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Abstract

Substructural logics are logic obtained from classicalddgK or intuitionistic logic LJ
by deleting some of structural rules. This study is startethfstudy ofFL. by Lambek. They
include relevant logics, linear logic and BCK-logics. Byroducing sequent calculi which have
the cut elimination theorem we can show various syntactesllts. But syntactical methods
work well only for particular logics, so we cannot use them deneral discussions. So we
need to find useful semantical methods. Since Kripke-typeaséics is quite powerful in the
study of modal logics, it does not work well for substructuogics. In recent years, algebraic
methods have been developed as a powerful tool for invéstggaubstructural logics. In this
thesis we study two topics by using algebraic methods. Oare &gebraic characterization of
a logical property. The another is about maximal considtegits. We show the detail these
topics in following.

Disjunction property For modal logics and intermediate logics Maksimova and \&kon
show algebraic characterization of some logical propeftis, 22, 12]. Some of the basic
substructural logics are shown to have the disjunctiongntydDP) by using cut elimination of
sequent calculi for these logics [16, 15]. On the other h#imd,syntactic method works only
for a limited number of substructural logics. Here, we shioat Maksimova’s criterion [13] on
the DP of superintuitionistic logics can be naturally extet to one on the DP of substructural
logics overFL. By using this, we show the DP for some of the substructugitkfor which
syntactic methods do not work well. From algebraic charaagon we show that substructural
logic FL[E™| and FL[DN] which does not have cut-elimination theorem have the disjon

property,

Minimal subvarieties It is known that classical logi€L is the single maximal consistent
logic over intuitionistic logicnt, which is moreover the single one even over the substructura
logic FL.,,. On the other hand, if we consider maximal consistent loge&r @ weaker logic
the number of them can be uncountably many. Since the selydaitice of a given variety
V of residuated lattices is dually isomorphic to the lattiédamics over the corresponding
substructural logid.(V), the number of maximal consistent logics is equal to the remol
minimal subvarieties (atoms) of the subvariety latticé’of

Tsinakis and Wille have shown that there exist uncountalkdyyrnatoms in the subvari-
ety lattice of the variety of involutive residuated latsceWNe will show that while there exist
uncountable many atoms in the subvariety lattice of theetyai?,, of bounded representable
involutive residuated lattices with mingle axiam < z, only two atoms exists in the subva-
riety lattice of the variety); of bounded representable involutive residuated latticiis the
idempotency: = z2.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background and purpose

The proof theoretic methods and algebraic methods are tyoriant basic ways in study of
logic. The former focuses on finite syntactically structuaad the latter take methods like set
theory and so on. So relation of these had not discussed.oBekfimple in these years there
are studies in which the cut elimination theorem is used avipg the finite model property
and the cut elimination is proved by algebraic methods.

The study of logics by algebraic methods studied activedynfrl 950 to 1960. After that
Grippe semantics become mainstream of semantical study.cdihwventional algebraic study
turn off study of logics and develop as universal algebra.1980s , it is used for study of
substructural logic and modal logic.

Roughly substructural logics are logics obtained fromitrdnistic logic LJ and classical
logic LK by deleting structural rules. The study starts from thestfdcategorical grammar
by Lambek and it get active in 1990.

An algebraic study for substructural logics has been dgeslademarkably in these years.
Also, collaborations of logicians with algebraists whcerasted in ordered algebraic structures
are on-going. A syntactical proof of the cut elimination & necessarily easy to understand
for algebraist. Recently we get purely algebraic proof dfetimination theorem.

In this thesis we principally take up residuated latticesclvldoes not necessarily assume
integrality, commutativity and contractivity. This cosgonds to substructural logiel..

1.1.2 Topics of this thesis

In this thesis, we study two topics.

By applying Maksimova’s result on algebraic charactermmabf the disjunction property to
substructural logics, we show the disjunction property ahgnsubstructural logics, for which
proof-theoretic methods are intractable.

Next, we show that the number of minimal subvarieties of uthee representable resid-
uated lattices is uncountable even if we assume the mingtenax?> < z. This strengthens
a related result on representable residuated latticesgsgdiand Tsinakis, and also one on
involutive residuated lattices by Tsinakis and Wille. Maver we show that the number be-
comes only two if we assume the idempotent axiom 22 instead of the mingle axiom. The
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result makes an interesting contrast with a result by GsJatdich says that the number of
uncountable when the involutiveness is omitted.

Our thesis is organized as follows. The first four chaptezgdanoted to explanations of the
background; and the last two chapters consist of our mairtses

In Chapter 2 we introduce a substructural loBiE and its extensions. First we introduce
sequent calculukJ. Roughly speaking sequent calculBk is obtained fromLJ by deleting
all structure rules. To introduce sequent calcdiswe will show that what will happen when
deleting structure rules and why we must introduce new kdgionnectives fusion, two impli-
cations and propositional constants. Then we define logiesklL as sets of formulas and they
form a complete lattice.

In Chapter 3 we give a brief survey of some results on algdboasa view point of universal
algebra.

In Chapter 4 we introduce residuated lattice which is antakgje structure of substruc-
tural logics. We will show completeness theorem and disabssit lattice of logics is dually
isomorphic to lattice of varieties of residuated lattices.

In Chapter 5 we give an algebraic proof of the disjunctionperty of FL, FL[E™] and
FL[DN]. Some basic substructural logics are shown to have thendisjun property by using
cut elimination theorem. Thus, substructural logic whioksinot hold cut elimination theorem
we cannot prove disjunction property. The algebraic chiaremation of disjunction property
for logics over intermediate logic is shown by L. L. Maksinadi 3]. We extends this result to
logics over substructural logiEL. We construct a suitable well-connected residuated éattic
It satisfies the condition of the algebraic characteriratibdisjunction property. These results
in Chapter 5 will be appeared soon in Notre Dame Journal afmBbtogic as “An algebraic
approach to the disjunction property of substructuraldeyi20]. Moreover, some parts of
these results are already announced in Chapter 5 of [6].

In Chapter 6 we discuss the number of minimal subvarietiem\adlutive representable
residuated lattices. First we give a sketch of related tesWe discuss the number of minimal
subvarieties of two classes of representable residuatiécek One is that there are uncount-
ably many minimal subvarieties of bounded representaliet8nt residuated lattices, shown
by P. Jipsen and C. Tsinakis [11]. The another is that thexauacountably many minimal
subvarieties of representable residuated lattice witmpl#ent axiom, shown by N. Galatos
[5]. Next, we explain a result by C. Tsinakis and A. Wille [2bjt there exists uncountably
many minimal subvarieties of involutive residuated latigVe show that there are uncountably
many minimal subvarieties of bounded involutive repreablet residuated lattice with mingle
axiom. On the other hand, we show that there exists only twomall subvarieties of bounded
involutive representable residuated lattice with iderepbaixiom. These results are presented
at the conference “Algebraic and Topological Methods in Massical Logics 1117, in Oxford.

In Chapter 7 we coclude these results with future works.



