ.a(x), P ′〉 and s.a(M) = ŝ.a(x)(ϑ ∪
{M/x}), where P ′ϑ = P . Thus s.a(M) is a concretization of ŝ.a(x), and s.a(M) =
(ŝ.a(x))(ϑ ∪ {M/x}).

3. Case 〈s, aM.P 〉: If 〈s, aM.P 〉 −→ 〈s.aM,P 〉, then we have 〈ŝ, aM ′.P ′〉 −→p

〈ŝ.aM ′, P ′〉, where M ′ϑ = M and P ′ϑ = P . Since each variable in M ′ is already in
the domain of ϑ, (ŝ.aM ′)ϑ = s.aM , and thus s.aM is a concretization of ŝ.aM ′.

CHAPTER 4. PARAMETRIC SEMANTICS 34

4. Case 〈s, let (x, y) = (M,N) in P 〉: We have 〈s, let (x, y) = (M,N) in P 〉 −→
〈s, P{M/x,N/y}〉, and (M,N) is a ground message. The counterpart configura-
tion is 〈ŝ, let (x, y) = M ′ in P ′〉, where M ′ϑ = (M,N) and P ′ϑ = P . Thus
Mgu((x, y),M ′) will succeed and return a substitution θ, which satisfies (x, y)θ =
M ′θ. So 〈ŝ, let (x, y) = M ′ in P ′〉 −→p 〈ŝθ, P ′θ〉. For each variable x1, . . . , xn both
in domain θ and ϑ, we apply Mgu(θ(xi), ϑ(xi)), which will return ground substitu-
tions θ1, . . . , θn. Thus we have s = (ŝθ)(ϑ\{x1, . . . xn} ∪ θ1,∪ . . . ∪ θn).

5. Case 〈s, case {M}L of {x}L′ in P 〉: We have 〈s, case {M}L of {x}L′ in P 〉 −→
〈s, P{M/x}〉, and M is a ground message. The counterpart configuration is
〈ŝ, case M ′ of {x}L′ in P ′〉, where M ′ϑ = {M}Opp(L), and P ′ϑ = P . Thus
Mgu({x}Opp(L),M

′) will succeed and return a substitution θ, which satisfies {x}Opp(L)θ
= M ′θ. So 〈ŝ, case M ′ of {x}L′ in P ′〉 −→p 〈ŝθ, P ′θ〉. For each variable x1, . . . , xn

both in domain θ and ϑ, we apply Mgu(θ(xi), ϑ(xi)), which will return ground sub-
stitutions θ1, . . . , θn. Thus we have s = (ŝθ)(ϑ\{x1, . . . xn} ∪ θ1,∪ . . . ∪ θn).

6. Case 〈s, [M = M]P 〉: If 〈s, [M = M]P 〉 −→ 〈s, P 〉 and its counterpart configuration
is 〈ŝ, [M ′ = M ′′]P ′〉, where P ′ϑ = P , then M ′ϑ = M ′′ϑ = M . Thus if θ =
Mgu(M ′,M ′′), then θ ⊆ ϑ since the θ is the most general unifier of M ′ and M ′′ and
ϑ is a unifier of them. So we have sϑ = (ŝθ)ϑ.

7. Case 〈s, (new x : A)P 〉: Then we have 〈s, (new x : A)P 〉 −→ 〈s, P{m/x}〉 while
m ∈ A. Its counterpart configuration is 〈ŝ, (new x)P ′〉 where P ′ϑ = P and s =
ŝ(ϑ ∪ {m/x}).

8. Other cases are obvious.

“⇐”: By an induction on the number of transitions −→p and −→, the proof is trivial
in the zero-step. We assume in the n-th step the property holds. That is, for each
parametric trace ŝ gained by the n-th −→p step, if there exists a substitution ϑ from
variables to ground messages, and a trace s that satisfies s = ŝϑ, then s can be obtained
by the n-th step of −→. Now, we perform a case analysis on the n + 1 step:

1. Case 〈ŝ, 0〉: obviously.

2. Case 〈ŝ, a(x).P 〉: If there exists a step in which 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉, and a
ground substitution ϑ where ŝϑ is a trace, then xϑ is a ground message which can
be deduced by sϑ. So 〈s, a(x).P ′〉 −→ 〈s.a(xϑ), P ′{ϑ(x)/x}〉, where P ′ = Pϑ.

3. Case 〈ŝ, aM.P 〉: If there exists a step in which 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉, and a
ground substitution ϑ where ŝϑ is a concrete trace. So 〈ŝϑ, aMϑ.Pϑ〉 −→
〈(ŝ.aM)ϑ, Pϑ〉.

4. Case 〈ŝ, let (x, y) = M in P 〉: We have 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, Pθ〉
where θ = Mgu((x, y),M), and a ground substitution ϑ where ŝθϑ is a concrete
trace. Thus Mθϑ is a ground pair message. Suppose it is described by (M ′, N ′). So
〈ŝθϑ, let (x, y) = (M ′, N ′) in (Pθϑ)〉 −→ 〈ŝθϑ, (Pθϑ){M ′/x,N ′/y}〉.

5. Case 〈ŝ, case {x}L of M in P 〉: We have 〈ŝ, case {x}L of M in P 〉 −→p 〈ŝθ, Pθ〉
where θ = Mgu({x}Opp(L),M), and a ground substitution ϑ where ŝθϑ is a con-
crete trace. Thus Mθϑ is a ground encrypted message. Suppose it is described by
{M ′}Opp(L). So 〈ŝθϑ, case {x}L of {M ′}Opp(L) in (Pθϑ)〉 −→ 〈ŝθϑ, (Pθϑ){M ′/x}〉.

CHAPTER 4. PARAMETRIC SEMANTICS 35

6. Case 〈ŝ, [M = M ′]P 〉: We have 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, Pθ〉 where θ = Mgu(M,M ′),
and a ground substitution ϑ where ŝθϑ is a trace. Thus Mθϑ = M ′θϑ, and both
are ground messages. So we have 〈ŝθϑ, [M = M ′]Pθϑ〉 −→ 〈ŝθϑ, Pθϑ〉.

7. Case 〈ŝ, (new x : A)P 〉: If there exists a step in which 〈ŝ, (new x : A)P 〉 −→p

〈ŝ, P 〉, and a ground substitution ϑ where ŝϑ is a concrete trace, then xϑ ∈ A. So
〈s, (new x : A)P 〉 −→ 〈s, P{ϑ(x)/x}〉, where P ′ = Pϑ.

8. Other cases are obvious.

4.2 Refinement Step

Theorem 4.1 shows that each concrete trace generated by an initial configuration has
an abstraction. However, a parametric trace may or may not have concretizations. Let’s
take the following example to illustrate the reason that a parametric trace may have no
concretization.

Example 4.1. Consider a naive protocol:

A −→ B : {A,M}KAB

There exists a parametric trace b1({A, x}k[A,B]) generated by the parametric transi-
tions. In its concrete transitions, since k[A,B] was not leaked in the environment, before
A or B sends an encrypted message protected by k[A,B], B cannot accept any message
encrypted by k[A,B]. Thus, the parametric trace b1({A, x}k[A,B]) has no concretizations.

We name a message like {A, x}k[A,B] a rigid message. Intuitively, a rigid message is
the pattern of a requirement of an input action. This requirement can only be satisfied
by the messages generated by a proper principal. If there are no appropriate messages to
satisfy the requirement, then the parametric trace has no concretizations.

A rigid message has the following definition.

Definition 4.3 (Rigid message). Given a parametric trace ŝ = ŝ′.a(M).ŝ′′, {N}L ∈ M is
a rigid message if the following conditions are satisfied,

• L is a ground binder, and there exists a binder, or a rigid message in N ;

• If L is a symmetric key, then ŝ′ 6` L and ŝ′ 6` {N}L;

• If L is a private key, then there exists some rigid message, or at least one binder in
N cannot be deduced by the ŝ′, and ŝ′ 6` {N}Opp(L);

• If L is a public key, then ŝ′ 6` Opp(L) and ŝ′ 6` {L}Opp(L).

Remark 4.2. Some researchers also regard an encrypted message where a variable is
encrypted by a shared key as a rigid message [29]. For example, to represent a protocol
through which A sends to B an encrypted message, {M}k[A,B]. One of the parametric
traces will be a1{M}k[A,B].b1({x}k[A,B]). It seems x can only be substituted by M , and

CHAPTER 4. PARAMETRIC SEMANTICS 36

thus {x}k[A,B] is a rigid message. However, the communicated messages are nothing
but bit streams in the network. In such a case, any bit stream with the same length
as {M}k[A,B] can fake the message, since without comparing plain messages with other
messages it already knew, B cannot distinguish whether the plain message is meaningful
after decrypting the message it received. So in our definition, {x}k[A,B] is not a rigid
message.

A parametric trace with a rigid message needs to be further substituted by trying to
unify the rigid message to the atomic messages in output actions of its prefix parametric
trace. We name these messages elementary messages, and use el(ŝ) to represent the set
of elementary messages in ŝ.

Definition 4.4 (Elementary messages). Let U be a set of messages. dec(U) is a minimal
set that satisfies

• U ⊆ dec(U);

• If (M,N) ∈ dec(U), then M,N ∈ dec(U);

• If {M}L ∈ dec(U), L is ground, and L ∈ dec(U), then M,L ∈ dec(U);

• If {M}L ∈ dec(U), and L is not ground, then M ∈ dec(U).

Given a parametric trace ŝ, let msg(ŝ) be the set of all parametric messages in output
actions of ŝ, then el(ŝ) is the set of minimal terms with respect to the subterm relation
in dec(msg(ŝ)).

Given a parametric trace ŝ and a message N , we say N is ρ̂-unifiable in ŝ, if there
exists N ′ ∈ el(ŝ) such that ρ̂ = Mgu(N,N ′).

The refinement step can be represented as a deductive relation, which gradually in-
stantiates each rigid message by unifications.

Definition 4.5 (Deductive relation). Let ŝ be a parametric trace, satisfying ŝ = ŝ1.a(M).ŝ2,
if there exists a rigid message N in M such that N 6∈ el(ŝ1), and N is ρ̂-unifiable in ŝ1,
then ŝ Ã ŝρ̂.

For two parametric traces ŝ and ŝ′, if ŝ Ã∗ ŝ′ and there is no ŝ′′ that satisfies ŝ′ Ã ŝ′′,
we name ŝ′ the normal form of ŝ. The set of normal forms of ŝ is denoted by nfÃ(ŝ).

Example 4.2. One of the parametric traces generated by the Abadi-Gordon protocol
described in Subsection 3.3.1 is as follows. By the deductive relation, it has deduced to a
normal form.

a1(A, {x1, k[A, x1]}k[A,S]).a2(A, {A,M}k[A,x1]).s1(x, {y, z}k[x,S]).s2{x, z}k[y,S].
b1({A, t1}k[B,S]).b2(A, {A,w′′

1}t1)
Ã

a1(A, {x1, k[A, x1]}k[A,S]).a2(A, {A,M}k[A,x1]).s1(A, {B, z}k[A,S]).s2{A, z}k[B,S].
b1({A, z}k[B,S]).b2(A, {A,w′′

1}z)
Ã

a1(A, {B, k[A,B]}k[A,S]).a2(A, {A,M}k[A,B]).s1(A, {B, k[A,B]}k[A,S]).
s2{A, k[A,B]}k[B,S].b1({A, k[A,B]}k[B,S]).b2(A, {A,w′′

1}k[A,B])
Ã

a1(A, {B, k[A,B]}k[A,S]).a2(A, {A,M}k[A,B]).s1(A, {B, k[A,B]}k[A,S]).
s2{A, k[A,B]}k[B,S].b1({A, k[A,B]}k[B,S]).b2(A, {A,M}k[A,B])

CHAPTER 4. PARAMETRIC SEMANTICS 37

A concretization of a parametric trace ŝ is still the concretization of ŝ′ if ŝ Ã ŝ′.
Thus whether a parametric trace has concretizations is equivalent to whether there exist
parametric traces in its nfÃ(ŝ) that have concretizations.

Lemma 4.2. If ŝ is a parametric trace, and s is a concretization satisfying s = ŝϑ where
ϑ is a concretized substitution, then ŝ is either a normal form, or there exists ŝ′ such that
ŝ Ã ŝ′ with ŝϑ = ŝ′ϑ.

Proof. Let ŝ = ŝ′.a(M).ŝ′′. If ŝ is not a normal form, there exists some rigid message {N}L

in M , such that {N}L 6∈ el(ŝ′). Since s = ŝϑ and s is a trace, and thus ŝ′ϑ ` Mϑ, then
{N}Lϑ ∈ el(ŝ′ϑ). By the definition of a rigid message, L 6∈ el(ŝ′), and thus Lϑ 6∈ el(ŝ′)ϑ.
Since {N}Lϑ ∈ el(ŝ′ϑ) = el(ŝ′)ϑ, there exists {N ′}L ∈ el(ŝ′) such that {N}Lϑ = {N ′}Lϑ.
Thus {N}L and {N ′}L are unifiable. Let ρ̂ = Uni({N}L, {N ′}L), then ŝ Ã ŝρ̂. Since
{N}Lϑ = {N ′}Lϑ, each corresponding variable in two messages will be assigned to the
same ground message. Thus, ŝϑ = ŝρ̂ϑ.

Lemma 4.3. Let ŝ be a parametric trace, and ŝ′ be a normal form in nfÃ(ŝ). ŝ′ has a
concretization, if and only if, for each decomposition ŝ′ = ŝ′1.a(M).ŝ′2, each rigid message
in M satisfies N ∈ el(ŝ′1).

Proof. “⇒”: Prove by contradiction. Assume a normal form ŝ′ has concretizations s such
that s = ŝ′ϑ. If ŝ′ does not satisfy the requirement, then there exists at least one rigid
message {N}L in ŝ′ that {N}L 6∈ el(ŝ′1). Thus {N}Lϑ 6∈ el(ŝ′1)ϑ. By definition of a rigid
message, ŝ′1ϑ 6` L, then ŝ′1ϑ 6` {N}Lϑ. This contradicts the definition of a trace.

“⇐”: Since the first occurrence of a variable is in an input action, let ϑ be an arbitrary
concretized ground substitution that assigns each variable in ŝ′ to a name in E , then for
each decomposition ŝ′ϑ = ŝ′1ϑ.a(Mϑ).ŝ′2ϑ, ŝ′1ϑ ` Mϑ is satisfiable. Thus ŝ′ϑ is a trace,
and also a concretization of ŝ′.

A satisfiable normal form is a normal form of ŝ that satisfies the requirements in
Lemma 4.3.

Thus, a parametric trace has a concretization if and only if snfÃ(ŝ) 6= ∅.
Lemma 4.4. Let ŝ be a parametric trace, and let s be a trace. s is a concretization of ŝ
if and only if s is a concretization of some ŝ′ with ŝ′ ∈ snfÃ(ŝ).

Proof. “⇒” If s is a concretization of ŝ, then there exists a concretized substitution ϑ
with s = ŝϑ. By Lemma 4.2 we can get either ŝ is a normal form or ŝ can be deduce
to a parametric trace ŝ′ by Ã such that s = ŝ′ϑ. If ŝ is a normal form and it has a
concretization s, so ŝ is also a satisfiable normal form according to Lemma 4.3 . If ŝ
is not a normal form, the number of rigid messages in ŝ is finite, so ŝϑ = ŝ′ϑ, where ŝ′

is a normal form, by repeatedly applying lemma 4.2. Since ŝ′ has the concretization s,
ŝ′ ∈ snfÃ(ŝ).

“⇐” If s is a concretization of the satisfiable normal form ŝ′ such that ŝ′ ∈ snfÃ(ŝ),
we have s = ŝ′ϑ for some concretized substitution ϑ. ŝ′ is a normal form of ŝ, so ŝ′ = ŝρ̂
for some ρ̂, in which s = ŝ′ϑ = ŝρ̂ϑ. Thus s is a concretization of ŝ.

Theorem 4.5. A parametric trace ŝ has a concretization if and only if snfÃ(ŝ) 6= ∅.
The theorem is a corollary of Lemma 4.4.

CHAPTER 4. PARAMETRIC SEMANTICS 38

Chapter 5

Secrecy and Authentication in
Bounded Sessions

This chapter shows how to perform a sound and complete model checking method on
security properties, such as secrecy and authentication, for a security protocol in bounded
sessions. Models for protocols in bounded sessions are obtained by restricting identifiers
in Definition 2.2. Then sequences become redundant, because P ; Q can be represented
by a process in which each occurrence 0 in P is replaced by Q. Furthermore, we also
avoid summations (although they do not affect the method), since each principal has no
nondeterministic choices when analyzing authentication and secrecy properties.

Identifiers are used to describe recursive processes. Thus without identifiers, each
transition in the model will terminate lastly, and each concrete trace generated by tran-
sitions has bounded length. Then all concrete traces in this model will be abstracted to
a finite set of parametric traces by the parametric semantics in Chapter 3. Therefore,
model checking can be applied on the finite set of parametric traces.

In order to represent a security property, Some processes that describe behaviors for
this property representation need to be inserted in the description of a security protocol.
These behaviors do not belong to the prescription of a protocol. This chapter gives so-
called the specification for a given property manually. In Chapter 7, we will discuss how
to automatically generate a specification from a protocol description.

A set of action terms is defined in this chapter to represent security properties. We
also prove that the properties defined by these action terms in the concrete model can be
checked in its corresponding parametric model.

In the last subsection, a type-based statical analysis is proposed, so that the set of
parametric traces in a given parametric model is further reduced. This provides a more
efficient way for model checking of security properties.

5.1 Sub-Calculus for Bounded Sessions

We only adopt the following primitives of the process calculus to describe security
protocols in bounded sessions.

Definition 5.1 (Processes for bounded sessions). Let P be a countable set of processes
which is indicated by P,Q, R, The syntax of processes, avoiding the identifier, the

39

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 40

sequence, and the summation, is defined as follows:

P,Q, R ::=
0 Nil
aM.P output
a(x).P input
[M = N] P match
(new x : A)P new
(ν n)P restriction
let (x, y) = M in P pair splitting
case M of {x}L in P decryption
P‖Q composition

The concrete semantics is also restricted, which is shown in Figure 5.1.

(INPUT) 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉 s ` M
(OUTPUT) 〈s, aM.P 〉 −→ 〈s.aM,P 〉

(DEC) 〈s, case {M}L of {x}L′ in P 〉 −→ 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M,N) in P 〉 −→ 〈s, P{M/x,N/y}〉
(NEW) 〈s, (new x : A)P 〉 −→ 〈s, P{m/x}〉 m ∈ A

(RESTRICTION) 〈s, (νn)P 〉 −→ 〈s, P{m/n}〉 m = freshN(V)
(MATCH) 〈s, [M = M]P 〉 −→ 〈s, P 〉

(LCOM)
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P‖Q〉 −→ 〈s′, P ′‖Q〉
(RCOM)

〈s,Q〉 −→ 〈s′, Q′〉
〈s, P‖Q〉 −→ 〈s′, P‖Q′〉

Figure 5.1: Concrete Transition Rules for Bounded Sessions

Any transition in Figure 5.1 will terminate lastly. Thus the only reason make the
state-transition tree of the model infinite is its infinite-branching, which is caused by the
rules INPUT and NEW . The following are two examples to show the infinity factors.

Example 5.1. Let’s take the following two examples,

• For the INPUT rules, a process is defined as

A , a1M.a2(x).0

(see its state-transition tree in (a), Figure 5.2). 〈ε, A〉 will transit to 〈a1M,a2(x).0〉
by the OUTPUT rule, which can then transit to infinitely many concrete config-
urations. The reason is that the concrete trace a1M can deduce infinitely many
messages due to the environmental deductive system.

• For the NEW rules, a process is defined as

B , (new x : I)b1{M}+k[x]

(see its state-transition tree in (b), Figure 5.2). I is an infinite set of names of
principals. According to the NEW rule, x will be instantiated to any name in I,
which thereafter leads to infinitely many concrete traces by OUTPUT rules.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 41

〈ε, a1M.a(x).0〉

〈a1M, a(x).0〉

〈a1M.a(M), 0〉 〈a1M.a((M, M)), 0〉 〈a1M.a({M}+k[I]), 0〉· · · · · ·

(a) INPUT rule

〈ε, (newx : I)b1{M}+k[x].0〉

〈b1{M}+k[B], 0〉 〈b1{M}+k[C], 0〉 〈b1{M}+k[I], 0〉· · · · · ·

(b) NEW rule

Figure 5.2: State-Transition Trees for Infinite Systems

5.2 Action Terms

A set of action terms is defined to represent security properties.

Definition 5.2. Let α range over the set of actions. The set of action terms is defined
as follows:

T ::= α | ¬T | T ∧ T | T ∨ T
σ ::= T | T ←↩ T | T ↪→F T

Action terms inductively defined by T are state action terms, and those defined by σ
are path action terms. A state action term is also a path action term.

We define two relations: the relation |=t between a concrete trace and a state action
term, and |= between a concrete configuration and a path action term. Two relations are
inductively defined as follows:

• s |=t α: there exists a ground substitution ρ from variables to ground messages such
that αρ occurs in s.

• s |=t ¬T : s 6|=t T .

• s |=t T1 ∧ T2: s |=t T1 and s |=t T2.

• s |=t T1 ∨ T2: s |=t T1 or s |=t T2.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 42

• 〈s, P 〉 |= T : for each concrete trace s′ generated by 〈s, P 〉, s′ |=t T holds.

• 〈s, P 〉 |= T1 ←↩ T2: for each concrete trace s′ generated by 〈s, P 〉, if there is a ground
substitution ρ such that s′ |=t T2ρ, then s′ |=t T1ρ, and T1ρ occurs before T2ρ in s′.

• 〈s, P 〉 |= T1 ↪→F T2: for each concrete configuration 〈s′, P ′〉 reached by 〈s, P 〉, if
there is a ground substitution ρ such that s′ |=t T1ρ, then for every path starting
from 〈s′, P ′〉, there exists a concrete trace s′′ such that s′′ |=t T2ρ.

5.3 Representing Security Properties

5.3.1 Security Properties for the AG Protocol

Secrecy

The secrecy property intuitively means that the environment should never learn a
confidential datum the principals exchange. For example, in the AG protocol described
in Subsection 3.3.1, a confidential datum is M , which should be guaranteed never leaked
in the environment without any protection.

We assume that a sender may send a message to any possible principal if it cannot gain
the information about its destination from previous messages. Under this assumption,
we cannot confirm whether the message is sent to the specific receiver we represented. In
order to define the secrecy property, a binder will be used, instead of a name to represent
a confidential datum M in the AG protocol. Principals who are expected to know the
datum are denoted explicitly by parameters of the binder. For instance, By M[A,B], we
means that the datum is only shared by A and B. With this modification, the action
labeled with a2 in the description of the AG protocol (see Subsection 3.3.1) should be
modified to a2(A, {A, M[A, x]}k[A,x]). Suppose the modified system is defined as SY SAG′ .

Remark 5.1. Other methods [29, 83] restricted the number of principals in the network,
and assumed that a principal explicitly sent a message to an intruder at the same time
when it sent another message to a legitimate principal. Thus it is enough to check whether
the message sent to the legitimate principal is secure or not (the message sent to the
intruder is obvious not secure). However, in our methodology, we abstract two sending
actions by one action using binders. Thus the message can be either sent to an intruder,
or sent to a legitimate principal. Hence we should parameterize the message by a binder,
explicitly assigning the principals who share the message as parameters of the binder, so
that only the message with two concerned principals’ names as its parameters is checked.

In addition, A process check(x).0 is introduced to compose the description of the AG
protocol, which represents a listener in the network, who can access any message leaked
in the environment.

SY SAG
s , SY SAG′‖check(x).0

Remark 5.2. Intuitively, check(x).0 represents a fresh principal inserted in the network,
listening all the message leaked in the network, and trying to find out whether some
confidential message is leaked. Thus the secrecy property is defined as the fresh principal
cannot access the confidential message.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 43

The secrecy property of the AG protocol is characterized by an action term, as follows.

Characterization 5.1 (Secrecy for the AG protocol). Given the formal process for se-
crecy of the AG protocol, it satisfies the secrecy property, if

〈ε, SY SAG
s 〉 |= ¬check(M[A,B])

Authentication

The authentication property is another important security property that has been
studied in security protocol analysis. Intuitively, it means a message that purports to be
sent from a certain principal was indeed originated by that principal.

We exploit an already existing and widely used way to specify authentication property,
called correspondence assertion, which was first introduced by Thomas Y.C. Woo and
Simon S. Lam [118].

For authentication, a process, accM.0 will inserted to the description of the AG
protocol, substituting some occurrences of 0. For the AG protocol, we are interesting
in checking the authentication in the third flow (see Subsection 3.3.1). M in accM.0
is thus the same message attached by b2. The process for the AG protocol SY SAG

a is
then transformed as follows, in which A and S are original descriptions represented in
Subsection 3.3.1.

Ba ,b1(x).case x of {x′}k[B,S] in let (y, z) = x′ in [y = A] b2(w). let (w′, w′′) = w

in [w′ = A] case w′′ of {u}z in let (u′, u′′) = u in [u′ = A] accw.0

SY SAG
a ,A‖Bp‖S

Remark 5.3. Intuitively, accM.0 describes that a principal provides a message it re-
ceived, after validates the message is coming from the principal it expected. In another
words, it claims the M it received comes from an expected principal (although in reality,
it may or may not).

So the authentication property of the AG protocol is characterized formally as follows.

Characterization 5.2 (Authentication for the AG protocol). Given the process for au-
thentication of Abadi-Gordon protocol, the sender is correctly authenticated to the receiver,
if

〈ε, SY SAG
a 〉 |= a2 x ←↩ acc x

5.3.2 Security Properties for the NSPK Protocol

Secrecy

The confidential datum concerned in the NSPK protocol (see Subsection 3.3.2) is NB.
By the similar consideration, we use a binder to replace the name NB in the description.
Furthermore, the listener’s process will also be inserted in the description. The process
for secrecy of the NSPK protocol is given as follows, in which A is the original description
in Subsection 3.3.2.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 44

Bs ,(ν NB)b1(xb).case xb of{x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB[B, A]}+k[A].b3(zb). case zb of {ub}−k[B] in

[ub = NB[B, A]]0

SY SNSPK
s ,A‖Bs‖check(x).0

The secrecy property of the NSPK protocol is characterized as follows.

Characterization 5.3 (Secrecy for the NSPK protocol). Given the formal process for
secrecy of the NSPK protocol, it satisfies the secrecy property, if

〈ε, SY SNSPK
s 〉 |= ¬check(NB[B, A])

Authentication

The authenticated flow concerned in the NSPK protocol is also the third flow (see
Subsection 3.3.2). M in the process accM.0 is thus the message attached by b3. The
process for the NSPK protocol SY SNSPK

a is transformed as follows, in which A is the
original description represented in Subsection 3.3.2.

Ba ,(ν NB) b1(xb).case xb of{x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB}+k[A].b3(zb). case zb of {ub}−k[B] in

[ub = NB] acc zb.0

SY SNSPK
a ,A‖Ba

So the authentication property of the NSPK protocol is characterized formally as
follows.

Characterization 5.4 (Authentication for the NSPK protocol). Given the formal process
for authentication of NSPK protocol, the sender is correctly authenticated to the receiver,
if

〈ε, SY SNSPK
a 〉 |= a3 x ←↩ acc x

5.3.3 Security Properties for the Multiple WL Protocol

There are no confidential data to be checked in the Woo-Lam protocol. We only
concern the authentication of the Woo-Lam protocol in multiple sessions (see Subsection
3.3.3). For this protocol, we are interesting in checking the authentication of the third
flow. M in the process accM.0 will be replaced to the message attached by b3. B(2) is
transformed as follows. SY S

(2)
a is therefore the process for the authentication property of

the multiple Woo-Lam protocol, in which A(2) and S(2) are original processes defined in
Subsection 3.3.3..

B(2)
a ,(ν NB)b1(xb).[xb = A] b2 NB.b3(yb).b4 (B, {xb, yb}k[B,S]).b5(zb).case zb

of {ub}k[B,S] in [ub = NB] acc yb.0‖(ν N ′
B)b′1(x′b).b′2 N ′

B.b3(y′b).

b4 (B, {x′b, y′b}k[B,S]).b5(z′b). case z′b of {u′b}k[B,S] in [u′b = N ′
B]0

SY S(2)
a ,A(2)‖S(2)‖B(2)

p

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 45

We define the authentication property as follows: if the label acc occurs in a trace
attached to a message, then at least one label in a3 and a′3 attached to the same message
occurs in the same trace before acc.

Characterization 5.5 (Authentication for the two-session Woo-Lam protocol). Given
the formal process for authentication of the two-session Woo-Lam protocol, the sender is
correctly authenticated to the receiver, if

〈ε, SY S(2)
a 〉 |= (a3 x ∨ a′3x) ←↩ acc x

5.4 Checking Security Properties

The counterpart parametric model for protocols in bounded sessions is given in Figure
5.3.

(PINPUT) 〈ŝ, a(x).P 〉 −→p 〈ŝ.a(x), P 〉
(POUTPUT) 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉

(PDEC) 〈ŝ, case {M}L of {x}L′ in P 〉 −→p 〈ŝθ, Pθ〉
θ = Mgu({M}L, {x}Opp(L′))

(PPAIR) 〈ŝ, let (x, y) = M in P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu((x, y),M)
(PNEW) 〈ŝ, (new x : A)P 〉 −→p 〈ŝ, P{y/x}〉 y /∈ fv(P) ∪ bv(P)

(PRESTRICTION) 〈ŝ, (νn)P 〉 −→p 〈ŝ, P{m/n}〉 m = freshN(V)
(PMATCH) 〈ŝ, [M = M ′]P 〉 −→p 〈ŝθ, Pθ〉 θ = Mgu(M,M ′)

(PLCOM)
〈ŝ, P 〉 −→p 〈ŝ′, P ′〉

〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

(PRCOM)
〈ŝ, P 〉 −→p 〈ŝ′, Q′〉

〈ŝ, P‖Q〉 −→p 〈ŝ′, P ′‖Q′〉 P ′ = Pθ if ŝ′ = ŝθ else P ′ = P

Figure 5.3: Parametric Transition Rules for Bounded Sessions

By these parametric transitions, infinity factors of concrete transitions in Figure 5.1
will be abstracted to be finite. For instance, examples in Example 5.1 will be finitely
abstracted, as showed in Figure 5.4.

Security properties can be checked in the parametric model, by the following two
reasons: Firstly, each parametric transition in Figure 5.3 will terminate. Secondly, since
each parametric trace has the bounded length. The refinement step defined in Subsection
4.2 has the following two facts. Hence the refinement step of a given parametric trace will
also terminate.

Fact 5.1. Given a parametric trace ŝ, nfÃ(ŝ) is finite.

Fact 5.2. Given a parametric trace ŝ, snfÃ(ŝ) is finite.

According to the two facts introduced above, the set of parametric traces generated
by the parametric model is finite. In order to check these security properties, we need to
simulate action terms definitions on its parametric traces.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 46

〈ε, a1M.a(x).0〉

〈a1M, a(x).0〉

〈a1M.a(M), 0〉 〈a1M.a((M, M)), 0〉 〈a1M.a({M}+k[I]), 0〉· · · · · ·

〈ε, a1M.a(x).0〉

〈a1M, a(x).0〉

〈a1M.a(x), 0〉

(a) Abstracting INPUT rule

〈ε, (newx : I)b1{M}+k[x].0〉

〈b1{M}+k[B], 0〉 〈b1{M}+k[C], 0〉 〈b1{M}+k[I], 0〉· · · · · ·

〈ε, (new x : I)b1{M}+k[x].0〉

〈b1{M}+k[x], 0〉

(b) Abstracting NEW rule

Figure 5.4: State-Transition Trees for Abstracting Infinite Systems

Definition 5.3. Let T be a state action term, and let ŝ be a parametric trace that has
concretizations. We say ŝ |=t T , if for each concretization s of ŝ, s |=t T .

Definition 5.4. Let σ be a path action term, and let 〈ŝ, P 〉 be a parametric configuration,
where ŝ has concretizations. We say 〈ŝ, P 〉 |= σ, if for each concretization s of ŝ, where
s = ŝϑ, 〈ŝϑ, Pϑ〉 |= σ.

An action α is ρ̂-unifiable in a parametric trace ŝ if the parametric message in α can
be unified to the message attached to the same label as α in ŝ, and ρ̂ is the result of the
unification.

Lemma 5.1. Given a parametric trace ŝ,

1. ŝ |=t α if and only if, α is ρ̂-unifiable in ŝ, and for each satisfiable normal form in
snfÃ(ŝρ̂) satisfying ŝρ̂ρ̂′, αρ̂ρ̂′ occurs in ŝρ̂ρ̂′.

2. ŝ |=t ¬α if and only if snfÃ(ŝρ̂) = ∅ when α is ρ̂-unifiable in ŝ.

3. For any state action term T , ŝ |=t T is decidable.

Proof. Given a parametric trace ŝ,

1. “⇒”: Prove by contradictions: Firstly, if α is not ρ̂-unifiable in ŝ, then α cannot
be ρ̂-unifiable in all concretizations of ŝ. Thus given a concretization s in which
α is not ρ̂-unifiable, αρ is not occurs in s for any ground substitution ρ. Then
s 6|=t α. So ŝ 6|=t α. Secondly, if α is ρ̂-unifiable in ŝ, but there exists a satisfiable

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 47

normal form in snfÃ(ŝρ̂) satisfying ŝρ̂ρ̂′, and αρ̂ρ̂′ does not occur in ŝρ̂ρ̂′, then
for any concretization s′ of ŝρ̂ρ̂′, s′ 6|=t αρ̂′. According to Lemma 4.4, s′ is also a
concretization of ŝ and thus ŝ 6|=t α.

“⇐”: If α is ρ̂-unifiable in ŝ, and for each satisfiable normal form in snfÃ(ŝρ̂)
satisfying ŝρ̂ρ̂′, αρ̂ρ̂′ occurs in ŝρ̂ρ̂′, Then αρ̂ρ̂′ρ occurs in any concretization ŝρ̂ρ̂′ρ.
According to Lemma 4.4, each concretization of ŝ is also a concretization of one
satisfiable normal form in snfÃ(ŝ). Thus for all concretization s of ŝ, s |=t α. So
ŝ |=t α.

2. ”⇒”: Prove by contradictions: If α is ρ̂-unifiable in ŝ, and snfÃ(ŝρ̂) 6= ∅, by
Theorem 4.5, ŝρ̂ has concretizations. We choose an arbitrary concretization s that
satisfies s = ŝρ̂ϑ, and then αρ̂ϑ occurs in s. Thus ŝ 6|=t ¬α, which contradicts the
assumption.

“⇐”: If α is ρ̂-unifiable in ŝ with snfÃ(ŝρ̂) = ∅, by Theorem 4.5, ŝρ̂ has no
concretization. Since a concretization of ŝ in which α is ρ̂-unifiable is also a con-
cretization of ŝρ̂, then for each concretization s of ŝ, s |=t ¬α. Thus ŝ |=t ¬α.

3. It is easy to show that ŝ |=t T1 ∧ T2 if and only if ŝ |=t T1 and ŝ |=t T2, and
ŝ |=t T1 ∨ T2 if and only if ŝ |=t T1 or ŝ |=t T2. Furthermore, action terms satisfy
De Morgan’s laws. That is, ŝ |=t ¬(T1 ∧ T2) if and only if ŝ |=t ¬T1 ∨ ¬T2, and
ŝ |=t ¬(T1 ∨ T2) if and only if ŝ |=t ¬T1 ∧ ¬T2. So any state action term problem
can be checked on a parametric trace, Thus ŝ |=t T is decidable.

Lemma 5.2. Given a concrete configuration 〈s, P 〉, and two state action terms T1 and
T2, 〈s, P 〉 |= T1 ↪→F T2, if and only if for each concrete configuration 〈s′, P ′〉 reached by
〈s, P 〉, if there exists a ground substitution ρ such that s′ |=t T1ρ, then for each terminated
configuration 〈s′′, P ′′〉 reached by 〈s′, P ′〉, T2ρ occurs in s′′.