Chapter 2

Sequent calculus of the substructural logic
FL

In this chapter, we introduce a substructural IdBIc and its extensions. We introduce sequent
calculusFL is obtained fromLJ by deleting all structure rules. To introduce sequent daku
FL we will show that what will happen when deleting structurkesu Then we define logics
overFL as sets of formulas and they form a complete lattice.

2.1 Sequent calculud.J for intuitionistic logic

First, we introduce sequent calcullid for intuitionistic logic Int, see [16, 17]. We use
A(conjunction), v(disjunction), —(implication) and—(negation) as logical connectives. By
using these connectives we deffoemulasinductively as follows.

Definition 2.1.1 (formula) Formulas are defined inductively as follows;
i. all propositional variables and propositional conssént | ) are formulas,

ii. if «, 3 are formulasthea A 3,V 3, — ( and—« are formulas.

A sequents an expression of the following form.
1,0, ..., Oy = 5

whereay, . .., a,,, 7 are formulas andr > 0. # can be empty. Hereafter we use capital Greek
lettersI', A, ... for finite sequences of formulas, separated by commas. Nextefine the
sequent calculukJ. The sequent calculdsJ contains initial sequents and inference rules.

Initial sequents Theinitial sequentf LJ are following.
1. a=a«a
2.I'=T

3. LLI'=xw



Inference rules

Weakening rules:

I'=5
a,l'=j3

I'=>
I'=a

(left-weakening (right-weakening

Contraction rule:

a,a,'=f

N (contraction
Exchange rule:

F? a? /67 A :> ,y
T Fahsn (exchangg

Cut rule:

'=sa o lA=p
A=g

(cut)

Logical rule:

a,I'= 7
alNp,l =~

I3, =~

(left-n2)

'==a I'=p
'=aANp

(right-A)

a,l'=~y B,T=7y
aVp =y

(left-v)
I'=5
'=aVvp
INa=p
F'=sa—p

a, ' =
I'= -«

L=0a (eftyv)

'=a [B,A=7y
a— B3, A=~

(left-—) (right-—)

L=a e

ol = (right-—)

A sequent” = ¢ is provablein LJ if it can be obtained from initial sequents by applying rules
of inference repeatedly. A formulain LJ is provableif a sequents ¢ is provable. A figure
which shows how a given sequdnts ¢ is obtained is called proofof I' = ¢. We say that a
formulay is provably equivalento another formula) in a given sequent calculus, when both
sequents = v andiy = ¢ are provable in it. For more information anJ, see [16]

2.2 Substructural logics overFL

In this section, we define substructural logics oF&r. The calculus'L is obtained fromLJ
by deleting all structure rules. Roughly speaking extemsioF' L is called substructural logic
overFL. Before giving the definition, we explain briefly some ideabind it.
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2.2.1 Weakening rules and propositional constants

Here we explain relations between propositional const@ntd ) and weakening rule. 1hJ
[' = T is an initial sequent. We can show the following.

A formulap is provable inLJ iff ¢ is provably equivalent ta in LJ.

=
=) L
=T T =
=T =T=¢
(<)
=1 =0
=T —-¢ Top=0p
=
Moreover we can show thaty is provably equivalenttgp — | in LJ.
=
P, = p=¢ L=
=L = Lyp=

—|90:>gp—>J_ gp—)J_:>—|gp

As shown in these proofs, weakening rules are essentiaflgl ts show these equivalences.
SinceFL, does not have weakening rules we cannot show these equiesaleo keep the
similar equivalences even for logics without weakeningsulve introduce new propositional
constantd, 0 and initial sequents and inference rules for them.

1. =1

2. 0=
A=y r=
T1asy w pog (0w
Roughly speaking the constants the weakest provable formula afds the strongest contra-
dictory formula. In fact, by the help of these initial sequand rule for0, we can show that
is equivalent tgp — 0 as follows.
Y= p
—Q, 0 = p=¢ 0=
—p, 0 =0 o —0,p=
=P — 0  — 0= i

2.2.2 Structural rules and commas

In LJ we can show the following.
©1, P2, -« -, pm = Y iS provable iffp; A po A ... A @, = 1 IS provable.

To show the only-if part we need contraction rule, and to sttwif-part we need weakening
rule. On the other hand in substructural logics either withamntraction rule or without left-
weakening rule, commas on the left-hand side of sequent$ ldeimave as conjunctions. To
represent commas in sequents, it is convenient to introdugaw logical connectivecalled
fusion We add following rules for.

F7a7/67Ajry
Ia-0,A =~

'=a A=0
IN'A=a-p

(left-fusion (right-fusion)



2.2.3 Exchange rules and implications

Suppose that we have exchange rule. We can show thal'its- 5 is provable thed® = o —
(3 is provable. But lack of exchange rule we cannot show it. Thusequent calculi without
exchange rule, we introduce two implication connectiveand /. Moreover it is natural to
introduce two negation connectivesand—.

I'=« 2,6,AZ>7 OK,F:>6 .
ST, a\3,A = 7 (left-\) TS ag (right-\)

I'=« E,ﬂaAi’y F,Oé:>ﬂ .
S Gjal.A s (e o5, (ont/)

2.2.4 Sequent calculus substructural logi&'L

The sequent calculdSL has the following initial sequents and rules;

Initial sequents:

1. a=a«a
2. =1
3.0=>
Rules:
Cut rule:
'=a Yo A=p
ST.AS 5 Ul
Logical rule:
A=~y I
F1As, W pog (0w
a, A=~y [6,A =~
F,a/\ﬂ,A:y(leﬂ/\l) F,a/\ﬂ,A:y(leﬂ/\z)
l'==a I'=>p(6 .
= and (right-A)
o, A=~y I,8,A=~y
FaVvp,A=vy (left-v)
_I'=a  (eft =0 e
F:avﬂ(bft\/l) F:H)évﬂ(lefth)
Ia,B,A =~ e '=a A=p . o
F’a.ﬁ?Aiv(leﬂfusmr) TAS o j (right-fusion)



F'=sa X 8,A=7y W al'=p .
ST 0\3.A = 7 (left-\) 7F:>oz\ﬂ (right-\)
I'sa Y3,A=~y I'Na=p

Y, 68/a, T, A=~ (left-/) m (right-/)

Note that we define negation rulesand— by ~ ¢ < p\0 and—y < 0/¢.

We denote the sequent calculBE, is obtained fromFL by adding the exchange rule and
FL.. is obtained fron¥L, by adding weakening rule. Note that if we add exchange re th
o\ andj/« are provably equivalent iRL. Thus, we use-.

2.3 Substructural logics overFL

Formally,substructural logics oveFL (or simply,logics overFL) are defined to be axiomatic
extensions off'L, i.e. sequent calculi obtained frolL. by adding some additional initial
sequents{= ¢;|i € I}. These formulasy; should be regarded as schemes, cadgibm
schemesand therefore every substitution instagcef them can be taken as an initial sequent.
We denote logic which obtained frolL by adding axiom schemgspy, ..., ¢, } is denoted
by FL[p1, ..., @4l

Similarly, we can introduce the notion of substructuraliésgoverFL, etc. The calculus
FL. can be also regarded as a logic o¥dt, since the exchange rule can be expressed by a
formula(y - ) — (¢ ---¢). Also, the contraction rule, the left- and right-weakeniokps are
expressed ag — (¢ - ¢), (p- 1) — pand(y - ¥) — 1, and0 — ¢, respectively.

But, sometimes it is more convenient to define substructagats as sets ok formulas.
In fact, for each substructural logics oL (by the above definition), ldt be the set of all
formulas provable i.. Then, we can show that the detatisfies the following, wherBL in
(1) denotes the set of all formulas provableih.

1. FL C L.

2. L is closed under substitution, i.e. if a formuldp) which includes a propositional
variablep belongs toL then ¢(¢)) belongs also td. for any formulay. Here ¢(v))
expresses the formula obtained frortp) by replacing every occurrence pin ¢(p) by
the formulay).

3. Ifp,p\¢p € Ltheny € L.
4. If p € Lthenp A1 € L.
5. If p € L andy is an arbitrary formula of the form\ (¢ - ¥), (v - ¢) /¢ € L.

From now on, we will take these conditions to give an altameadiefinition of substructural
logics. That s,

Definition 2.3.1 A setL of formulas is a substructural logic ovEiL, if it satisfies all of con-
ditions from (1) to (5).



Hereafter, we identify the calculdswith the corresponding sétof formulas, and in most
cases, logics are represented by using bold face lettersegcingFL in the condition (1)
by another substructural logig,, we can introduce the notion of logic ovkg. Clearly, every
logic overFL, is a logic overF'L, and so on.

The setC of all logics is ordered by the set inclusion. The maximumdag ®. The logic
® is called theinconsistent logic Other logics are said to be consistent. Then it is clear that

LiN Ly e LforanyLy, Ly € L. Ingeneral, for anfL; € L|i € I} the intersectiorf)L; is in
1€l

L. But unionL; U L, is not necessarily. So we defihg vV L, as the minimum logic including

Ly U Ly. Thus(L,N,V,FL, ®) forms a bounded lattice whose greatest elemefit &d the

least elemenFL.

Classical

Intyitionistc 1ggiq

Figure 2.1.



Chapter 3

Universal algebra

As the title of our thesis shows, a special feature of our @ggn to substructural logics is to
use heavily concepts and tools of algebra. In this chaptegiveea brief survey of some basic
results on algebras from a view point of universal algebfafBich will be necessary in later
chapters.

3.1 Lattices and Boolean algebras

Definition 3.1.1 (partial order) A structureA = (A, <) is apartially ordered se{(p.o.set) if
the binary relatior< satisfies the following. For alt, y, z € A.

(P1) z < .
(P2) Ifz < yandy < x thenx = y.

(P3) Ifz < yandy < zthenz < z.

Moreover if a p.o.sefA = (A, <) satisfies
(P4)x <yory < xforeveryr,y € A
thenA is atotally ordered set

Definition 3.1.2 (lattice) A structureL = (L, A, V) is alatticeif it satisfies the following. For
all z,y,z € L.

(L1) Az =z,2Vzr=mr
L2) zA(yAz)=(xAy)Az,zV(yVz)=(zVy)V =z
(L3) zAy=yAz,zVy=1yVx.

(L4) zA(xVy)=z,zV(xAy) ==

LetL = (L, A, V) be a lattice. Define a binary relatighby

r<y&sS ANy ==



Then, we can show that is a partial order. We note that\y = x is equivalent to the condition
x Vy = y. Thus each lattice induces always a partial order on it.

Definition 3.1.3 Let X be a set. Thd3oolean algebra of subsets &f, Su(X), has as its
universeSu(X) which is the power set ok and as operations, N,”, ), X.

3.2 Concepts from universal algebra

Subalgebras, homomorphisms and so on which play an impodknin study of algebra can
be introduced into algebras. In this section we show somie lpasperties. A language (or
type) of algebras is a st of n-ary operation symbagl. AlgebraA of type F is an pair(A, F)
whereA is a nonempty set and where there is an n-ary opergtfoon A. Here after we say
that algebraA meansA of type F. For further information, see [3].

3.2.1 Homomorphism and isomorphism

Definition 3.2.1 Let A andB be algebras. A mapping : A — B is ahomomorphisnif «
satisfies the following conditions.

foranya;,as € A, o(f2(a1,...,a,)) = fB(alar),. .., alas)).
Furthermore,
1. if a is an one-to-one mapping thens called anonomorphisnor aembedding
2. if ais an onto mapping them is called aepimorphisnor anonto homomorphism

3. if ais an one-to-one and onto mapping theis called arisomorphismIf there exist an
isomorphismy from A to B thenA is said to basomorphicto B, written A = B.

Definition 3.2.2 Leta : A — B be a homomorphism. Then thkernel ofa, written ker(«),
and theimage ofa, written Im(«), are defined by

ker(a) = {{(a,b) € A?: a(a) = a(b)}, Im(a)={ala) €B:a€ A}.

If «vis a surjective thedm(«) is equal toB and we say thaB is the homomorphic image
of A. Sometime/m(«) is expressed also hy(A).

3.2.2 Subalgebra and quotient algebra

Definition 3.2.3 Let A andB be two algebras. TheB is asubalgebraof A if B C A and
every operatiorfg of B is the restriction of the corresponding operatiom\of\We write simply
B < A whenB is a subalgebra oA. A subuniverse ofA is a subseB of A which is closed
under the operations &, i.e. if f, is a operation oA anday, ..., a, € B we would require
fAai,...,a,) €B.

10



Definition 3.2.4 Given an algebra define, for everyX C A,
Sg(X) =B :X C BandB is a subuniverse oA }

We readSg(X) as the subuniverse generatedy

For information onSg, see [3].

Definition 3.2.5 Let A be an algebra and létis an equivalence relation aA. Thend is a
congruencen A if ¢ satisfies the followingompatibility property

CP: For each operatioft* and elements,, . .., a,,b1,...,b, € A, if a;0b; holds
foranyi € {1,...,n} then

fA(al, <y CLn)QfA(bl, <y bn)
holds.

We can consider that congruencesArare a subset oA x A and thus they are ordered
by the set inclusion. Hence we define maximum congru&ngcealled the full congruence and
minimum congruencé\ as follows.

V ={(a,b);a,b e A}
A ={{a,a);a € A}

The set of all congruences ok is denoted byCon A. Then we can easily show th@bn A
is a bounded lattice which has the maximum elenérand the minimum elemenk. So the
congruence lattice oA denoted byCon A. The following is the definition oA\ andV, where
6, o 0, denotes the sdt(a, b) | 3¢ € A such thaub,cb}.

91/\92:91ﬂ92
01\/92:0]_U(91002)U(01092001)U(91002091002)U....

Definition 3.2.6 Let A be a algebra and, .. .,a, € A. ThenO(ay,...,a,) is the minimum
congruence such that, .. ., a, are contained in a same equivalence class.