Proof. “⇒”: By the definition, 〈s, P 〉 |= T1 ↪→F T2 if for each concrete configuration
〈s′, P ′〉 reached by 〈s, P 〉, if there is a ground substitution ρ such that s′ |=t T1ρ, then
for every path starting from 〈s′, P ′〉, there exists a concrete trace s′′ such that s′′ |=t T2ρ.
According to the concrete transition rules in Figure 5.1, if 〈s, P 〉 generates a trace s′, then
s′ = s.s′′ for some s′′. Thus, for every path starting from 〈s′, P ′〉, if there exists a concrete
trace s′′ such that s′′ |=t T2ρ, then in the terminated configuration of that path 〈s′′′, P ′′′〉,
s′′′ |= T2ρ.

“⇐”: The condition in the above lemma satisfies the definition of 〈s, P 〉 |= T1 ↪→F

T2.

The above Lemma 5.2 provides an easy way to check ↪→F in parametric traces.

Theorem 5.3. Given an initial configuration 〈ε, P 〉,

1. Given a state action term T , 〈ε, P 〉 |= T , if and only if for each parametric trace ŝ
generated by 〈ε, P 〉, ŝ |=t T .

2. Given two state action terms T1 and T2, 〈ε, P 〉 |= T2 ←↩ T1, if and only if for
each parametric trace ŝ generated by 〈ε, P 〉, if T1 is ρ̂-unifiable in ŝ, then for each
satisfiable normal form in snfÃ(ŝρ̂) satisfying ŝρ̂ρ̂′, T2ρ̂ρ̂′ occurs before T1ρ̂ρ̂′.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 48

3. Given two state action terms T1 and T2, 〈ε, P 〉 |= T1 ↪→F T2, if and only if for each
parametric configuration 〈ŝ′, P ′〉 reached by 〈ε, P 〉, if T1 is ρ̂-unifiable in ŝ′, then
for each terminated parametric configuration 〈ŝ′′ρ̂, P ′′ρ̂〉 reached by 〈ŝ′ρ̂, P ′ρ̂〉, either
ŝ′′ρ̂ cannot deduce any satisfiable normal forms, or T2ρ̂ρ̂′ occurs in each satisfiable
normal form ŝ′′ρ̂ρ̂′ in snfÃ(ŝ′ρ̂).

Proof. 1. It is a corollary of Theorem 4.5 and Lemma 5.1.

2. “⇒”: Prove by contradictions: Given an arbitrary parametric trace ŝ generated by
〈ε, P 〉, if T1 is not ρ̂-unifiable in ŝ, then ŝ 6|=t T1 according to Lemma 5.1. Thus
for any concretization s of ŝ, s 6|=t T1. So 〈ε, P 〉 6|= T2 ←↩ T1, which contradicts to
our assumption. Otherwise, assume a satisfiable normal form ŝρ̂ρ̂′ in snfÃ(ŝρ̂), and
T2ρ̂ρ̂′ does not occur before T1ρ̂ρ̂′ in ŝρ̂ρ̂′. Let s′ be a concretization of ŝρ̂ρ̂′ satisfying
s′ = ŝρ̂ρ̂′ϑ. Thus T2ρ̂ρ̂′ϑ does not occur before T1ρ̂ρ̂′ϑ in s′, that is, s′ 6|= T2 ←↩ T1. s′

is also the concretization of ŝ. Thus ŝ 6|= T2 ←↩ T1, which contradicts the assumption.

“⇐”: Given an arbitrary parametric trace ŝ generated by 〈ε, P 〉, if T1 is ρ̂-unifiable
in ŝ, and for each satisfiable normal form in snfÃ(ŝρ̂) satisfying ŝρ̂ρ̂′, T2ρ̂ρ̂′ occurs
before T1ρ̂ρ̂′ in ŝρ̂ρ̂′, then for each concretization satisfying ŝρ̂ρ̂′ϑ, ŝρ̂ρ̂′ϑ |= T2 ←↩
T1. By Lemma 4.4, the concretization is also a concretization of ŝ. According to
Theorem 4.5, any trace in 〈ε, P 〉 is a concretization of some counterpart parametric
trace. Thus we have 〈ε, P 〉 |= T2 ←↩ T1.

3. “⇒”: Prove by contradiction: Given an arbitrary parametric trace ŝ generated by
〈ε, P 〉, where T1 is ρ̂-unifiable in ŝ′, we suppose there exists a path from 〈ŝ′ρ̂, P ′ρ̂〉
that will be terminated to 〈ŝ′′ρ̂, P ′′ρ̂〉, and T2ρ̂ρ̂′ does not occur in a satisfiable nor-
mal form ŝ′′ρ̂ρ̂′ in snfÃ(ŝ′′ρ̂). Then for any ground substitution ρ, 〈ŝ′′ρ̂ρ̂′ρ, P ′′ρ̂ρ̂′ρ〉
is a terminated configuration of 〈ε, P 〉 reached by 〈ŝ′ρ̂ρ, P ′ρ̂ρ〉. ŝ′ρ̂ρ |=t T1ρ, while
ŝ′′ρ̂ρ̂′ρ 6|=t T2ρ. By Lemma 5.2, 〈ε, P 〉 6|= T1 ↪→F T2, which contradicts the assump-
tion.

“⇐”: For each parametric trace ŝ′ generated by 〈ε, P 〉, if T1 is ρ̂-unifiable in ŝ′, then
for each concretization s of ŝ′(if it has), satisfying s = ŝ′ρ, s |=t T1ρ. Furthermore,
by the assumption, for each terminated parametric configuration 〈ŝ′′ρ̂, P ′′ρ̂〉 reached
by 〈ŝ′ρ̂, P ′ρ̂〉, if it can reduce to some satisfiable normal form, according to Theorem
4.5, ŝ′ρ̂ has concretization. For each satisfiable normal form, denoted by ŝ′′ρ̂ρ̂′, T2ρ̂ρ̂′

occurs after T1ρ̂ρ̂′. Thus 〈ŝ′′ρ̂ρ̂′ρ, P ′′ρ̂ρ̂′ρ〉 is a terminated configuration, and T2ρ̂ρ̂′ρ
occurs in ŝ′′ρ̂ρ̂′ρ. According to Lemma 5.2, we have 〈ε, P 〉 |= T1 ↪→F T2.

Actually, Theorem 5.3 implicitly shows the algorithm to check whether a system sat-
isfies a path action term.

5.5 Counterexamples and Attacks

5.5.1 Results and Discussion of the AG Protocol

There are no counterexamples in the parametric model that violate both secrecy and
authentication definitions of the AG protocol. However, this protocol does not satisfy a

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 49

so-called injective agreement authentication1 property, which is stronger than the authen-
tication defined by correspondence assertion. This attack can be found by bisimulation
methods [7].

5.5.2 Attacks of the NSPK Protocol and Its Modification

For the NSPK protocol, a parametric trace that does not satisfy the secrecy property
is as follows,

a1{A,NA}+k[xa].b1({A,NA}−k[B]).b2{NA, NB[B, A]}+k[A].a2({NA, NB[B, A]}−k[A]).
a3{NB[B, A]}+k[xa].check(NB[B, A])

The counterexample shows that in a3, A may send the message it intends to send to
B to other principals (thus leaking the confidential message NB[A,B]).

Similarly, a counterexample to the authentication

a1{A,NA}+k[xa].b1({A,NA}−k[B]).b2{NA, NB}+k[A].a2({NA, NB}−k[A]).
a3{NB}+k[xa].b3({NB}−k[B]).acc{NB}−k[B]

which means that B thinks that he accepts the message from A, while actually A can
send the message to any one of possible principals.

The two counterexamples actually represent the same well-known man-in-middle at-
tack [82, 83], which is given as:

A −→ I : {A,NA}+KI
(a1)

I(A) −→ B : {A,NA}+KB
(b1)

B −→ I(A) : {NA, NB}+KA
(b2)

I −→ A : {NA, NB}+KA
(a2)

A −→ I : {NB}+KI
(a3)

I(A) −→ B : {NB}+KB
(b3)

The fixed NSPK protocol [83] revised the second flow of the original protocol.

A −→ B : {A,NA}+KB

B −→ A : {B, NA, NB}+KA

A −→ B : {NB}+KB

It avoids such an attack. In the second flow, A will check whether the principal whom
it intends to communicate with is identical to the principal name it has received. The
principal A is represented as follows.

Afix ,(ν NA)(new xa : I)a1{A,NA}+k[xa].a2(ya).

case ya of {y′a}−k[A] in let (za, z
′
a) = y′a in [za = xa]

let (wa, w
′
a) = z′a in [wa = NA] a3{w′

a}+k[za].0

1See in Appendix A for more details about the property.

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 50

With the match operation [za = xa], when we instantiate za during generating a
parametric trace, xa will be instantiated at the same time. Thus both the label a3 and
the label acc are attached to the same message. Following the same actions order of the
counterexample for the authentication, it is not a counterexample any more.

a1{A,NA}+k[B].b1({A,NA}−k[B]).b2{B, NA, NB}+k[A].
a2({B, NA, NB}−k[A]).a3{NB}+k[B].b3({NB}−k[B]).
acc{NB}−k[B]

This means that A will not send the message labeled a3 to any possible principal, since
it has accepted the communicator’s name via za.

5.5.3 Attacks of the Multiple WL Protocol and Its Modification

For the Woo-Lam protocol in multiple sessions, the counterexamples can be found in
its parametric traces. One of them is shown as follows:

b1(A).b′1(x′b).b2 NB.b′2 N ′
B.b3(yb).b

′3({NB}k[x′b,S]).b′4(B, {x′b, {NB}k[x′b,S]}k[B,S]).

b4 (B, {A, yb}k[B,S]).s1(xs, {ys, {zs}k[ys,S]}k[xs,S]).s1(B, {x′b, {NB}k[x′b,S]}k[B,S]).
s2 {zs}k[xs,S].s2 {NB}k[B,S].b5({NB}k[B,S]).acc yb

In this counterexample, there are no actions labeled with ax. It means that an intruder
can completely imitate A. It is a bit difficult to understand the counterexample, which
actually represents the following attack.

I(A) −→ B : A (a1)

B −→ I(A) : NB (a2)

I −→ B : I (b1)

B −→ I : N ′
B (b2)

I(A) −→ B : yb (a3)

B −→ S : B, {A, yb}KBS
(a4)

I −→ B : {NB}KIS
(b3)

B −→ S : B, {I, {NB}KIS
}KBS

(b4)

S −→ B : {NB}KBS
(a5(b5))

The reason that the attack occurs is that B cannot distinguish which session the last
message belongs to. To correct the protocol, one possible solution is that the server S
appends the information of B’s communicated principal in the encrypted message in the
last flow [58].

A −→ B : A

B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS
}KBS

S −→ B : {A,NB}KBS

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 51

However, the modified protocol has a replay attack even in a single session! A coun-
terexample is as follows:

b1(A).b2 NB.b3(NB).b4 (B, {A,NB}k[B,S]).b5({A,NB}k[B,S]).accNB

which can be interpreted as the following attack:

I(A) −→ B : A

B −→ I(A) : NB

I(A) −→ B : NB

B −→ I(S) : B, {A,NB}KBS

I(S) −→ B : {A,NB}KBS

One of the correct modifications of Woo-Lam protocol is to correct the message in the
third flow, A sends an encrypted message whose plain message is not only NB but also A’s
and B’s names. Such a modification can prevent both two replay attacks we introduced
above.

A −→ B : A

B −→ A : NB

A −→ B : {A,B,NB}KAS

B −→ S : B, {A, {A,B,NB}KAS
}KBS

S −→ B : {A,B,NB}KBS

5.6 Compacting Parametric Traces with Type

Although the number of parametric traces generated by the parametric model for a
security protocol in bounded sessions is finite, it is still too large to be handled, with
lots of redundant parametric traces. For example, considering the following parametric
transitions,

〈ε, a(x).case x of {y}k[A,B] in P ′〉 −→p

〈a(x), case x of {y}k[A,B] in P ′〉 −→p

〈a({y}k[A,B]), P
′{{y}k[A,B]/x}〉

There are two parametric traces generated currently, a(x) and a({y}k[A,B]). Actually,
a(x) is a redundant parametric trace, since in reality, an input action and its following
validating actions, such as decryption, splitting, matching, can be regarded an atomic
action, among which no attacks can occur. In the above example, it is sufficient to only
check whether a({y}k[A,B]) satisfies a given action term.

To reduce the redundant parametric traces, a statical analysis on a process that de-
scribes a security protocol is proposed, gathering the information of each input variable
by a type system [100, 101], then translating the process to its corresponding parametric
process according to the type. By a simple semantics, the parametric process generates
parametric traces. The set of parametric traces generated by this semantics is a proper

CHAPTER 5. SECRECY AND AUTHENTICATION IN BOUNDED SESSIONS 52

subset of parametric traces generated by the parametric model in Figure 5.3. We find
a corresponding concrete model with type restriction, which is sound and complete with
respective to the representation. In the above example, its corresponding parametric
process will be

a({y}k[A,B]).case {y}k[A,B] of {y}k[A,B] in P ′{{y}k[A,B]/x}
which only generates one parametric trace, a({y}k[A,B]).

For details of this compaction approach, please refer to Appendix C.

Chapter 6

Authentication in Recursive
Protocols

Generally, checking whether a security protocol in unbounded concurrent sessions
satisfies a security property, such as secrecy, is undecidable [53, 52].

This chapter makes the first step toward model checking of security protocols with
an unbounded number of sessions. It allows to analyze protocols with one recursive
procedure, which can naturally represent recursive protocols.

We adopt the full primitives of the process calculus defined in Definition 2.2. However,
the following two restrictions are enforced to identifiers when defining a system.

• A system is restricted to only contain one recursive process.

• The expression that defines the recursive process is sequential.

The pushdown system [109], an infinite state system with a finite set of control locations
and an unbounded stack memory that can perform model checking on regular properties,
is used to encode an unbounded number of parametric traces.

When analyzing protocols in bounded sessions, fresh messages that processes generate
are bounded. We use a bounded set of distinguished symbols to describe them (see
Chapter 5). However, for the analysis of recursive protocols, fresh messages may be
unbounded. We represent an unbounded number of fresh messages by nested binders.
With the restrictions above, the same context (stack content) will not be repeated. Thus
freshness of messages are guaranteed by current context that the stack content captures.

The pushdown system cannot check all security properties represented by action terms
in Subsection 5.2. Thus, a subset of action terms is defined to describe authentication
property for the recursive protocols. These action terms can be checked in the pushdown
system, which also enjoys the soundness and completeness.

Note that even under the assumption, secrecy property is also undecidable [78, 116].
Researches in [78, 116] analyze the secrecy property with bounded number of princi-
pals (thus bounded number of sessions), which can be straightforwardly analyzed by our
method provided in Chapter 5.

6.1 Sub-Calculus for Recursive Protocols

To describe recursive protocols, we adopt the full primitives defined in Chapter 2.

53

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 54

Definition 6.1 (Processes for recursive protocols). Let P be a countable set of processes
which is indicated by P,Q, R, The syntax of processes is defined as follows:

P,Q, R ::=
0 Nil
aM.P output
a(x).P input
[M = N] P match
(new x : A)P new
(ν n)P restriction
let (x, y) = M in P pair splitting
case M of {x}L in P decryption
P‖Q composition
P + Q summation
P ; Q sequence
A(p̃r) identifier

However, the following restrictions will be performed when defining a recursive process
in order to check properties in the pushdown system.

• A system is restricted to only contain one recursive process (see Definition 2.5).

• The expression that defines the recursive process is sequential (see Definition 2.6).

For instance, SY SRA defined in Subsection 3.4.2 is this kind of system, in which
O(A[Null], A[A[Null]]) and S are flat processes, and R(A[A[Null]], A[Null]) is a recursive
process.

Remark 6.1. The essence of the above restriction is, there only permits one recursive
process in a system, composed with finite flat processes. In other words, it allows some
finite processes run concurrently with a sequential recursive process. The system under
this restriction is obvious weaker than a replication, !P . But it is more expressive than
systems for analyzing recursive protocols proposed in [98, 35].

With the restrictions, the corresponding parametric model of a concrete model can be
described by a pushdown system.

6.2 Representing Authentication for Recursive Pro-

tocols

6.2.1 A Subset of Action Terms

We we only use a subset of terms to define security properties for the RA protocol,
defined as follows.

Definition 6.2. Let α and β be actions, with fv(α) ⊆ fv(β), and let s be a trace. We use
s |= α ←↩ β to represent that for each ground substitution ρ, if βρ occurs in s, then there
exists one αρ in s before βρ. A configuration satisfies α ←↩ β, denoted by 〈s, P 〉 |= α ←↩ β,
if each trace s′ generated from 〈s, P 〉 satisfies s′ |= α ←↩ β.

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 55

Remark 6.2. Not all action terms can be checked in the pushdown system, especially
negation of an action, and ↪→F between two actions.

• Given a concrete configuration C, and a negation of an action, ¬α, C |= ¬α intu-
itively means that for any ground substitution ρ, αρ does not occur in any trace s
generated by C. If α shares the same label with an action in the recursive process,
then this action may repeatedly occur in generated traces an unbounded number of
times. This leads C |= ¬α to be undecidable, which is the reason that the secrecy
property for recursive protocols is undecidable [78, 116] in an unbounded number
of sessions.

• ↪→F is defined for a liveness problem, which is solved by a reachability problem in
a model without identifiers, since in this model, all transitions will terminate lastly.
It is enough to only check the property on each terminated trace (see Lemma 5.2).
However, when we try to check ↪→F in a non-terminate model, it fails to be solved
by the similar approach introduced in Chapter 5. Current, whether ↪→F can be
checked in a pushdown system is still unclear (It may or may not be solved by the
LTL model checking on pushdown system, say, P -automaton in [109]). Here we
tentatively avoid such a definition.

A definition in a parametric model that simulates the definition above in a is given as
follows. By the Theorem 6.1 we know that an action term defined in a concrete model
can be checked in a parametric model.

Definition 6.3. Let α and β be parametric actions, with fv(α) ⊆ fv(β), and let ŝ be
a parametric trace that has concretizations. ŝ |= α ←↩ β, if s |= α ←↩ β for each
concretization s of ŝ. We say that a parametric configuration satisfies α ←↩ β, denoted
by 〈ŝ, P 〉 |= α ←↩ β, if ŝ′ |= α ←↩ β for each trace ŝ′ generated by 〈ŝ, P 〉.
Theorem 6.1. Given a parametric trace ŝ, ŝ |= α ←↩ β if and only if, α is ρ̂-unifiable in
ŝ, and for each satisfiable normal form in snfÃ(ŝ) satisfying ŝρ̂′, if βρ̂′ρ̂ occurs in ŝρ̂′ for
some ρ̂, then αρ̂′ρ̂ occurs before βρ̂′ρ̂ in ŝρ̂′.

It is a corollary of the Theorem 5.3.

6.2.2 Representing Security Properties for the RA Protocol

To define authentication for the RA protocol (see Subsection 3.4.2), we need to insert
two processes, accM1.0, and accr M2.0 to the description of the RA protocol, which
describe that the originator and the recipients declare they have received messages from
their respective previous principals after they validate the messages. For the RA protocol,
M1 is the message received by a2, and M2 is the message received by b4. A process for
the RA protocol, SY SRA

a , is transformed as follows, in which S is the original description
represented in Subsection 3.3.1.

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 56

Oa(x1, x2) ,a1Hlk[x1,S](x1, x2, N[Null], Null).a2(x).case x of {y1, y2, y3}lk[x1,S].

[y3 = N[Null]] acc x.0

Ra(x1, x2) ,(b1(x).let (y1, y2, y3, y4, y5) = x in [y2 = x1]

b2Hlk[x1,S](x1, A[x1], N[y3], x).(R(A[x1], x1) + b3Hlk[x1,S](x1, S, N[y3], x).0));

(b4(x).let (z1, z2, z3) = x in

case z1 of {z4, z5, z6}lk[x1,S] in [z5 = A[x1]] [z6 = N[y3]]

case z2 of {z7, z8, z9}lk[x1,S] in [z8 = x2] [z9 = N[y3]] b5z3.accr x.0)

SY SRA
a ,Oa(A[Null], A[A[Null]])‖Ra(A[A[Null]], A[Null])‖S

The authentication property of the RA protocol between the originator and its recip-
ient is characterized formally as follows. Similarly, authentication between two adjacent
recipients is also characterized formally.

Characterization 6.1. [Authentication for the RA protocol I] Given the formal descrip-
tion of the RA protocol, the recipient is correctly authenticated to the originator, if

〈ε, SY S〉 |= b5 x ←↩ acc x

Characterization 6.2 (Authentication for the RA protocol II). Given the formal descrip-
tion of the RA protocol, the recipient is correctly authenticated to its previous recipient,
if

〈ε, SY S〉 |= b5 x ←↩ accr x

6.3 Model Checking by the Pushdown System

By introducing the pushdown system, an unbounded number of parametric traces
in a parametric model can be represented by a finite set of control locations, with an
unbounded stack memory.

Definition 6.4 (Pushdown system [109]). A pushdown system P = (Q, Γ, ∆, c0) is a
quadruple, where Q contains the control locations, and Γ is the stack alphabet. A configu-
ration of P is a pair (q, ω) where q ∈ Q and ω ∈ Γ∗. The set of all configurations is denoted
by conf(P). With P we associated the unique transition system IP = (conf(P),⇒, c0),
whose initial configuration is c0.

∆ is a finite subset of (Q × Γ) × (Q × Γ∗). If ((q, γ), (q′, ω)) ∈ ∆, we also write
〈q, γ〉 ↪→ 〈q′, ω〉. For each transition relation, if 〈q, γ〉 ↪→ 〈q′, ω〉, then 〈q, γω′〉 ⇒ 〈q′, ωω′〉
for all ω′ ∈ Γ∗.

We define a set of messages used for the pushdown system as follows,

Definition 6.5 (Messages in the pushdown system).

pr ::= x | > | m[] | m[pr, . . . , pr]
M,N, L ::= pr | (M,N) | {M}L | H(M)

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 57

Two new messages are introduced in the pushdown system: > is a special name that
denotes any name. It is used to substitute a variable which can be substituted to an
unbounded number of names during the refinement step. m[] is a binder marker. In the
pushdown system encoding, we use the stack depth and binder markers to represent an
unbounded number of fresh messages. For instance, A[A[Null]] is represented by A[] and
two stack elements in the stack.

Definition 6.6 (compaction). Given a parametric trace ŝ, a compaction t̂r of ŝ is a
parametric trace cutting off redundant actions with the same labels.

We represent the parametric model by the pushdown system as follows,

• control locations are pairs (R, t̂r), where R is a finite set of recursive messages, and
t̂r is a compaction.

• stack alphabet only contains a symbol ? to describe the depth of the recursive
process.

• initial configuration is 〈(∅, ε), ε〉, where ε represents an empty parametric trace, and
ε represents an empty stack.

• ∆ are defined by two sets of translations, the translations for the parametric rules,
and the translations for the refinement step.

An occurrence of 0 in the last sequence process of a recursive process means the
return point of the current process. We will replace it to a distinguished marker, Nil,
when encoding a parametric system to the pushdown system.

For the parametric transition rules in Fig. 4.1, the transition rules in ∆ are defined
as follows, in which t̂r and t̂r

′
are compactions of ŝ and ŝ′, respectively.

1. For parametric transition rules except TOUTPUT and TIND rules, 〈(R, t̂r), ω〉 ↪→
〈(R, t̂r

′
), ω〉 if 〈ŝ, P 〉 −→p 〈ŝ′, P ′〉.

2. For TOUTPUT rule, 〈(R, t̂r), ω〉 ↪→ 〈(R′, t̂r.aM), ω〉 if 〈ŝ, aM.P 〉 −→p 〈ŝ.aM, P 〉,
where R′ = R ∪ {M} if M is a recursive message, otherwise R′ = R.

3. For TIND rule, when R is firstly met, 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r
′
), ω〉 if 〈ŝ, P 〉 −→p

〈ŝ′, P ′〉, where R(p̃r) , P ; Otherwise 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r), ?ω〉.
4. 〈(R, t̂r), γ〉 ↪→ 〈(R, t̂r), ε〉 if 〈ŝ,Nil〉 is met.

For the refinement step, we have to distinguish two kinds of rigid messages, context-
insensitive rigid messages, and context-sensitive rigid messages. Let’s first take the fol-
lowing two examples.

Example 6.1. Consider the following simple example,

A −→ B : {A,NA}KAB

A sends B its name and a nonce NA under the encryption of KAB. We assume that
the protocol run recursively. The requirement of B (represented by a rigid message
{A, x}k[A,B]) is insensitive to the current context, since B does not know which session the
message it received belongs to. Thus the rigid message {A, x}k[A,B] is a context-insensitive
message.

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 58

Example 6.2. Consider the following simple example,

A −→ B : NA

B −→ A : {B, NA}KAB

A sends B a nonce NA, then requires B sending back B’s name and the nonce under the
encryption of KAB. We assume that the protocol run recursively. The requirement of A
(represented by a rigid message {x, NA[]}k[A,B]) is sensitive to the current context, since
it knows the information of NA, and thus knows which session the message it received
belongs to. Thus the rigid message {x, NA[]}k[A,B] is a context-insensitive message.

Definition 6.7 (Context-sensitive and context-insensitive rigid messages).
Literally, context-sensitive rigid messages are rigid messages that contain at least one
binder marker, while context-insensitive rigid messages do not contain any binder markers.

In other words, context-sensitive rigid messages can only be unified to finitely many
atomic messages in the current session, since in one session, the number of atomic messages
is finite. Context-insensitive rigid messages can be unified to infinitely many atomic
messages over different sessions.

The transition relations for the refinement step in Definition 4.5 in ∆ are defined as
follows. If t̂r = t̂r1.a(M).t̂r2, such that there exist a rigid message N in M such that
N /∈ el(t̂r1).

5. 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂rρ̂), ω〉, if N is context-sensitive and ρ̂-unifiable in R ∪ el(ŝ1).

6. 〈(R, t̂r), ω〉 ↪→ 〈(R∪N ′, t̂rρ̂′), ω〉, if N is context-insensitive and ρ̂-unifiable to N ′ in
el(ŝ1), and ρ̂′ is the substitution that replaces different elements in N and N ′ with
>.

Lemma 6.2. Given an initial configuration 〈ε, P 〉, for each parametric trace ŝ generated

by 〈ε, P 〉, each satisfiable normal form ŝρ̂ of ŝ has a compaction t̂r
′
in a control location

of its corresponding pushdown system.

Proof. By induction, it is easy to proof that each parametric trace generated by parametric
transition rules in Figure 4.1 has a compaction.

According to Definition 4.5, satisfiable normal forms are generated by unifying rigid
messages with atomic messages in the prefix parametric trace. Let’s do case analysis on
rigid messages.

1. Case current rigid message is a context-sensitive rigid message, then its can only
be satisfied by atomic messages within the current session. The number of the
atomic messages is finite. The transition relation 5 in the PDS is essentially unifying
infinitely many context-sensitive rigid messages with the same pattern in one turn.
It does not lose any probabilities for unification, since any atomic messages that can
be unified in ŝ′ are explicitly represented in t̂r

′
.

2. Case current rigid message is a context-insensitive rigid message, then it can be
satisfied by infinitely many atomic message over different sessions. The number
of these atomic messages is infinite. But with finite patterns. The difference of
atomic messages with the same pattern is only the difference of fresh names in

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 59

each message. Firstly, if there exist infinitely many atomic messages that satisfies
the rigid message, then there must exist an atomic message in the current session.
So when a context-insensitive rigid message in t̂r

′
is met and can be unified to a

message in its prefix parametric trace, we can expect it can be unified to infinitely
many these messages over different sessions with the same pattern. According to
transition relation 6 in the pushdown system, the place that will be substituted to
any fresh message will be marked as a >. It also does not lose any probabilities for
unification.

Thus, each satisfiable normal form ŝρ̂ of ŝ generated by 〈ε, P 〉 has a compaction t̂r
′
in

a control location of its corresponding pushdown system.

Theorem 6.3. Given an initial configuration 〈ε, P 〉, and two actions α and β, which
satisfies fv(α) ⊆ fv(β), 〈ε, P 〉 |= α ←↩ β if and only if, for each control location (R, t̂r) of
its corresponding pushdown system, t̂r is a satisfiable normal form, and t̂r |= α ←↩ β.

Proof. By induction, it is easy to proof that each parametric trace generated by parametric
transition rules in Fig. 4.1 has a compaction. Furthermore, by Lemma 6.2, each satisfiable
normal form ŝρ̂ of ŝ generated by 〈ε, P 〉 has a compaction t̂r

′
in a control location of its

corresponding pushdown system.
According to Theorem 6.1, we know that ŝ |= α ←↩ β if each satisfiable normal form ŝ′

satisfies, αρ̂′ρ̂ occurs before βρ̂′ρ̂ in ŝρ̂′ if βρ̂′ρ̂ occurs in ŝρ̂′ for some ρ̂. So it is sufficient
to prove that each satisfiable normal form ŝ′ |= α ←↩ β if and only if t̂r

′ |= α ←↩ β. “⇐”

is obvious, since t̂r
′
is a sub-trace of ŝ′ (> can be represented to the fresh names in the

current session).
“⇒”: If one satisfiable normal form ŝ satisfies ŝ |= α ←↩ β, then there exists a ρ̂ such

that αρ̂ occurs in ŝ before βρ̂. Let’s do case analysis on β.
There are only two ways to make two actions have common sub-messages, say, satisfies

ŝ |= α ←↩ β.

1. The first one is due to sequence actions in a process. The process may receive a
message by α, then send a new message with the common sub-messages to previous
message by β. In this case, it is simple to show that ŝ |= α ←↩ β implies t̂r |= α ←↩ β,
since all distinguished actions are contained in t̂r.

2. The second one is due to refinement step, there exists a rigid message in β (it is
not necessary that the rigid message firstly occurs in β), then by unification with
previous atomic messages, the message in β has common sub-messages with α. If
the rigid message is a context-sensitive one, then the α must occur in the current
session, thus in t̂r. If it is a context-insensitive one, although the α that shares
common sub-messages does not occur in the current session, there at least exists
one α satisfies the property.

Thus, 〈ε, P 〉 |= α ←↩ β can be checked in its corresponding pushdown system.

6.4 Attacks of the RA Protocol and Its Modification

There are two works on analyzing authentication property for the RA protocol with
bounded number of principals based on higher order theorem proving [98, 35]. One was

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 60

proposed by L. Paulson, using Isabelle/HOL [98]. The other was proposed by J. Bryans
and S. Schneider, adopting CSP, and using PVS as a theorem prover.

Paulson took a weak form of key distribution property, and used Isabelle/HOL to
prove that the correctness of the RA protocol with bounded number of principals [98].
Bella pointed out that the authentication and the weak form of key distribution “might
be equivalent” [18]. However, we showed by the counterexample that the weak form of
key distribution does not hold authentication, specified by the correspondence assertion.

Bryans and Schneider adopted CSP to describe behaviors of the RA protocol with the
same assumption as Paulson’s. They considered the correspondence assertion between
the server and the last principal who submitted the request, and used PVS to prove the
correctness of the authentication for the RA protocol [35].

We took the same definition of authentication specified by the correspondence asser-
tion [118]. An attack that violates our definition is detected by our formalism. In the
next subsection, we will discuss different points of view of the the attack we detected.

For the recursive authentication protocol, counterexamples that violate authentication
characterized in Characterization 6.1 are found in compactions of its parametric traces.
One of them is shown as follows:

a1Hlk[A[],S](A[], A[A[]], N[], Null).b1(Hlk[A[],S](A[], A[A[]], N[], Null)).

b3Hlk[A[A[]],S](A[A[]], S, N[N[]],Hlk[A[],S](A[], A[A[]], N[], Null)).
s1HA[A[]],S](A[A[]], S, N[N[]],Hlk[A[],S](A[], A[A[]], N[], Null)).
s2 ({k[k[]], S, N[N[]]}lk[A[A[]],S], {k[], A[], N[N[]]}lk[A[A[]],S], {k[], A[A[]], N[]}lk[A[],S]).
a2({k[], A[A[]], N[]}lk[A[],S]).acc {k[], A[A[]], N[]}lk[A[],S]

This counterexample actually represents infinitely many attacks, due to the number
of principals can be arbitrarily large. The minimal attack is as follows,

A0 −→ A1 : HKA0S
(A0, A1, NA0 , Null)

A1 −→ S : HKA1S
(A1, S, NA1 ,HKA0S

(A0, A1, NA0 , Null))

S −→ I(A1) : {K1, S, NA1}KA1S
, {K0, A0, NA1}KA1S

, {K0, A1, NA0}KA0S

I(A1) −→ A0 : {K0, A1, N0}KA0S

The reason attacks occur is that S directly sends the message without any protections
to the receiver who submits requirement. Thus an intruder intercepts the message, splits
it, and sends the last element to A0. A0 may think the message it received comes from
A1. However, A1 did not send it, and neither got the fresh key.

One possible modification is that S protects the message it sends iteratively with long-
term symmetric keys it shared with principals. However, the refinement is quite time
consuming, and thus is inefficient. We use three principals to illustrate the modification.

A0 −→ A1 : HKA0S
(A0, A1, NA0 , Null)

A1 −→ A2 : HKA1S
(A1, A2, NA1 ,HKA0S

(A0, A1, NA0 , Null))

A2 −→ S : HKA2S
(A2, S, NA2 ,HKA1S

(A1, A2, NA1 ,HKA0S
(A0, A1, NA0 , Null)))

S −→ A2 : {{K2, S, NA2}KA2S
, {K1, A1, NA2}KA2S

,

{{K1, A2, NA1}KA1S
, {K0, A0, NA1}KA1S

,

{K0, A1, NA0}KA0S
}KA1S

}KA2S

A2 −→ A1 : {{K1, A2, NA1}KA1S
, {K0, A0, NA1}KA1S

, {K0, A1, NA0}KA0S
}KA1S

A1 −→ A0 : {K0, A1, NA0}KA0S

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 61

6.5 Different Points of View to the Attack

In [118], T. Woo and S. Lam proposed two goals for security protocols, authentication
and key distribution. Intuitively, by authentication, we mean that it can be sure a message
that purports to be from a principal was indeed originated by that principal. By key
distribution, we mean that if a principal receives a session key, then only the principal
who sent the key (and the server) knew the key.

The properties has various different points of view. For instance, Bellare et. al. stated
that key distribution is “very different from” authentication [21]. Bella pointed out that
two goals “are strictly related” and “might be equivalent”. To illuminate divergences, we
take the fixed NSPK protocol as the first example [83].

A −→ B : {A,NA}+KB

B −→ A : {B, NA, NB}+KA

A −→ B : {NB}+KB

Many researches verified that the fixed NSPK protocol is secure. However, due to the
assumption that intruders take over the network, there is an “attack”.

A −→ B : {A,NA}+KB

B −→ A : {B, NA, NB}+KA

A −→ I(B) : {NB}+KB

I(A) −→ B : {NB}+KB

The intruder I pretends to be B, intercepting the message in the third flow from A.
Then pretends to be A, forwarding the same message to B. Hence, B thinks the last
message comes from A, yet it comes from I. However, this “attack” does not make sense,
since any protocol is violated in the similar way.

To exclude such “attacks”, there is a widely used way to specify authentication prop-
erty, called correspondence assertion [118]. The intuitive meaning is, when B claims the
message it accepted from A, then A exactly sent the same message. The correspondence
assertion, together with secrecy, can also specify key distribution property. In this sense,
key distribution implies authentication.

M. Abadi et. al. adopted the correspondence assertion, finding an attack [37] on the
Otway-Rees protocol [96]. The protocol is defined flow-by-flow as follows.

A −→ B : M,A, B, {NA,M, A, B}KAS

B −→ S : M,A, B, {NA,M, A, B}KAS
, {NB,M, A, B}KBS

S −→ B : M, {NA, KAB}KAS
, {NB, KAB}KBS

B −→ A : M, {NA, KAB}KAS

In the attack, an intruder I intercepts the message sent by S, splits it, and sends the
parted message to A. Hence when A gets the message, and “thinks” it comes from B, yet
B never sent the message. The attack is described as follows.