Definition 3.2.7 An algebraA is congruence-distributivef Con A is a distributive lattice.
Moreover a clas#C of algebras is congruence-distributive if every algebr&iis congruence-
distributive.

Proposition 3.2.1 Leta : A — B be a homomorphism. Thénr(«) is actually a congruence
OnA.

Proof If (a1,b1),..., (a,,b,) € ker(a), then

a(fAar,...,a,)) = fBal(ay),..., alay))
= fBla(by),...,a(b))
= a(fA(by,...,b))

hence

11



(fA(a1,...,a2), fB(b1,...,b2)) € ker(a).

Clearly ker(«) is an equivalence relation, so it follows that-(«) is actually a congruence on
A.

Let ¢ is a congruence on a algebfAa Thend is an equivalence relation. So we define an
equivalence clasg:/0) includea € A as follows.

a/l ={z € A;z0a}.
In addition we define quotient sat/d as follows.
AJO ={a/0;a € A}.

Definition 3.2.8 Let # be a congruence oA. Then thequotient algebra ofA by 6, written
A /0, is the algebra whose universeAgd and whose operations satisfy

fA%a1/0,...,0,/0) = (fA(ay,...,a,))/0

whereay, ..., a, € A.

Definition 3.2.9 Let A be an algebra and 16t Con A. Thenatural mapyy : A — A/f is
defined byvy(a) = a/6 for anya € A. (When there is no ambiguity we write simphjinstead
of V@.)

Proposition 3.2.2 A natural map fromA to A /6 is an onto homomorphism.

Proof Itis clear that the natural map is onto. For any...,a, € A

ve(fA(ar, ... an) = (fA(a1,...,a,))/0
= A%a,/0,... a,/0)
A (vy(a), ..., ve(an))

Thuswvy is @ homomorphism.

Proposition 3.2.3 (Homomorphism theorem)Leta : A — B be an onto homomorphism.
Then there is an isomorphisphfrom A /ker(«) to B defined by = (3 o v, wherev is the
natural homomorphism from to A /ker(«).

12



Proof First note that ifa. = 5 o v then we must havg(a/0) = a(a). The second of these
equalities does indeed define a functirands satisfiesy = 5 o v. It is not difficult to verify
that (3 is a bijection. To show that is actually an isomorphism, suppase€. .., a, € A. Then

ﬁ(fA/e(al/9> SR aan/e)) = p

((fMaa, ..., a2))/0)
= alf*ay,..., a))
= fBla(a),. .., ala,))
= [P(B(a1/0), ..., B(az/0)).

Let A be a algebra and, # € Con A andf C ¢. Then we define /0 as follows.
¢/0 = {(a/0,b/0) € (A/0)* : (a,b) € ¢}.
The next proposition holds.

Proposition 3.2.4 Let¢, 6 € Con A andf C ¢. Theng/0 is a congruence o /6.

Proof Let(a,/0,0,/6),...,{(a,, b,) € ¢/0. Then(ay,b), ..., (an,b,) € ¢ from definition of
¢/0. So

<fA)(CL1, .. .,an), fB(bl, e oy bn)> € Qb
Hence

(fAar,...,a,)/0, fB(b1,...,b,)/0) € /0.
Form this
(fA%(a1/0,...,a2/0), fBO(b1/0,...,b2/0)) € .
Thus¢/0 is a congruence oA /6.
O
Let A be an algebra and € Con(A). Then we define a sublattidé, V] of Con A as
follows.
0, V]={p€ConA:0C ¢V}

Proposition 3.2.5 (Correspondence theorem).et A be a algebra andd € Con A. Then a
mappinga on [0, V] defined by

a(¢) = ¢/0
is a isomorphism fron®, V] to Con A /6

Proof First we showu is one-to-one. Let, v € [0, V] (¢ # ). Suppose thap ). Then
there arer, b € A such thata, b) € ¢ — ). Hence

(a/0,b/0) € (¢/0) — (4/0)

13



So
a(¢) # a(y)

Thusa is one-to-one. Next we showis onto. Lety) € ConA /6, andg = ker(vy o 1), where
vy is a natural homomorphism froon A /6 to (Con A /6)/v. Hence for any;, b € A

(a/0,b/0) € ¢/0
< (a,b) €9
< {a/0,b/0) € 1.

So
Y =9¢/0=a(p).

Thusa is onto. Finally we show is an isomorphism.

(pNa)/0 = {(a/0,b/0) € (A/0)”: (a,b) € ¢ Na P}
= {(a/0,b/0) € (A/0)* : (a,b) € ¢ and (a,b) € ¢}
= {{a/0,b/0) € (A/0)*: {a,b) € ¢} and {(a/0,b/6) € (A/0)? : (a,b) € )}
= ¢/fand /6
= ¢/0Ncon Ay /0

(0vav)/0 = {{a/0,b/0) € (A/0)*: (a,b) € dVa b}
= {{a/0,b/0) € (A/0)*: Ty = a,c1,...,c,=bEA
st.{(c;,civ1) € por (¢, i) €Y (0<i<k—1)}
= {{a/0,b/0) € (A/0)*: 3co/0 = a/O,c1/0,...,ck/JO =b/0 € AJO
s.t. {c;/0,cit1/0) € ¢/0or (c;/0,ci41/0) €/0 (0<i<k—1)}
= /0 Vcon ajo /0

Thusa(f2(¢,v)/0 = fConA/0(¢/0,1/0) holds.

3.2.3 Direct product and subdirect product

Definition 3.2.10 Let (A;)1<i<» IS an indexed family of algebras. Define thgect product
[1,<i<, Ai to be the algebra whose universe is theldet,.,, A; and such that;, a]* € A;,
1 <7 <n,

leSiSn(m%,...,ab,...,(a?,...,a?)) = (fAl(a%,...,aﬁ”),...,fA”(aiL,...,agl».

<n

After herex(j) meansjth element of:.

Proposition 3.2.6 Let A;, A, A3 be algebras. Then the following isomorphic relations hold.

1. A]_XAngzXAl

14



2. A1X(A2XA3)2A1XA2XA3

Proof Let homomorphisms of 1 and 2 be&({(ai,as)) = (as,a;) and a({ay, (as,as))) =
(ay,aq, a3), respectively. Clearly that,, a, are isomorphisms.

The mappingr; : [[,<;<, A; — A; (1 <i < n) defined by

mi({ay, ag, ..., a,)) = a;

is called theprojection map on theth coordinateof [ [, ;. A;. We can easily show that each
projection map is an onto homomorphism.

Definition 3.2.11 An algebraA is asubdirect producof an indexed family A;),; of algebras
if
A<T]

— el

A;
and

mi(A) = A, for eachi € 1.