CHAPTER 6. AUTHENTICATION IN RECURSIVE PROTOCOLS 62

A −→ B : M,A, B, {NA,M, A, B}KAS

B −→ S : M,A, B, {NA,M, A, B}KAS
, {NB,M, A, B}KBS

S −→ I(B) : M, {NA, KAB}KAS
, {NB, KAB}KBS

I(B) −→ A : M, {NA, KAB}KAS

M. Abadi et. al. thought this attack really causes loss for principals. “It is interesting
to note that this protocol does not make use of KAB as an encryption key, so neither
principal can know whether the key is known to the other.” [37]

G. Bella, however, did not agree the point above. “We refute the claim, showing that
there exists a protocol similar to Otway-Rees that does not use the session key as an
encryption key but informs one agent that his peer does know the session key.” [18] In
his views, the attack of the Otway-Rees protocol causes the same effect as the “attack”
of the fixed NSPK protocol.

He adopted a weak form of key distribution, which means, if a principal receives a
session key, then only the principal who sent the key (and the server) can know the
key [18, 98]. Its difference from the key distribution is quite subtle, since “can know”
implies “may not know”. In the sense of this property, Paulson proved the correctness of
the RA protocol [98].

Although if discuses directly according to the current flows, the attack of the Otway-
Rees protocol seems to cause the same effect as the “attack” of the fixed NSPK protocol.
However, if we discuss protocols under a context by adding two flows, which is similar to
the last two flows in the NSSK protocol [90], for further validations of the fresh key NB,
there exists explicit divergences.

B −→ A : {N ′
B}NB

A −→ B : {N ′
B − 1}NB

In the fixed NSPK protocol, after B validates the third flow, it can send the two
flow above, and update its session key database, since the protocol guarantees that A
already knew the fresh session key NB. When A receives the first flow above, it can also
update its session key database. However, in the Otway-Rees protocol, no one can initiate
the further validations above. Since when A received the fresh key, the protocol cannot
guarantee that B already knew the fresh key.

J. Bryans and S. Schneider took the similar definition of authentication as ours. They
proved the authentication between the server and the last principal [35].

Chapter 7

Non-repudiation and Fairness in
Bounded Sessions

Fair non-repudiation protocols intend reliable exchange of messages in the situation
that each principal can be dishonest, who tries to take advantages from other principals by
aborting the communication or sending fake messages. A fair non-repudiation protocol
needs to ensure two properties, non-repudiation and fairness. Non-repudiation means
that when a sender sends a message to a receiver, neither the sender nor the receiver can
deny the participation in this communication. Fairness means no principals can obtain
evidence while the other principal cannot do so. Finding flaws for these properties is more
difficult than for secrecy and authentication due to misbehaviors of dishonest principals.

This chapter extends the concrete model in Chapter 5 that describes authentication
protocols in bounded sessions, with a deductive system to generate infinitely many mes-
sages that dishonest principals may produce and send [107]. Furthermore, summations
will be adopted to describe different choice of a dishonest principal.

A finite parametric model is proposed by abstracting all infinities, following the similar
approach in Chapter 5. The finite parametric traces generated by the parametric model
has the same representative ability as its corresponding concrete model. Thus other
security properties, such as non-repudiation and fairness, can be checked in the parametric
model.

7.1 Extended Model for Non-repudiation Protocols

7.1.1 Extended Process Calculus and Concrete Trace

To describe fair non-repudiation protocols, we use the same definition of messages that
defined in Definition 2.1. For processes, the new primitive has modified, in which the
range of the bound variable will decided dynamically through transitions. Furthermore,
summation is adopted.

Definition 7.1 (Processes for fair non-repudiation protocols). Let P be a countable set of

63

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 64

processes which is indicated by P,Q, R, The syntax of processes is defined as follows:

P,Q, R ::=
0 Nil
aM.P output
a(x).P input
[M = N] P match
(new x)P new
(ν n)P restriction
let (x, y) = M in P pair splitting
case M of {x}L in P decryption
P‖Q composition
P + Q summation

The range of the variable x in the process (new x)P is not decided statically. Instead,
it will increase during transitions, which will be deduced dynamically by a deductive
system. By the primitive new, we can describe all messages a dishonest principal can
generate from the current finite knowledge.

The process, summation P +Q is used here, since we need to describe that a dishonest
principal in a fair non-repudiation protocol usually has several choices, such as aborting
communication, or running a recovery stage, which makes a branching run possible.

A process P that describes a dishonest principal A can send out all messages generated
through the environmental deductive system, ` (see Figure 2.1), and can also encrypt
messages with A’s private key and shared key, and apply one-way hash function to the
message. A P -deductive system is defined in Figure 7.1.

S ` M
S `P M

S `P M
S `P {M}k[A,B]

S `P M
S `P {M}−k[A]

S `P M
S `P H(M)

Figure 7.1: P -deductive system

In this chapter, we will modify the definition of the concrete trace as following, which
also restricts the message in output actions (comparing to Definition 2.8). The messages
in a concrete trace s, represented by msg(s), are those messages in output actions of the
concrete trace s. We use s ` M to abbreviate msg(s) ` M , and s `P M to abbreviate
msg(s) `P M .

Definition 7.2 (Concrete trace and configuration). A concrete trace s is a ground action
string that satisfies each decomposition s = s′.a(M).s′′ implies s′ ` M , and each s =
s′.aM.s′′ implies s′ `P M , where P is a closed process that contains the label a. ε
represents an empty trace. A concrete configuration is a pair 〈s, P 〉, in which s is a
concrete trace and P is a closed process.

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 65

7.1.2 Operational Semantics

The transition relation of the extended concrete model is defined by the rules in Figure
7.2.

(INPUT) 〈s, a(x).P 〉 −→e 〈s.a(M), P{M/x}〉 s ` M
(OUTPUT) 〈s, aM.P 〉 −→e 〈s.aM,P 〉

(DEC) 〈s, case {M}L of {x}L′ in P 〉 −→e 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M,N) in P 〉 −→e 〈s, P{M/x,N/y}〉
(NEW) 〈s, (new x)P 〉 −→e 〈s, P{M/x}〉 s `P M

(RESTRICTION) 〈s, (νn)P 〉 −→e 〈s, P{m/n}〉 m = freshN(V)
(MATCH) 〈s, [M = M]P 〉 −→e 〈s, P 〉

(LCOM)
〈s, P 〉 −→e 〈s′, P ′〉

〈s, P‖Q〉 −→e 〈s′, P ′‖Q〉
(RCOM)

〈s,Q〉 −→e 〈s′, Q′〉
〈s, P‖Q〉 −→e 〈s′, P‖Q′〉

(LSUM) 〈s, P + Q〉 −→e 〈s, P 〉
(RSUM) 〈s, P + Q〉 −→e 〈s,Q〉

(STR)
P ≡ P ′ 〈s, P ′〉 −→e 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→e 〈s′, Q〉

Figure 7.2: Concrete Transition Rules for the Extended Model

By the rule NEW , a variable bound by new can be instantiated to infinitely many
ground messages generated by a P -deductive system. Thus an output action with fresh
bound variables may send any of these messages to the environment. This is a new factor
that leads infinity of a system.

7.1.3 Describing Fair Non-repudiation Protocols

When model checking authentication or secrecy properties, we make assumptions that
the legitimate principals are honest, i.e., behave following the prescription of a security
protocol (see Chapter 2). For example, principals A and B want to have a private con-
versation, it is in their interests not to purposely disclose their keys and confidential
messages.

Other security goals, such as non-repudiation and fairness, are rather different. We
are concerned with protecting one principal against possible cheating by another. For
example, a non-repudiation goal of transmission should provide the receiver with proof
that the message was indeed sent by the claimed sender, even if the sender subsequently
tries to deny it. Thus we cannot assume that the principal will not cheat.

To describe a case that a dishonest principal tries to cheat another principal by sending
a fake message, fresh variables are used to denote the sub-message that the principal can
use to deceive another principal. These variables are bound by the new primitive, and are
later instantiated by some ground messages deduced by the P -deductive system according
to the NEW transition rules.

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 66

We use a simplified variation of the Zhou-Gollmann fair non-repudiation protocol (re-
ferred to as the simplified ZG protocol) as a running example to illustrate how our system
works. The full ZG protocol is described in [121]. Note that besides a standard flow de-
scription, a fair non-repudiation protocol also contains a description on what are evidences
for participated principals.

In this protocol, A aims to send a message M to B. At the same time, it expects to
obtain an evidence that the message was received by B, and B has an evidence that the
message was sent by A. The message is transferred in two stages: an encrypted message
protected by a new generated key K is first sent directly to B. After A has received
evidence of receipt from B, the key K is sent via a trust third party S and both A and B
can receive the evidence that K has been distributed by S. The simplified ZG protocol
is described flow-by-flow as follows:

A −→ B : {B, NA, {M}K}−KA
(7.1)

B −→ A : {A,NA, {M}K}−KB
(7.2)

A −→ S : {B, NA, K}−KA
(7.3)

S −→ A : {A,B,NA, K}−KS
(7.4)

S −→ B : {A,B,NA, K}−KS
(7.5)

The evidence that A sends the message M to B (referred as M1) is the pair of messages
that B accepted in (6.1) and (6.5). In (6.1), A sends a signed message to B, and B can
confirm that the intended receiver of (6.1) is B by decrypting it by the public key +KA.
In (6.5), B checks whether NA in (6.5) coincides with that in (6.1). If they match, B
can confirm that the TTP S has received K from A in (6.3). Alternatively, the evidence
that B receives the message M from A (referred as M2) is the pair of the messages that
A accepted in (6.2) and (6.4).

Principal A will be represented in our calculus as follows:

A ,(νNA)(newx1, x2) a1{x1, NA, x2}−k[A]).a2(x3).

case x3 of {x4, x5, x6}−k[x1] in [x4 = A] [x5 = NA] [x6 = x2] (0+

(newx7, x8) a3{x7, x8}−k[A].a4(x9). case x9 of {x10, x11, x12, x13}−k[S]

in [x10 = A] [x11 = x1] [x12 = NA] [x13 = x8].0)

A cannot have the information of who it will communicate with. Thus a binder is
used to denote any possible principal it communicates with, in which x1 is bound by
(new x1). Furthermore, in the first flow, A need not send the right encrypted message,
following the prescription of the protocol. On the contrary, it can send any messages,
denoted by a fresh bound variable x2. After receiving a message by a2, A may abort the
communication, or send a message. When sending a message, similarly, it still does not
follow the prescription of the protocol, sending two arbitrary messages denoted by two
bound variables x7 and x8. The latter is used to check the validation of message he has
received by a4.

B ,b1(y1).case y1 of {y2, y3, y4}−k[A] in[y2 = B] (0+

(new y5) b2{A, y5}−k[B].b3(y6).case y6 of {y7, y8, y9, y10}−k[S] in

[y7 = A] [y8 = B] [y9 = y3].0)

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 67

As a receiver, we also fix B’s potential sender to the sender A in one session. Such
an assumption is necessary when defining security properties, since otherwise the sender
and the receiver we represented may have no connections with each other, and thus
these properties cannot be defined between them. Similarly, after receiving a message, B
may also quit the communication, or send a message, disobeying the prescription of the
protocol. Thus a fresh variable y5 is used, bound by a new operator.

S , s1(z1).case z1 of {z2}−k[z3] in s2{z3, z2}−k[S].s2{z3, z2}−k[S].0

TTP S is faithfully following the prescription of the protocol. Furthermore, the sim-
plified ZG protocol can be described as a composition among A, B and S.

SY SZG , A‖B‖S

7.2 Representing non-repudiation and fairness

Action terms defined in Subsection 5.2 is also adopted to represent non-repudiation
and fairness properties.

7.2.1 Non-repudiation

The non-repudiation property is that neither the sender nor the receiver can deny
this after participating in this communication, when a sender sends some message to a
receiver. Usually, it concerns the following two properties [120, 76]:

• Non-repudiation of origin (NRO) is intended to protect against the sender’s false
denial of having sent the messages.

• Non-repudiation of receipt (NRR) is intended to protect against the receiver’s false
denial of having received the message.

For non-repudiation and fairness, two processes, evidB M1.0 and evidA M2.0, are in-
troduced for A and B, respectively. For the simplified ZG protocol, the evidence M1

(resp. M2) is the pair of messages in (1) and (5) (resp. (2) and (4)). In the protocol
description, they are messages received at b1 and b3 (resp. a2 and a4) as y1 and y6 (resp.
x3 and x9). Then the submitted process is evidA(y1, y6).0 (resp. evidB(x3, x9).0).

Ap ,(νNA)(newx1, x2) a1{x1, NA, x2}−k[A]).a2(x3).

case x3 of {x4, x5, x6}−k[x1] in [x4 = A] [x5 = NA] [x6 = x2] (0+

(newx7, x8) a3{x7, x8}−k[A].a4(x9). case x9 of {x10, x11, x12, x13}−k[S]

in [x10 = A] [x11 = x1] [x12 = NA] [x13 = x8].evidB(x3,x9).0)

Bp ,b1(y1).case y1 of {y2, y3, y4}−k[A] in[y2 = B] (0+

(new y5) b2{A, y5}−k[B].b3(y6).case y6 of {y7, y8, y9, y10}−k[S] in

[y7 = A] [y8 = B] [y9 = y3].evidA(y1,y6).0)

SY SZG
p ,Ap‖Bp‖S

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 68

For NRO, we guarantee that a receiver got the evidence of a sender should come after
the sender sent the message. Thus ←↩ is used to describe the property. For NRR, we
guarantee that after a sender got the evidence, his receiver will inevitably obtain the
message. We will use ↪→F to characterize the property.

Characterization 7.1 (NRO for the simplified ZG protocol). Given the process of the
simplified ZG protocol, the NRO is satisfied, if

〈ε, SY SZG
p 〉 |= a1{B, x, y}−k[A] ∧ a3{B, x, z}−k[A] ←↩

evidA({B, x, y}−k[A], {A,B, x, z}−k[S])

Characterization 7.2 (NRR for the simplified ZG protocol). Given the process of the
simplified ZG protocol, the NRR is satisfied if

〈ε, SY SZG
p 〉 |= evidB({A, x, y}−k[B], {A,B, x, z}−k[S]) ↪→F

b2{A, x, y}−k[B] ∧ s2{A,B, x, z}−k[S]

7.2.2 Fairness

A protocol is unfair, if one principal can obtain the evidence while the other principal
cannot do so. Furthermore, a receiver cannot access the message until the sender has the
evidence of the receiver. To define the fairness that satisfies the above requirements, we
need the following three properties [107, 76].

• Fairness for origin obtaining evidence: If a receiver has an evidence of its sender,
then the sender should have an evidence of the receiver. We name it FAIRO.

• Fairness for receipt obtaining evidence: If a sender has an evidence of its receiver,
then the receiver should obtain an evidence of the sender. We name it FAIRR.

• Fairness for message receipt: A receiver should not know the message until the
evidence of the receiver has been provided to the sender. We name it FAIRM.

Characterization 7.3 (FAIRO for the simplified ZG protocol). Given the process of the
simplified ZG protocol, the FAIRO is satisfied if

〈ε, SY SZG
p 〉 |= evidA({B, x, y}−k[A], {A,B, x, z}−k[S]) ↪→F

evidB({A, x, y}−k[B], {A,B, x, z}−k[S])

Characterization 7.4 (FAIRR for the simplified ZG protocol). Given the process of the
simplified ZG protocol, the FAIRR is satisfied, if

〈ε, SY SZG
p 〉 |= evidB({A, x, y}−k[B], {A,B, x, z}−k[S]) ↪→F

evidA({B, x, y}−k[A], {A,B, x, z}−k[S])

For FAIRM, a listener process, check(x).0, is inserted in Bp, similar to when we
define secrecy property. It is used to check whether the message is already leaked in the
environment.

Bf ,Bp‖check(x).0

SY SZG
f ,Ap‖Bc‖S

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 69

Characterization 7.5 (FAIRM for the simplified ZG protocol). Given the process of the
simplified ZG protocol, the FAIRM is satisfied if

〈ε, SY SZG
f 〉 |= ¬check z ←↩ evidB({A, x, y}−k[B], {A,B, x, z}−k[S])

7.3 Parametrization and Refinement

After extending the concrete model, we also similarly find a corresponding parametric
model. It has the same representative ability as the extended concrete model. However,
when refining the parametric trace a parametric model generate, not only messages in
each input action, but also messages in each output action need to be considered.

7.3.1 Parametric Trace and Operational Semantics

The parametric model has the exactly same definition of parametric traces and con-
figurations defined in Chapter 4. (see Definition 4.1).

Definition 7.3 (Parametric trace and configuration). A parametric trace ŝ is a string of
actions. A parametric configuration is a pair 〈ŝ, P 〉, in which ŝ is a parametric trace and
P is a process.

The transition relation is given by the rules in Figure 7.3.

(PINPUT) 〈ŝ, a(x).P 〉 −→e
p 〈ŝ.a(x), P 〉

(POUTPUT) 〈ŝ, aM.P 〉 −→e
p 〈ŝ.aM, P 〉

(PDEC) 〈ŝ, case {M}L of {x}L′ in P 〉 −→e
p 〈ŝθ, Pθ〉

θ = Mgu({M}L, {x}Opp(L′))
(PPAIR) 〈ŝ, let (x, y) = M in P 〉 −→e

p 〈ŝθ, Pθ〉 θ = Mgu((x, y),M)
(PNEW) 〈ŝ, (new x)P 〉 −→e

p 〈ŝ, P{y/x}〉 y /∈ fv(P) ∪ bv(P)
(PRESTRICTION) 〈ŝ, (νn)P 〉 −→e

p 〈ŝ, P{m/n}〉 m = freshN(V)
(PMATCH) 〈ŝ, [M = M ′]P 〉 −→e

p 〈ŝθ, Pθ〉 θ = Mgu(M,M ′)

(PLCOM)
〈ŝ, P 〉 −→e

p 〈ŝ′, P ′〉
〈ŝ, P‖Q〉 −→e

p 〈ŝ′, P ′‖Q′〉 Q′ = Qθ if ŝ′ = ŝθ else Q′ = Q

(PRCOM)
〈ŝ, P 〉 −→e

p 〈ŝ′, Q′〉
〈ŝ, P‖Q〉 −→e

p 〈ŝ′, P ′‖Q′〉 P ′ = Pθ if ŝ′ = ŝθ else P ′ = P

(PLSUM) 〈ŝ, P + Q〉 −→e
p 〈ŝ, P 〉

(PRSUM) 〈ŝ, P + Q〉 −→e
p 〈ŝ, Q〉

(PSTR)

P ≡ P ′ 〈s, P ′〉 −→e
p 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→e
p 〈s′, Q〉

Figure 7.3: Parametric Transition Rules for the Extended Model

We still have the similar soundness and completeness theorem between extended con-
crete model and its corresponding parametric model. In the proof, we only list the proof
for NEW and PNEW transitions rules, since SUM and PSUM cases are obvious and

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 70

other rules are as same as those in the proof of Theorem 4.1. A detailed proof can be
found in the extended version of [80].

Theorem 7.1 (Soundness and completeness). Let 〈ε, P 〉 be an initial configuration, and
s be a concrete trace. 〈ε, P 〉−→e∗〈s, P ′〉 for some P ′ if and only if there exists ŝ, such
that 〈ε, P 〉−→e

p
∗〈ŝ, P ′′〉 for some P ′′, and s is a concretization of ŝ.

Proof. “⇒”: By an induction on the number of transitions −→e and −→e
p, the proof is

trivial in the zero-step. We assume in the n-th step the property holds. That is, for each
trace s gained in the n-th −→e step, there exists an ŝ obtained by the n-th −→e

p step,
and ŝϑ = s holds for some substitution ϑ from parametric variables to ground messages.
Now, we perform a case analysis on the n + 1 step:

• Case 〈s, (new x)P 〉: Then we have 〈s, (new x)P 〉 −→e 〈s, P{M/x}〉 and s `P M .
Its counterpart configuration is 〈ŝ, (new x)P ′〉 and s = ŝ(ϑ ∪ {M/x}).

“⇐”: By an induction on the number of transitions −→e
p and −→e, the proof is

trivial in the zero-step. We assume in the n-th step the property holds, that is, for each
parametric trace ŝ gained by the n-th −→e

p step, if there exists a substitution ϑ from
variables to ground messages, and a trace s that satisfies s = ŝϑ, then s can be obtained
by the n-th step of −→e. Now, we perform a case analysis on the n + 1-th step:

• Case 〈ŝ, (new x)P 〉: If there exists a step in which 〈ŝ, (new x)P 〉 −→e
p 〈ŝ, P 〉, and

a ground substitution ϑ where ŝϑ is a concrete trace, then xϑ is a ground message
which can be P -deduced by sϑ. So 〈s, (new x)P 〉 −→e 〈s, P{ϑ(x)/x}〉, where P ′ =
Pϑ.

7.3.2 Refinement Step

From Subsection 4.2, we know that a parametric trace with a rigid message needs
to be substituted by unifying a rigid message to the messages in output actions of its
prefix parametric traces. In the previous parametric model, the only occasion that a rigid
message may occur is in an input action, while in the extended model, such a unification
may lead a new inconsistency in the system.

Example 7.1. Consider a naive protocol:

A −→ B : NA

B −→ A : {NB}−KB

Suppose that A may send any possible message to B, which is represented by (newx) a1 x.
a1 x.a2 {y}−k[B] is a parametric trace. In a2, a rigid message {y}−k[B] is a requirement
of A. After applying unification, the parametric trace deduces to a1{y}−k[B].a2{y}−k[B].
But as a principal A, it cannot generate any messages that satisfy the patten {y}−k[B].
Thus such kind of parametric messages is also a rigid message, which should be further
substituted by applying the similar unification.

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 71

Thus, a rigid message in the extended parametric model has the following definition
(comparing to Definition 4.3).

Definition 7.4 (Rigid message). Given a parametric trace ŝ, {N}L in M is a rigid
message if

• M is in an input action such that ŝ = ŝ′.a(M).ŝ′′, and

– if L is a shared key or a private key, then ŝ′ 6` L and ŝ′ 6` {N}L;

– if L is a public key, then there exists some rigid message, or at least one name
or binder in N cannot be deduced by the ŝ′, and ŝ′ 6` {N}L.

• M is in an output action such that ŝ = ŝ′.aM.ŝ′′, and

– {N}L satisfies the above three conditions, and

– L is not known by the principal that contains the label a.

With the extension of rigid messages, the deductive relation defined in Definition 4.5
also needs to be extended. However, we have the similar results to those in Subsection
4.2. We will prove them to guarantee the correctness.

Definition 7.5 (Deductive relation). Let ŝ be a parametric trace such that ŝ = ŝ1.l(M).ŝ2,
in which l is an input or an output label. If there exists a rigid message N in M such
that N 6∈ el(ŝ1), and N is ρ̂-unifiable in ŝ1, then ŝ Ãe ŝρ̂.

For two parametric traces ŝ and ŝ′, if ŝÃe∗ŝ′ and there is no ŝ′′ that satisfies ŝ′ Ãe ŝ′′,
we name ŝ′ the normal form of ŝ. The set of normal forms of ŝ is denoted by nfÃe(ŝ).

Fact 7.1. Given a parametric trace ŝ, nfÃe(ŝ) is finite.

A concretization of a parametric trace ŝ is still the concretization of ŝ′ if ŝ Ãe ŝ′.
Thus whether a parametric trace has concretizations is equivalent to whether there exist
parametric traces in its nfÃe(ŝ) that have concretizations.

Lemma 7.2. If ŝ is a parametric trace, and s is a concretization satisfying s = ŝϑ where
ϑ is a concretized substitution, then ŝ is either a normal form, or there exists ŝ′ such that
ŝ Ãe ŝ′ with ŝϑ = ŝ′ϑ.

Proof. If ŝ is not a normal form, there exists some rigid message that is not contained in
the elementary message set of its prefix. We perform case analysis on the kind of rigid
messages {N}L.

• If {N}L is an input rigid message in M , where ŝ = ŝ′.a(M).ŝ′′, then {N}L 6∈ el(ŝ′).
Since s = ŝϑ and s is a trace, ŝ′ϑ ` Mϑ. Thus {N}Lϑ ∈ el(ŝ′ϑ). By the definition of
a rigid message, L 6∈ el(ŝ′), and thus Lϑ 6∈ el(ŝ′)ϑ. Since {N}Lϑ ∈ el(ŝ′ϑ) = el(ŝ′)ϑ,
there exists {N ′}L ∈ el(ŝ′) such that {N}Lϑ = {N ′}Lϑ. Thus {N}L and {N ′}L

are unifiable. Let ρ̂ = Mgu({N}L, {N ′}L), then ŝ Ãe ŝρ̂. Since {N}Lϑ = {N ′}Lϑ,
each corresponding parametric variable in two messages will be assigned to the same
ground message. Thus, ŝϑ = ŝρ̂ϑ.

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 72

• If {N}L is an output rigid message in M , where ŝ = ŝ′.aM.ŝ′′. Thus L is not known
by the principal P that contains the label a. Since s = ŝϑ and s is a trace, and thus
ŝ′ϑ `P Mϑ. L is not known by P , so ŝ′ϑ ` Mϑ. Then following the similar proof
for the input rigid message case, we can have ŝϑ = ŝρ̂ϑ.

Lemma 7.3. Let ŝ be a parametric trace, and let ŝ′ be a normal form in nfÃe(ŝ). ŝ′ has
a concretization, if and only if, for each decomposition ŝ′ = ŝ′1.l(M).ŝ′2 in which l is either
an input label or an output label, each rigid message N in M satisfies N ∈ el(ŝ′1).

Proof. “⇒”: Prove by contradiction. Assume a normal form ŝ′ has concretizations s such
that s = ŝ′ϑ. If ŝ′ does not satisfy the first requirement, there exists at least one rigid
message {N}L in ŝ′ that is not ρ̂-unifiable in its prefix ŝ′1. Thus {N}Lϑ 6∈ el(ŝ′1)ϑ. If it
is an input rigid message, ŝ′1ϑ 6` L, then ŝ′1ϑ 6` {N}Lϑ. If it is an output rigid message,
ŝ′1ϑ 6`P {N}Lϑ, where P is the process containing label a. This contradicts the definition
of a trace.

“⇐”: Let ϑ be an arbitrary concretized substitution that assigns each parametric
variable in ŝ′ to a name in E , then for each decomposition ŝ′ϑ = ŝ′1ϑ.a(Mϑ).ŝ′2ϑ, ŝ′1ϑ ` Mϑ
is satisfiable. Thus ŝ′ϑ is a trace, and also a concretization of ŝ′.

A satisfiable normal form is a normal form of ŝ that satisfies the requirements in
Lemma 7.3. Note that it is different from the definition in Subsection 4.2.

snfÃe(ŝ) denotes the set of satisfiable normal forms of ŝ. Since snfÃe(ŝ) ⊆ nfÃe(ŝ),
snfÃe(ŝ) is finite.

Fact 7.2. Given a parametric trace ŝ, snfÃe(ŝ) is finite.

Thus, a parametric trace has a concretization if and only if snfÃe(ŝ) 6= ∅.
Lemma 7.4. Let ŝ be a parametric trace, and let s be a trace. s is a concretization of ŝ
if and only if s is a concretization of some ŝ′ with ŝ′ ∈ snfÃe(ŝ).

Proof. “⇒” If s is a concretization of ŝ, then there exists a concretized substitution ϑ
with s = ŝϑ. By Lemma 7.2 we can get either ŝ is a normal form, or ŝ can be deduce
to a parametric trace ŝ′ by Ãe such that s = ŝ′ϑ. If ŝ is a normal form and it has a
concretization s, so ŝ is also a satisfiable normal form according to Lemma 7.3 . If ŝ is
not a normal form, the number of rigid messages in ŝ is finite, so there exists a normal
form ŝ′′ of ŝ that satisfies ŝϑ = ŝ′′ϑ by repeatedly applying lemma 7.2. Since ŝ′ has the
concretization s, ŝ′ ∈ snfÃe(ŝ).

“⇐” If s is a concretization of the satisfiable normal form ŝ′ such that ŝ′ ∈ snfÃe(ŝ),
we have s = ŝ′ϑ for some concretized substitution ϑ. ŝ′ is a normal form of ŝ, so ŝ′ = ŝρ̂
for some ρ̂, in which s = ŝ′ϑ = ŝρ̂ϑ. Thus s is a concretization of ŝ.

Theorem 7.5. A parametric trace ŝ has a concretization if and only if snfÃe(ŝ) 6= ∅.
The theorem is a corollary of Lemma 7.4.
Although the definitions and theorems above have some differences in detail from

definitions and theorems in Subsection 4.2, it is still decidable to check which parametric
trace has its corresponding concretizations in the extended parametric model. Thus an
action term can be checked in this parametric model, by the similar way in Subsection
5.2.

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 73

7.4 Attacks of the Simplified ZG Protocol and Its

Modification

For the simplified Zhou-Gollmann fair non-repudiation protocol, counterexamples that
violate NRO, FAIRO and FAIRM are found in parametric traces. One for NRO is shown
as follows:

a1 {B, NA, x2}−k[A].b1({B, NA, x2}−k[A]).b2 {A, y5}−k[B].s1({B, NA, x2}−k[A]).
s2 {A,B,NA, x2}−k[A].s3{A,B,NA, x2}−k[A].b3({A,B,NA, x2}−k[A]).

evidA ({B, NA, x2}−k[A], {A,B,NA, x2}−k[A])

It actually represents the following replay attack, A sent a message in the flow, then
aborted the protocol. After that, an intruder (or B) pretended A to continue the protocol,
sending the used message to S.

A −→ B : {B, NA, x}−KA

B −→ A : {A,NA, x}−KB

I(A) −→ S : {B, NA, x}−KA

S −→ I(A) : {A,B,NA, x}−KS

S −→ B : {A,B,NA, x}−KS

For FAIRO, the same counterexample is also detected.
A comparison is the full ZG protocol, which guarantees all five properties. The full

ZG protocol is described in [121]. It introduces a set of public names, named flags to
identify the steps of the protocol. They can prevent replay attacks for the simplified ZG
protocol. For formal definitions of the properties of full ZG protocol, refer to [107].

The full ZG protocol is given informally as follows.

A −→ B : {FNRO, B,NA, {M}K}−KA

B −→ A : {FNRR, A, NA, {M}K}−KB

A −→ S : {FSUB, B,NA, K}−KA

S −→ A : {FCON , A, B, NA, K}−KS

S −→ B : {FCON , A, B, NA, K}−KS

CHAPTER 7. NON-REPUDIATION AND FAIRNESS IN BOUNDED SESSIONS 74

Chapter 8

Protocol-Independent Security
Specifications

Most formal methods for security protocols, especially process calculi based approaches,
mixed the description of a security protocol with the specification for a given security
property. They gave a specification for a security property by inserting some facilities to
define the property manually [83, 29, 106, 104]. This chapter shows how to construct the
specification for a specific security property from the description of a security protocol
automatically.

As we know, it is not sufficient for defining security properties on the description of a
security protocol. Processes that describe behaviors for representations of a given security
property need to be inserted in the description of a security protocol, in order to define
this security property. These behaviors do not belong to the prescription of a protocol.
For instance, to represent the secrecy property, a behavior that “someone can obtain the
message from the network” is needed; to represent the authentication property, a behavior
that “A principal claims the message comes from the other principal” is needed, etc.

A probing process is a process transformed from a formal description of a security
protocol, with the aim of representing security properties. Basically, there are two kinds of
transformations to a probing process, declaration process insertions and guardian process
compositions.

A declaration process insertion replaces some occurrences of 0 to a process with only
an output action, cM.0, named a declaration process. For instance,

a(x).[x = b]0 =⇒ a(x).[x = b] c x.0

Variables in the message M of the action cM are free, while a probing process is closed.
Thus all free variables in M should be bound by some binding operators (like a(x) in the
example). Intuitively, a declaration process describes that a principal provides a message
it received, after it validates the message. In the above example, a principal received a
message trough x, and checked whether it is equal to b. If so, it provides the validated
message by the output action c x.

A guardian process composition composes a formal description of a protocol to a
process with only an input action, c(x).0, named a guardian process. For instance,

P =⇒ P‖c(x).0

75

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 76

The variable x is bound in the input action c(x). Intuitively, a guardian process is similar
to a fresh principal inserted in the network, listening all messages leaked in the network,
and trying to find out whether confidential messages are leaked.

By these two transformations, most of security properties can be defined by action
terms introduced in Chapter 5. A syntax scanners are needed for a given security property
when a transformation is preformed. For instance, to find out which occurrences of 0 will
be substituted by a declaration process in a declaration process insertion. This chapter
shows how to automatically define the secrecy and authentication properties when a
protocol description is given.

8.1 Security Specification Transformations

Given a process P , the context P [.] is obtained when all occurrences of 0 in P are
replaced by holes, [.]. Let φ(P) be the set of holes in P [.].

Definition 8.1 (Declaration process insertion). Let P [.] be the context of P . Given a set
ψ ⊆ φ(P), and a message M , Pψ,M is a probing process generated from P , such that holes
in ψ are inserted by the same process cM.0 with a fresh label c (named a declaration
process), and holes in φ(P)− ψ are inserted by 0 in P [.].

For a given security property, the choice of ψ and M in a declaration process insertion
are not independent to the protocol description. A syntax scanner is performed to decide
ψ when performing a declaration process insertion. We will illustrate it when defining the
authentication property.

Definition 8.2 (Guardian process composition). A probing process Pg is P composed
with a process c(x).0 with a fresh label c (named a guardian process), that is, Pg ,
P‖c(x).0.

Definition 8.3 (Probing transformations). Given a process P that describes a protocol,
a probing transformation is generated from P , by applying the two transformations above
finitely many times, and returns a process (named a probing process).

Remark 8.1. Intuitively, a probing process transformed from a protocol description is
used to represent security properties. Declaration process insertion is used to show that
a principal can provide some message M after validating it, used for authentication,
non-repudiation, and fairness. Guardian process composition is used to check whether a
message is observable in the environment, for secrecy and fairness.

8.2 Syntax Tree of a Process

For a given process, a syntax (binary) tree is a finite, labeled, directed (binary) tree,
where the internal nodes are labeled by operators, and the leaf nodes are 0 and identifiers
that occurs the second time in the tree. In the latter case, the process can also be
represented as a graph. We just omit its back edges here. Let’s take several examples.

Example 8.1. The syntax tree of the process

a1(x).a2 M.0

is represented as (a) in Figure 10.2.

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 77

Example 8.2. The syntax tree of the process

a1(x).a2 M.0‖b1(x). let (y, z) = x in 0

is represented as (b) in Figure 10.2.

Example 8.3. The syntax tree of the process

A , a1 M.0 + (new z : I)a2(x). case x of {y}k[A,z] in 0

is represented as (c) in Figure 10.2.

Example 8.4. The syntax tree of the process

A , a1 M.0 + a2(x).A

is represented as (d) in Figure 10.2.

a1(x).

a2 M.

0

(a) Example 7.1

‖

a1(x).

a2 M.

0

b1(x).

let (y, z) = x in

0

(b) Example 7.2

A �

+

a1 M.

0

(new z : I)

a2(x).

case x of {y}k[A,z] in

0

(c) Example 7.3

A �

+

a1 M.

0

a2(x).

A

(d) Example 7.4

Figure 8.1: Example Figures for Syntax Trees of Processes

Representing a process by a syntax binary tree provides facilities for performing syntax
scanning. In the latter subsections of this chapter, we assume all processes are represented
by syntax binary trees.