A subdirect product ofA;),c; is an algebra which is a subalgebra]¢f_,; A; and satisfies
the condition 2. Moreover becaudesatisfies the condition 2, it is not necessarily tAas iso-
morphicto] [, A;. Forexample, i\, = {a, b}, Ay = {c,d, e}, A = {(a, c), (a,d), (b,c), (b,e)},
then it satisfies 2. BuA is notisomorphic tq [,_; A; from [[,.(, 5, A = {(a, ¢), (a. d), (a, ¢),
(b, c), (b,d), (b, e)}. Anintuitive meaning of subdirect products is that theysarficiently large
subalgebra among direct products.

Definition 3.2.12 The mappingy : A — [|
anda(A) is a subdirect product dff,_; A,.

.1 Aiis asubdirect embeddinf « is a embedding

Proposition 3.2.7 Let# € Con A (i € I) and(),.,;0; = A. Then a homomorphism: A —
[1,c; A/0; defined by

v(a)(i) =a/b;
is a subdirect embedding.

Proof If we define ther by v; = 7; o v for anyi € I then they; is a natural homomorphism
from A to A /6;. First we show that(A) is a subalgebra df,., A /6.
Forallv(ay),...,v(a,) € v(A) (a1, ...,a, € A)

ineIA/ei(V(al), e y(an)) = V(fA(al, C. ,an)) S V(A)
Furthermore

{THiEI A/6is J_Hiel A/6is 1Hi€1 A/0;s OHiEI A/ei} = {V(TA)7 V(J-A>7 V(1A7 V(0A>} -
v(A).
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Hencev(A) is a subalgebra df],., A /6;.
Moreover for alli € I v(A) is a subdirect product df[,_, A/6; from v;(A) = A /6;.
Next we show that is an embedding. For all, b € A (a # b)

(a,0) & Mier i

from(,.; 0; = A. Hence there exist somec [ such that

icl
<CL, b) g 9]"
From thisv;(a) # v;(b). Sov(a) # v(b). Thusy is an embedding.

O

Definition 3.2.13 (subdirectly irreducible) An algebraA is subdirectly irreduciblef for ev-
ery subdirect embedding

a:A— J[A;

i€l
there is an € I such that
moa: A — A,
is an isomorphism.

Next lemma is most useful for understanding subdirect ucdale algebra.

Lemma 3.2.8 An algebraA is subdirectly irreducible if and only iAA is trivial or there is a
minimum congruence i@'onA — {A}. In the latter case the minimum elementig”on A —

{A}).

Proof First we show only-if part. IA is not trivial andC'on A — { A} has no minimum element
then(ConA — {A}) = A. Let] = ConA — {A}. Then the naturalmap : A — [[A/f0is

oel
a subdirect embedding by Lemma 3.2.7, and as the naturalAmap A /6 is not injective for

0 € I, it follows that A is not subdirect irreducible.

Next we show if part. IfA is trivial anda : A — [ A, is a subdirect embedding then each
el
A, is trivial; hence eachr; o o is an isomorphism. So suppogeis not trivial, and let? =
N(ConA — {A}) # A. Choos€a,b) € 0, a #b. If a : A — [[A, is a subdirect embedding
i€l

then for some, (aa)(i) # (ab)(i); hence(m; o a)(a) # (m; o )(b). Thus(a,b) & ker(m; o «)
s00 € ker(m; o ). But this impliesker(m; o ) = A, som; o a : A — A, is an isomorphism.
ConsequenthA is subdirect irreducible.

If ConA—{A} has a minimum elemefitthen fora # band(a, b) € 6 we haved(a,b) C 0,
henced = O(a, b).

O

Lemma 3.2.9 (Birkhoff) Every algebraA is isomorphic to a subdirect product of subdirectly
irreducible algebra.
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Proof The trivial algebra are subdirectly irreducible. L&tbe a non-trivialA. Fora,b € A
with a # b we can find a congrueneg ;, on A which is maximal with respect to the property
(a,b) & 0,5 by using Zorn’s lemma. Then cleary(a,b) V 6, is the smallest congruence in
[00p, V] —{6.}, SO by lemma 3.2.5 and 3.2.8 we see thdt, , is subdirectly irreducible. As
({0.p a # b} = A we can apply proposition 3.2.7 to show th#ats subdirectly embeddable
in the product of the indexed family of subdirectly irredoiei algebra A /6, ) -z

O

3.3 Varieties

In the previous section we show some properties of algebrthi$ section we show properties
of classes of algebras.

Definition 3.3.1 We define mappings from cla&sof algebras to clad$KC), S(K), H(K), P(K)
andP(K) as follows.

e A €I(K) < A isisomorphic to some member k¥
e A € S(K) & Ais asubalgebra of some membertaf

e A € H(K) & A is ahomomorphic image of some membekof
e A € P(K) < Aisadirect product of a nonempty family of algebraxin

e A € P,(K) < Ais asubdirect product of a nonempty family of algebra&’in

Let O; andO, are two operators on classes of algebras.We i@, for the composition
and < denotes the usual partial order, i@; < O, if O1(K) C O,(K) for every classC of
algebras.

Definition 3.3.2 Let K be a class of algebras andbe a operator on class of algebras. Then
is aidempotentf O = O, andK is closedunderO if O(K) C K.

Proposition 3.3.1 Following inequalities hold.

SH < HS
PS < SP
PH < HP

Also the operatorsi, S, andIP are idempotent.

Proof SupposeA = SH(K). Then for somé3 € K and onto homomorphisim : B — C, we
haveA < C. Thusa™'(A) < B, and asx(a!(A)) = A, we haveA € HS(K).

If A € PS(K) thenA = [].., A, for suitableA; < B, € K,i € I. As][,.; Ai < [l,c; Bi
we haveA € SP(K).

Next if A € PH(K), then there are algebrd; € K and epimorphisms; : B; — A; such
that A = [[,.; A,. Itis easy to check that the mapping: [],., B, — [],.; A; defined by
a(b)(i) = «;(b(4)) is an epimorphism; henck € HP(K).

We showH = H% H C H?is clear. IfA € H?*(K) then there exist onto homomorphisms
a:B—C,5:C— AandB € K. Soj o ais an onto homomorphism. Thus € H(K).
We can show tha, andIP are idempotent in the same way.
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A class of algebras, called a variety, defined by the foll@win

Definition 3.3.3 (variety) Let K is a nonempty class of algebras.is avarietyif it is closed
under class operatofs H, P.

If K is a class of algebras I&(X) denote the smallest variety containikig We say that
V(K) is thevariety generated bjC. If I consists of a single member then we write simply
V(A).

Proposition 3.3.2 (Tarski) V = HSP.

Proof SinceHV = SV = IPV =V andl < V, it follows thatHSP < HSPV = V. From above
lemma we see that(HSP) = HSP, S(HSP) < HSSP = HSP, and

HPSP
HSPP
HSIPIP
HSIP

HSHP
HHSP
— HSP.

P(HSP)

[ IAIA A

ININA

Hence for anyC, HSP(K) is closed undeH, S, andP. AsV(K) is the smallest class containing
K and closed undé, S, andP, we must havé/ = HSP.

The following lemma is another version of Birkhoff’'s Theor&.2.9.

Lemma 3.3.3If K is a variety, then every member/6fis isomorphic to a subdirect product of
subdirectly irreducible member &f.

Corollary 3.3.4 A variety is determined by its subdirectly irreducible mensb

3.4 Jonsson’s Lemma

Definition 3.4.1 Let B = (B, A, V., 0, 1) be a Boolean algebra. fiter F of B is defined by
l.1€F.
2.a,beF=aANbeF.
3.aceFanda <b=1beF.

A filter F is calledproperif F # A. Afilter F is calledprimeif foranya,b € F,aVvb € F
impliesa € Forb € F.
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The collection of all filters ofA forms a complete lattice denoted BYI(A). For, if {F|i €
I} is a family of filters then F; is also a filter.
i€l
Definition 3.4.2 A filter F of a Boolean algebrB is anultrafilter if ' is maximal with respect
to the property that ¢ F. Let X be a set an®(X) be a powerset oK. A subsefU of P(X)
is called anultrafilter over X, if it is a filter of Su(X') which is maximal with respect to the
property that) ¢ U.

Proposition 3.4.1 LetF be a filter of a Boolean algebrB. Then the following are equivalent:

1. F is an ultrafilter of B,
2. for anya € B, exactly one oft anda’ belongs tdr,
3.avbeF < acFandbe Fforanya,b € B.

Proof 1= 2. If F'is an ultrafilter therB/0r = 2 sinceB /0 is simple, where2 is the tow
element Boolean algebra. Let: B — B/f0r be the natural homomorphism. Fere B,
v(a') = v(a) so

v(a) =1/0p or v(d') =1/0p,
asB/0r = 2; hence
ainF or o € F.

If there existsiinB such thatinF anda’ € F then0 = a A d’ € F, so this is a contradiction.
2 = 3. Supposé is a filter witha Vb € F. By 2,(aVb) = (¢ ANV) & F,sod ¢ F or
b ¢ F Thus, eithen € Forb € F.
3 = 1. Suppose that” is a filter of B such thatt" C F’. If « € F — F’ thend’ € F, since
l=aVd € Fanda ¢ F,by 3. Henceq' € F' C F',s00 =a Ad € F'. ThusF’ = B.

O

Definition 3.4.3 Let A = {A;|i € I} be a an indexed set of algebras dnhte a ultrafilter over
I. Then we define thaltraproduct][A;/U to be [[A,/fy wheredy is the binary relation on
iel 1€l
[TA; by
i€l
<CL,b> ~ {Z € I‘CI,Z = bl} e U.
The elements of[ [ A;/U are denoted by /U, wherea € J]A,.
i inl el
Lemma 3.4.21f {A;|i € I} is a finite set of finite algebras, sg{B, ..., B}, (I can be
infinite), andU is an ultrafilter over/, then [] A;/U is isomorphic to one of the algebra

i inl

B, ..., B, namely to thaB, such that{i € I|A;, = B,} € U}.

Proof LetS, = {i € I|A; = B,}. Thenl = S, U---U S,,, so by Proposition 3.4.1, there is
somej (1 < j < m)suchthatS; € U. LetB, = {b,...,0;}, where the b’s are all distinct,
and choose, ..., a; € [[A; such that; (i) = by, ...,ax(i) = by if i € S;. Then, for every

i€l
elements € [[A,,
i€l
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{i € Ila(i) = a1 ()} U---U{i € I|a(i) = ax(i)} D ;.

SinceS; € U, {i € Ila(i) = a1(1)} U --- U {i € I]a(i) = ax(i)} € U, this follows{i €
Ila(i) =a1(i)} e Uor--- or{ie I|a(i) = ar(i)} € U; hence

a/0y = ay /0y or...ora/0y = ax/0y.

Also itis evident that,; /6y, . . ., a; /60y are all distinct. Thug [A; /6, to B, defined by

i€l
Oé(a,t/eU) = bt, 1 S t S k.

Then it is easy to see thatis an isomorphism.

Lemma 3.4.3 (bnsson) Let W be a family of subsets @éf+ ()) such that
1.7eW,
2. ifJeWandJ C K C [thenK € W and
3. ifJjUJy e WthenJy e WorJ, e W.

Then there is an ultrafiltet/ over! withU C W.

Proof If ) € W thenW = Su(I), so any ultrafilter is ifV. If O ¢ W, thenSu(/) — W
is a proper ideal. Hence it is extended to a maximal ideal anthking the complementary
ultrafilter we can obtain an ultrafilter.

Definition 3.4.4 The class of ultraproducts of memberstofs denoted by ().

Proposition 3.4.4 (bnsson) Let V(K) be a congruence-distributive variety. & is a subdi-
rectly irreducible algebra iV(K), thenA € HSPy(K).

Proof Suppose thaA is a nontrivial subdirectly irreducible algebraViC). Then for some
A; € K,i € I, and for somé < [[A; there is a surjective homomorphism B — A. Let

0 = ker(a). ForJ C I let “
05 ={{a,b) € (TIA)?|J € {i € Ia(i) = b(i)}}.

el
It is easy to see that for an}(C I), 6, is a congruence oﬂAi. Letd; 1g= 6; N B2 be the
restriction off; to B, andW = {J C I|0; 15C 6}. CIearIyZEI
ITeW,0gw
and

JeWandJ C K C Iimpliesf; 1gC 6,
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asfx 18C 65 1. Now suppose/; U Jo € W, i.e.,0505, T8C 0. ASOj,0, = 05, N6y, it
follows that

8J1UJ2 TB: 8J1 TB mejz TB'
Sinced =60V (6, 15 NG,, 1) it follows that
0= (0Vo; Ts)N(OVHoy, )

by distributivity. SinceB /6 is isomorphic toA 6 = 6 v 0, g fori =1 or2. Thusd,, TgC 6
fori =1 or2, so eitherJ; or j, isin W. By Lemma 3.4.3, there is an ultrafiltér contained in
W. Form the definition ofl” we have

O T8C 0
asfy = |J{0,|J € U}. Letv be the natural homomorphism froff A; to [[A;/U. Then let

i€l i€l
G : B — v(B) be the restriction of to B. As ker(3) = 0y 15C 6 we have

A =B/ = (B/ker(8))/(0/ker(B)).
Now B/ker(3) = v(B) < [[A;/U soB/ker(3) € ISPy(K), hence

el

A € HSPy(K).

3.5 Free algebras and universal mapping property

Definition 3.5.1 Let X be a set of (distinct) objects callegriables The setl'(X) of terms
over X is the smallest set such that

1. XU {0,1} C T(X).
2. If p1,...,p, € T(X)then the “string”f (py, ..., pn) € T(X).

Forp € T'(X) we often writep asp(x1, . . ., z,,) to indicate that the variables occurringirare
amongzy, . .., Tp.

Definition 3.5.2 Given atermp(z, . .., z,) over some sek and given an algebrA we define
a mappingp® : A" — A as follows:
(1) if p is a variabler;, then

pA(ah cee 7an) = Q;

fora,,...,a, € A, i.e.,p? is theith projection map;

(2) if pis of the formf(p1(x1, ..., zn), ..., pm(z1,...,2,)) then
pAar,. .. a,) = fFAPM 21, .. mn), PR (2, T)).