8.3 Secrecy

8.3.1 General Secrecy Definition

Intuitively, the secrecy property means that the environment should never learn a
confidential datum two principals shared. Thus, to define the secrecy property needs four
parameters, the protocol description (denoted by xp), the confidential message (denoted
by xm), two principals who share the message (denoted by xs for its sender, and xr for
its receiver, respectively). We have the following definition,

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 78

Definition 8.4 (Secrecy property). Given a protocol description xp, a confidential mes-
sage xm, two principals who share the xm, xs and xr, the secrecy property of the protocol
is defined as follows,

Secrecy(xp, xm, xs, xr) = 〈ε, Probing s(xp, xm, xs, xr)〉 |= ¬check(BN(xm)[xs, xr])

where Probing s returns its corresponding probing process for the secrecy property. BN :
N → B maps a name to a binder name that does not occur in xp.

8.3.2 Generating the Secrecy Specification

In the Probing s, the first and main task is to replace the confidential message xm in
xp to a binder. This task is performed by a syntax scanner

Scanner s(xp, xm, xs, xr)

The second task is to perform a guardian process insertion, composing a new process
check(x).0 to the process xp.

In essence, Scanner s(xp, xm, xs, xr) is a pre-order, depth-first search on the syntax
binary tree of xp. It gathers parameters’ information of the binder that replaces xm, as
follows:

• The A in the nearest ancestor that contains A , of the node containing xm is the
first parameter of the binder that replaces xm (denotes its sender). It should be
equal to xs; Otherwise the description xp has mistakes.

• The x in the nearest ancestor that contains (newx : I) of the node containing xm

is the second parameter of the binder that replaces xm (denotes its receiver).

• If no ancestors of the node containing xm contains (newx : I), the second parameter
of the binder is xr.

The algorithms of Probing s and Scanner s are defined in Algorithm 1.

8.3.3 Examples for Generating Secrecy Specifications

The AG Protocol

The description of the AG protocol (see Subsection 3.3.1) is as follows,

A ,(new x : I)(ν M)a1(A, {x, k[A, x]}k[A,S]).a2(A, {A,M}k[A,x]).0

B ,b1(x).case x of {x′}k[B,S] in let (y, z) = x′ in [y = A] b2(w). let (w′, w′′) = w

in [w′ = A] case w′′ of {u}z in let (u′, u′′) = u in [u′ = A]0

S ,s1(x).let (y, z) = x in case z of {u}k[y,S] in let (u′, u′′) = u in s2{y, u′′}k[u′,S].0

SY SAG ,A‖S‖B

When performing Scanner s(SY SAG,M, A, B), since A , is the nearest ancestor
containing the operator ,, and thus the first parameter of the binder is A; (new x : I) is

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 79

Algorithm 1 Syntax Scanner and Probing Procedure for Secrecy Property

function Probing s(xp, xm, xs, xr)
return Scanner s(xp, xm, xs, xr)‖check(x).0

end function

function Scanner s(xp, xm, xs, xr)
s ← nil . records the sender of xm

r ← nil . records the expected receiver of xm

return Scanning s (xp, xm, s, r, xs, xr)
end function

function Scanning s(xp, xm, s, r, xs, xr)
if xp = (A ,) then

s ← A
end if
if xp = (newx : I) then

r ← x
end if
if xm in xp then

Substituting xm in xp to BinderGen(xm, s, r, xs, xr)
end if
Scanning s (xp.lchild, xm, s, r, xs, xr)
Scanning s (xp.rchild, xm, s, r, xs, xr)
return xp

end function

function BinderGen(xm, s, r, xs, xr)
if s! = xs then . if the sender is not the same as declared

Raise Error
else

if r = nil then . if no expected receiver, it will be the declared one
return BN(xm)[s, xr]

else
return BN(xm)[s, r]

end if
end if

end function

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 80

also the nearest ancestor containing the primitive new, and thus the second parameter of
the binder is x. So after performing the algorithm, process A in SY SAG will be replaced
to

A ,(new x : I)(ν m[A, x])a1(A, {x, k[A, x]}k[A,S]).a2(A, {A, m[A, x]}k[A,x]).0

This is the exact SY SAG′ defined in Subsection 5.3.1.
Since the result of Probing s(SY SAG,M, A, B) is the SY SAG

s defined in Subsection
5.3.1, the secrecy for the AG protocol

Secrecy(SY SAG,M, A, B) = 〈ε, SY SAG
s 〉 |= ¬check(m[A,B])

is same as the Characterization 5.1.

The NSPK Protocol

The description of the NSPK protocol (see Subsection 3.3.2) is as follows,

A ,(new xa : I)(ν NA)a1{A,NA}+k[xa].a2(ya). case ya of {y′a}−k[A] in

let (za, z
′
a) = y′a in [za = NA] a3{z′a}+k[xa].0

B ,(ν NB) b1(xb).case xb of{x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB}+k[A].b3(zb). case zb of {ub}−k[B] in

[ub = NB]0

SY SNSPK ,A‖B

When performing Scanner s(SY SAG, NB, B,A), since B , is the nearest ancestor
containing ,, and thus the first parameter of the binder is B; there are no ancestors of
the node with NB that contain new, and thus the second parameter of the binder is equal
to A. So after performing the algorithm, B in SY SNSPK will be replaced to

Bs ,(ν NB[B, A])b1(xb).case xb of{x′b}−k[B] in let (yb, y
′
b) = x′b in [yb = A]

b2{y′b, NB[B, A]}+k[A].b3(zb). case zb of {ub}−k[B] in

[ub = NB[B, A]]0

Since the result of Probing s(SY SNSPK , NB, B,A) is exact the SY SNSPK
s defined in

Subsection 5.3.2, the secrecy for the NSPK protocol

Secrecy(SY SNSPK , NB, B,A) = 〈ε, SY SNSPK
s 〉 |= ¬check(NB[B, A])

is the same as the Characterization 5.3.

8.4 Authentication

8.4.1 General Authentication Definition

Intuitively, the authentication property means that a message that purports to be
sent from a certain principal was indeed originated by that principal. Usually, we concern

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 81

whether a flow is satisfied authentication in a given security protocol. For instance, the
third flow of the AG protocol (see Subsection 3.3.1) is checked whether satisfies authen-
tication. In the NSPK protocol (see Subsection 3.3.2), it is the third flow that analyzed.
In the multiple WL protocol (see Subsection 3.3.3), it is also the third flow that analyzed.

When we focus the formal protocol description in one session, a flow is regarded as
a pair of labels. For instance, the third flow in the AG protocol is represented as a pair
of labels (a2, b2), meaning that the flow is sent by A in the action labeled by a2, and
received by B in the action labeled by b2. Similarly, the third flow in the NSPK protocol
is represented as (a3, b3). Sometimes in multiple sessions, the sending label of a concerned
flow is nondeterministic, which is represented as a disjunction of finite labels. For instance,
in the multiple WL protocol the concerned flow can be represented as (a3 ∨ a′2, b3).

Therefore, to define the authentication property, three parameters are needed: the
protocol description (denoted by xp), a disjunction of labels for sending actions (denoted
by

∨
i∈n lsi), and a label lr for the receiving action. We have the following definition,

Definition 8.5 (Authentication property). Given a protocol description xp, a disjunc-
tion of labels for sending actions

∨
i∈n lsi, and a label lr for the receiving action, the

authentication property for the protocol is defined as follows,

Authentication(xp,
∨

i∈n lsi, lr) = 〈ε, Probing a(xp, lr)〉 |=
∨

i∈n(lsi x) ←↩ acc x

where Probing a returns its corresponding probing process for authentication.

8.4.2 Generating the Authentication Specifications

In the Probing a(xp, lr), acc is the generated label when the declaration process
insertion is performed. During the declaration process insertion, the message attached by
acc is the same message attached by lr (this message is a bound variable). The process
accM.0 will replace all occurrences of 0 in the syntax sub-tree with “lr(M).” as its root.

A syntax scanner, Scanner a(xp, lr) is performed to returns the node that contains
label lr in xp, and to return the message mr attached by lr. Then by an algorithm
Insert Acc(xp,mr), all occurrences of 0 in the sub-tree whose root containing lr are
replaced by the process accmr.0.

The algorithms are defined in Algorithm 2.

8.4.3 Examples for Generating Authentication Specifications

The NSPK Protocol

The authentication of the NSPK protocol is defined as follows,

Authentication(SY SNSPK , a3, b3) = 〈ε, Probing a(SY SNSPK , b3)〉 |= a3 x ←↩ acc x

In Probing a(SY SNSPK , b3), when Scanner a(SY SNSPK , b3) is applied, it returns
a sub-tree with b3(zb) as its root, and zb. Then by Insert Acc(b3(zb), zb), all 0 in the
sub-tree is replaced by acc zb (It is the same specification defined in Subsection 5.3.2).

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 82

Algorithm 2 Syntax Scanner and Probing Procedure for Authentication Property

function Probing a(xp, lr)
Insert Acc(Scanner a(xp, lr))
return xp

end function

function Scanner a(xp, lr)
if xp = lr M then
return (xp, M)

else
Scanner a (xt.lchild, lr)
Scanner a (xt.rchild, lr)

end if
end function

function Insert Acc(xp, mr)
if xp = 0 then

xp ← accmr.0
else

Insert Acc (xt.lchild, mr)
Insert Acc (xt.rchild, mr)

return xp

end if
end function

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 83

The Multiple WL Protocol

The description of the WL protocol in multiple sessions (see Subsection 3.3.3) is as
follows,

A(2) ,a1 A.a2(xa).a3 {xa}k[A,S].0‖a′1 A.a′2(x′a).a′3 {x′a}k[A,S].0

B(2) ,(ν NB) b1(xb).[xb = A] b2 NB.b3(yb).b4 (B, {xb, yb}k[B,S]).b5(zb).case zb

of {ub}k[B,S] in [ub = NB]0‖(ν N ′
B)b′1(x′b).b′2 N ′

B.b3(y′b).

b4 (B, {x′b, y′b}k[B,S]).b5(z′b). case z′b of {u′b}k[B,S] in [u′b = N ′
B]0

S ,s1(xs).let (x′s, x
′′
s) = xs in case x′′s of {ys}k[x′s,S] in let (zs, ws) = ys in

case ws of {us}k[zs,S] in s2 {us}k[x′s,S].0

S(2) ,S‖S
SY S(2) ,A(2)‖S(2)‖B(2)

The authentication of the multiple WL protocol is defined as follows,

Authentication(SY S(2), a2∨a′2, b3) = 〈ε, Probing a(SY S(2), b3)〉 |= a2 x∨a′2 x ←↩ acc x

In Probing a(SY S(2), b3), when Scanner a(SY S(2), b3) is applied, it will return a
sub-tree with b3(yb) as its root, and yb. Then by Insert Acc(b3(yb), yb), all 0 in the
sub-tree is replaced by acc yb (It is the same specification defined in Subsection 5.3.3).

8.5 Other Properties

Other properties, such as non-repudiation and fairness, are relied heavily on human
guidance for their formal definitions. The objectives of these properties are relationships
of messages in evidences each principal accepts, and these evidences vary from different
protocols. Although probing processes for these properties can be obtained by the similar
automatic way for the authentication property, yet we cannot define the properties by
just performing syntax analysis on processes.

CHAPTER 8. PROTOCOL-INDEPENDENT SECURITY SPECIFICATIONS 84

Chapter 9

Implementation Issues and
Experimental Results

We implement the model checking method on the three parametric models introduced
in Chapter 5, 6, and 7 by Maude [42], a language and system supporting both equational
and rewriting logic computation for a wide range of applications. Maude describes model
generation rules by rewriting, instead of describing a model directly, such that each prop-
erty can be checked at the same time while a model is being generated. It is therefore
named an on-the-fly model checking method.

The basic units of Maude specifications are modules. In Core Maude, there are two
kinds of modules: functional modules and system modules. Functional modules define
data types and operations on them by means of equational theories, whose equations are
assumed to be confluent and terminating. System modules specify a model by a rewrite
theory, and the model is a transition system with an initial term. For a finite system,
Maude search command explores all possible execution paths from the initial term for
reachable states satisfying some property.

A basic functional module mainly has four parts: sorts, operations, variables and
equations. Maude can define a sort or several sorts each time, with the key words sort

and sorts respectively. Variables are declared with the key words var or vars. The key
word of operation is op. There are two uses of operations: as a constructor of a sort, and
as a declaration of a function. [ctor] is a key attribute of a constructor. A function
can be implemented by a set of equations, with the key words eq and ceq (conditional
equation). The use of variables in equations does not carry actual values. Rather, they
stand for any instance of a certain sort.

Anything defined in a function module can be defined in a system module in the same
way. Also, a system module can define a transition system by a set of rewrite laws, whose
key words are rl and crl (conditional rewrite law).

We implement each basic definition and function of the three parametric models by
functional modules, and implement a trace generating system (for the parametric model in
Chapter 6, the trace generating system is actually the pushdown system) using a system
module. Then we use search command to find whether the negations of the specifications
are reachable.

85

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 86

9.1 The Construction of Implementations

9.1.1 Parametric Processes

For efficiency, we adopt parametric processes, instead of original processes. A para-
metric process is generated from an original process by applying a type inference to the
original process. The type system infers information of each bound variable in a process
by a statical scanning on the process. We mark each sub-expression whose type is a type
variable with a fresh variable. Thus a process can be translated into a parametric process
(for the details of the type system and the translation algorithm, see Appendix C).

The set of parametric traces generated by a parametric process is a proper subset of
that generated by its original process. Such a compaction actually does not affect the
result of checking a given security property (for the detailed discussions, please refer to
Subsection 5.6 and Appendix C).

A general parametric process definition is as follows.

Definition 9.1 (Parametric Processes). Let P̂ be a countable set of parametric processes,
which is indicated by P̂ , Q̂, R̂, The syntax of processes is defined as follows,

P̂ ::= 0 | aM.P̂ | a(M).P̂ | [M = N] P̂ | (new x : A)P̂ | (ν n)P̂

| let (M,N) = L in P̂ | case M of {N}L in P̂

| P̂ + Q̂ | P̂‖Q̂ | P̂ ; Q̂ | Â(p̃r)

where M,N, L are messages defined in Definition 2.1.

Example 9.1. The process of the Abadi-Gordon protocol for authentication, SY SAG
a

(described in Subsection 5.3.1), will be translated into the following parametric processes.

Âp ,(new x1 : I)(ν M)a1(A, {x1, k[A, x1]}k[A,S]).a2(A, {A,M}k[A,x1]).0

B̂p ,b1({A, z1}k[B,S]). case {A, z1}k[B,S] of {A, z1}k[B,S] in let (A, z1) =

(A, z1) in [A = A] b2(A, {A,w′′
1}t1). let (A, (A, {A,w′′

1}t1)) =

(A, (A, {A,w′′
1}t1)) in [A = A] case {A,w′′

1}t1 of {A,w′′
1}z1

in let (A,w′′
1) = (A,w′′

1) in [A = A] acc (A, {A,w′′
1}t1).0

Ŝp ,s1(x, {y, z}k[xk,S]).let (x, {y, z}k[xk,S]) = (x, {y, z}k[xk,S]) in case {y, z}k[xk,S]

of {y, z}k[x,S] in let (y, z) = (y, z) in s2{x, z}k[y,S].0

ˆSY S
AG

p ,Ap‖Sp‖Bp

From the example introduced above, we can see that except input and output actions,
other actions, such as pair splitting, decrypting, and match, are all redundant action
essentially. So B̂p can be simplified as

B̂p ,b1({A, z1}k[B,S]).b2(A, {A,w′′
1}t1).acc (A, {A,w′′

1}t1).0

Thus parametric traces generated by ˆSY S
AG

p is rather smaller than the original one.

Remark 9.1. Furthermore, each bounded variable and name is explicitly presupposed to
be distinguished from each other by α-conversions [105]. Thus binding operations such
as ν (for names) and new (for variables) are also avoided in the implementation.

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 87

9.1.2 Sorts in Implementations

For the parametric systems, there are slight differences between implementing a sym-
metric key protocol system and an asymmetric key protocol system, according to Defini-
tions 4.3 and 7.4, a symmetric key rigid message is “context-free”, while an asymmetric
key one, which is decided in a context of parametric messages, is “context-sensitive”. In
Maude, the functions that judge whether a message is a rigid message are declared as
follows:

op isSharedRigid : Message -> Bool .

op isPublicRigid : Message Messagelist -> Bool .

This subsection introduces sorts of structures and main functions in implementations
based mainly on a symmetric-key protocol system. The implementation can be naturally
encoded in a asymmetric-key system, which has also been implemented.

In parametric models, types and constructors of the parametric message, the para-
metric action (which is a 3-tuple consisting of a label, an input/output signal, and a
parametric message) and the parametric trace (which is a list of actions) are defined in
their function modules, named MESSAGE, ACTION, and TRACE respectively, as follows.

sort Message .

op name : Nat -> Message [ctor] .

op px : Nat -> Message [ctor] .

op k[_,_] : Message Message -> Message [ctor prec 15] .

op (_,_) : Message Message -> Message [ctor] .

op {_}_ : Message Message -> Message [ctor prec 20] .

op Hash() : Message -> Message [Prec 20] .

sort Action .

op <_,_,_> : Label IO Message -> Action [ctor prec 23] .

sort Trace .

subsort Action < Trace .

op Nil : -> Trace [ctor] .

op _._ : Trace Trace -> Trace [ctor assoc id: Nil prec 25] .

The main function of implementations is the refine step, the trace deductive relation,
Ã defined in Definition 4.5 (resp. Ãe, defined in Definition 7.5 for non-repudiation and
fairness). It accepts a parametric trace, and returns a new generated parametric trace.
Thus its sorts is defined as follows,

op RefinementStep : Trace -> Trace .

In the refinement step, there are three main functions.

• Firstly, search the given parametric trace, finding its first rigid message, and re-
turning the rigid message and a message set of messages in its prefix parametric
trace.

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 88

• Secondly, decompose each message in the message set to its atomic messages (see
Definition 4.4).

• Lastly, try to unify the rigid message with each message in the atomic message set.
returns all possible substitution results.

The first function accepts a parametric trace and a rigid message list, as an environ-
ment of the parametric trace, and returns the trace’s first rigid message, a boolean (true
if there exists some rigid message in the trace), and a message list (as an elementary
message list ready for unifying the rigid message). The basic strategy is, the function
will return the first rigid message and its elementary message list. Maude does not allow
the definition of product sort, so we need to define a Anares sort, which is a 3-tuple of
Message, Bool and Messagelist. The Sort of the function, named AnalyzingTrace, is
defined as follows.

sort Anares .

op [_,_,_] : Message Bool Messagelist -> Anares .

op getMessage : Anares -> Message .

op getBool : Anares -> Bool .

op getMessagelist : Anares -> Messagelist .

op AnalyzingTrace : Trace Messagelist -> Anares .

Remark 9.2. Due to the differences of rigid message definitions (in Definition 4.3 and
Definition 7.4, respectively) and satisfied normal forms in the model for the analysis of
authentication and security properties, and for the analysis of non-repudiation and fairness
properties, the implementations of this function in two parametric systems are different.

The second function is simple, it accepts a message list and returns a generated message
list.

op elementary : Messagelist -> Messagelist .

For the unification function, we adopt the simplest implementation, including an oc-
currence check.

sort Result .

op (_,_) : Substitutions Bool -> Result [ctor] .

op getSubstitution : Result -> Substitutions .

op getBool : Result -> Bool .

op oCheck : Message Message -> Bool .

op unifying : Message Message -> Result [comm] .

For the details of these functions, see Subsection ?? in Appendix D.

9.1.3 Trace Generating System

A trace generating system is embedded in a system module. In the trace generating
system, there are two kinds of trace generating rules. The first kind of rules comes from

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 89

the parametric transition relations. These rules are protocol specific rules for a given
protocol. We name a parametric trace generated by these rules an original trace. We will
illustrate these rules by examples, as one fragment of the protocol description for three
models in the Subsection 8.2, 8.3, and 8.4 respectively.

The second kind of rules is a common part of each protocol in bounded sessions, which
generates new parametric trace by the refinement step, These rules deduce a parametric
trace to a new one by applying a substitution, which is the result of unifying a rigid
message to an elementary message in its prefix parametric trace. We name a parametric
trace generated by these rules, and needed to be further substituted, a pending trace.
Furthermore, we name a parametric trace which is a satisfiable normal form of some
original trace a satisfiable trace.

We define the state of the trace generating system as a 3-tuple, 〈tr, S, k〉, where

• tr is a parametric trace.

• S is a list of substitutions.

• k is a type of tr, where k ∈ {ot, st, pt}. ot denotes an original trace, st denotes a
satisfiable trace and pt represents a pending trace.

In Maude, the state is defined as follows:

sort Tracestate Tracetype State .

ops ot st pt : -> Tracetype [ctor] .

op [_] : Trace -> Tracestate [frozen] .

op <_,_,_> : Tracestate Substitutionlist Tracetype -> State .

Let’s specify how a type of a parametric trace changed in our trace generating system:
If a parametric trace is labeled pt, and its substitution list is not empty, it will be deduced
to a new parametric trace by applying the first substitution in its substitution list. At
the same time, a new substitution list of the new trace will be calculated dynamically by
applying analyzingTrace to the new trace. Furthermore, given a state, we also shrink
its substitution list by removing the first substitution so that other substitutions can be
applied.

crl [sub_per_pt] : < [TR1] , SUBS @ SUBLIST, pt >

<[substitutingTrace (TR1, SUBS)], getSubstitutionlist(getMessage

(analyzingTrace(substitutingTrace (TR1, SUBS), nil)),

elementary(getMessagelist(analyzingTrace(substitutingTrace

(TR1, SUBS), nil))), NIL), pt >

if not isSatisfiableNF(substitutingTrace (TR1, SUBS)) .

rl [sub_dis] : < [TR1] , SUBS @ SUBLIST, pt >

=> < [TR1] , SUBLIST, pt > .

Furthermore, an original trace can be naturally transited to a pending trace if it is not a
satisfiable normal form, and the pending trace’s substitution list is obtained dynamically.
It can also be transited to a satisfiable trace if it is a satisfiable normal form (checked by
isSatisfiableNF). A pending trace can transfer to a satisfiable trace if all rigid messages
are unified, and it is thus a satisfiable normal form of some original trace.

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 90

crl [ot_to_pt] : < [TR1],SUBLIST,ot > => < [TR1],

getSubstitutionlist(getMessage(analyzingTrace (TR1,nil)),

elementary(getMessagelist (analyzingTrace(TR1,nil)), NIL), pt >

if not isSatisfiableNF (TR1) .

crl [ot_to_st] : < [TR1],SUBLIST,ot > => < [TR1],NIL ,st >

if isSatisfiableNF(TR1) .

crl [pt_to_st] : < [TR1] , SUBS @ SUBLIST, pt >

=> < [substitutingTrace(TR1,SUBS)], NIL, st >

if isSatisfiableNF SubstitutingTrace(TR1, SUBS)) .

The system starts with an initial state:

eq init = < [Nil] , NIL , ot > .

9.2 Implementation for Authentication

9.2.1 Protocol Description

By our implementation, the protocol description is surprisingly short, which only
contains about sixty lines for each protocol. This part mainly has two fragments.

• The first fragment is used to describe the parametric transition relation, which is a
kind of rules in the trace generating system in Subsection 9.1.3;

• The other fragment is used to describe a given specification, that is, a security
property of the tested protocol.

As defined in the parametric transition relation, each action in a parametric process
can be added to the tail of its parametric trace only once. Since each label is distinct
in a process, we will check whether an action has been added to its parametric trace by
searching its label in the parametric trace. For example, the protocol description for the
first flow of multiple Woo-Lam protocol given in Subsection 5.3.3 will be implemented as
follows:

crl [A_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < a(1), o, name(0) >)], SUBLIST, ot >

if not labelinTrace (TR1, a(1)) .

crl [B_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < b(1), i, name(0) > .

< b(2), o, name(3) >)], SUBLIST, ot >

if not labelinTrace (TR1, b(1)) .

In the trace generating system, each satisfiable trace represents a successful run of
the protocol. So we will search whether the negation of a specification is reachable in
a satisfiable trace. For example, the negation of the authentication property for the
Woo-Lam protocol defined in Characterization 5.5 is represented as follows:

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 91

search [1] in WOOLAMPROTOCOL : init =>*

< [TR1], NIL, st > such that not (

labelinTrace(TR1, acc)

implies (

(labelinTrace(TR1, a(3)) and labelbefore(TR1, a(3), acc) and

equal((getLabelMessage(TR1,acc)), (getLabelMessage(TR1,a(3))))

)

or

(labelinTrace(TR1, a’(3)) and labelbefore (TR1,a’(3),acc) and

equal((getLabelMessage(TR1,acc)), (getLabelMessage(TR1,a’(3))))

)

)

) .

The total protocol description of the two-session Woo-Lam protocol is about 40 lines.
We will illustrate the whole protocol description for authentication in bounded sessions
by the Yahalom protocol in Subsection D.2 of Appendix D as another example.

9.2.2 Other Tested Protocols

We have focused on the authentication property, and performed several tests for some
security protocols. Besides the NSPK protocol, the fixed NSPK protocol, the Abadi-
Gordon protocol, and the two variations Woo-Lam protocols, we also tested the Yahalom
protocol and the Otway-Rees protocol. The detected counterexamples of these two pro-
tocols by our implementation are explained as follows.

The Yahalom Protocol

The variation version of the Yahalom protocol we implemented is a simplified one that
comes originally from [37]. It is designed to let two principals A and B establish a private
session key K, with the help of a server S. The protocol is given flow-by-flow as follows,

A −→ B : A,NA

B −→ S : B, NB, {A,NA}KBS

S −→ A : NB, {B, K, NA}KAS
, {A,K,NB}KBS

A −→ B : {A,K,NB}KBS
, {NB}K

We have tested both one-session and two-session of the Yahalom protocol by our tool.
The whole two-session protocol description of the Yahalom protocol is in Subsection D.2 of
Appendix D. We have found a counterexample during running the two-session protocols,
which is shown in Figure 9.1.

Note that the counterexample we detected represents infinitely many attacks. For
example, a simple instance of the counterexample introduced above is an attack as follows,

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 92

Figure 9.1: Snapshot of Maude Result for the Yahalom Protocol

I(A) −→ B : A,NI (a1)

B −→ I(S) : B, NB, {A,NA}KBS
(a2)

I(A) −→ B : A,N ′
I , NB (b1)

B −→ I(S) : B, N ′
B, {A,N ′

I , NB}KBS
(b2)

I(A) −→ B : {A,N ′
I , NB}KBS

, {NB}N ′
I

(a4)

Actually, an intruder can still attack the protocol when NI and N ′
I are substituted to

any other possible messages. Thus in the counterexample we detected, they are repre-
sented as two variables, px(10) and px(11).

The Otway-Rees Protocol

The variation version of the Otway-Rees protocol we implemented also originally comes
from [37]. Similar to the Yahalom protocol, the Otway-Rees protocol is an authentication
protocol that generates a fresh session key K through a server S. The protocol is describe
informally as follows:

A −→ B : NA, A, B, {NA, A, B}KAS

B −→ S : NA, A, B, {NA, A, B}KAS
, NB, {NA, A, B}KBS

S −→ B : NA, {K, NA}KAS
, {K, NB}KBS

B −→ A : NA, {K, NA}KAS

We have tested both one-session and two-session of the Otway-Rees protocol by our
implementation, and found a counterexample when running the two-session protocol,
which is shown in Figure 9.2.

One instance of the counterexample is as follows,

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 93

Figure 9.2: Snapshot of Maude Result for the Otway-Rees Protocol

A −→ I(B) : NA, A, B, {NA, A, B}KAS
(a1)

I −→ A : NI , I, A, N ′
I (b1)

A −→ I(S) : NI , I, A, N ′
I , N

′
A, {NI , I, A}KAS

(b2)

I(A) −→ S : NI , I, A, N ′
I , NA, {NI , I, A}KAS

(b2’)

S −→ I(A) : NI , {K, NI}KIS
, {K, NA}KAS

(b3)

I(B) −→ A : NA, {K, NA}KAS
(a4)

This is a complex attack composed by a man-in-middle attack (in (b2) and (b2’)),
and a replay attack (in (b3) and (a4)). The places of NI , N ′

I and I can be replaced by
any other massages. Thus in the counterexample, they are denoted by three variables,
px(20), px(22), and px(21), respectively.

9.2.3 Experimental Results

The results for authentication for security protocols in bounded sessions are summa-
rized in Figures 9.3. In the figure, “Woo-lam protocol” is the two-session Woo-Lam pro-
tocols introduced in Subsection 3.3.3, and “Woo-lam protocol*” is a variation described
in Subsection 5.5.3.

The number in the column “sessions” is the number of sessions we have modeled
when checking the properties. In the column “protocol spec.”, the number means the line
number for a protocol specific description. Besides that, each Maude file also contains
about 330 lines for a common part. The number in the column “states” means the
states generated by the system, and the column “times” shows how many milliseconds
that checking the protocol takes; In the column “flaws”, “detected” means we detected an
attack, while“secure” means within the number of sessions, we did not detect any attacks.

There are two possibilities when representing a two-session protocol. One possibility
is that, each principal acts in the same role (i.e. a sender or a receiver). This case actu-
ally means that a principal initiates two sessions by communicating with an unbounded
number of principals, because of the usage of binders. The second possibility is that,

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 94

each principal acts in two different roles in the two sessions. This case represents that
each of two different principals initiates a session by communicating with an unbounded
number of principals, respectively. In both cases, one principal should intend to receive
messages from the other in one of two sessions. Otherwise the two principals may have
no communications with each other, and thus we could not define any security properties
between them. In Figure 9.3, a two-session protocol in which each principal acts in the
same role is labeled by †, and in different roles is labeled by ‡.

protocols session protocol spec. states times(ms) flaws
NSPK protocol 1 20 46 130 detected
Woo-Lam protocol* 1 25 168 160 detected
fixed NSPK protocol 1 20 164 637 secure
fixed NSPK protocol ‡ 2 29 16,468 243,460 secure
Abadi-Gordon protocol 1 20 238 713 secure
Abadi-Gordon protocol † 2 30 4,802 30,499 secure
Yahalom protocol 1 26 279 2,111 secure
Yahalom protocol ‡ 2 36 536 1,039 detected
Otway-Rees protocol 1 25 461 8,185 secure
Otway-Rees protocol ‡ 2 34 2,164 22,316 detected
Woo-lam protocol 1 25 552 2,460 secure
Woo-lam protocol † 2 51 105,423 476,507 detected

Figure 9.3: Experimental Results for Authentication Protocols

The tests were performed on a Pentium 1.4 GHz, 1.5 G memory PC, under Windows
XP. By the experimental results, we could find that a protocol that is secure in one session
is not necessarily really secure. For instance, we could not detect any flaws the Yahalom
protocol, the Otway-Ree protocol, and the Woo-Lam protocol with one session, while in
the two-session of these protocols, flaws do exist.

The checking is quite time-consuming when number of sessions increases. By our
experience, checking a protocol with more than three sessions often takes several hours.

9.3 Implementation for Recursive Protocols

The parametric system for recursive protocols shares the same semantics with the
parametric system for bounded sessions. The only difference is that there exist infinite
transitions in the parametric system for recursive protocols, which are later folded by a
pushdown system. Thus the trace generating system for recursive protocols is actually a
pushdown system.

9.3.1 Trace Generating System as the Pushdown System

We define the state of the trace generating system for recursive protocols (pushdown
system) as a 5-tuple, 〈ML, tr, STACK,S, k〉, where

• ML is a message list for recursive messages.

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 95

• tr is a parametric compaction (a parametric trace with bounded length, in Definition
6.6).

• STACK is a stack with unbounded memory.

• S is a list of substitutions.

• k is a type of tr, where k ∈ {oc, sc, pc}. oc denotes an original compaction, sc
denotes a satisfiable compaction and pc represents a pending compaction.

In Maude, the state is defined as follows:

sort Tracestate Tracetype State .

ops oc sc pc : -> Tracetype [ctor] .

op [_] : Trace -> Tracestate [frozen] .

op <_,_,_,_,_> : Messagelist Tracestate Stack

Substitutionlist Tracetype -> State .

The system starts with an initial state,

eq init = < nil, [Nil], empty , NIL , oc > .

Furthermore, push and pop operations on the stack is defined as follows, in which
star is the only stack alphabet of the pushdown system.

op push : Stack -> Stack .

op pop : Stack -> Stack .

eq push (STACK) = star , STACK .

eq pop (SE, STACK) = STACK .

eq pop (STACK) = STACK [owise] .

The pushdown system has the similar rules to ones defined in Subsection 9.1.3. The
only difference is that these rules are defined in a pushdown system.

Firstly, if a parametric compaction is a pending compaction, and its substitution list
is not empty, it will be deduced to a new compaction by applying the first substitution
in its substitution list. A new substitution list of the new compaction will be calculated
dynamically by applying analyzingTrace to the new compaction. Secondly, given a
state, we also shrink its substitution list by removing the first substitution so that other
substitutions can be applied.

crl [sub_per_pc] : < ML1, [TR1] , STACK, SUBS @ SUBLIST, pc >

< ML1, [substitutingTrace (TR1, SUBS)], STACK,

getSubstitutionlist(getMessage

(analyzingTrace(substitutingTrace (TR1, SUBS), nil)),

elementary(getMessagelist(analyzingTrace(substitutingTrace

(TR1, SUBS), nil))), NIL), pc >

if not isSatisfiableNF(substitutingTrace (TR1, SUBS)) .

rl [sub_dis] : < ML1,[TR1] , STACK, SUBS @ SUBLIST, pc >

=> < ML1, [TR1], STACK, SUBLIST, pc > .

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 96

Next, an original compaction can naturally transfer to a pending compaction if it is
not a satisfiable normal form, and the pending compaction’s substitution list is obtained
dynamically. It can also transit to a satisfiable compaction if it is a satisfiable normal
form (checked by isSatisfiableNF). A pending compaction can transit to a satisfiable
compaction if all rigid messages are unified.

crl [oc_to_pc] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [TR1], STACK, getSubstitutionlist

(getMessage(analyzingTrace (TR1,nil)),

elementary(getMessagelist (analyzingTrace(TR1,nil)), NIL), pc >

if not isSatisfiableNF (TR1) .

crl [oc_to_sc] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [TR1], STACK, NIL ,sc>

if isSatisfiableNF(TR1) .

crl [pc_to_sc] : < ML1, [TR1], STACK, SUBS @ SUBLIST, pc >

=> < [substitutingTrace(TR1,SUBS)], NIL, sc >

if isSatisfiableNF SubstitutingTrace(TR1, SUBS)) .

9.3.2 Protocol Description

The main difference between the pushdown system and previous trace generating
system is that, for the recursive process, one should apply push, when enters a recursive
process, and apply pop, when returns from a recursive process. For example, in the
description of the recursive authentication protocol (in Subsection 3.4.2), push and pop
actions are illustrated as follows:

crl [B_1] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [(TR1 .

< b(1), i, H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))) > .

< b(2), o, H(lk[A[MA],name(1)],

(((A[MA],A[A[MA]]),N[px(21)]),H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))))) >

)], push (STACK), SUBLIST, oc >

if noc labelinTrace (TR1, b(1)) .

crl [B_3] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [(TR1 . < b(1), i, H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))) > .

< b(3), o, H(lk[A[MA],name(1)],

(((A[MA],name(1)),N[px(21)]),H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))))) >

)], pop (STACK) , SUBLIST, oc >

The total protocol description of the RA protocol is in Subsection D.3 of Appendix D.
A counterexample for the authentication specification (see Characterization 6.1) is

detected automatically. The result snapshot is in Figure 9.4.
in which MA, MN, and Mk are binder markers defined in Definition 6.5. name(1) denotes

the server name S. This counterexample is the exactly one we introduced in Subsection
6.4.

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 97

Figure 9.4: Snapshot of Maude Result for the Recursive Authentication Protocol

In comparison, we also tested the fixed RA protocol defined in Subsection 6.4, and
did not find its counterexamples.

9.3.3 Experimental Results

The results of two tests are summarized in Figure 9.5. Note that all experiments are
tested with one session bound. In the figure, column “protocol spec.” is the number of
lines for a protocol description. In addition to these lines, each Maude file also contains
about 400 lines for the common description of the method.

protocols protocol spec. states times(ms) flaws
recursive authentication protocol 32 416 824 detected
fixed recursive authentication protocol 32 416 1,068 secure

Figure 9.5: Experimental Results for Recursive Protocols

Remark 9.3. It is exact the last state generated by the parametric system for the RA
protocol that has flawed, so the numbers of states for the RA protocol, and for the fixed
RA protocol are surprisedly same.

9.4 Implementation for Non-repudiation and Fairness

9.4.1 Protocol Description

As we have assumed, a dishonest principal can abort the protocol run at any stage, or
continue to communicate with the other principal. In the implementation, we use multiple
rewrite rules. For example, according to the second and third flows in the simplified
ZG protocol (refer to Subsection 7.1.3), when A receives a message from B, it aborts
the protocol by stoping sending the message (described by the [A 2] rule as follows), or
continue running the next flow (described by the following [A′ 2] rule).

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 98

crl [A_2] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(0),2), i, {((name(0),name(11)),

px(12))}-k[name(1)] > . STOP(name(0)))], SUBLIST, ot >

if labelinTrace (TR1, label(name(0),1)) and

not labelinTrace (TR1, label(name(0),2)) .

crl [A’_2] : < [TR1], SUBLIST, ot > =>

< [TR1 . < label(name(0),2), i, {((name(0),name(11)),px(12))}

-k[name(1)] > . < label(name(0),3), o, {((px(17),px(18)),px(19))}

-k[name(0)] >], SUBLIST, ot >

if labelinTrace (TR1, label(name(0),1)) and

not labelinTrace (TR1, label(name(0),2)) .

The total protocol description of the simplified ZG protocol for FAIRO is in Subsection
D.4 of Appendix D.

9.4.2 Other Tested Protocols

In experiments with one session bound, the attacks for NRO, FAIRO and FAIRM of
the simplified ZG protocol were detected automatically. For comparison, we also imple-
mented the analysis for the full ZG protocol [121], which guarantees those three properties.
Furthermore, we also tested some protocols proposed by the International Organization
for Standardization [67, 68, 69]. It is well-known that these protocols have flaws [76, 120]
(although no other formal verifications are applied to these examples).

Figure 9.6 shows the snapshot of the result of NRO for simplified ZG protocol. In the
counterexample, name(0), name(1), name(2), name(11) denote names A, B, S, NA, respec-
tively, and px(31) denotes a variable that can substitute to any messages A generates.

Figure 9.6: Snapshot of Maude Result for NRO of the Simplified ZG protocol

The counterexample actual represents the same attack introduced in Subsection 7.4.
Similarly, a counterexample for FAIRM is also detected automatically. The result snap-
shot is in Figure 9.7.

The ISO/IEC13888-2 M2 Protocol

The ISO/IEC 13888-2 [68] contains three non-repudiation protocols (M1, M2, and
M3), providing non-repudiation of origin and non-repudiation of receipt service using

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 99

Figure 9.7: Snapshot of Maude Result for FAIRM of the Simplified ZG protocol

symmetric techniques. We have tested the M2 protocol, and detected the attacks for
NRO and FAIRO automatically. The M2 Protocol is given as follows:

A −→ S : {FNRO, A, B,H(M)}KAS
(M2-1)

S −→ A : {{FNRO, A, B,H(M)}−KS
}KAS

(M2-2)

A −→ B : M, {FNRO, A, B,H(M)}−KS
(M2-3)

B −→ S : {{FNRO, A, B,H(M)}−KS
}KBS

(M2-4)

S −→ B : {{FNRO, A, B,H(M)}−KS
, {FNRR, A, B,H(M)}−KS

}KBS
(M2-5)

S −→ A : {{FNRR, A, B,H(M)}−KS
}KBS

(M2-6)

in which the evidence of origin is {FNRO, A, B,H(M)}−KS
, and the evidence of receipt is

{FNRR, A, B,H(M)}−KS
.

In the M2 protocol, NRO is established in the first five flows. At flow (M2-1), the
sender A asks the TTP server S to generate evidence of origin for M to be transferred
to the receiver B. Other principals cannot impersonate A to make such a request, as A’s
request is protected by the symmetric key KAS shared with A and S. After obtaining
evidence of origin from S at flow (M2-2), A sends M and evidence of origin to B at
flow (M2-3). B should validate M before proceeding to the flow (M2-4). Only when
this validation succeeds will B send evidence of origin to S for verification and request
evidence or receipt from the server at the same time. After that, S will directly send the
evidence of receipt to A at flow (M2-6).

In the M2 protocol, once B gets the confirmed evidence of origin from the server, A
will be guaranteed to be provided with evidence of receipt by the server. However, when A
sends M and evidence of origin to B at flow (M2-3), it always leaves B in an advantageous
position. Upon receiving M , B may first validate the M before proceeding to next flow.
If B aborts the protocol at flow (M2-4), no one will have evidence that B has received
M . This attack violates both NRO and FAIRO, which is detected automatically in our
experiments.

CHAPTER 9. IMPLEMENTATION ISSUES AND EXPERIMENTAL RESULTS 100

The ISO/IEC13888-3 M-h Protocol

ISO/IEC 13888-3 [69] specifies two separate protocols (M-h, M-e) for non-repudiation
service without the involvement of online and inline TTPs. We used the M-h protocol
as a case study, and detected the attacks for FAIRO automatically. The M-h Protocol is
given flow-by-flow as follows:

A −→ B : FPOE, B,H(M), {FPOE, B,H(M)}−KA
(M-h-1)

B −→ A : FACK , A, {FACK , A,H(M)}−KB
(M-h-2)

A −→ B : FNRO, B,M, {FNRO, B,M}−KA
(M-h-3)

B −→ A : FNRR, A, {FNRR, A, M}−KB
(M-h-4)

in which evidence of origin is {FNRO, B,M}−KA
, evidence of receipt is {FNRR, A, M}−KB

.
The M-h protocol uses a one-way hash function to construct the promise of exchange

and the acknowledgment at flow (M-h-1) and (M-h-2). A first sends a promise of exchange
that does not reveal the contents of the message. After receiving an acknowledgment
from B, A then sends M with evidence of origin and waits for evidence of receipt from
B. Actually, this does not solve the non-repudiation problem, since B can still refuse to
send the last message, leaving A without evidence of receipt. This does not satisfy the
FAIRO property. Our implementation can capture this attack automatically.

9.4.3 Experimental Results

The results of all tests are summarized in Figure 9.8. Note that all experiments are
with one session bound. In the figure, column “protocol spec.” is the number of lines for
a protocol specific description. In addition to these lines, each Maude file also contains
about 400 lines for the common description of the method.

protocols property protocol spec. states times(ms) flaws
Simplified ZG protocol NRO 50 513 3,954 detected

NRR 50 780 3,905 secure
FAIRO 55 770 2,961 detected
FAIRR 55 846 3,903 secure
FAIRM 50 4,109 45,545 detected

Full ZG protocol NRO 50 633 7,399 secure
FAIRO 55 788 3,394 secure
FAIRM 60 788 3,490 secure

ISO/IEC13888-2 M2 NRO 50 1,350 7,710 detected
FAIRO 65 1,977 6,827 detected
FAIRR 65 2,131 7,506 secure

ISO/IEC13888-3 M-h FAIRO 60 295 918 detected
FAIRR 60 305 1,040 secure

Figure 9.8: Experimental Results for Fair Non-repudiation Protocols

Chapter 10

Related Work

As we know, usually the use of formal methods can be divided into three steps.

Modeling. The first and most delicate phase of formal methods is to convert the system
we want to verify into a mathematical model. This generally requires us to abstract
away unimportant details, in order to achieve a concise model which is sufficiently
simple to be verified.

Specification. The specification is about to state which properties must hold on the
given model. For instance, the set of action terms in our model. Temporal logics
are common formalisms for describing the properties.

Verification. Finally, one must prove that a model satisfies a given specification. The
first way is to verify it manually. However, this approach is obviously problematical
and fallible. In recent years, computer-aided verification have become more mature,
many technique are proposed, including model checking, a fully automatic tech-
nique; theorem proving, a proof technique relies on human intervention; resolution,
a technique between model checking and theorem proving. It can be completely
automatic, but sometime it will not terminate.

This chapter firstly introduces various well-known models for describe security proto-
cols and their specifications. These models are all applied by more than one verification
techniques. Then many applications based on three most well-known verification tech-
niques, model checking, resolution and theorem proving are introduced respectively.

10.1 Modeling and Specification

10.1.1 Belief Logics

Adopting belief logics for security protocols experienced great popularity at the end
of the 1980s and beginning of the 1990s. The earliest one was the BAN logic [37], one of
the first attempts to make the reasoning about the properties of security protocols more
systematic. After that, many logics were proposed, extended from BAN logic (so called
BAN-family logics), such as GNY logic [57], AT logic [10] SVO logic [114].

The BAN logic is a logic for authentication property. It explicitly assumes that all
principals are honest, and thus reasons about the beliefs of these principals. Examples of
the formula are:

101

CHAPTER 10. RELATED WORK 102

• P |≡ X : The principal P believes X.

• P C X: The principal P can see X, i.e. received a message that contains X.

• P |∼ X : The principal P sent a message that contains X.

• P
K↔ Q P and P share the symmetric key K.

• EK(X): the encryption of X under key K.

•](X): X is fresh.

• etc.

A set of inference rules is proposed, which is used to derive the goals a protocol
achieves. For instance,

P |≡ P
K↔ Q P C EK(X)
P |≡ Q|∼ X

means that if P believes that it and Q share the K, and receives an encryption message
encrypted by K, then P believes that the plain message of the encryption message comes
from Q.

P |≡](X) P |≡ Q|∼ X
P |≡ Q|≡ X

means that if P believes that Q sent X, which P believes it is fresh, then P believes that
Q believes X (otherwise Q would not sent it).

In 1990, Nessett demonstrated that a significant flaw exists in the BAN logic. He
proposed a protocol named the Nessett protocol with flaws that cannot be analyzed by
the BAN logic [91]. Thus, the GNY logic was proposed to fix this flaw. The major
contributions of the GNY logic was that the notion of possession. As a consequence,
the Nessett protocol can be proved by GNY logic, such that an intruder can possess the
exchanged key [57].

The AT logic was closer to traditional modal logics than the BAN logic. It provided a
detailed model of computation. It was more expressive, and had a soundness result with
respect to the model.

The SVO logic was probably the most mature one of the belief logics. It was proposed
with intension to unify all belief logics for security protocols. It was not just simply to
patch on new notations and rules adequately expressive to capture the additional scope
of these logics. Rather to produce a model of computation and a logic that is sound with
respect to that model while still retaining the expressiveness of all BAN-family logics.

For a detailed survey of logics for security protocols, please refer to [113].
To the best of my knowledge, most verifications based on BAN-family logics are done

manually. For example, Jianying Zhou, one of the core researchers in non-repudiation
protocols, had proposed several non-repudiation protocols, and verified their correctness
by SVO logic in his papers and book [121, 120, 122]. An automated support result was that
the BGNY logic designed by Brackin, based on the GNY logic. He developed an associated
automated HOL tool, AAPA (Automated Authentication Protocol Analyzer) [34].

CHAPTER 10. RELATED WORK 103

10.1.2 CSP

The language of Communicating Sequential Processes (CSP) [64] is a process algebra
providing a well-defined semantics and a precise way for reasoning about concurrent sys-
tems in general. It is also one of the first attempts to analyze the properties of security
protocols.

Processes in CSP are described by the events that they will engage in. There are many
versions of CSP. The following definition is one variation for security protocol analysis [82].

Definition 10.1 (Processes). The set of processes is defined by the grammar,

P, ::=
stop Nil
c!i.j.v → P output
c?i.j.x → P input
P¤Q choice
P |[E]|Q composition

Intuitively,

• The process stop does not engage in any event.

• The process c!i.j.v → P sends v on channel c, with source i and destination j. After
this event, it behaves as P .

• The process c?i.j.x → P awaiting an input on channel c with source i and destination
j, after which, it behaves as P{x}, i.e., x is instantiated.

• P¤Q behaves either as P or Q.

• P |[E]|Q is the composition of P and Q that have to synchronize on any event in
the set of events E. P |||Q is a shortcut for P |[∅]|Q and |||iPi is the indexed form.

Using CSP processes, a general model for security protocols has the following form:

NET = (|||(i∈USER)USERi)|[trans, rec]|INTRUDER

The intruder process INTRUDER is described by a recursive process with complex
structures [82].

For analyzing security protocol, CSP has two kinds of semantics, trace semantics and
failure semantics1. The former is used to analyze secrecy and authentication proper-
ties [82, 106]; The latter is used to analyze non-repudiation and fairness properties [107].

There are two main approaches based on the idea of modeling security protocols in
CSP, model checking, and theorem proving.

• The model checking approach used the FDR (Failures Divergences Refinement
Checker), a finite model checker, to verify protocols [82]. A specialized compiler,
Casper, can translate a protocol description to its corresponding CSP process [86].

• The theorem proving approach was mainly presented by S. Schneider et al.. In
[106], he introduced the idea of rank functions. He implemented the approach by
PVS [54], and applied it to lots of security properties [54, 35, 108, 107].

For a detailed security protocol analysis based on CSP, please refer to the book, [104].

1For a brief introduction of these two semantics based on CCS, please refer to Appendix B.

CHAPTER 10. RELATED WORK 104

10.1.3 Spi and Spi-like Calculi

Mart́ın Abadi and Andrew Gordon developed the Spi calculus [7] with primitives
representing the cryptographic operations of encryption and decryption. In 2002, Mart́ın
Abadi and Cédric Fournet proposed a more general process calculus for security protocol
analysis, named the applied pi calculus [6]. After that, numerous analysis and verifications
for security properties are proposed based on these two calculi and their extensions [7, 8,
32, 25, 29, 4, 3, 58, 59, 23, 26, 24, 5].

We simply introduce syntax and semantics of Spi calculus here.

Definition 10.2 (Terms). The set of terms is defined by the grammar,

L,M, N ::=
n name
x variable
(M,N) pair
0 zero
suc(M) successor
{M}K encryption

Definition 10.3 (Processes). The set of processes is defined by the grammar,

P,Q, R ::=
0 nil
M〈N〉.P output
M(x).P input
P |Q composition
(νn)P restriction
!P replication
[M is N]P match
let (x, y) = M in P pair splitting
case M of 0 : P suc(x) : Q integer case
case L of {x}K in P key decryption

The semantics of Spi calculus is defined by the following three relations, reduction
relation, structural equivalence and reaction relation.

Definition 10.4 (reduction relation). The reduction relation on closed processes is de-
fined by the following rules,

!P > P |!P
[M is M]P > P

let (x, y) = (M,N) in P > P [M/x][N/y]
case 0 of 0 : P suc(x) : Q > P

case suc(M) of 0 : P suc(x) : Q > Q[M/x]
case {M}K of {x}K in P > P [M/x]

Definition 10.5 (structural equivalence). The structural equivalence is the least relation
on closed processes that satisfies the following equations and rules,

CHAPTER 10. RELATED WORK 105

P |0 ≡ P
P |Q ≡ Q|P

P |(Q|R) ≡ (P |Q)|R
(νm)(νn)P ≡ (νn)(νm)P

(νn)0 ≡ 0
(νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P)

P > Q
P ≡ Q P ≡ P

P ≡ Q
Q ≡ P

P ≡ Q Q ≡ R
P ≡ R

P ≡ Q
P |R ≡ Q|R

P ≡ Q
(νn)P ≡ (νn)Q

Definition 10.6 (reaction relation). Let the reaction relation be the least relation on
closed processes that satisfies,

M〈N〉.P |M(x).Q → P |Q[N/x]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

P → Q
P |R → Q|R

P → Q
(νn)P → (νn)Q

The verification approaches based on Spi and Spi-like calculi almost cover all formal
methodologies.

• The first verification approach for Spi and Spi-like calculi was done using equiva-
lence [7, 8, 32, 25, 115]. In this approach, a security protocol and its specification
for a security property were described by two processes, respectively. If the two pro-
cesses satisfied some equivalence, for instance, test equivalence [7], then the security
protocol satisfied the given security properties. Unfortunately, these equivalences
were usually undecidable. Recently, some automatic tools were developed, enforc-
ing restrictions on these calculi [51, 25]. For instance, removing the replication
operators, enforcing an upper-bound on the depths of reduction and reaction, etc..

• Another approach based on these process calculi was a static analysis by type sys-
tems [4, 3, 58, 59]. The limitation of this method was that the intruder’s model is
weaker than the Dolev-Yao model, assuming that the intruder was partially trusted.
An example for secrecy was to assign each original message one of three types
PUBLIC, PRIVATE, and ANY, then to infer whether a confidential message keeps type
PRIVATE during transitions.

• M. Abadi and B. Blanchet translated a process of an applied calculus to a set of Horn
clauses [5]. Thus security properties can by analyzed by resolution [23, 24, 26, 5].
Abadi and Blanchet had also established an equivalence between typed process
calculus technique and logic program technique with respect to secrecy property [5].

• Michele Boreale proposed a model checking method on a variation of Spi calcu-
lus [29] to analysis secrecy and authentication properties for bounded sessions se-
curity protocols. He represented intruders as a deductive system, and thus replica-
tion/recursion operation were avoided without weakening the ability of intruders.
Our approach is based on his work.

CHAPTER 10. RELATED WORK 106

10.1.4 Strand Space

The strand space formalism [61, 62] is a framework for studying security protocol anal-
ysis developed by Thayer, Herzog and Guttman. Intuitively speaking, a strand represents
the sequence of actions in which a particular protocol principal may participate. For
example, a sender strand for the NSPK protocol is,

〈+{NA, A}+KB
,−{NA, NB}+KA

, +{NB}+KB
〉

The + and − signs signify whether the message is sent or received, respectively. We
refer to each element of the strand as a node. Similarly, a receiver strand for the NSPK
protocol is,

〈−{NA, A}+KB
, +{NA, NB}+KA

,−{NB}+KB
〉

A number of strands represent the intruder’s possible interactions. These strands can
be adjusted in we want to tailor the capabilities of intruders.

Strands (include intruders’) may interact according to the ways in which nodes can
exchange messages. Thus a message sent by one principal may correspond to that received
by another principal.

Two kinds of edge are introduced to the strands, =⇒ and −→. =⇒ connects successive
nodes of a strand. −→ indicates the causal ordering that arises from the transmission
and subsequent reception of a message. Analysis in a strand space is carried out on a
particular structure: bundles. For example, a bundle showing the attack on the NSPK
protocol is in Figure 10.1.

A I

B

I

+ {NA, A}+KB
−

+ {NA, A}+KB
−

− {NA, NB}+KA
+

+ {NB}+KB
−

+ {NB}+KB
−

Figure 10.1: The Strand Space Bundle for the NSPK Protocol

A bundle must be well-founded. That is, whenever it contains a reception node −n,
then it also contains a unique transmission node +n. On the other hand, a transmission
node might correspond to many reception nodes or none. Bundles thus take on the
structure of acyclic, ordered graphs.

CHAPTER 10. RELATED WORK 107

The strand space method had been implemented in an automated tool Athena [111].
The tool took as input a slightly modified version of the strand space model, that are
parametric strands. This means that the strands may contain variables associated with
the roles. In [111], Song proposed a model-checking algorithm that may not terminate if
no bound is given on the number of sessions. Furthermore, lots of other formal methods
were applied to strand space [2], which was still subject to active research.

10.1.5 HLPSL

The High Level Protocol Specification Language (HLPSL) [15] is an expressive, modu-
lar, role-based, formal language that allows for the specification of control flow patterns,
data-structures, alternative intruder models, complex security properties, as well as differ-
ent cryptographic primitives and their algebraic properties. These features make HLPSL
well suited for specifying modern, industrial-scale protocols. Moreover, the HLPSL enjoys
both a declarative semantics based on a fragment of the Temporal Logic of Actions and an
operational semantics based on a translation into a rewrite-based formalism, Intermediate
Format (IF).

IF is also a tool-independent protocol specification language suitable for automated
deduction. The main goal in the design of the IF was to provide a low-level description of
the protocol that is suitable for automatic analysis (rather than being abstract and easy
to read for human users like the HLPSL), and yet this format should be independent from
the analysis methods employed by the various back-ends.

Subfigure (a) in Figure 10.2 shows the HLPSL specification of the Yahalom protocol,
and its corresponding initial states in IF is shown in Figure 10.2, (b) (which is automati-
cally generated by HLPSL2IF translator).

HLPSL is the language through which end users make use of the AVISPA (Automated
Validation of Internet Security Protocols and Applications) tool-set [1], which employs
four tools to tackle validation of security protocols.

The On-the-fly Model-Checker (OFMC) [17] performed protocol falsification and
bounded verification by exploring the transition system described by an IF spec-
ification in a demand-driven way. OFMC implemented a number of correct and
complete symbolic techniques. It supported the specification of algebraic properties
of cryptographic operators, and typed and untyped protocol models.

The Constraint-Logic-based Attack Searcher (CL-AtSe) [16] applied constraint
solving with some powerful simplification heuristics and redundancy elimination
techniques. CL-AtSe was built in a modular way, and was open to extensions for
handling algebraic properties of cryptographic operators. It supported type-flaw
detection and handles associativity of message concatenation.

The SAT-based Model-Checker (SATMC) [44] built a propositional formula en-
coding a bounded unrolling of the transition relation specified by the IF, the initial
state and the set of states representing a violation of the security properties. The
propositional formula was then fed to a state-of-the-art SAT solver and any model
found was translated back into an attack.

The Tree Automata based on Automatic Approximations(TA4SP) [27] approx-
imated the intruder knowledge by using regular tree languages and rewriting. For

CHAPTER 10. RELATED WORK 108

(a) HLPSL Specification

state(roleA,step0,sess1,a,b,s,k(a,s)).

state(roleB,step0,sess1,a,b,s,k(b,s)).

state(roleS,step0,sess1,a,b,s,k).

state(roleB,step0,sess2,i,b,s,k(b,s)).

state(roleS,step0,sess2,i,b,s,k).

i_knows(a).i_knows(b).i_knows(s).

i_knows(i).i_knows(k(i,s)) .

(b) IF Specification

Figure 10.2: HLPSL and IF Specifications of the Yahalom Protocol

secrecy properties, TA4SP could show whether a protocol is flawed (by under ap-
proximation) or whether it is safe for any number of sessions (by over approxima-
tion).

10.1.6 Other Formalisms

Besides the formalisms introduced above, various other formalisms for the specification
of security protocols had been proposed. For instance, higher-order logic by Paulson et
al. [99, 18], first-order logic by C. Weidenbach [117], Linear logic by N. Durgin et al. [53],
equational logic by J. Jacquemard et al. [70], hidden algebra by K. Ogata et al. [93], and
tree automata by several different groups [89, 78, 27].

10.2 Validation

10.2.1 Model Checking

Model checking is an algorithmic verification technique by exhaustively searching the
state space of the underlined model. It is attractive for enjoying two advantages: (1) it is
fully automatic; (2) counterexamples are provided once a model checking fails.

There are not many well-known researches applying traditional model check methods
such as finite system (Kripke) model checking [41], or automata theoretical based model
checking [109], due to two facts. Firstly, it is extremely difficult to describe a security
protocol model if one considers all infinity factors. Secondly, specifications for security
properties are rather simple. Almost all well-known properties can be specified as a safety

CHAPTER 10. RELATED WORK 109

problem. To the best of my knowledge, many model checking of security protocols adopted
a rich model, such as process calculus, to describe security protocols, and proposed non-
traditional ways to check the security properties. The following is an inexhaustive survey.

Gavin Lowe first used process calculus CSP to describe behaviors of security protocols,
and implemented a model-checker FDR to discover numerous attacks of various security
protocols [83, 84]. In his work, the intruder is represented as a recursive process. He
restricts the state space to be finite by imposing upper-bounds upon messages the intruder
generates, and also upon the principals in the network. Thus security properties can be
checked on a finite trace models.

Many of our ideas are inspired by the symbolic approach of Michele Boreale et al. [29].
They used a variation of Spi calculus, and proposed a trace semantics for the calculus. An
environmental deductive system is proposed to represent abilities of intruders, and thus
replication/recursion operations can be avoided without weakening the ability of intruders.
They implemented their methodology by a tool named STA [30], restricting the number
of principals and intruders, and enforcing each principal explicitly communicates with an
intruder. Our model finitely represents an unlimited number of principals and intruders
in the network with binders. This is more powerful than his.

David Basin et al. proposed an On-the-fly model checking method (OFMC) [17].
They used a high-level language, HLPSL, to represent a protocol, which then translates
automatically to a low-level language, IF. An intruder’s messages were instantiated when
necessary, which was similar to the occasion when a rigid message occurs in our model.
In their work, an intruder’s role was explicitly assigned, for instance, as a sender. This
was efficient, but the process needed to be performed several times to ensure that no
intruders can attack a protocol in any roles. In our work, we do not explicitly define an
intruder, and we have to check all situations in which intruders act in different roles at
one time. Their research is similar to our work in analyzing authentication in bounded
sessions without binders.

Song chose the strand space to represent security protocols, and proposed a model-
checking algorithm to check security properties on strand spaces, and implemented a
model checker named Athena [111]. The algorithm, although efficient, might not termi-
nate if no bounds were given on the number of sessions. However, he showed that for
most practical protocols, it would terminate even without bound of sessions.

There were several studies based on game-theoretic model checking method on the
fairness property. S. Kremer firstly analyzed various these protocols, and also summarized
and compared many formal definitions of fairness in his thesis [75]. Recently, D. Kähler
et al. proposed a more powerful AMC-model checking method for verifying the fairness
property [71].

10.2.2 Resolution

Recently, security protocol analysis based on resolution has been flourishing, since
although sometime it does not terminate, yet is extremely efficient. Numerous researches
have been proposed in this approach.

In a security protocol, each action of a principal running a protocol can be regarded
as a reaction when it receives a message. Thus it is naturally described as a horn clause.
By this means, a security protocol can be translated to a finite set of Horn clauses, and
resolution can be applied on them.

CHAPTER 10. RELATED WORK 110

This approach can verify unbounded sessions of a protocol by over-approximations,
since each horn clause is permitted to be repeatedly applied. Although theoretically the
termination of a resolution is not guaranteed, practically it often efficiently verifies the
target.

The method is naturally adopted for analyzing secrecy property. Authentication prop-
erty can be translated to a secrecy property, so that it can also be handled by this ap-
proach [24]. However, Due to difficulties to represent dishonest principals, It seems that
other security properties, such as non-repudiation and fairness, are difficult to be ana-
lyzed. The other problem is to extract a counterexample when finding a flaw. Some
researches are towards this approach [12].

M. Abadi and B. Blanchet first translated a process of an applied calculus to a set
of Horn clauses [5]. Thus security protocols analysis can be discussed in the resolution
methodology [23, 24, 26, 5, 12]. It verified the secrecy property in infinite sessions of
a protocol with infinite principals by some approximations on both sessions and princi-
pals [23, 26]. The method sometimes did not terminate, as the author noted. A tag system
that assigned each encrypted message a unique tag was added to the system to make it
terminate [26]. The authors proved that security of a tagged protocol did not imply
the security of an untagged version. Furthermore, B. Blanchet proposed a transforma-
tion between two processes, and proved that the former process satisfying authentication
property is equal to the latter one satisfying secrecy property [24]. Thus authentication
can also be analyzed within this formalism.

T. Truderung used resolution to analyze secrecy property for recursive protocols by
proposing a selecting theory [116]. Recently, R. Küsters and T. Truderung considered the
arithmetic algorithm for the recursive protocol by generalizing the previous model [77],
detecting the known attack [102] of the RA protocol automatically. Our model does
not consider which encryption algorithm protocols adopted, and thus we cannot find the
attack.

The research of Comon-Lundh and Cortier [43] was also based on the Horn clauses.
They proved that it is sufficient to consider only a bounded number of principals when
verifying secrecy and authentication properties. They distinguished intruders as compro-
mised principals and eavesdroppers, reducing a system with infinite principals to one with
finite principals.

10.2.3 Theorem Proving

Theorem proving is an inductive approach capable of verifying infinite state space. It
depends heavily on human’s guidance, and thus usually needs expertise and heuristics.

Although theorem proving approach can handle infinite state space, Existing re-
searches for security protocol analysis still chose to enforce restrictions on infinity factors
for security protocols, making it easily be proved.

There are two groups mainly contribute to this approach. One is S. Schneider et al..
They use CSP as a formulism, and PVS as the theorem prover. The other group, with
members of G. Bella and L. Paulson, uses Isabelle/HOL. Both of them did lots of, and
similar works.

Steve Schneider et al. introduced the idea of using rank functions [106], assigning
a rank to each action of principals and intruders, with intention that only actions with
strictly positive rank could ever circulate within the system. The ranks that were as-

CHAPTER 10. RELATED WORK 111

signed depend on the protocol itself, the initial knowledge and the capabilities of intruders.
They implemented the approach by PVS [54] to verify secrecy and authentication prop-
erties [106]. Later, they extended previous model to verify non-repudiation and fairness
properties of full ZG protocol based on CSP [107], using a deductive system to describe
messages sent by a dishonest principal, and failures of a process to define these properties.
We borrow the idea of the dishonest principal description from his research. Then they
analyzed anonymity property for the dining cryptographers and some variants [108]. Fur-
thermore, they tried to verify the authentication property (a different target from ours in
Chapter 6) for the recursive authentication protocol in bounded sessions [35]. For details
of this approach, please refer to their book [104].

G. Bella and L. Paulson proposed an inductive verification of security protocols based
on trace analysis, and adopted Isabelle/HOL to prove the correctness of various protocols.
Firstly, they focused on authentication [99]. Then extended their approach to prove that
the full ZG protocol satisfies both non-repudiation and fairness properties [19, 20]. ([20]
corrected a bug in [19]). Furthermore, They proved that the RA protocol holds a weak
form of key distribution property with bounded number of principals [98]. For details of
this approach, please refer to G. Bella’s thesis [18].

The following are other security protocol analysis approaches based on theorem prov-
ing.

Kazuhiro Ogata et al. proposed a method for analyzing security protocols on rewrit-
ing [93]. A security protocol was modeled as an observational transition system (referred
to as OTS) [95]. CafeOBJ was adopted to verify the correctness of the protocol. This
methodology has later been applied to verify several practical protocols [94, 74].

Yoshinobu Kawabe et al. adopted I/O automata to describe security protocols, and
developed a technique to verify anonymity of security protocols. They used a theorem
prover, named Larch to implemented their technique and proved the anonymity of an
e-voting protocol, called the FOO protocol [72, 73].

CHAPTER 10. RELATED WORK 112

Chapter 11

Conclusions and Perspectives

11.1 Thesis Summaries

This thesis investigated security protocol analysis based on an on-the-fly model check-
ing method. An expressive process calculus based model was introduced to represent
behaviors of security protocols. The model is flexible and compositional, deductive sys-
tems can be inserted to integrate the model, to represent infinite messages intruders or
dishonest principals generate, according to different security assumptions.

The model was abstracted to a finite parametric model with sound and complete
representative abilities. In addition, security properties were defined by a set of action
terms. It was also proved that the properties defined by these action terms in the original
model can be checked in its corresponding parametric model. Thus various security
properties, such as secrecy, authentication, non-repudiation, fairness were finitely analyzed
in the parametric model.

The model checking method was implemented by Maude. Instead of generating a
parametric model previously, each property could be checked at the same time the model
being generated. Therefore, it was named an on-the-fly model checking method. With
the implemented tool, lots of security protocols were tested, either their attacks were
detected, or their security properties were guaranteed.

This method contributes to the research area of security protocols by providing values
to the following points.

• Various security properties can be analyzed by this method, driven by different
security requirements and different assumptions. The analysis method is sound and
complete under the certain assumptions. That is, when flaws are not detected, the
analyzed property for a protocol is guaranteed under these assumptions. Among
them, the non-repudiation property in bounded session, authentication for recursive
protocols are first analyzed by model checking methods.

• Protocol-independent specifications for secrecy and authentication properties are
proposed. In this approach, the specifications for secrecy and authentication prop-
erties can be generated automatically from a protocol description.

• Several properties, such as non-repudiation, and authentication for recursive proto-
cols, are first analyzed by using model checking.

113

CHAPTER 11. CONCLUSIONS AND PERSPECTIVES 114

11.2 Future Perspectives and Developments

There may exist three directions for the future researches based on this thesis.

11.2.1 More on the Same Direction

Analyzing Other Properties

Currently, by the method in this thesis, well-known security properties were ana-
lyzed. The first future work will adopt the method for other properties. For instance,
anonymity [108, 72, 73], and other authentication variations (see Appendix A) can be
analyzed within the framework.

Another choice is to analyze existing security properties for other kinds of security
protocols, such as, fairness for electronic commerce protocols, or certified e-mail protocols,
and so on (see Appendix A). The fairness for these protocols have slight differences from
what we have defined for fair non-repudiation protocols. In addition, security properties
for security protocols with multiply parties, etc.

Translator

Currently, we only implemented an on-the-fly model checking on the parametric model
by Maude. A translator that translates a formal protocol description to a Maude source
file is designable. It will also contain the automatic transformation approach to generate
a security specification for a given security property.

More Efficient Tool

Current implementation is not efficient enough for analyze more complex, practical
protocols. Refinements should be applied to the current tool. For instance, to implement
a more efficient unification algorithm (The analysis relies heavily on unification, while the
current algorithm is quite time-consuming), and to refactor current analysis steps.

11.2.2 Affiliating to the Resolution Method

With modern developing technologies, new security protocols have less possibilities to
have flaws. Thus comparing to detecting an attack, Proving the correctness of a security
protocol shows its essential importance. Model checking method can be regarded as a
complement when a protocol fails for being proved.

Recently, the resolution method for security protocol analysis is flourishing [23, 24,
26, 5, 12]. This method is extremely efficient to analyze a protocol (the time it takes is
only one percent of time taken by our methods, or even much less), with a cost of possible
non-termination (these cases are rare).

Our method can be used as a heuristic guide to extract a counterexample when finding
a flaw by resolution. It will provide heuristics for the order of applying horn clauses with
which the counterexample is obtained.

CHAPTER 11. CONCLUSIONS AND PERSPECTIVES 115

11.2.3 Analyzing from a Source Code

Currently, formal security protocol analysis starts from an informal flow by flow de-
scriptions, such as,

A −→ B : {A,NA}+KB

B −→ A : {NA, NB}+KA

A −→ B : {NB}+KB

However, a practical protocol is often given in a document like the RFC documents, or
a program source code. How to analyze the protocol from these descriptions is a challenge
research.

An interesting future direction is to analyze a security protocol from a source code.
The first step is probably a way to extract its protocol model from the source code.
Then by the similar parametric approach, the security protocol can be analyzed similarly.
In the research, our automatic protocol-independent transformation to generate security
specifications will show its importance.

CHAPTER 11. CONCLUSIONS AND PERSPECTIVES 116

Bibliography

[1] AVISPA. http://www.avispa-project.org/.

[2] Strand Space. http://www.mitre.org/tech/strands/.

[3] Mart́ın Abadi. Secrecy by Typing in Security Protocols. Journal of the ACM,
46(5):749–786, 1999.

[4] Mart́ın Abadi and Bruno Blanchet. Secrecy Types for Asymmetric Communication.
In Proceedings of the 3rd International Conference on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS’01), volume 2030 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[5] Mart́ın Abadi and Bruno Blanchet. Analyzing Security Protocols with Secrecy
Types and Logic Programs. Journal of the ACM, 52(1):102–146, 2005.

[6] Mart́ın Abadi and Cédric Fournet. Mobile Values, New Names, and Secure Commu-
nication. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.

[7] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols:
The Spi Calculus. In Proceedings of the 4th ACM Conference on Computer and
Communications Security (CCS’97), pages 36–47. ACM Press, 1997.

[8] Mart́ın Abadi and Andrew D. Gordon. A Bisimulation Method for Cryptographic
Protocols. Nordic Journal of Computing, 5:267–303, 1998.

[9] Mart́ın Abadi and Roger Needham. Prudent Engineering Practice for Crypto-
graphic Protocols. Technical Report SRC 125, Digital Systems Research Cen-
ter, http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-
125.html, 1989.