In particular if p is f thenp® is f4. The expressiop” is called theterm functionon A
corresponding to the term (Often we will drop the superscripgt).
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The next proposition gives some useful properties of temmations.

Proposition 3.5.1 For any algebraA and B we have the following.
(a) Letp be an n-ary term, lef € Con A, and supposéu;,b;) € 6 for1 <i <n. Then

pAay,. .., a,)0p2(by, ..., by).

(b) If pis an n-ary term andv : A — B is a homomorphism, then

a(pt(ai,...,a,)) = pBlalay),. .., ala,))

foray,...,a, € A.
(c) LetS be a subset oh. Then

Sg(S) = {pA(a1,...,a,)|pis an n-ary termp < w, anday, ..., a, € S}.

One can, in a natural way, transform the 5éK) into an algebra.

Definition 3.5.3 Given X, if T(X) # () then theterm algebraover X, writtenT(X ), has as its
universe the séf'(X ), and operations satisfy

fT(X)(pla"'apm) = f(le--,PQ)
forpy,...,pm € T(X).

Definition 3.5.4 (universal mapping property) Let K be a class of algebras and 16 X') be
an algebra which is generated Ry If for every A € K and for every map

a: X — A
there is a homomorphism
B:UX)— A

which extendsy (i.e., 5(x) = a(x) for z € X), then we sayU(X) has theuniversal mapping
property forC over X, X is called a set ofree generator®f U(X), andU(X) is said to be
freely generatedhy X.

Lemma 3.5.2 Supposd@J(X) has the universal mapping property frover X. Then if we are
givenA € K anda : X — A, there is a unique extensighof « such that? is a homomorphism
fromU(X) to A.

Thus given any clask’ of algebras the term algebra provide algebra which have nire u
versal mapping property fd€. To study properties of classes of algebras we often try t fin
special kinds of algebra in these classes which yield theetesformation. In order to find
algebra with the universal mapping property fomwhich give more insight intdC we will in-
troduce/C-free algebra. Unfortunately not every cldSsontains algebras with the universal
mapping property foiC. Nonetheless we will be able to show that any class closeérnind
S, andP contains itsk-free algebra. There is reasonable difficulty in providirensparent
descriptions ofC-free algebra for mogt. However, most of the applications kffree algebra
come directly from the universal mapping property, the faat they exist in varieties, and their
relation to identities holding ifC.
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Definition 3.5.5 Let K be a family of algebras. Given a s&tof variables define the congru-
encefd(X) onT(X) by

B(X) = Nx(X)
where
P (X) ={¢ € Con T(X)|T(X)/¢ € IS(K)};
and then defin®(.X), the KC-free algebra overX, by
Fe(X) = T(X)/0c(X),

Proposition 3.5.3 (Birkhoff) Supposél'(X) exists. TheFx(X) has the universal mapping
property forkC over X.

Corollary 3.5.4 IF K is a class of algebras and < K, then for sufficiently larg&, A <

H(Fi(X)).

The next proposition says that there exists a free algebrariaties.

Proposition 3.5.5 (Birkhoff) Supposél'(X) exists. Then fokC # ), Fi(X) € ISP(K). Thus
if KC is closed undel, S, andP, in particular if K is a variety, thex(X) € K.

Proof As
O (X) = NPx(X)
it follows that
Fr(X) = T(X)/6c(X) € IP({T(X)/6]6 € rc(X)}),
Slo)
Fr(X) € IPsIS(K),
and thus by Proposition 3.3.1 and the fact that< SP,
Fr(X) € ISP(K).
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3.6 Birkhoff's theorem

In this section we show the famous theorem of Birkhoff. ThekBoff theorem says that a class
of algebras defined by equations is a variety.

Definition 3.6.1 An identity (or equatior) over X is an expression of the form
p=q

wherep, ¢ € T'(X). LetId(X) be the set of identities ov&r. An algebraA satisfies an identity
p(ry,. . xn) = q(xy, ... xy)

(or the identityis true in A, or holds inA), abbreviated by

AEp(ry,...,x,) = q(zy, ..., T0),
or more briefly

AEpry,
if for every choice ofuy, ..., a, € A we have
pAar,. .. a,) = q*(ay,. .., a,).
A classKC of algebras satisfigs~ ¢, written
KEp=aq
if each member ok satisfiegp = ¢. If X is a set of identities, we sdy satisfies, written
KEZX,

if K |=p = qforeachp ~ ¢ € X. Givenk andX let
lde(X) ={p=q € ldX)|KEp=q}.
We use the symbd¥ for “does not satisfy.”

We can reformulate the above definition of satisfactiongigive notion of homomorphism.

Lemma 3.6.1 If K is a class of algebras angd~ ¢ is an identity overX, then
KEp=q

iff for everyA € K and for every homomorphism: T(X) — A we have
a(p) = a(q)

Proof (=) Letp = p(x1,...,2,), ¢ = q(x1,...,2,). SupposeC = p = ¢, A € K, and
a: T(X) — Ais a homomorphism. Then

pA(a(a),... alz,) = pAa(n),. .. alz,))
= a(@™ Nz, .. 20) = o@D (@, .. 2))
= a(p) = a(g).
(«=) For the converse chooge € K anday,...,a, € A. By the universal mapping property

of T(X) — A such that

24



alz) =a;, 1<i<n.

But then
pHay, ... an) = pP(alzy),. .. a(z,))
= a(p)
= a(q)
¢*(a(x1), ..., az,))
*(ay,. .. ap),
soK = p=~q.

Next we see that the basic class operators preserve idsntiti

Proposition 3.6.2 For any classk, all of the classe<C, I(K), S(K), H(K), P(K) and V(K)
satisfy the same identities over any set of variables

Proof ClearlyC andl(K) satisfy the same identities. As
I <IS,1 < H,andl <IP,
we must have
Idic(X) D Tdsgey(X), Idue) (X)), andIdpe)(X).
For the remainder of the proof suppose
KEplry, ..., x) = q(x, ..., z,).
ThenifB < A € Kandb,,...,b, € B,thenad,,...,b, € A we have
pA(b1,. .., b,) = q?(by, ..., bn);
hence
pB(by, ..., by) = qB(by,...,b,),
SO
BEp~q.
Thus
Idi(X) = Idsxo)(X).

Next supposer : A — B is a surjective homomorphism with € K. If b1, ...,b, € B, choose
ai,...,a, € A such that

a(al) - bla tey a(an) = bn

Then
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pAar,...,a,) = q*(a1,. .., a,)
implies

a(pt(ay,...,a,)) = alg®(ay, ..., a,));
hence

pB(by,....0,) = qB(by,...,by)
Thus

BEpry,
SO

Idi(X) = Idngc)(X).
Lastly, supposé\; € K fori € I. Then fora,,...,a, € A =[],.; A; we have

pAi(ai(i), ..., a,(1) = ¢*(ar(i), ..., a,(i));

hence

pA(ar,. .., a,)(0) = ¢*(ar,. .., a,) ()
fori e I, so

pA(ar,. .. a,) = q*(ay,. .., a,).
Thus

Idic(X) = Idpc)(X).
As V' = HSP by 3.3.2, the proof is complete.