[10] Mart́ın Abadi and Mark R. Tuttle. A Semantics for a Logic of Authentication.
In Proceedings of the 10th annual ACM symposium on Principles of Distributed
Computing (PODC’91), pages 201–216. ACM Press, 1991.

[11] Luca Aceto and Matthew B. Hennessy. Termination, Deadlock, and Divergence.
Journal of the ACM, 39(1):147–187, 1992.

[12] Xavier Allamigeon and Bruno Blanchet. Reconstruction of Attacks against Crypto-
graphic Protocols. In Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW’05), pages 140–154. IEEE Computer Society Press, 2005.

117

BIBLIOGRAPHY 118

[13] Roberto M. Amadio and Sanjiva Prasad. The Game of the Name in Cryptographic
Tables. In Proceedings of the 1st International Conference on Principles and Prac-
tice of Declarative Programming (PPDP’99), volume 1702 of Lecture Notes in Com-
puter Science, pages 15–26. Springer-Verlag, 1999.

[14] Jesüs Aranda, Cinzia Di Giusto, Catuscia Palamidessi, and Frank D. Valencia. On
Recursion, Replication and Scope Mechanisms in Process Calculi. In Proceedings of
the 6th International Symposium on Formal Methods for Components and Objects
(FMCO’07). Springer-Verlag.

[15] Alessandro Armando. Deliverable D2.1: The High Level Protocol Spec-
ification Language. Technical Report IST-2001-39252, http://www.avispa-
project.org/delivs/2.1/d2-1.pdf, 2003.

[16] David A. Basin, Sebastian Mödersheim, and Luca Viganò. Constraint Differentia-
tion: A New Reduction Technique for Constraint-based Analysis of Security Proto-
cols. In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS’03), pages 335–344. ACM Press, 2003.

[17] David A. Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A Symbolic
Model Checker for Security Protocols. International Journal of Information Secu-
rity, 4(3):181–208, 2005.

[18] Giampaolo Bella. Inductive Verification of Cryptographic Protocols. PhD thesis,
University of Cambridge, March 2000.

[19] Giampaolo Bella and Lawrence C. Paulson. Mechanical Proofs about a Non-
repudiation Protocol. In Proceedings of the 14th International Conference on The-
orem Proving in Higher Order Logics (TPHOLs’01), volume 2152 of Lecture Notes
in Computer Science, pages 91–104. Springer-Verlag, 2001.

[20] Giampaolo Bella and Lawrence C. Paulson. A Proof of Non-repudiation. In Pro-
ceedings of the 9th International Workshop on Security Protocols (SPW’01), volume
2467 of Lecture Notes in Computer Science, pages 119–125. Springer-Verlag, 2002.

[21] Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distribution: The
Three Party Case. In Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing (STOC’95), pages 57–66. ACM Press, 1995.

[22] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka. Handbook of Process Algebra.
Elsevier, 2001.

[23] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pages 82–96. IEEE Computer Society, 2001.

[24] Bruno Blanchet. From Secrecy to Authenticity in Security Protocols. In Proceed-
ings of the 9th International Static Analysis Symposium (SAS’02), volume 2477 of
Lecture Notes in Computer Science, pages 342–359. Springer-Verlag, 2002.

BIBLIOGRAPHY 119

[25] Bruno Blanchet, Mart́ın Abadi, and Cedric Fournet. Automated Verification of
Selected Equivalences for Security Protocols. In Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’ 05), pages 331–340. IEEE
Computer Society, 2005.

[26] Bruno Blanchet and Andreas Podelski. Verification of Cryptographic Protocols:
Tagging Enforces Termination. Theoretical Computer Science, 333(1-2):67–90, 2005.

[27] Yohan Boichut, Pierre-Cyrille Héam, and Olga Kouchnarenko. Automatic Veri-
fication of Security Protocols Using Approximations. Technical Report RR-5727,
INRIA, 2006.

[28] Roland Bol and Jan Friso Groote. The Meaning of Negative Premises in Transition
System Specifications. Journal of the ACM, 43(5):863–914, 1996.

[29] Michele Boreale. Symbolic Trace Analysis of Cryptographic Protocols. In Pro-
ceedings of the 28th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’01), volume 2076 of Lecture Notes in Computer Science, pages
667–681. Springer-Verlag, 2001.

[30] Michele Boreale and Maria Grazia Buscemi. Experimenting with STA, a Tool for
Automatic Analysis of Cryptographic Protocols. In Proceedings of the 17th ACM
Symposium on Applied Computing (SAC’02), pages 281–285. ACM Press, 2002.

[31] Michele Boreale and Rocco De Nicola. A Symbolic Semantics for the π-calculus.
Information and Computation, 126(1):34–52, 1996.

[32] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for
Cryptographic Processes. In Proceedings of the 14th Annual IEEE Symposium on
Logic in Computer Science (LICS’ 99), pages 157–166. IEEE Computer Society,
1999.

[33] Marco Bozzano and Giorgio Delzanno. Automatic Verification of Secrecy Properties
for Linear Logic Specifications of Cryptographic Protocols. Journal of Symbolic
Computation, 38(5):1375–1415, 2004.

[34] Stephen H. Brackin. A HOL Extension of GNY for Automatically Analyzing Cryp-
tographic Protocols. In Proceedings of the 9th IEEE Computer Security Foundations
Workshop (CSFW’96), pages 62–76. IEEE Computer Society Press, 1996.

[35] Jeremy Bryans and Steve Schneider. CSP, PVS and a Recursive Authentication
Protocol. In Proceedings of the DIMACS Workshop on Formal Verification of Se-
curity Protocols, 1997.

[36] John A. Bull and David J. Otway. The Authentication Protocol. Techni-
cal Report DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research
Agency, UK, 1997.

[37] Michael Burrows, Mart́ın Abadi, and Roger Needham. A Logic of Au-
thentication. Technical Report SRC 39, Digital Systems Research Cen-
ter, http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-
039.html, 1989.

BIBLIOGRAPHY 120

[38] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[39] Yannick Chevalier and Laurent Vigneron. Automated Unbounded Verification of Se-
curity Protocols. In Proceedings of the 14th International Conference on Computer
Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer Science,
pages 324–337. Springer-Verlag, 2002.

[40] John Clark and Jeremy Jacob. A Survey of Authentication Protocol Literature:
Version 1.0. Technical report, Department of Computer Science, University of York,
http://www-users.cs.york.ac.uk/˜jac/papers/drareviewps.ps, 1997.

[41] Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. the MIT
Press, 1999.

[42] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincolnand, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn Talcott. Maude Manual (Version 2.2).
http://maude.cs.uiuc.edu/maude2-manual/, 2005.

[43] Hubert Comon-Lundh and Véronique Cortier. Security Properties : Two Agents
are Sufficient. Science of Computer Programming, 50:51–71, 2004.

[44] Luca Compagna. SAT-based Model Checking of Security Protocols. PhD thesis,
Universitá degli Studi di Genova and the University of Edinburgh, 2005.

[45] Patrick Cousot. Abstract Interpretation. Symposium on Models of Programming
Languages and Computation, ACM Computing Surveys, 28(2):324–328, 1996.

[46] Patrick Cousot. Abstract Interpretation Based Formal Methods and Future Chal-
lenges. In Informatics - 10 Years Back, 10 Years Ahead, volume 2000 of Lecture
Notes in Computer Science, pages 138–156. Springer-Verlag, 2001.

[47] Giorgio Delzanno, Javier Esparza, and Jĭŕı Srba. Monotonic Set-Extended Prefix
Rewriting and Verification of Recursive Ping-Pong Protocols. In Proceedings of
the 4th International Symposium on Automated Technology for Verification and
Analysis (ATVA’06), volume 4218 of Lecture Notes in Computer Science, pages
415–429. Springer-Verlag, 2006.

[48] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in Key Distribution
Protocols. Communications of the ACM, 24(8):533–536, 1981.

[49] Danny Dolev, Shimon Even, and Richard M. Karp. On the Security of Ping-Pong
Protocols. In Proceedings of the 2nd Annual International Cryptology Conference
(CRYPTO’82), volume 1440 of Lecture Notes in Computer Science, pages 177–186.
Springer-Verlag, 1982.

[50] Danny Dolev and Andrew C. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[51] Luca Durante, Riccardo Sisto, and Adriano Valenzano. Automatic Testing Equiv-
alence Verification of Spi Calculus Specifications. ACM Transactions on Software
Engineering and Methodology, 12(2):222–284, 2003.

BIBLIOGRAPHY 121

[52] Nancy A. Durgin. Logical Analysis and Complexity of Security Protocols. PhD
thesis, Standford University, 2003.

[53] Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov. Undecid-
ability of Bounded Security Protocols. In Proceedings of the Workshop on Formal
Methods and Security Protocols (FMSP’99), 1999.

[54] Bruno Dutertre and Steve Schneider. Using a PVS Embedding of CSP to Verify
Authentication Protocols. In Proceedings of the 10th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs’97), volume 1275 of Lecture
Notes in Computer Science, pages 121–136. Springer-Verlag, 1997.

[55] Clemente Galdi and Raffaella Giordano. Certified E-mail with Temporal Authenti-
cation: An Improved Optimistic Protocol. In Proceedings of the First International
Conference on Trust and Privacy in Digital Business (TrustBus’04), volume 3184
of Lecture Notes in Computer Science, pages 181–190. Springer-Verlag, 2004.

[56] Dieter Gollmann. What Do We Mean by Entity Authentication? In Proceedings of
the 15th IEEE Symposium on Security and Privacy (S&P’96), pages 46–54. IEEE
Computer Society, 1996.

[57] Li Gong, Roger M. Needham, and Raphael Yahalom. Reasoning about Belief in
Cryptographic Protocols. In Proceedings of the 11th IEEE Symposium on Security
and Privacy (S&P’90), pages 234–248. IEEE Computer Society Press, 1990.

[58] Andrew D. Gordon and Alan Jeffrey. Authenticity by Typing for Security Proto-
cols. In Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW’01), pages 145–159. IEEE Computer Society Press, 2001.

[59] Andrew D. Gordon and Alan Jeffrey. Types and Effects for Asymmetric Crypto-
graphic Protocols. In Proceedings of the 15th IEEE Computer Security Foundations
Workshop (CSFW’02), pages 77–91. IEEE Computer Society Press, 2002.

[60] Jan Friso Groote. Transition System Specifications with Negative Premises. Theo-
retical Computer Science, 118(2):263–299, 1993.

[61] Joshua D. Guttman and Fábrega Javier Thayer. Protocol Independence through
Disjoint Encryption. In Proceedings of the 13th IEEE Computer Security Founda-
tions Workshop (CSFW’00), pages 24–34. IEEE Computer Society, 2000.

[62] Joshua D. Guttman, Fábrega Javier Thayer, Jay A. Carlson, Jonathan C. Herzog,
John D. Ramsdell, and Brian T. Sniffen. Trust Management in Strand Spaces: a
Rely-guarantee Method. In Proceedings of the 13th European Symposium on Pro-
gramming (ESOP’04), volume 2986 of Lecture Notes in Computer Science, pages
325–339. Springer-Verlag, 2004.

[63] James Heather, Gavin Lowe, and Steve Schneider. How to Prevent Type Flaw
Attacks on Security Protocols. In Proceedings of the 13th IEEE Computer Security
Foundations Workshop (CSFW’00), pages 255–268. IEEE Computer Society, 2000.

[64] Charles A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

BIBLIOGRAPHY 122

[65] H. Hüttel and J. Srba. Recursion VS. Replication in Simple Cryptographic Proto-
cols. In Proceedings of the 31st Annual Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM’05), volume 3381 of Lecture Notes in Computer
Science, pages 175–184. Springer-Verlag, 2005.

[66] Hans Hüttel and Jĭŕı Srba. Recursive Ping-Pong Protocols. In Proceedings of the
4th International Workshop on Issues in the Theory of Security (WITS’04), pages
129–140, 2004.

[67] ISO/IEC13888-1. Information Technology - Security Techniques - Non-repuduation
- Part 1: General. 1997.

[68] ISO/IEC13888-2. Information Technology - Security Techniques - Non-repuduation
- Part 2: Mechanisms Using Symmetric Techniques. 1997.

[69] ISO/IEC13888-3. Information Technology - Security Techniques - Non-repuduation
- Part 3: Mechanisms Using Asymmetric Techniques. 1997.

[70] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Compiling and
Verifying Security Protocols. In Proceedings of the 7th International Conference
on Logic for Programming and Automated Reasoning (LPAR’00), volume 1955 of
Lecture Notes in Computer Science, pages 131–160. Springer-Verlag, 2000.

[71] Detlef Käehler, Ralf Küsters, and Tomasz Truderung. Infinite State AMC-Model
Checking for Cryptographic Protocols. In Proceedings of the 21th Annual IEEE
Symposium on Logic in Computer Science (LICS’07), pages 181–192. IEEE Com-
puter Society Press, 2007.

[72] Yoshinobu Kawabe, Ken Mano, Hideki Sakurada, and Yasuyuki Tsukada. Backward
Simulations for Anonymity. In Proceedings of the 6th International IFIP WG 1.7
Workshop on Issues in the Theory of Security (WITS’06), pages 206–220, 2006.

[73] Yoshinobu Kawabe, Ken Mano, Hideki Sakurada, and Yasuyuki Tsukada. Theorem-
proving Anonymity of Infinite-state Systems. Information Processing Letters,
101(1):46–51, 2007.

[74] Weiqiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi. Algebraic Approaches to
Formal Analysis of the Mondex Electronic Purse System. In Proceedings of the 6th
International Conference on Integrated Formal Methods (IFM’07), volume 4591 of
Lecture Notes in Computer Science, pages 393–412. Springer-Verlag, 2007.

[75] Steve Kremer. Formal Analysis of Optimistic Fair Exchange Protocols. PhD thesis,
Universite Libre de Bruxelles, 2003.

[76] Steve Kremer, Olivier Markowitch, and Jianying Zhou. An Intensive Survey of Fair
Non-repudiation Protocols. Computer Communications, 25(17):1606–1621, 2002.

[77] Ralf Küsters and Tomasz Truderung. On the Automatic Analysis of Recursive
Security Protocols with XOR. In Proceedings of the 24th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’07), volume 4393 of Lecture Notes
in Computer Science, pages 646–657. Springer-Verlag, 2007.

BIBLIOGRAPHY 123

[78] Ralf Küsters and Thomas Wilke. Automata-based Analysis of Recursive Crypto-
graphic Protocols. In Proceedings of the 21st Annual Symposium on Theoretical
Aspects of Computer Science (STACS’04), volume 2996 of Lecture Notes in Com-
puter Science, pages 382–393. Springer-Verlag, 2004.

[79] Francesca Levi and Davide Sangiorgi. Mobile Safe Ambients. ACM Transactions
on Programming Languages and Systems, 25(1), 2003.

[80] Guoqiang Li and Mizuhito Ogawa. On-the-fly Model Checking of Fair Non-
repudiation Protocols. In Proceedings of the 5th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA’07), volume 4762 of Lecture
Notes in Computer Science, pages 511–522. Springer-Verlag, 2007.

[81] Guoqiang Li and Mizuhito Ogawa. On-the-fly Model Checking of Security Protocols
and Its Implementation by Maude. IPSJ Transactions on Programming, 48, SIG
10(PRO 33):50–75, 2007.

[82] Gavin Lowe. An Attack on the Needham-Schroeder Public-key Authentication Pro-
tocol. Information Processing Letters, 56(3):131–133, 1995.

[83] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-key Using FDR.
In Proceedings of the 2nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’96), volume 1055 of Lecture Notes
in Computer Science, pages 147–166. Springer-Verlag, 1996.

[84] Gavin Lowe. Some New Attacks upon Security Protocols. In Proceedings of the 9th
IEEE Computer Security Foundations Workshop (CSFW’96), pages 162–169. IEEE
Computer Society Press, 1996.

[85] Gavin Lowe. A Hierarchy of Authentication Specifications. In Proceedings of the
10th Computer Security Foundations Workshop (CSFW’97), pages 31–43. IEEE
Computer Society Press, 1997.

[86] Gavin Lowe. Casper: A Compiler for the Analysis of Security Protocols. In Pro-
ceedings of the 10th Computer Security Foundations Workshop (CSFW’97), pages
18–30. IEEE Computer Society Press, 1997.

[87] Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[88] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,
Part I/II. Journal of Information and Computation, 100:1–77, 1992.

[89] David Monniaux. Abstracting Cryptographic Protocols with Tree Automata. Sci-
ence of Computer Programming, 47(2-3):177–202, 2003.

[90] Roger M. Needham and Michael D. Schroeder. Using Encryption for Authentication
in Large Networks of Computers. Communications of the ACM, 21(12):993–999,
1978.

[91] Dan M. Nessett. A Critique of the Burrows, Abadi and Needham Logic. ACM
SIGOPS Operating Systems Review, 24(2):35–38, 1990.

BIBLIOGRAPHY 124

[92] Rocco De Nicola and Matthew B. Hennessy. Testing Equivalences for Processes.
Theoretical Computer Science, 34:83–133, 1984.

[93] Kazuhiro Ogata and Kokichi Futatsugi. Rewriting-based Verification of Authen-
tication Protocols. Electronic Notes in Theoretical Computer Science, 71:208–222,
2002.

[94] Kazuhiro Ogata and Kokichi Futatsugi. Formal Verification of the Horn-Preneel
Micropayment Protocol. In Proceedings of the 4th International Conference on Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI’03), volume 2575
of Lecture Notes in Computer Science, pages 238–252. Springer-Verlag, 2003.

[95] Kazuhiro Ogata and Kokichi Futatsugi. Proof Scores in the OTS/CafeOBJ Method.
In Proceedings of the 6th IFIP WG 6.1 International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’03), volume 2884 of Lecture
Notes in Computer Science, pages 170–184. Springer-Verlag, 2003.

[96] Dave Otway and Owen Rees. Efficient and Timely Mutual Authentication. ACM
SIGOPS Operating Systems Review, 21(1):8–10, 1987.

[97] Catuscia Palamidessi and Frank D. Valencia. Recursion VS. Replication in Process
Calculi: Expressiveness. Bulletin of the EATCS Column: Concurrency, 87.

[98] Lawrence C. Paulson. Mechanized Proofs for a Recursive Authentication Protocol.
In Proceedings of the 10th Computer Security Foundations Workshop (CSFW’97),
pages 84–95. IEEE Computer Society Press, 1997.

[99] Lawrence C. Paulson. The Inductive Approach to Verifying Cryptographic Proto-
cols. Journal of Computer Security, 6:85–128, 1998.

[100] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[101] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The
MIT Press, 2004.

[102] Peter Ryan and Steve Schneider. An Attack on a Recursive Authentication Protocol:
A Cautionary Tale. Information Processing Letters, 65(1):7–10, 1998.

[103] Peter Ryan and Steve Schneider. Process Algebra and Non-interference. In Proceed-
ings of the 12th IEEE workshop on Computer Security Foundations (CSFW ’99),
pages 214–227. IEEE Computer Society, 1999.

[104] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe.
Modelling and Analysis of Security Protocols. Addison Wesley, 2001.

[105] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, 2003.

[106] Steve Schneider. Verifying Authentication Protocols with CSP. In Proceedings of
the 10th Computer Security Foundations Workshop (CSFW’97), pages 3–17. IEEE
Computer Society Press, 1997.

BIBLIOGRAPHY 125

[107] Steve Schneider. Formal Analysis of a Non-repudiation Protocol. In Proceedings of
the 11th Computer Security Foundations Workshop (CSFW’98), pages 54–65. IEEE
Computer Society Press, 1998.

[108] Steve Schneider and Abraham Sidiropoulos. CSP and Anonymity. In Proceedings
of the 4th European Symposium on Research in Computer Security (ESORICS ’96),
volume 1146 of Lecture Notes in Computer Science, pages 198–218. Springer-Verlag,
1996.

[109] Stefan Schwoon. Model-Checking Pushdown System. PhD thesis, Technical Univer-
sity of Munich, 2000.

[110] Vitaly Shmatikov and John C. Mitchell. Finite-state Analysis of Two Contract
Signing Protocols. Theoretical Computer Science, 283(2):419–450, 2002.

[111] Dawn Xiaodong Song. Athena: A New Efficient Automatic Checker for Security
Protocol Analysis. In Proceedings of the 12th Computer Security Foundations Work-
shop (CSFW’99), pages 192–202. IEEE Computer Society, 1999.

[112] William Stallings. Data & Computer Communications (6th Edition). Prentice Hall,
1999.

[113] Paul F. Syverson and Iliano Cervesato. The Logic of Authentication Protocols.
In Proceedings of the Foundations of Security Analysis and Design I (FOSAD’00),
volume 2171 of Lecture Notes in Computer Science, pages 63–136. Springer-Verlag,
2000.

[114] Paul F. Syverson and Paul C. van Oorschot. On Unifying Some Cryptographic Pro-
tocol Logics. In Proceedings of the 15th IEEE Symposium on Security and Privacy
(S&P’94), pages 14–28. IEEE Computer Society Press, 1994.

[115] Alwen Tiu. A Trace Based Bisimulation for the Spi Calculus: An Extended Ab-
stract. In Proceedings of the 5th Asian Symposium on Programming Languages and
Systems (APLAS’07), volume 4807 of Lecture Notes in Computer Science, pages
367–382. Springer-Verlag, 2007.

[116] Tomasz Truderung. Selecting Theories and Recursive Protocols. In Proceedings of
the 16th International Conference of Concurrency Theory (CONCUR’05), volume
3653 of Lecture Notes in Computer Science, pages 217–232. Springer-Verlag, 2005.

[117] Christoph Weidenbach. Towards an Automatic Analysis of Security Protocols in
First-Order Logic. In Proceedings of the 16th International Conference on Auto-
mated Deduction (CADE’99), volume 1632 of Lecture Notes in Computer Science,
pages 314–328. Springer-Verlag, 1999.

[118] Thomas Y.C. Woo and Simon S. Lam. A Semantic Model for Authentication Proto-
cols. In Proceedings of the 14th IEEE Symposium on Security and Privacy (S&P’93),
pages 178–194. IEEE Computer Society Press, 1993.

[119] Thomas Y.C. Woo and Simon S. Lam. A Lesson on Authenticated Protocol Design.
Operating Systems Review, 28(3):24–37, 1994.

BIBLIOGRAPHY 126

[120] Jianying Zhou. Non-repudiation in Electronic Commerce. Computer Security Series.
Artech House, 2001.

[121] Jianying Zhou and Dieter Gollmann. A Fair Non-repudiation Protocol. In Proceed-
ings of the 17th IEEE Symposium on Security and Privacy (S&P’96), pages 55–61.
IEEE Computer Society Press, 1996.

[122] Jianying Zhou and Dieter Gollmann. Towards Verification of Non-repudiation Pro-
tocols. In Proceedings of 1998 International Refinement Workshop and Formal
Methods Pacific, pages 370–380. Springer-Verlag, 1998.

Publications

[1] Guoqiang Li, Mizuhito Ogawa. On-the-fly Model Checking of Fair Non-repudiation
Protocols. In Proceedings of the 5th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA’07), LNCS 4762, 511-522, 2007

[2] Guoqiang Li, Mizuhito Ogawa. On-the-fly model checking of security protocols and
its implementation by Maude. IPSJ Transactions on Programming, Vol.48, No. SIG
10 (PRO 33), 50-75, June, 2007

[3] Min Zhang, Guoqiang Li, Yuxi Fu. Secrecy of Signals by Typing in Signal Transduc-
tion. In Proceedings of the 2nd International Conference on Natural Computation
(ICNC’06), LNCS 4222, 384-393, 2006

[4] Yonggen Gu, Yuxi Fu, Guoqiang Li. A Simple Process Calculus for the Analysis
of Security Protocols. In Proceedings of the 6th International Conference on Paral-
lel and Distributed Computing, Applications and Technologies (PDCAT’05), IEEE
Computer Society, 110-114, 2005

[5] Min Zhang, Guoqiang Li, Yuxi Fu, Zhizhou Zhang, Lin He. Typing Aberrance in
Signal Transduction. In Proceedings of the 1st International Conference on Natural
Computation (ICNC’05), LNCS 3612, 668-677, 2005

127

128

Appendix A

A Brief Introduction to Security
Protocols

A.1 Security Protocols

Literally, a security protocol is a finite sequence of steps taken between two or more
protocol roles using cryptography to establish security properties in a potentially hos-
tile environment. Protocol roles comprise sender (also named originator), receiver (also
named recipient) and server (also named trusted third party), and so on. We refer to in-
stances of protocol roles that are participating in an execution as principals (also named
agents). Each principal is instantiated with an identity, for instance, A, B, S. A session
of a security protocol is one execution of the protocol attended by minimal number of
principals. A principal can play multiple roles in different sessions, for example, A may
be running the protocols as a sender in one session and a receiver in another session. A
run is a subsequences of messages sent and received by attended principals.

According to different security aims and goals, security protocols can roughly classify
as following two categories, authentication protocols and fair exchange protocols.

A.1.1 Authentication Protocols

Authentication protocols 1 are the most widely used security protocols. An authen-
tication protocol is a sequence of message exchanges between principals, which either
distributes secret messages to some of those principals, or allows the use of secret mes-
sages to be recognized.

The goals of authentication protocols are to provide various security services across
a distributed system. These goals include: establishing session keys between principals,
distributing confidential information to expected principals, guaranteeing authentication
of principals, ensuring secrecy, integrity, anonymity, and so on. They involve the exchange
of information between principals, sometimes requiring the participation of a server. The
information they exchange is typically protected by various cryptographic mechanisms,
symmetric and asymmetric encryptions, one-way hash functions and so on. In some cases
further devices like timestamps are also used.

A considerable number of authentication protocols have been specified and imple-
mented. However, many protocols have been shown to be flawed a long time after they

1For intensive surveys and discussions of authentication protocols, referred to [37, 40].

129

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 130

were published. A well-known example is the Needham-Schroeder authentication pro-
tocol. The Needham-Schroeder symmetric key protocol (referred to as the NSSK pro-
tocol) was published in 1978 [90] and became the basis for many similar protocols in
later years. The authors suggested an alternative protocol based on public key cryptog-
raphy, which is named the Needham-Schroeder public key protocol (referred to as the
NSPK protocol). In 1981, Denning and Sacco demonstrated that the Needham-Schroeder
symmetric key Protocol was flawed and proposed a refined protocol [48]. In 1994, Mart́ın
Abadi demonstrated that the protocol that Denning and Sacco refined was also flawed [9].
Furthermore, In 1995, Lowe found an attack on the NSPK protocol (17 years after its
publication) [82, 83].

Other authentication protocols also have flaws, which are not easily to be detected.
Here are some: the Woo-Lam protocol, the Yahalom protocol, the Otway-Rees protocol,
and so on. They are analyzed in this thesis.

A.1.2 Fair Exchange Protocols

A fair exchange protocol 2 deals with the exchange of two items of a given value
between two principals (A and B, for example). The main aim is to realize this exchange
without the risk of each principals being disadvantaged, e.g., A does obtain B’s item, but
B does not obtain A’s item.

There are three general constructions for fair exchange protocols, based on the de-
gree of the involvement of TTP. The first class, which chronologically precedes the other
classes, are fair exchange protocols with no TTPs. These are based on gradual release of
information and require exchanging many messages to “approximate” fair exchange (fair
exchange protocols with no TTPs are theoretically impossible). Moreover, they often as-
sume that the principals have equal computational powers. Protocols of the second class
need the TTP’s intervention in each exchange. A drawback of these protocols is that the
TTP easily becomes a communication bottleneck or a single target of attacks. The third
class of fair exchange protocols, known as optimistic fair exchange protocols [75], requires
the TTP’s intervention only if a failure (accidentally or maliciously) occurs. Therefore,
honest parties that are willing to exchange their items can do so without involving any
TTP.

Fair exchange protocols classifies a vast class of protocols, with slightly different aims
of fairness.

Electronic Commerce Protocols

Electronic commerce protocols (referred to as EC protocols) is one of the most natural
applications of fair exchange protocols. An EC protocol is combined with some of sub-
protocols, like an electronic payment protocol, an electronic management protocol, and
so on. Due to extremely importance of EC protocols, They almost require all security
goals, such as authentication, secrecy, non-repudiation, fairness, integrity, anonymity, and
so on.

2For intensive surveys and historical overviews of fair exchange protocols, referred to [75, 76].

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 131

Non-repudiation Protocols

Non-repudiation protocols [67, 68, 69, 120] intend reliable exchange of messages in the
situation that each principal can be dishonest, who tries to take advantages from other
principals by aborting the communication or sending fake messages. The main goal of
a non-repudiation protocol is to produce the evidences for the sender and the receiver
respectively. An evidence is used digital signatures technology, so that a principal cannot
deny sending the message with its signatures. Non-repudiation protocols should guarantee
that it is impossible to reuse the same evidence for different messages or principals.

In this thesis, both non-repudiation and fairness properties of fair non-repudiation
protocols are analyzed by our methodology.

Certified E-mail Protocols

Certified E-mail protocols (referred to as CEM protocols) are to provide such services:
A wants to send an E-mail to B. It wishes to receive a receipt when B receives (and
is able to read) the email. According to different security goals, sometimes B is willing
to send back a receipt to A only if he guarantee the E-mail comes from A (which is
similar to non-repudiation protocols); sometimes B must successfully send his receipt
without getting any A’s information (Thus the protocols should satisfy authentication
and reputation properties).

Digital Contract Signing Protocols

Digital contract signing protocols are ones of the simplest forms of fair exchange proto-
cols. In a digital contract signing protocol, A and B want to exchange their corresponding
signatures on a given contract text, which is known by both two principals, which makes
the protocol design easier.

A.2 Security Properties

A.2.1 Secrecy

Secrecy, or confidentiality, is a basic goal of security protocols. Intuitively, the secrecy
property means that an intruder is not able to derive a confidential datum that the
principals communicate. This thesis takes this definition. Furthermore, there still exists
a strict interpretation of secrecy property. That is, an intruder should not be able to
perform any traffic analysis without knowing the exact confidential datum. This kind of
secrecy is also named non-interference, which is required that a high-level user’s activity
should not result in any observable effect on low-level users or outside observers of the
system [3, 103].

A.2.2 Authentication

The authentication property is another important security property that is usually
studied in security protocol analysis. Intuitively, authentication means that it can be
sure that a message that purports to be from a certain principal was indeed originated

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 132

by that principal. Gavin Lowe had further discussed the definition of authentication [85],
which has been hierarchized as follows:

Aliveness A protocol guarantees A aliveness of B if, whenever A completes a run of the
protocol, apparently with B, then B has previously been running the protocol.

Weak agreement A protocol guarantees A weak agreement with B if, whenever A com-
pletes a run of the protocol, apparently with B, then B has previously been running
the protocol, apparently with A.

Non-injective agreement A protocol guarantees A non-injective agreement with B on
a set of data ds if, whenever A completes a run of the protocol, apparently with
B, then B has previously been running the protocol, apparently with A, and two
principals agreed on the data values corresponding to all the variables in ds.

Injective agreement A protocol guarantees A agreement with B on a set of data ds
if, whenever A completes a run of the protocol, apparently with B, then B has
previously been running the protocol, apparently with A, and two principals agreed
on the data values corresponding to all the variables in ds, and each such run of A
corresponds to a unique run of B.

Almost all papers [83, 13, 29, 17, 81] took non-injective agreement as the authentication
property. This thesis also follows this explanation. And by our action terms, other kinds
of authentication can also be defined and analyzed.

A.2.3 Key Distribution

T. Woo and S. Lam regarded the key distribution property is another property that is
equally important to authentication [118]. However, the definition of key distribution still
remains ambiguous. Intuitively, by key distribution, we mean that if a principal receives
a session key, then only the principal who sent the key (and the server) knew the key.

Several discussions are focused to the relation between key distribution and authen-
tication. For instance, M. Bellare and P. Rogaway stated that key distribution is “very
different from” authentication [21]. G. Bella pointed out that two goals “are strictly
related” and “might be equivalent”.

In [118], the authentication property (precisely, non-injective agreement) is specified
by the correspondence assertion (we also adopt it to define authentication). Furthermore,
the correspondence assertion, together with secrecy, are usually used to specify the key
distribution property. In this sense, key distribution implies authentication.

The key distribution adopted by G. Bella is actually a weak form of key distribution,
which means, if a principal receives a session key, then only the principal who sent the
key (and the server) can know the key [18, 98]. Its difference from the key distribu-
tion is quite subtle, since “can know” implies “may not know”. Bella pointed out that
non-injective agreement authentication and the weak form of key distribution “might
be equivalent” [18]. However, we showed by the counterexample of the RA protocol in
this these that the weak form of key distribution does not hold non-injective agreement,
specified by the correspondence assertion.

This property needs to be further discussed to clarify its meaning.

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 133

A.2.4 Non-repudiation

For most security goals, we assume that legitimate principals are honest, i.e., behave
according to the protocol rules. The aim of non-repudiation, is to protect one principal
against possible cheating by other principals. Thus, each principal can be dishonest, trying
to take advantages from other principals by aborting the communication or sending fake
messages. Under this assumption, non-repudiation is when a sender sends some message
to a receiver, neither the sender nor the receiver can deny this after participating in this
communication. Usually, it concerns the following two properties [120, 76]:

• Non-repudiation of origin (NRO) is intended to protect against the sender’s false
denial of having sent the messages.

• Non-repudiation of receipt (NRR) is intended to protect against the receiver’s false
denial of having received the message.

This thesis takes the above two definitions as non-repudiation properties. Furthermore,
when we consider indirect communication model, in which a delivery agent is involved
to transfer a message from two principals, non-repudiation should further concern the
following two properties [120].

• Non-repudiation of submission (NRS) is intended to provide the evidence that the
sender submitted the message for delivery.

• Non-repudiation of delivery (NRD) is intended to provide that the message has been
delivered to the receiver.

A.2.5 Fairness

Similar to non-repudiation, fairness should also be defined under the assumption that
each principal can be dishonest. Fairness means no principals can obtain an important
item from other principal while the other principal cannot do so. The important item
varies from different protocols. For example, in a non-repudiation protocol, the item
means the evidence of the counterpart principal; in a certified E-mail Protocols, items
means the Email and reader’s receipt, respectively, etc. For detailed summarizations and
comparisons of fairness definitions, referred to [75].

A.2.6 Anonymity

Intuitively, a protocol that is anonymous over a set of events E, should guarantee that
when an event from E occurs then an observer will be unable to identify which event in E
does so. This depends on the status of the observer, and thus it must be clear about the
observer viewpoint in formalizing the property. Typically the set E is an indexing set of
principals, so an observer should not identify which principals associated with the event.

A.3 Vulnerabilities and Attacks

To illustrate kinds of attacks for security protocols shows us strategies that intruders
might employ. Note that our method does not depend on knowing these strategies.

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 134

The attacks we introduce blow are of course not exhaustive. They will serve to illus-
trate the various styles of attack. There are still other styles of attacks, such as cryptan-
alytic, monitoring timing, or fluctuations in power consumption. These attacks are out
the scope of our analysis.

A useful categorization of attacks is in terms of passive attacks and active attacks [112].

A.3.1 Passive Attacks

Passive attacks are in the nature of eavesdropping on transmissions of networks. These
attacks often violate secrecy of a security protocol, since they can get the confidential
information from a public network. Basically, there are two kinds of passive attacks.

Releasing Messages

This kind of attacks is easily understood. Intruders may obtain messages from net-
works, then analyze them based on their knowledge and computation ability to get con-
fidential information. It obviously violates the secrecy property. So we should prevent
intruders from learning the information from transmissions.

Traffic Analysis

Traffic analysis (also named as oracle attack) is more subtle. Suppose we encrypt
each message with a “perfect” encryption system, so that intruders could not extract the
information from these messages, even if they captured the messages. However, intruders
might still be able to observe the pattern of these messages. They could determine the
location and identity of communicating hosts, and observe the frequency and length of
messages being exchanged. This information might be useful in guessing the nature of
communications. One possible attack of traffic analysis is to violate the non-interference
property [3, 103].

A.3.2 Active Attacks

Active attacks involve some modifications of the data stream, or the creation of a
false stream. It has many categories. We only introduce some of them in the following
subsections. Note that an attack to a security protocol may be composed of several kinds
of attacks introduced below. For instance, almost all attacks for protocols in multiple
sessions are composed of man-in-middle attacks and replay attacks.

Man-in-middle Attack

Man-in-middle attacks involve an intruder imposing himself in the communications
between two principals in various ways. For instance, it may be able to masquerade as
principal to the other principal. The most well-known man-in-middle attack may be the
attack for the NSPK protocol (see Subsection 5.5.2). An intruder communicates with A,
and at the same time masquerades A to communicate with B.

Man-in-middle attacks are difficult to detect, since usual models only model that each
honest principal communicates with each other. Our method is efficient, since by binders
we parameterize principals one may communicate with. Thus we can detect the attack

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 135

for the NSPK protocol in one session, while other method detected it in two sessions.
In their methodologies, a principal will explicitly communicate with an intruder in one
session [17, 29].

Replay Attack

In a replay attack, intruders monitor a run of the protocol, and at some later com-
munications they replays one or more of the messages. If a security protocol does not
have any mechanism (like nonces, timestamps, for instance) to distinguish between two
separate sessions, or it cannot detect the staleness of a message, it is quite possible to
fool honest principals into rerunning parts of the protocol. An example of replay attacks
is the attack for the simplified ZG protocol (see Subsection 7.4). An intruder reuses the
message sent by A in the first flow to cheat the server in the third flow. In comparison,
in the full ZG protocol, a set of effective nonces is adopted, and thus replay attacks are
avoided.

Reflection Attack

Reflection attacks are to send messages that a principal generated back to itself. Some-
times this can fool the sender into revealing the correct response to its messages. The
attacks usually happen in the symmetry of the situation. The general attack outline is as
follows:

• A intruder initiates a protocol to a server.

• The server attempts to authenticate the intruder by sending it a message.

• The intruder opens another connection to the target, and sends the server this
message as its own.

• The server responds to the message.

• The intruder sends that response back to the server on the original connection. If
the protocol is not carefully designed, the target will accept that response as valid,
thereby leaving the intruder with an authenticated communication.

Denial of Service Attack

A denial of service attack (DoS attack) is an attempt to make a computer resource
unavailable to its intended users. Intruders of DoS attacks typically, but not exclusively,
target sites or services hosted on high-profile web servers.

One common method of attack involves saturating the target machine with external
communications requests, so that it cannot respond to legitimate traffic, or responds
so slowly as to be rendered effectively unavailable. In general terms, DoS attacks are
implemented by,

• forcing the targeted computer(s) to reset, or consume its resources such that it can
no longer provide its intended service.

• obstructing the communication media between the intended users and the target
machine so that they can no longer communicate adequately.

APPENDIX A. A BRIEF INTRODUCTION TO SECURITY PROTOCOLS 136

Appendix B

Semantics of Process Calculi

This chapter will briefly introduce several different semantics of process calculi. These
semantics are adopted by various process calculi. The purpose of this chapter is to refer
to these semantics under a unified formulism. When these terminologies are used in this
thesis, one can have an intuitive understanding of them. Firstly, CCS will be chosen as
the first calculus, introducing transitional labeled transitional semantics, trace semantics,
failure semantics and testing semantics. Then the π-calculus will be adopted as a value-
passing calculus to illustrate early semantics, late semantics and symbolic semantics.

B.1 CCS

The CCS introduced in this section comes originally from [87]. We shall assume an
infinite set A of names, and use a, b, c, . . . to range over A. We denote by A the set of
co-name. a, b, c, . . . will range over A. Then we let L, the set of labels, satisfies L = A∪A,
and define set of actions, Act = L ∪ {τ}. We let α, β, . . . range over Act.

Further, we introduce a set K of agent constants. Let A,B, . . . range over K. Then
the set of agent is denoted by P , and we shall let P,Q, . . . range over agents. Then P can
be inductively defined as follows:

P,Q, R ::= 0 | α.P | P + Q | P |Q | P\L | P [f] | A
A constant is an agent whose meaning is given by a unique defining equation. We

assume for every constant A, there is a defining equation of the form,

A , P

B.1.1 Labeled Transitional Semantics

For the given set of agents, we will use the general notion of a labeled transition system

〈S, T, { t→: t ∈ T}〉
which consists of a set S of states, a set T of transition labels and a transition relation
t→⊆ S × S for each t ∈ T .

The complete set of transitions rules is given in Figure B.1; the name Act, Sum,
Com, Res, Rel, and Con indicate that the rules are associated with prefix, summation,
composition, restriction, relabeling and with constant, respectively.

137

APPENDIX B. SEMANTICS OF PROCESS CALCULI 138

α.P
α−→ P

Act
P

α−→ P ′

P + Q
α−→ P ′ Suml

Q
α−→ Q′

P + Q
α−→ Q′ Sumr

P
α−→ P ′

P | Q α−→ P ′ | Q Coml
Q

α−→ Q′

P | Q α−→ P | Q′ Comr

P
l−→ P ′ Q

l−→ Q′

P | Q τ−→ P ′ | Q′ Comτ

P
α−→ P ′

P\L α−→ P ′\L (α, α /∈ L) Res
P

α−→ P ′

P [f]
f(α)−→ P ′[f]

Rel

P
α−→ P ′

A
α−→ P ′ (A , P) Con

Figure B.1: Labeled Transition System of CCS

B.1.2 Strong and Weak Bisimulations

This subsection introduces a common algebraic theory of process calculi, bisimulation.
Two fundamental definitions of bisimulations for CCS are given, and these lead to notions
of equalities over the calculus, called strong/observation equivalence or strong/weak bisim-
ilarity, respectively. They are important semantical equivalences over CCS processes. The
notion of bisimulation appears in many places in mathematical logic and computer science
under different names (Note that the following definitions mainly come from [87]).

Definition B.1 (Strong bisimulation). A binary relation S ⊆ P × P over agents is a
strong bisimulation if (P,Q) ∈ S implies, for all α ∈ Act,

• Whenever P
α−→ P ′, then for some Q′, Q

α−→ Q′ and (P ′, Q′) ∈ S;

• Whenever Q
α−→ Q′, then for some P ′, P

α−→ P ′ and (P ′, Q′) ∈ S;.

Definition B.2 (Strong equivalence). P and Q are strongly equivalent or strongly bisim-
ilar, written P ∼ Q, if (P,Q) ∈ S for some strong bisimulation S. That is,

∼ =
⋃
{S | S is a strong bisimulation}

The following bisimulation is relaxed to allow some, but not all, of the internal behav-
iors of a system to be ignored, which leads to a notion of observation equivalence. Before
defining the bisimulation, several preliminary definitions are needed.

Definition B.3 (Preliminary definitions). If t = α1 . . . αn ∈ Act∗, then

• t̂ ∈ L∗ is the sequence gained by removing all occurrences of τ from t.

• We write P
t−→ P ′, if P

α1−→ . . .
αn−→ P ′. We also write P

t−→ to mean that

P
t−→ P ′ for some P ′.

APPENDIX B. SEMANTICS OF PROCESS CALCULI 139

• P
t

=⇒ P ′, if P
τ−→∗ α1−→ τ−→∗

. . .
τ−→∗ αn−→ τ−→∗

P ′. We also write P
t

=⇒, if P
t

=⇒ P ′,
for some P ′

Definition B.4 (Weak bisimulation). A binary relation S ⊆ P × P over agents is a
(weak) bisimulation if (P,Q) ∈ S implies, for all α ∈ Act,

• Whenever P
α−→ P ′, then for some Q′, Q

α̂
=⇒ Q′ and (P ′, Q′) ∈ S;

• Whenever Q
α−→ Q′, then for some P ′, P

α̂
=⇒ P ′ and (P ′, Q′) ∈ S.

Definition B.5 (Observation equivalence). P and Q are observation-equivalent or weakly
bisimilar, written P ≈ Q, if (P,Q) ∈ S for some weak bisimulation S. That is,

≈ =
⋃
{S | S is a weak bisimulation}

B.1.3 Trace Semantics and Equivalence

Besides strong and weak bisimilarity, some variations of equivalences are also proposed,
abstracting internal actions in different ways, in which trace equivalence is perhaps the
simplest and most straightforward.

Trace semantics explicitly records actions performed by a process with respect to some
transition by a trace. The configuration of a trace semantics is usually denoted by a pair
〈s, P 〉, in which s is a trace, and P is a process. Note that according to Definition B.3,

〈s, P 〉 with respect to −→ is represented by P
t−→. Thus we have trace equivalence.

Definition B.6 (Trace equivalence). P and Q are trace equivalent, written P ≈t Q, if
for all s ∈ L∗, P

s
=⇒ if and only if Q

s
=⇒.

B.1.4 Failure Semantics and Equivalence

Failure equivalence appears between trace equivalence and weak bisimilarity. The
following definition of failure comes from Professor Yuxi Fu’s lecture, who pointed out
that the definition in [87] was flawed.

Definition B.7 (Failure). A failure is a pair (s, L), where s ∈ L∗ is a trace and L ⊆ L is
a set of labels. The failure (s, L) is said to belong to a process P if there exists P ′ such
that

• P
s

=⇒ P ′

• For all l ∈ L, P ′ l

6=⇒
Definition B.8 (Failure Equivalence). Two processes P and Q are failures-equivalent,
written P ≈f Q, if they possess exactly the same failures.

B.1.5 Testing Semantics and Equivalence

Testing semantics is another semantic theory for processes. In the theory, the behavior
of programs or processes can be investigated by a series of tests. For sequential programs,
a test is considered as a pair, consisting of a predicate on the input domain and a predicate
on the output domain.

We redefine the following concepts in [92] with modern notations in the unified for-
mulism we used above.

APPENDIX B. SEMANTICS OF PROCESS CALCULI 140

General Definitions

Let’s have the following predefinitions:

• A set of states, ST , and let st range over states;

• A computation is any non-empty sequence of states. Let CT denote the set of
computations, ranged over by ct.

• Let OT , PT (ranged over by ot, pt) be sets of observers and processes.

• An observer ot performing tests on processes pt is denoted by a non-empty set of
computations, CT (ot, pt). If ct ∈ CT (ot, pt), we say that the result of ot testing pt

may be the computation ct.

• A set Ssuc ⊆ ST is a set of success. A computation is successful if it contains a
successful state. Otherwise, it is called unsuccessful.

• For each state, there exists a unary post-fixed predicate, ↑.
Definition B.9 (Divergence). Divergence is a unary post-fixed predicate on computa-
tions, written ⇑. ct ⇑ if

• c is unsuccessful.

• c contains a state s, such that s ↑, and is not preceded by a successful state.

Definition B.10 (Result). For every ot ∈ OT , pt ∈ PT , let the result, RT (ot, pt) ⊆
{>,⊥} be defined by,

• > ∈ RT (ot, pt), if ∃ct ∈ CT (ot, pt) such that ct is successful.

• ⊥ ∈ RT (ot, pt), if ∃ct ∈ CT (ot, pt) such that ct ⇑.

The set {>,⊥} can be viewed as a two point lattice (see (a), Figure B.2). By the
theory of power domains, three different subsets are constructed to give three different
orderings on result sets, given in Figure B.2, (b), (c), (d), which are denoted by v1, v2,
v3, respectively.

�

⊥

(a)

�

{�,⊥}

⊥

(b)

�

{�,⊥} = ⊥

(c)

� = {�,⊥}

⊥

(d)

Figure B.2: Lattice on Result Sets

APPENDIX B. SEMANTICS OF PROCESS CALCULI 141

Definition B.11 (Testing Equivalences). For given sets of observers and processes, OT
and PT , respectively, let vOTi , i = 1, 2, 3 be defined by,

pt vOTi qt if ∀ot ∈ OT ,RT (ot, pt) vi RT (ot, qt)

Testing equivalences over a set of observers OT , denoted by 'OTi , are relations such that
'OTi =vOTi ∩ wOTi .

If > ∈ RT (ot, pt), we say that pt may satisfy ot. If > = RT (ot, pt), we say that pt

must satisfy ot.

Testing Semantics for CCS

The following shows that how to view CCS as a particular example of the general
setting of testing semantics. Firstly, let’s define a set of predicate on closed processes of
CCS.

Definition B.12 (Predicate on CCS). Let ↓ be the least predicate on closed processes
which satisfies:

• 0 ↓, α.P ↓.
• P ↓, Q ↓ imply (P + Q) ↓, (P | Q) ↓, (P\L) ↓, and (P [f]) ↓.
• A ↓ if A , P and P ↓.
Let P ↑ if not P ↓. For instance, A ↑ in A , c.0 + A. Intuitively, P ↑ means that

there is an unguarded occurrence of a constant.
The set of PT contains the closed processes in CCS, while the set of OT contains all

closed processes in CCS, in which set of actions is Act∗ = Act∪ {ω}. ω is a distinguished
action symbol, not in Act. It is used to report success.

Moreover,

• ST = OT ,

• Ssuc = {P | ∃P ′.P
ω−→ P ′}

• A computation is any sequence of terms {Pn | n ≥ 0} such that, if Pn is final element

in the sequence then Pn

τ

6−→, otherwise Pn
τ−→ Pn+1.

• CT (ot, pt) are the set of computations whose initial element is the process (ot | pt).

B.2 π-calculus

The π-calculus is used to illustrate value-passing process calculi, by which three tra-
ditional semantics are introduced. The syntax of the π-calculus adopted here comes
originally from [105]. Note that the following definitions are sightly different from those
defined in [88].

APPENDIX B. SEMANTICS OF PROCESS CALCULI 142

Definition B.13 (Prefixes). Let N be a countable set of names, and let x, y range over
it. The capabilities for actions of the calculus are expressed via prefixes, of which there
are four kinds:

π ::= xy | x(z) | τ | [x = y]π

Definition B.14 (Processes). The processes of the π-calculus are given by

P ::= M | P |P | (νz)P |!P
M ::= 0 | π.P | M + M

B.2.1 Early Semantics

The content in this subsection comes originally from [105]. The actions for the early
labeled transition system are given by

α ::= xy | xy | x(z) | τ
Table B.1 shows terminology and notation for actions in early transition system: the

kind of the action, its subject (channel), its object (sending name), its set of free names,
its set of bound names, its set of names, and the effect of applying a substitution to it.

α kind subj(α) obj(α) fn(α) bn(α) ασ
xy free output x y {x, y} ∅ xσyσ
xy input x y {x, y} ∅ xσyσ

x(y) output x y {x} {y} xσ(y)
τ internal ∅ ∅ τ

Table B.1: Terminology and Notation for Actions in the Early Transition System

The early transition relations are defined in the Figure B.3.

Definition B.15 (Early bisimilarity). Early bisimilarity is the largest symmetric relation,
∼e, such that whenever P ∼e Q,

• P
x(z)−−→ P ′ implies, for every y there is Q′ such that Q

x(z)−−→ Q′ and P ′ ∼e Q′.

• if α is not an input action then P
α−→ P ′ implies Q

α−→ Q′ and P ′ ∼e Q′.

B.2.2 Late Semantics

The content in this subsection also comes from [105]. The actions for the late labeled
transition system are given by

α ::= xy | x(y) | x(z) | τ
Table B.2 shows terminology and notation for actions in early transition system.

The main difference between the early and the late transition system is the input
action rules, INP and L-INP. In the late relations, the free input actions xy are replaced
by bound input actions x(z).

The late transition relations are defined in the Figure B.4.

APPENDIX B. SEMANTICS OF PROCESS CALCULI 143

xy.P
xy−→ P

OUT
x(z).P

xy−→ P{y/z} INP
τ.P

τ−→ P
TAU

π.P
α−→ P ′

[x = x]π.P
α−→ P ′ MAT

P
α−→ P ′

P | Q α−→ P ′ | Q bn(α) ∩ fn(Q) = ∅ PAR-L

P
α−→ P ′

Q | P α−→ Q | P ′ bn(α) ∩ fn(Q) = ∅ PAR-R

P
α−→ P ′

P + Q
α−→ P ′ + Q

SUM-L
P

α−→ P ′

Q + P
α−→ Q + P ′ SUM-R

P
xy−→ P ′ Q

xy−→ Q′

P | Q τ−→ P ′ | Q′ COMM-L
P

xy−→ P ′ Q
xy−→ Q′

P | Q τ−→ P ′ | Q′ COMM-R

P
x(z)−−→ P ′ Q

xz−→ Q′

P | Q τ−→ (νz)(P ′ | Q′)
z /∈ fn(Q) CLOSE-L

P
xz−→ P ′ Q

x(z)−−→ Q′

P | Q τ−→ (νz)(P ′ | Q′)
z /∈ fn(P) CLOSE-R

P
α−→ P ′

(νz)P
α−→ (νz)P ′ z /∈ n(α) RES

P
xz−→ P ′

(νz)P
x(z)−−→ P ′ z 6= x OPEN

P
α−→ P ′

!P
τ−→ P ′ |!P REP-ACT

P
xy−→ P ′ P

xy−→ P ′′

!P
τ−→ (P ′ | P ′′) |!P REP-COMM

P
x(z)−−→ P ′ P

xz−→ P ′′

!P
τ−→ ((νz)(P ′ | P ′′)) |!P z /∈ fn(P) REP-CLOSE

Figure B.3: The Early Transition Rules

α kind subj(α) obj(α) fn(α) bn(α) ασ
xy free output x y {x, y} ∅ xσyσ

x(y) bound input x y {x} {y} xσ(y)
x(y) output x y {x} {y} xσ(y)
τ internal ∅ ∅ τ

Table B.2: Terminology and Notation for Actions in the Late Transition System

On the late semantics, we can also define the early bisimilarity. There is a slight
difference from the early bisimilarity defined on the early semantics. Besides that, we can
also define a late bisimilarity.

APPENDIX B. SEMANTICS OF PROCESS CALCULI 144

xy.P
xy7−→ P

L-OUT
x(z).P

x(z)7−→ P
L-INP

τ.P
τ7−→ P

L-TAU

π.P
α7−→ P ′

[x = x]π.P
α7−→ P ′ L-MAT

P
α7−→ P ′

P | Q α7−→ P ′ | Q bn(α) ∩ fn(Q) = ∅ L-PAR-L

P
α7−→ P ′

Q | P α7−→ Q | P ′ bn(α) ∩ fn(Q) = ∅ L-PAR-R

P
α7−→ P ′

P + Q
α7−→ P ′ + Q

L-SUM-L
P

α7−→ P ′

Q + P
α7−→ Q + P ′ L-SUM-R

P
xy7−→ P ′ Q

x(z)7−→ Q′

P | Q τ7−→ P ′ | Q′{y/z} L-COMM-L
P

x(z)7−→ P ′ Q
xy7−→ Q′

P | Q τ7−→ P ′{y/z} | Q′ L-COMM-R

P
x(z)7−→ P ′ Q

x(z)7−→ Q′

P | Q τ7−→ (νz)(P ′ | Q′)
L-CLOSE-L

P
x(z)7−→ P ′ Q

x(z)7−→ Q′

P | Q τ7−→ (νz)(P ′ | Q′)
L-CLOSE-R

P
α7−→ P ′

(νz)P
α7−→ (νz)P ′ z /∈ n(α) L-RES

P
xz7−→ P ′

(νz)P
x(z)7−→ P ′ z 6= x L-OPEN

P
α7−→ P ′

!P
α7−→ P ′ |!P L-REP-ACT

P
xy7−→ P ′ P

x(z)7−→ P ′′

!P
τ7−→ (P ′ | P ′′{y/z}) |!P L-REP-COMM

P
x(z)7−→ P ′ P

x(z)7−→ P ′′

!P
τ7−→ ((νz)(P ′ | P ′′)) |!P L-REP-CLOSE

Figure B.4: The Late Transition Rules

Definition B.16 (Early bisimilarity on the late semantics). Early bisimilarity on the late
semantics is the largest symmetric relation, ∼l

e, such that whenever P ∼l
e Q,

• P
x(z)7−→ P ′ implies, for every y there is Q′ such that Q

x(z)7−→ Q′ and P ′{y/z} ∼l
e

Q′{y/z}.
• if α is not an input action then P

α7−→ P ′ implies Q
α7−→ Q′ and P ′ ∼l

e Q′.

Definition B.17 (Late bisimilarity). Late bisimilarity is the largest symmetric relation,
∼l, such that whenever P ∼l Q,

• P
x(z)7−→ P ′ implies there is Q′ such that Q

x(z)7−→ Q′ and P ′{y/z} ∼l Q′{y/z} for every
y.

APPENDIX B. SEMANTICS OF PROCESS CALCULI 145

• if α is not an input action then P
α7−→ P ′ implies Q

α7−→ Q′ and P ′ ∼l Q′.

B.2.3 Symbolic Semantics

The content in this subsection comes originally from [31], with several modifications.
The symbolic semantics is also a traditional semantics for process calculi, which is

used in automatic reasoning based on process calculi. The first typical characterization
of symbolic semantics is that each input variable is kept un-instantiated as a placeholder,
avoiding infinitely instantiation to names. This is also a characterization of the late
semantics. Another characterization of symbolic semantics, also its difference from the
late semantics, is that it does not perform match operations explicitly. Instead, it regards
these operations as boolean formulae. A boolean formula collects the conditions on the
free names of a process necessary for an action to take place.

Definition B.18 (Boolean formulae). Let N be the set of names, and let x, y range over
it. Let φ range over the language of boolean formulae, BF .

φ ::= true | [x = y] | ¬φ | φ ∧ φ

The symbolic transition relations are defined in the Figure B.5, in which the function
Rz : BF → BF :

Rz(true) = true
Rz([w1 = w2]) = [w1 = w2] z 6∈ {w1, w2}
Rz([z = z]) = true
Rz([z = w]) = false z 6= w

Rz(¬φ) = ¬Rz(φ)
Rz(φ ∧ ψ) = Rz(φ) ∧Rz(ψ)

APPENDIX B. SEMANTICS OF PROCESS CALCULI 146

xy.P
true,xy−−−−→ P

S-OUT
x(z).P

true,x(z)−−−−−→ P
S-INP

τ.P
true,τ−−−→ P

S-TAU

π.P
φ,α−−→ P ′

[x = y]π.P
φ∧[x=y],α−−−−−−→ P ′ S-MAT

P
φ,α−−→ P ′

P | Q φ,α−−→ P ′ | Q bn(α) ∩ fn(Q) = ∅ S-PAR-L

P
φ,α−−→ P ′

Q | P φ,α−−→ Q | P ′ bn(α) ∩ fn(Q) = ∅ S-PAR-R

P
φ,α−−→ P ′

P + Q
φ,α−−→ P ′ + Q

S-SUM-L
P

φ,α−−→ P ′

Q + P
φ,α−−→ Q + P ′ S-SUM-R

P
φ,xy−−→ P ′ Q

ψ,w(z)−−−−→ Q′

P | Q φ∧ψ∧[x=w],τ−−−−−−−→ P ′ | Q′{y/z} S-COMM-L

P
φ,w(z)−−−→ P ′ Q

ψ,xy−−→ Q′

P | Q φ∧ψ∧[x=w],τ−−−−−−−→ P ′{y/z} | Q′ S-COMM-R

P
φ,x(z)−−−→ P ′ Q

ψ,w(z)−−−−→ Q′

P | Q φ∧ψ∧[x=z],τ−−−−−−−→ (νz)(P ′ | Q′)
S-CLOSE-L

P
φ,w(z)−−−→ P ′ Q

ψ,x(z)−−−→ Q′

P | Q φ∧ψ∧[w=x],τ−−−−−−−→ (νz)(P ′ | Q′)
S-CLOSE-R

P
φ,α−−→ P ′

(νz)P
Rz(φ),α−−−−→ (νz)P ′ z /∈ n(α) S-RES

P
φ,xz−−→ P ′

(νz)P
Rz(φ),x(z)−−−−−−→ P ′ z 6= x S-OPEN

P
φ,α−−→ P ′

!P
φ,α−−→ P ′ |!P S-REP-ACT

P
φ,xy−−→ P ′ P

ψ,w(z)−−−−→ P ′′

!P
φ∧ψ∧[x=w],τ−−−−−−−→ (P ′ | P ′′{y/z}) |!P S-REP-COMM

P
φ,x(z)−−−→ P ′ P

ψ,w(z)−−−−→ P ′′

!P
φ∧ψ∧[x=w],τ−−−−−−−→ ((νz)(P ′ | P ′′)) |!P S-REP-CLOSE

Figure B.5: The Symbolic Transition Rules

Appendix C

Compacting Parametric Traces with
Type

Although the number of parametric traces generated by the parametric model for a
security protocol in bounded sessions is finite, it is still too large to be handled, with
lots of redundant parametric traces. For example, considering the following parametric
transitions,

〈ε, a(x).case x of {y}k[A,B] in P ′〉 −→p

〈a(x), case x of {y}k[A,B] in P ′〉 −→p

〈a({y}k[A,B]), P
′{{y}k[A,B]/x}〉

There are two parametric traces generated currently, a(x) and a({y}k[A,B]). Actually,
a(x) is a redundant parametric trace, since in reality, an input action and its following
validating actions, such as decryption, splitting, matching, can be regarded an atomic
action, among which no attacks can occur. In the above example, it is sufficient to only
check whether a({y}k[A,B]) satisfies a given action term.

To reduce the redundant parametric traces, a statical analysis on a process that de-
scribes a security protocol is proposed, gathering the information of each input variable
by a type system [100, 101], then translating the process to its corresponding parametric
process according to the type. By a simple semantics, the parametric process generates
parametric traces. The set of parametric traces generated by this semantics is a proper
subset of parametric traces generated by the parametric model in Figure 5.3. We find
a corresponding concrete model with type restriction, which is sound and complete with
respective to the representation. In the above example, its corresponding parametric
process will be

a({y}k[A,B]).case {y}k[A,B] of {y}k[A,B] in P ′{{y}k[A,B]/x}
which only generates one parametric trace, a({y}k[A,B]).

147

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 148

C.1 Type System

Definition C.1 (Type). Let T be the set of types. Its syntax is inductively defined as
follows:

τ ::=
α Type variable
b Base type
τ ∗ τ Pair type
σ[τ1, . . . , τn] Binder type
ªτ | ª+τ | ª−τ | ª?τ Encrypted type
unit Nil type
τ + τ Disjoint type
τ → τ Arrow type

Intuitively interpreting,

• α ranges over a countable set of type variables.

• b ranges over the set of base types, which consists of an identity type i for names of
principals, a nonce type n for nonces, h for hash message, and other kinds of base
types, for instance, int, char, etc.

• The pair type τ ∗ τ is given to a pair message.

• The binder type σ[τ1, . . . , τn] is given to a binder m[pr1, . . . , prn], where σ ranges over
the set of binder name types, and τ1, . . . , τn are the types of the binder’s parameters
pr1, . . . , prn, respectively. For example k, k+, k−, . . . are binder name types for binder
names k, +k,−k, respectively, so the type of a binder k[A,B] is k[i, i]. Since given a
binder name type, its parameters’ types will be fixed, for simplicity, we usually use
a binder name type to represent a binder’s type. For instance, the type of k[A,B]
is usually abbreviated to k.

• The shared-key encryption type, ªτ , is given to an encrypted message encrypted
by a shared-key, and τ is the type for its plain message. Similarly, ª+τ is for a
public-key encrypted message, and ª−τ is for a private-key encrypted message, say,
a digital signature. ª?τ is for an encrypted message whose key cannot be decided
statically.

• The type unit is a nil type for the 0 process.

• The disjoint type τ + τ is given to a composition process, P‖Q.

• The arrow type τ → τ is given to an input process, which is similar to the type of
the abstraction in λ-calculus.

We use an expression e where e ∈ M∪ P to describe a message or a process. Let Γ
be a type environment mapping from the set of variables V , to the set of types T . The
typing inference system has the form Γ `t e : τ , in which Γ is a type environment, e is the
expression whose type will be inferred and τ is the type of e. If the type environment is
an empty set, the form is abbreviated to `t e : τ . Furthermore, we presuppose a function
TypeOf : P(N)∪P(B) → T that assigns a type to a set of names or binder names. Here

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 149

Γ `t x : τ
(x, τ) ∈ Γ Msg Variable

Γ `t n : b
b = TypeOf(n) Msg Name

Γ `t H(M) : b
b = TypeOf(H(M)) Msg Hash

Γ `t p̃r : τ1 ∗ . . . ∗ τn

Γ `t m[p̃r] : σ[τ1, . . . , τn]
σ = TypeOf(m) Msg Binder

Γ `t M : τ1 Γ `t N : τ2

Γ `t (M,N) : τ1 ∗ τ2
Msg Pair

Γ `t M : τ Γ `t L : k∗

Γ `t {M}L : ª∗τ ª∗ τ =

ªτ k∗ = k
ª+τ k∗ = k+

ª−τ k∗ = k−
ª?τ k∗ = α

Msg Enc

Γ `t 0 : unit
Nil

Γ `t P : τ2 Γ `t n : τ1

Γ `t (ν n)P : τ2
Restriction

Γ, {x : τ1} `t P : τ2

Γ `t (newx : A)P : τ2
τ1 = TypeOf(A) New

Γ, {x : τ1} `t P : τ2

Γ `t a(x).P : τ1 → τ2
Input

Γ `t P : τ1 Γ `t M : τ2

Γ `t aM.P : τ1
Output

Γ, {x : τ1, y : τ2} `t P : τ3 Γ `t M : τ1 ∗ τ2

Γ `t let (x, y) = M in P : τ3
Pair

Γ, {x : τ1} `t P : τ2 Γ `t M : ª∗τ1 Γ `t L : k∗

Γ `t case M of {x}L in P : τ2 ª∗ τ =

ªτ k∗ = k
ª+τ k∗ = k−
ª−τ k∗ = k+

ª?τ k∗ = α

Dec

Γ `t M : τ1 Γ `t N : τ1 Γ `t P : τ2

Γ `t [M = N] P : τ2
Match

Γ `t P : τ1 Γ `t N : τ2

Γ `t P‖Q : τ1 + τ2
Composition

Figure C.1: Typing Rules

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 150

TypeOf(n) is the abbreviation of TypeOf({n}). The typing rules for the expressions are
given in Figure C.1.

The typing system does not provide an easy way to assign a type to an expression e.
Thus a type algorithm is provided and its correctness is verified. In the algorithm, given a
typing environment Γ and an expression e, a substitution θ mapping from type variables
to types and a type τ can be calculated, which satisfy

Γθ `t e : τ

Before defining the algorithm, we provide a type unification algorithm, which can
be used in the type inference algorithm. An occurrence check function FTV (τ, α) is
presupposed as usual, which satisfies that α does not occur in τ if FTV (τ, α) = True.
The unification algorithm has the following form Unify(τ, τ ′) = (θ, σ). That is, given two
types τ and τ ′, it either returns a substitution θ and a type σ that satisfy τθ = τ ′θ = σ,
or raises failure.

The Unify and Infer algorithms are given in Algorithm 3 and Algorithm 4, respec-
tively. We will prove that every type calculated by the algorithm Infer can be inferred
by the typing rules in Figure C.1.

Algorithm 3 The Unification Algorithm

Unify(τ, τ ′) = (θ, σ)

1. Unify(α, τ ′) = ({τ ′/α}, τ ′), if FTV (τ ′, α).

2. Unify(τ, τ) = (Id, τ).

3. let Unify(τ1, τ
′
1) = (θ1, σ1), Unify(τ2θ1, τ

′
2θ1) = (θ2, σ2) in

Unify(τ1 ∗ τ2, τ
′
1 ∗ τ ′2) = (θ1θ2, σ1θ2 ∗ σ2).

4. let Unify(τ1, τ
′
1) = (θ, σ1), σ = ª∗σ1 in

Unify(ª∗τ1,ª∗τ ′1) = (θ, σ) (ª∗ ∈ {ª+,ª−,ª,ª?}).
5. let Unify(τ1, τ

′
1) = (θ1, σ1), Unify(τ2θ1, τ

′
2θ1) = (θ2, σ2) in

Unify(τ1 + τ2, τ
′
1 + τ ′2) = (θ1θ2, σ1θ2 + σ2).

6. let Unify(τ1, τ
′
1) = (θ1, σ1), Unify(τ2θ1, τ

′
2θ1) = (θ2, σ2) in

Unify(τ1 → τ2, τ
′
1 → τ ′2) = (θ1θ2, σ1θ2 → σ2).

7. raise error.

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 151

Algorithm 4 The Type Inference Algorithm

Infer(Γ, e) = (θ, τ)

1. Infer(Γ, x) = (Id, τ) where (x, τ) ∈ Γ.

2. Infer(Γ, n) = (Id, b) where b = TypeOf(n).

3. Infer(Γ,H(M)) = (Id, h) where h = TypeOf(H(M)).

4. Let Infer(Γ, p̃r) = (θ1, τ1 ∗ . . . ∗ τn) in Infer(Γ, m[p̃r]) = (θ1, σ[τ1, . . . , τn])
where σ = TypeOf(m).

5. Let Infer(Γ,M) = (θ1, τ1), Infer(Γθ1, N) = (θ2, τ2) in
Infer(Γ, (M,N)) = (θ1θ2, (τ1θ2) ∗ τ2).

6. Let Infer(Γ,M) = (θ1, τ1), Infer(Γθ1, L) = (θ2, τ2), Unify(τ2, k
∗) = (ϑ, k∗) in

Infer(Γ, {M}L) = (θ1θ2ϑ,ª∗(τ1θ2)) where ª∗(τ1θ2) =

ª(τ1θ2) k∗ = k
ª+(τ1θ2) k∗ = k+

ª−(τ1θ2) k∗ = k−
ª?(τ1θ2) k∗ = α

.

7. Infer(Γ,0) = (Id, unit).

8. Let Infer(Γ ∪ {(x, τ1)}, P) = (θ, τ2) in Infer(Γ, (newx : A)P) = (θ, τ2) where
τ1 = TypeOf(A).

9. Let Infer(Γ, P) = (θ1, τ1), Infer(Γ, n) = (θ2, τ2) in
Infer(Γ, (ν n)P) = (θ1θ2, τ1) where τ2 = TypeOf(n).

10. Let Infer(Γ ∪ {(x, α)}, P) = (θ, τ) in
Infer(Γ, a(x).P) = (θ, αθ → τ), where ∀τ.(x′, τ) ∈ Γ, FTV (τ, α) = True.

11. Let Infer(Γ, P) = (θ, τ) in Infer(Γ, aM.P) = (θ, τ).

12. Let Infer(Γ,M) = (θ1, τ1), Unify(α ∗ β, τ1) = (ϑ, %),
Infer(Γθ1ϑ ∪ {(x, α), (y, β)}ϑ, P) = (θ2, τ2)
in Infer(Γ, let (x, y) = M in P) = (θ1ϑθ2, τ2) where
∀τ.(x′, τ) ∈ Γ, FTV (τ, α) = FTV (τ, β) = True.

13. Let Infer(Γ,M) = (θ1, τ1), Infer(Γθ1, L) = (θ2, τ2), Unify(ª∗α, τ1θ2) = (ϑ, %),
Infer(Γθ1θ2ϑ ∪ {(x, α)}ϑ, P) = (θ3, τ3) in Infer(Γ, case M of {x}L in P) =
(θ1θ2ϑθ3, τ3) where ∀τ.(x′, τ) ∈ Γ, FTV (τ, α) = True, and

ª∗α =

ª(τ1θ2) τ2 = k
ª+(τ1θ2) τ2 = k−
ª−(τ1θ2) τ2 = k+

ª?(τ1θ2) τ2 = β

.

14. Let Infer(Γ,M) = (θ1, τ1), Infer(Γθ1, N) = (θ2, τ2), Unify(τ1θ2, τ2) = (ϑ, %)
Infer(Γθ1θ2%, P) = (θ3, τ3)
in Infer(Γ, [M = N]P) = (θ1θ2ϑθ3, τ3).

15. Let Infer(Γ, P) = (θ1, τ1), Infer(Γθ1, Q) = (θ2, τ2) in
Infer(Γ, P‖Q) = (θ1θ2, τ1θ2 + τ2).

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 152

Lemma C.1. Let e be an expression, τ be a type, Γ be a type environment and θ be a
substitution mapping from type variables to types. If Γ `t e : τ , then Γθ `t e : τθ.

Proof. Applying structural induction to the expression e, we only show the base cases
and two inductive steps here; the remaining cases are quite similar.

1. Case e = x: Because Γ `t x : τ , we have (x, τ) ∈ Γ. Let Γ1 = Γ\{(x, τ)}, so
Γθ = Γ1θ ∪ {(x, τ)}θ = Γ1θ ∪ {(x, τθ)}, and thus Γθ `t x : τθ according to typing
rule Msg Variable.

2. Case e = n: Because Γ `t n : τ , we have τ = TypeOf(n), and τθ = τ for every
substitution θ. By typing rule Msg Name, Γθ `t n : TypeOf(n).

3. Case e = (M,N): By typing rules, Γ `t M : τ1 and Γ `t N : τ2 are satisfied. Given
a substitution θ, we have Γθ `t M : τ1θ and Γθ `t M : τ2θ according to induction
hypothesis. So Γθ `t (M,N) : (τ1 ∗ τ2)θ.

4. Case e = a(x).P : By induction hypothesis, Γθ ∪ {x, τ1}θ = Γθ ∪ {x, τ1θ} `t P : τ2θ is
satisfied. Thus Γθ `t a(x)P : (τ1 → τ2)θ.

Theorem C.2 (Soundness of type inference). Let e be an expression, Γ be a typing
environment and θ be a substitution. If Infer(Γ, e) = (θ, τ), Γθ `t e : τ can be inferred.

Proof. Applying structural induction to the expression e. one base step and three induc-
tive steps are proposed; the remaining cases are simple and similar. We use the same
notations as in the algorithm.

1. Case e = x: We have Infer(Γ, x) = (Id, τ), because ΓId = Γ and (x, τ) ∈ Γ,
Γ `t x : τ is inferred by the typing rule Msg Variable.

2. Case e = (M,N): by induction hypothesis, we have two derivations:

Infer(Γ,M) = (θ1, τ1) 7→ Γθ1 `t M : τ1 (C.1)

Infer(Γθ1, N) = (θ2, τ2) 7→ Γθ1θ2 `t N : τ2 (C.2)

By applying Lemma C.1 to (C.1), we have

Γθ1θ2 `t M : τ1θ2 (C.3)

By applying typing rule Msg Pair to (C.2) and (C.3), we have

Γθ1θ2 `t (M,N) : τ1θ2 ∗ τ2

which is the expected result of

Infer(Γ, (M,N)) = (θ1θ2, (τ1θ2) ∗ τ2)

3. Case e = a(x).P : By induction hypothesis, we get a derivation:

Infer(Γ ∪ {(x, α)}, P) = (θ, τ) 7→ Γθ ∪ {(x, α)}θ `t P : τ (C.4)

By applying typing rule Input to (C.4), we have

Γθ `t a(x).P : αθ → τ

which is the result of Infer(Γ, a(x).P) = (θ, αθ → τ).

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 153

4. Case e = case M of {x}L in P : By the induction hypothesis, we have two derivations
and a unification:

Infer(Γ,M) = (θ1, τ1) 7→ Γθ1 `t M : τ1 (C.5)

Infer(Γθ1, L) = (θ2, τ2) 7→ Γθ1θ2 `t L : τ2 (C.6)

Unify(ª∗α, τ1θ2) = (ϑ, %) 7→ ª∗(αϑ) = τ1θ2ϑ = % (C.7)

Infer(Γθ1θ2ϑ ∪ {(x, α)}θ2ϑ, P) = (θ3, τ3) 7→ Γθ1θ2ϑθ3 ∪ {(x, α)ϑθ3} `t P : τ3(C.8)

By applying Lemma C.1 to (C.5), we have

Γθ1θ2ϑθ3 `t M : τ1θ2ϑθ3 (C.9)

Note that α does not occur in θ1 and θ2, and thus {(x, α)}ϑθ3 = {(x, α)}θ1θ2ϑθ3. So
after unification, the type of x is αϑθ2, and the type of {x}L is ª∗(αϑθ2). And because
of (C.7), we have

ª∗(αϑθ3) = τ1θ2ϑθ3

and thus
Γθ1θ2ϑθ3 `t M : ª∗(αϑθ3)

Furthermore, because of (C.7),

Γθ1θ2ϑθ3 `t L : τ2ϑ2θ3

So, using typing rule Dec, we have

Γθ1θ2ϑθ3 `t case M of {x}L in P : τ3

which is the result of

Infer(Γ, case M of {x}L in P) = (θ1θ2ϑθ3, τ3)

C.2 Translating to Parametric Processes

A set of parametric processes is defined as follows,

Definition C.2 (Parametric Processes). Let P̂ be a countable set of parametric processes,
which is indicated by P̂ , Q̂, R̂, The syntax of processes is defined as follows,

P̂ ::= 0 | aM.P̂ | a(M).P̂ | [M = N] P̂ | (new x : A)P̂ | (ν n)P̂ | let (M,N) = L in P̂

| case M of {N}L in P̂ | P̂‖Q̂

where M,N, L are messages defined in Definition 2.1.

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 154

Given a closed process P , we try to mark each sub-expression whose type is a type
variable with a fresh variable. Thus P can be translated into a parametric process P̂ . For
this purpose, given a closed process P and its type τ , an inference system is proposed,
which infers a substitution θ mapping from V to M. The inference system has the form
∆ `p P : τ ⇒ θ, in which ∆ is a context environment mapping from V to M, P is a

closed process and τ is its type. The corresponding parametric process P̂ is obtained by
applying the substitution θ to the process P . We name P̂ the abstraction of P , and P
the concretization of P̂ .

In the inference system, some functions are predefined. FreVar : ∆ → V generates a
fresh variable that does not occur in Dom(∆). Binder : T → B obtains the corresponding
binder name from a binder type. The inference system is given in Figure C.2.

Example C.1. By the inference system, the process of the Abadi-Gordon protocol for
authentication, SY SAG

a described in Subsection 5.3.1 will be translated into the following
parametric processes:

Âp ,(new x1 : I)(ν M)a1(A, {x1, k[A, x1]}k[A,S]).a2(A, {A,M}k[A,x1]).0

B̂p ,b1({A, z1}k[B,S]). case {A, z1}k[B,S] of {A, z1}k[B,S] in let (A, z1) =

(A, z1) in [A = A] b2(A, {A,w′′
1}t1). let (A, (A, {A,w′′

1}t1)) =

(A, (A, {A,w′′
1}t1)) in [A = A] case {A,w′′

1}t1 of {A,w′′
1}z1

in let (A,w′′
1) = (A,w′′

1) in [A = A] acc (A, {A,w′′
1}t1).0

Ŝp ,s1(x, {y, z}k[xk,S]).let (x, {y, z}k[xk,S]) = (x, {y, z}k[xk,S]) in case {y, z}k[xk,S]

of {y, z}k[x,S] in let (y, z) = (y, z) in s2{x, z}k[y,S].0

ˆSY S
AG

p ,Ap‖Sp‖Bp

From the example introduced above, we can see that except input and output ac-
tions, other actions, such as splitting, decrypting, and match, are all redundant action
essentially. So B̂p can be simplified as

B̂p ,b1({A, z1}k[B,S]).b2(A, {A,w′′
1}t1).acc (A, {A,w′′

1}t1).0

Example C.2. The process of the NSPK protocol for authentication, SY SNSPK
a de-

scribed in Subsection 5.3.2 will be translated into the following parametric processes.

Âp ,(new xa : I)(ν NA)a1{A,NA}+k[xa].a2({za, z
′
a}−k[xk]).

case {za, z
′
a}−k[xk] of {za, z

′
a}−k[A] in let (za, z

′
a) = (za, z

′
a) in

[za = NA]a3{z′a}+k[xa].0

B̂p ,(ν NB)b1({xb, yb}−k[yk]). case {xb, yb}−k[yk] of {xb, yb}−k[B] in

let (xb, yb) = (xb, yb) in [xb = A] b2{yb, NB}+k[A].b3({zb}−k[yk]).

case {zb}−k[yk] of {zb}−k[B] in [zb = NB] acc {zb}−k[yk].0

ˆSY S
NSPK

p ,Ap‖Bp

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 155

∆ `p x : α ⇒ {x1/x} x1 = FreVar(∆) Type variable

∆ `p x : b ⇒ {xb/x} xb = FreVar(∆) Base type

∆ `p x′ : τ1 ∗ . . . ∗ τn ⇒ θ

∆ `p x : σ[τ1, . . . , τn] ⇒ {m[θ(x′)]/x} m = Binder(σ), x′ = FreVar(∆) Binder type

∆ `p x′ : τ1 ⇒ θ1 ∆ `p x′′ : τ2 ⇒ θ2

∆ `p x : τ1 ∗ τ2 ⇒ {(θ1(x′), θ2(x′′))/x} x′, x′′ = FreVar(∆) Pair type

∆ `p x′ : τ ⇒ θ

∆ `p x : ªτ ⇒ {{θ(x′)}k[xa,xb]/x} xa, xb, x
′ = FreVar(∆) Sencryption type

∆ `p x′ : τ ⇒ θ

∆ `p x : ª+τ ⇒ {{θ(x′)}+k[xa]/x} xa, x
′ = FreVar(∆) Pencryption type

∆ `p x′ : τ ⇒ θ

∆ `p x : ª−τ ⇒ {{θ(x′)}−k[xa]/x} xa, x
′ = FreVar(∆) Signature type

∆ `p x′ : τ ⇒ θ

∆ `p x : ª?τ ⇒ {{θ(x′)}xa/x} xa, x
′ = FreVar(∆) Gencryption type

∆ `p 0 : unit⇒ {} Nil
∆ `p x : τ1 ⇒ θ1 ∆, θ1 `p P : τ2 ⇒ θ2

∆ `p a(x).P : τ1 → τ2 ⇒ θ1 ∪ θ2
Input

∆ `p P : τ ⇒ θ

∆ `p aM.P : τ ⇒ θ
Output

∆ `p P : τ ⇒ θ

∆ `p (newx : A) P : τ ⇒ θ ∪ {x1/x} x1 = FreVar(∆) New

∆, {M1/x,M2/y} `p P : τ ⇒ θ

∆ `p let (x, y) = M in P : τ ⇒ θ ∪ {M1/x,M2/y} (∆(M) = (M1,M2))Pair

∆, {M/x} `p P : τ ⇒ θ

∆ `p case M of{x}L in P : τ ⇒ θ ∪ {M/x} (∆(M) = {M}L) Dec

∆ `p P : τ ⇒ θ

∆ `p [M = N]P : τ ⇒ θ
Match

∆ `p P : τ ⇒ θ

∆ `p (ν n).P : τ ⇒ θ
Restriction

∆ `p P : τ1 ⇒ θ1 ∆ `p Q : τ2 ⇒ θ2

∆ `p P‖Q : τ1 + τ2 ⇒ θ1 ∪ θ2
Composition

Figure C.2: Inference Rules for Parametric Processes

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 156

Similarly, we define an configuration is a pair 〈ŝ, P̂ 〉, where ŝ is a parametric trace and
P̂ is a parametric process. The transition relation of parametric processes is given by the
rules in Figure C.3. Note that TPDEC, TPAIR, TPMATCH are only facilities for the
later proof. They will not be adopted in the implementation.

(TPINPUT) 〈ŝ, a(M).P̂ 〉 −→t
p 〈ŝ.a(M), P̂ 〉

(TPOUTPUT) 〈ŝ, aM.P̂ 〉 −→t
p 〈ŝ.aM, P̂ 〉

(TPDEC) 〈ŝ, case {M}L of {M}Opp(L) in P̂ 〉 −→t
p 〈ŝ, P̂ 〉

(TPPAIR) 〈ŝ, let (M,N) = (M,N) in P̂ 〉 −→t
p 〈ŝ, P̂ 〉

(TPNEW) 〈ŝ, (newx : A)P̂ 〉 −→t
p 〈ŝ, P̂ 〉

(TPRESTRICTION) 〈ŝ, (ν n)P 〉 −→t
p 〈ŝ, P{m/n}〉 m = freshN(V)

(TPMATCH) 〈ŝ, [M = M]P̂ 〉 −→t
p 〈ŝ, P̂ 〉

(TPLCOM)

〈ŝ, P̂ 〉 −→t
p 〈ŝ′, P̂ ′〉

〈ŝ, P̂‖Q̂〉 −→t
p 〈ŝ′, P̂ ′‖Q̂〉

(TPRCOM)

〈ŝ, Q̂〉 −→t
p 〈ŝ′, Q̂′〉

〈ŝ, P̂‖Q̂〉 −→t
p 〈ŝ′, P̂‖Q̂′〉

(TPSTR)

P̂ ≡ P̂ ′ 〈s, P̂ ′〉 −→t
p 〈s′, Q̂′〉 Q̂′ ≡ Q̂

〈s, P̂ 〉 −→t
p 〈s′, Q̂〉

Figure C.3: Parametric Transition Rules for Parametric Processes

The set of parametric traces generated by transitions rules in Figure C.3 is obvious
a proper subset of the set of parametric traces generated by transitions rules in Figure
5.3. From Theorem 4.1, we know that a parametric model has the same representative
ability as its corresponding concrete model. Thus, parametric traces generated by transi-
tions rules in Figure C.3 have the less representative ability than its traces generated by
transitions rules in Figure 5.1.

To find a sound and complete concrete model, we only modify the INPUT rule in
the concrete transition rules in Figure 5.1 with a type constraint. That is, a message M
deduced by the s in the configuration 〈s, a(x).P 〉, whose type can be unified with the type
of x, will be instantiated to x. The concrete transition rules with the type constraint are
given in Figure C.4. The new concrete model then has the same representative ability as
its corresponding parametric model in Figure C.3.

Theorem C.3 (Soundness and completeness). Let 〈ε, P 〉 be an initial configuration, let
s′ be a trace, and let P̂ be the abstraction of P . 〈ε, P 〉−→t∗〈s′, P ′〉 for some P ′, if and
only if there exists ŝ′, satisfying 〈ε, P̂ 〉−→t

p
∗〈ŝ′, P̂ ′〉 for some P̂ ′, and s′ is a concretization

of ŝ′.

Proof. We only show the TINPUT and TPINPUT cases in this proof, other cases are
similar to those in proof of Theorem 4.1. A detailed proof can be found in [81].

“⇒”: By an induction on the number of transitions −→t and −→t
p, the proof is trivial

in the zero-step. We assume in the n-th step the property holds. That is, for each trace s
gained in the n-th −→t step, there exists an ŝ obtained by the n-th −→t

p step, and ŝϑ = s

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 157

(TINPUT) 〈s, a(x).P : τ1 → τ2〉 −→t 〈s.a(M), P{M/x}〉
s ` M, `t M : τ1

(TOUTPUT) 〈s, aM.P 〉 −→t 〈s.aM,P 〉
(TDEC) 〈s, case {M}L of {x}L′ in P 〉 −→t 〈s, P{M/x}〉

L′ = Opp(L)
(TPAIR) 〈s, let (x, y) = (M,N) in P 〉 −→t 〈s, P{M/x,N/y}〉
(TNEW) 〈s, (new x : A)P 〉 −→t 〈s, P{m/x}〉 n ∈ A

(TRESTRICTION) 〈s, (ν n)P 〉 −→t 〈s, P{m/n}〉 m = freshN(V)
(TMATCH) 〈s, [M = M]P 〉 −→t 〈s, P 〉

(TLCOM)
〈s, P 〉 −→t 〈s′, P ′〉

〈s, P‖Q〉 −→t 〈s′, P ′‖Q〉

(TRCOM)
〈s,Q〉 −→t 〈s′, Q′〉

〈s, P‖Q〉 −→t 〈s′, P‖Q′〉

(TSTR)
P ≡ P ′ 〈s, P ′〉 −→t 〈s′, Q′〉 Q′ ≡ Q

〈s, P 〉 −→t 〈s′, Q〉

Figure C.4: Concrete Transition Rules with Type Constraint

holds for some substitution ϑ from parametric variables to ground messages. Now, we
perform a case analysis on the n + 1 step.

Case 〈s, a(x).P 〉: If 〈s, a(x).P 〉 −→t 〈s.a(M), P{M/x}〉, then the type of the ground
message M can be unified with the type τ of x. So after applying the inference system in
Figure C.1 to the process, x in the corresponding parametric process will be substituted to
a message M ′ that can be unified by M . Let ϑ′ = Uni(M,M ′), and P̂ be the abstraction
of P , then we have 〈ŝ, a(M ′).P̂ 〉 −→t

p 〈ŝ.a(M ′), P̂ 〉 and s.a(M) = ŝ.a(M ′)(ϑ ∪ ϑ′).
“⇐”: By an induction on the number of transitions −→t

p and −→t, the proof is
trivial in the zero-step. We assume in the n-th step the property holds, that is, for each
parametric trace ŝ gained by the n-th −→t

p step, if there exists a substitution ϑ from
parametric variables to ground messages, and a trace s that satisfies s = ŝϑ, then s can
be obtained by the n-th step of −→t. Now, we perform a case analysis on the n + 1-th
step.

Case 〈ŝ, a(M).P̂ 〉: If there exists a step in which 〈ŝ, a(M).P̂ 〉 −→p 〈ŝ.a(M), P̂ 〉, and
a ground substitution ϑ where ŝϑ is a trace, then Mϑ is a ground message which can
be deduced by sϑ, and its type can be unified by the type of x because of the inference
system in Figure C.1. So 〈s, a(x).P 〉 −→ 〈s.a(Mϑ), P{(Mϑ)/x}〉.

APPENDIX C. COMPACTING PARAMETRIC TRACES WITH TYPE 158

Appendix D

Implemented Maude Codes

D.1 Functions for Refinement Steps

Scanning Parametric Traces

The first function for the refinement step is to analyze a trace. It accepts a parametric
trace and a rigid message list as an environment of the trace, and returns the trace’s
first rigid message, a boolean (true if there exists some rigid message in the trace), and
a message list (as an elementary message list ready for unifying the rigid message). The
basic strategy is, the function will return the first rigid message and its elementary message
list.

sort Anares .

op [_,_,_] : Message Bool Messagelist -> Anares .

op getMessage : Anares -> Message .

op getBool : Anares -> Bool .

op getMessagelist : Anares -> Messagelist .

op analyzingTrace : Trace Messagelist -> Anares .

eq analyzingTrace(Nil, ML1) = [ERRNAME, false, nil] .

ceq analyzingTrace (< LA1 , i , MES1 > . TR1 , ML1) =

[getMesRes(getSharedRigid(MES1)), true , ML1]

if getBoolRes(getSharedRigid(MES1)) .

ceq analyzingTrace(< LA1, i , MES1 > . TR1 , ML1) =

analyzingTrace (TR1, ML1)

if not getBoolRes (getSharedRigid(MES1)) .

eq analyzingTrace(< LA1, o , MES1 > . TR1 , ML1)=

analyzingTrace (TR1, MES1 # ML1) .

Here we do not show how to define the function getSharedRigid, which accepts a
message and returns its first rigid sub-message and a boolean (true if the message contains
a rigid message).

Due to the differences of rigid message definitions (in Definition 4.3 and Definition 7.4,
respectively) and satisfied normal forms in the model for the analysis of authentication
and security properties, and for the analysis of non-repudiation and fairness properties,
the implementations of this function in two parametric systems are different.

159

APPENDIX D. IMPLEMENTED MAUDE CODES 160

Compared to the function above, not only parametric messages in input actions but
also parametric messages in output actions need to be analyzed. The scanning function
for non-repudiation and fairness properties is defined as follows.

sort Anares .

op [_,_,_] : Message Bool Messagelist -> Anares .

op getMessage : Anares -> Message .

op getBool : Anares -> Bool .

op getMessagelist : Anares -> Messagelist .

op analyzingTrace : Trace Messagelist -> Anares .

eq analyzingTrace(Nil, ML1) = [ERRNAME, false, nil] .

ceq analyzingTrace (< LA1 , i , MES1 > . TR1 , ML1) =

[getMesRes(getSharedRigid(MES1, decompose(ML1,ML1))), true , ML1]

if getBoolRes(getSharedRigid (MES1,decompose(ML1,ML1))) .

ceq analyzingTrace (< LA1, i , MES1 > . TR1 , ML1) =

analyzingTrace (TR1, ML1)

if not getBoolRes(getSharedRigid (MES1,decompose(ML1,ML1))) .

ceq analyzingTrace (< LA1, o , MES1 > . TR1 , ML1) =

analyzingTrace (TR1, MES1 # ML1)

if (not getBoolRes(getSharedRigid (MES1,decompose(ML1,ML1)))) or

(isLocalRigid(getMesRes(getSharedRigid(MES1,decompose(ML1,ML1))),

getPlayer(LA1))) .

ceq analyzingTrace (< LA1, o , MES1 > . TR1 , ML1) =

[getMesRes(getSharedRigid(MES1,ML1)), true , ML1]

if getBoolRes(getSharedRigid(MES1,decompose(ML1,ML1))) and

(not isLocalRigid(getMesRes(getSharedRigid

(MES1,decompose(ML1,ML1))),getPlayer(LA1))) .

Decomposition

According to Definition 4.4, an elementary message set can be obtained by decompos-
ing each pair message and encrypted message whose key is also in the set. We implement
a decompose function as follows. It accepts two message lists (the latter is used for an
environment), and returns a message list. A function elementary is defined by applying
the decompose function.

op decompose : Messagelist Messagelist -> Messagelist .

eq decompose(nil, ML2) = nil .

eq decompose((MES1,MES2) # ML1, ML2) =

decompose(MES1 # MES2 # ML1, MES1 # MES2 # ML2) .

ceq decompose({MES1}k[name(N1),name(N2)] # ML1, ML2) =

{MES1}k[name(N1), name(N2)] # decompose (ML1, ML2)

if not in(k[name(N1), name(N2)], ML2) .

ceq decompose({MES1}k[name(N1), name(N2)] # ML1, ML2) =

decompose(MES1 # ML1, MES1 # ML2)

APPENDIX D. IMPLEMENTED MAUDE CODES 161

if in(k[name(N1), name(N2)], ML2) .

eq decompose({MES1}k[MES2, MES3] # ML1,ML2) =

{MES1}k[MES2, MES3] # decompose(MES1 # ML1, MES1 # ML2) [owise] .

eq decompose(MES1 # ML1 , ML2) = MES1 # decompose(ML1, ML2)[owise] .

op elementary : Messagelist -> Messagelist .

eq elementary (ML1) = decompose (ML1, ML1) .

Unification

A unification function, unifying, is used for unifying a rigid message and each message
in an elementary message set (defined as a list in the implementation). A unification
function accepts two messages and returns a boolean and a substitution. For simplicity,
here we only illustrate the unification function by proposing its base cases and some
inductive cases. Before defining the unification function, we need an occurrence check
function, oCheck, which checks whether a parametric variable occurs in a parametric
message.

sort Result .

op (_,_) : Substitutions Bool -> Result [ctor] .

op getSubstitution : Result -> Substitutions .

op getBool : Result -> Bool .

op oCheck : Message Message -> Bool .

eq oCheck (px(X), px(X)) = true .

eq oCheck (px(X), (M1,M2)) =

oCheck(px(X), M1) or oCheck(px(X), M2) .

eq oCheck (px(X), {M1}M2) =

oCheck(px(X), M1) or oCheck(px(X), M2) .

eq oCheck (px(X), k[M1,M2]) =

oCheck(px(X), M1) or oCheck(px(X), M2) .

eq oCheck (px(X), Hash[M1]) =

oCheck(px(X), M1) .

... ...

eq oCheck (M1, M2) = false [owise] .

op unifying : Message Message -> Result [comm] .

eq unifying(px(X),px(Y)) = (X |-> px(Y), true) .

eq unifying(px(X),name(Y)) = (X |-> name(Y), true) .

eq unifying(name(X),name(X))= (nil, true) .

ceq unifying(px(X),(M1,M2)) = (X |-> (M1,M2), true)

if not oCheck(px(X), (M1,M2)) .

... ...

eq unifying((M1,M2),(M3,M4)) = ((getSubstitution(unifying(M1,M3)),

getSubstitution(unifying substitutions

(M2,getSubstitution (unifying(M1,M3))),

substitutions(M4, getSubstitution (unifying(M1,M3)))))),

(getBool(unifying(M1,M3)) and getBool(unifying(substitutions

APPENDIX D. IMPLEMENTED MAUDE CODES 162

(M2, getSubstitution(unifying(M1,M3))),

substitutions(M4,getSubstitution(unifying(M1,M3))))))) .

... ...

eq unifying(M1,M2) = (nil, false) [owise] .

D.2 Protocol Description for the Yahalom Protocol

The protocol description of the Yahalom protocol in the source code mainly has two
code fragments. One is to describe behaviors of each principal in the Yahalom protocol,
which is represented as follows:

crl [A_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < a(1), o, (name(0), name(10)) >)], SUBLIST, ot >

if not labelinTrace (TR1, a(1)) .

crl [A_2] : < [TR1], SUBLIST, ot > =>

< [TR1 . < a(2), i, ((px(0), {(name(1), px(1)), name(10)}

k[name(1),name(0)]), px(2)) > .

< a(3),o,(px(2), {px(0)}px(1)) >], SUBLIST, ot >

if labelinTrace(TR1, a(1)) and not labelinTrace(TR1,a(2)) .

crl [A’_1] : < [TR1],SUBLIST,ot > =>

< [(TR1 . < a’(1), o, (name(30), name(39)) >)], SUBLIST, ot >

if not labelinTrace(TR1,a’(1)) .

crl [A’_2] :< [TR1],SUBLIST, ot > =>

< [TR1 . < a’(2), i, ((px(30), {(name(31), px(31)), name(39)}

k[name(31),name(30)]),px(32)) > .

< a’(3), o, (px(32), {px(30)}px(31)) >],SUBLIST,ot >

if labelinTrace(TR1, a’(1)) and not labelinTrace(TR1,a’(2)) .

crl [B_1] :< [TR1],SUBLIST,ot > =>

< [(TR1 . < b(1), i, (name(0), px(10)) > .

< b(2), o, ((name(1),name(11)),

{name(0),px(10)}k[name(1),name(2)]) >)], SUBLIST, ot >

if not labelinTrace (TR1,b(1)) .

crl [B_3] : < [TR1],SUBLIST,ot > =>

< [(TR1 . < b(3), i, ({(name(0), px(11)), name(11)}

k[name(1),name(2)], {name(11)}px(11)) > .

< acc, o, ({(name(0), px(11)), name(11)}k[name(1),name(2)],

{name(11)}px(11)) >)],SUBLIST,ot >

if labelinTrace(TR1, b(1)) and labelinTrace(TR1, b(2)) and

not labelinTrace (TR1, b(3)) .

crl [B’_1]: < [TR1],SUBLIST,ot > =>

< [(TR1 . < b’(1), i,(px(27), px(20)) > .

< b’(2), o, ((name(1),name(21)),{px(27), px(20)}

k[name(1),name(2)]) >)], SUBLIST, ot >

if not labelinTrace (TR1, b’(1)) .

crl [B’_3] : < [TR1],SUBLIST,ot > =>

< [(TR1 . < b’(3), i,({(px(27), px(21)), name(21)}

k[name(1),name(2)],{name(21)}px(21)) >)], SUBLIST, ot >

APPENDIX D. IMPLEMENTED MAUDE CODES 163

if labelinTrace (TR1, b’(1)) and labelinTrace (TR1, b’(2)) and

not labelinTrace (TR1, b’(3)) .

crl [S_1] : < [TR1],SUBLIST,ot > =>

< [(TR1 . < s(1),i,((px(20),px(21)),

{px(22),px(23)}k[px(20),name(2)]) > .

< s(2), o,((px(21),{(px(20), k[name(0),name(1)]),px(23)}

k[px(22),name(2)]),{(px(22), k[name(0),name(1)]),px(21)}

k[px(20),name(2)]) >)],SUBLIST, ot >

if not labelinTrace (TR1, s(1)) .

The other fragment is to describe the authentication specification for the Yahalom
protocol, which is represented as follows:

search [1] in YAHALOMPROTOCOL :init=>*

< [TR1], NIL, st > such that not (labelinTrace(TR1, acc)

implies(

((labelinTrace(TR1, a(3)) and labelbefore (TR1, a(3),acc))

and equal((getLabelMessage(TR1,acc)),(getLabelMessage(TR1,a(3))))

)

)

) .

D.3 Protocol Description for the RA protocol

The protocol description of the recursive authentication protocol (in Subsection 3.4.2)
has also two code fragments. One is to describe behaviors of each principal in the protocol,
which is represented as follows:

crl [A_1] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [(TR1 . < a(1), o, H(lk[MA,name(1)],

(((MA,A[MA]),MN),null)) >)], STACK, SUBLIST, oc >

if noc labelinTrace (TR1, a(1)) .

crl [A_2] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [TR1 .

< a(2), i, {((px(11),A[MA]),MN)}lk[MA,name(1)] > .

< acc, o, {((px(11),A[MA]),MN)}lk[MA,name(1)] >

], STACK, SUBLIST, oc >

if labelinTrace (TR1, a(1)) and

noc labelinTrace (TR1, a(2)) .

crl [B_1] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [(TR1 .

< b(1), i, H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))) > .

< b(2), o, H(lk[A[MA],name(1)],

(((A[MA],A[A[MA]]),N[px(21)]),H(lk[MA,name(1)],

APPENDIX D. IMPLEMENTED MAUDE CODES 164

(((MA,A[MA]),px(21)),px(22))))) >

)], push (STACK), SUBLIST, oc >

if noc labelinTrace (TR1, b(1)) .

crl [B_3] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [(TR1 . < b(1), i, H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))) > .

< b(3), o, H(lk[A[MA],name(1)],

(((A[MA],name(1)),N[px(21)]),H(lk[MA,name(1)],

(((MA,A[MA]),px(21)),px(22))))) >

)], pop (STACK) , SUBLIST, oc >

if noc labelinTrace (TR1, b(1)) .

crl [B_5] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< ML1, [(TR1 .

< b(4), i,(({((px(24),px(25)),N[px(21)])}lk[A[MA],name(1)],

{((px(25),MA),N[px(21)])}lk[A[MA],name(1)]), px(26)) > .

< b(5), o, px(25) >)], STACK, SUBLIST, oc >

if labelinTrace(TR1, b(1)) and

noc labelinTrace (TR1, b(4)) .

crl [S_1] : < ML1, [TR1], STACK, SUBLIST, oc > =>

< (({((k[Mk],name(1)),px(32))}lk[px(31),name(1)],

{((Mk,px(33)),px(32))}lk[px(31),name(1)]),

{((Mk,px(31)),px(34))}lk[px(33),name(1)]) # ML1,

[(TR1 . < s(1), i, H (lk[px(31),name(1)],

(((px(31),name(1)),px(32)), H(lk[px(33),name(1)],

(((px(33),px(31)),px(34)),null)))) > .

< s(2), o, (({((k[Mk],name(1)),px(32))}lk[px(31),name(1)],

{((Mk,px(33)),px(32))}lk[px(31),name(1)]),

{((Mk,px(31)),px(34))}lk[px(33),name(1)]) >

)], STACK, SUBLIST, oc >

if noc labelinTrace (TR1, s(1)) .

The other fragment is to describe the authentication specification (see Characterization
6.1) for the recursive protocol, which is represented as follows:

search [1] in RECURSIVEPDS :

init =>* < ML1, [TR1], STACK, NIL, ec > such that not (

labelinTrace(TR1, acc) implies (

(labelbefore (TR1, b(2), acc)) and

equal ((getLabelMessage (TR1,acc)),

(getLabelMessage (TR1, b(2))))

)

) .

APPENDIX D. IMPLEMENTED MAUDE CODES 165

D.4 Protocol Description of FAIRO for the Simpli-

fied ZG Protocol

The protocol description of the FAIRO for the simplified ZG protocol in the source
code has also two code fragments. One is to describe behaviors of each principal in
simplified ZG protocol, which is represented as follows:

crl [A_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(0),1), o, {((name(1),name(11)),

px(12))}-k[name(0)] >)], SUBLIST, ot >

if not labelinTrace (TR1, label(name(0),1)) .

crl [A_2] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(0),2), i, {((name(0),name(11)),

px(12))}-k[name(1)] > . STOP(name(0)))], SUBLIST, ot >

if labelinTrace (TR1, label(name(0),1)) and

not labelinTrace (TR1, label(name(0),2)) .

crl [A’_2] : < [TR1], SUBLIST, ot > =>

< [TR1 . < label(name(0),2), i, {((name(0),name(11)),

px(12))}-k[name(1)] > . < label(name(0),3), o,

{((px(17),px(18)),px(19))}-k[name(0)] >], SUBLIST, ot >

if labelinTrace (TR1, label(name(0),1)) and

not labelinTrace (TR1, label(name(0),2)) .

crl [A_3] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(0),4), i, {(((name(0),name(1)),

name(11)),px(19))}-k[name(2)] > . < evidb, o, ({((name(0),

name(11)),px(12))}-k[name(1)], {(((name(0),name(1)),name(11)),

px(19))}-k[name(2)]) >)], SUBLIST, ot >

if not labelinTrace (TR1, label (name(0),4)) and

not stopinTrace (TR1, name(0)) and

labelinTrace(TR1, label(name(0),3)) .

crl [B_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(1),1), i, {((name(1),px(23)),

px(24))}-k[name(0)] > . STOP(name(1)))] , SUBLIST, ot >

if not labelinTrace (TR1, label (name(1),1)) .

crl [B’_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(1),1), i, {((name(1),px(23)),px(24))}

-k[name(0)] > . < label(name(1),2), o, {((name(0),px(25)),px(26))}

-k[name(1)] >)] , SUBLIST, ot >

if not labelinTrace (TR1, label (name(1),1)) .

crl [B_2] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(1), 3), i, {(((name(0),name(1)),px(23)),

px(27))}-k[name(2)] > . < evida, o, ({((name(1),px(23)),px(24))}

-k[name(0)],{(((name(0),name(1)),px(23)),px(27))}-k[name(2)]) >)],

SUBLIST, ot >

if labelinTrace (TR1, label(name(1),2)) and

not labelinTrace (TR1, label(name(1),3)) and

APPENDIX D. IMPLEMENTED MAUDE CODES 166

not stopinTrace(TR1,name(1)) .

crl [S_1] : < [TR1], SUBLIST, ot > =>

< [(TR1 . < label(name(2),1), i, {((px(31),px(32)),px(33))}

-k[px(34)] > . < label(name(2),2), o, {(((px(34),px(31)),px(32)),

px(33))}-k[name(2)] > . < label(name(2),3), o, {(((px(34),px(31)),

px(32)),px(33))}-k[name(2)] >)], SUBLIST, ot >

if not labelinTrace (TR1, label(name(2),1)) .

The other fragment is to describe the FAIRO specification (see in Characterization
7.3) for the simplified ZG protocol, which is represented as follows:

search [1] in ZGPROTOCOL : init =>* < [TR1], NIL, et > such that

not (

labelinTrace(TR1, evida) and

getBool (unifying (getLabelMessage(TR1,evida),

({((name(1),px(71)),px(72))}-k[name(0)],{(((name(0),name(1)),

px(71)),px(73))}-k[name(2)])))

implies(

labelinTrace(TR1, evidb) and

equal (

getLabelMessage(substitutingTrace(TR1, getSubstitution

(unifying (getLabelMessage (TR1,evida),

({((name(1),px(71)),px(72))}-k[name(0)],{(((name(0),name(1)),

px(71)),px(73))}-k[name(2)])))), evidb) ,

substitutions(({((name(0),px(71)),px(72))}-k[name(1)],

{(((name(0),name(1)),px(71)),px(73))}-k[name(2)]),

getSubstitution(unifying (getLabelMessage (TR1,evida),

({((name(1),px(71)),px(72))}-k[name(0)],{(((name(0),name(1)),

px(71)),px(73))}-k[name(2)]))))

)

)

).