Now we will formulate the crucial connection betwekrree algebra and identities.

Lemma 3.6.3 Given a classC of algebras and termg, ¢ € T'(X) we have

KEprq

Fr(X)Epryg

p=q in Fr(X)
(p.q) € Oc(X).

Proof LetF =Fx(X),p=p(z1,...,2,), ¢ =q(x1,...,2,),and let

t ¢

v:T(X)—F

be the natural homomorphism. Certaiiy|= p ~ ¢ impliesF = p ~ g asF ¢ ISP(K).
Suppose next thd = p ~ ¢. Then

pF(Tl, cey Tp) = qF(fl, e T)s
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hencep = g. Now suppos@ = g in F. Then
v(p) =p=7q=r(q),

SO
(p,q) € ker(v) = b (X).

Finally suppos€p, q) € 0x(X). GivenA € K anday,...,a, € A choosen : T(X) — A
such thatv(z;) = a;, 1 < i < n. Asker(a) € ®x(X) we have

ker(a) 2 ker(v) = Oc(X),
so it follows that is a homomorphism: F — A such thaty = 5o v. Then
a(p) = Bov(p) =Bov(g) = alq).
Consequently
KEp=q

by reformulation of definition of satisfaction.

Let £ be a set of identities, and defidéod(E) to be the class of all algebras satisfyifigA
classk of algebras is ardentity clasqor equational claskif there is a sef of identities such
thatXC = Mod(&). In this case, we say that is axiomatizedy €.

Proposition 3.6.4 (Birkhoff) K is an equational class if and onlyAf is a variety.
Proof Suppose thatl = Mod(€). Then, by Proposition 3.6.2;(K) = £. Hence
V(K) € Mod(&) = K € V(K),

SO is a variety.
Let K be a variety and( an infinite set of variables. Then we can shiow= Mod(Idx(X)).
For detail, see [3].
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Chapter 4

Relations between logics and algebras

In this chapter, first we introduce residuated lattices Wilaie algebras for substructural logics.
We will show completeness theorem and discuss about lattilgyics is dually isomorphic to
lattice of varieties of residuated lattices.

4.1 Monoids

Definition 4.1.1 A structureA = (A, -, 1) is amonoidif it satisfies the following. For all
x,y, 2 € A.

M1) (z-y)-z=z-(y-2).

(M2) there exists somec A suchthat-a =a-e=a.

It is easily seen that such an elemergxists uniquely. Therefore, this elemenits called
theidentity element In the following, we consider only commutative monoids, imonoids
satisfyingz - y = y - « for all z, y.

4.2 Residuated lattices

In this section we introduce algebras corresponding totautisral logics oveL. They
are calledresiduated latticegRLs). We show basic properties of residuated lattice from the
viewpoint of universal algebra.

Definition 4.2.1 An algebraA = (A, A,V,-,\,/,1) is a RL if A satisfies the following three
conditions.

(R1) (A A, V, 1) is a lattice,
(R2) (A, -, 1) is a monoid with the unit,
(R3) forz,y,ze A,z y<z&y<z\z&z<z/y.

When(A, A, V, 1) is a bounded lattice with the greatest elemem is called aintegral resid-
uated lattice(IRL). WhenRL A is satisfies the conditiom < 22, A is called acontractive
residuated lattic KRL). When monoid operation is commutativk,is called acommutative
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residuated lattic CRL). It is easy to see that a commutative integral residuatitiddas a
Heyting algebraf and only if the semigroup operatiois equal toA. MoreoverB is aBoolean
algebraif and only if B is Heyting algebra and satisfies/ ' = 1 wherex’ = x — 1. The set
A of A is called theuniverseof A.

An involutive residuated latticnRL) is an algebra with a fundamental unary operation
whose{’}-free reduct is &L, and which satisfies

1. foranyz” = .
2. foranyz\y' = 2'/y.

We call the operatiohan involution. InInRL let us defined = 1’. We call0 the involution
constant.

An RL is calledrepresentablgf it can be represented as subdirect product of totallgmrd
algebras.

The condition (R3) of this definition is calledsiduation This condition means thatand
/ behaves similarly to an inverse operation.of

Definition 4.2.2 An algebraA = (A, A,V, -\, /,1,0) is called aFL-algebra, if
1. (A AV, 4\, /, 1) is aresiduated lattice,
2. 0 is an arbitrary element of.

We define negation operationshi.-algebra by~ = = z\0 and—x = 0/xz.

Suppose thaFL-algebraA satisfies~ x = —x and~ —x = z (and also— ~ = = x).
Then we can show

w\—y<a\-y & 2\(0/y) <z\(0/y)
& x-(2\(0/y)) <0/y =y\0
& x-(2\(0/y) -y <0
& (2\(0/y)) -y < 2\0
& 2\(0/y) < (z\0)/y
=

z\ —y <~ z/y.

From this result'L-algebras which satisfy x = —x and~ —z = x (and also— ~ = = )
can be considered as involutive residuated lattices.

Next lemma shows basic properties of residuated latticekandlgebras, see [7, 8] for the
details.

Lemma 4.2.1 All residuated lattices and al'L-algebras satisfy the following identities:
1. z(yVz) = (xy) V(zz)and(y V 2)z = (yx) V (22)
2. 2\(y N z) = (x\y) A(z\z) and(y A z)/x = (y/x) A (2] )
3. x/(yVz) = (x/y) A(x/z) and(y vV 2)\z = (y\z) A (2\)
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(z/y)y < zandy(y\z) <z

x(y/z) < (zy)/zand(z\y)z = 2\ (yx)
(/y)/z = x/(zy) andz\(y\z) = (y2)\z
a\(y/z) = (x\y)/z

r/l=2=1\z

© © N o 0 bk

1 <z/randl <z\z

10. z < y/(x\y) andz < (y/z)\y

11 y/((y/=)\y) = y/= and (y/(z\y))\y = =\y

12. z/(z\z) = z and(z/x)\x = z

13. (2/y)(y/x) < z/x and (x\y)(y\2) < \2
Lemma 4.2.2 Every involutive residuated lattice satisfies
-y~ (y\a') = (y'/z).

The following lemma says that the class of residuated EgtendFL-algebras are equa-
tional classes.

Lemma 4.2.3 An algebra is a residuated lattice or dflL-algebra if and only if it satisfies the
lattice equations, the monoid equations and the followimggadions.

1 a(z\z Ay) < 2
2. (yAz/z)z < 2
3. y<a\(zyVz)
4.y < (2Vyx)/z

Definition 4.2.3 For any algebra\, a nonempty subsét of A is called adeductive filtelof A
if it satisfies the following conditions.

1. if1 <zthenz eF.
2. ifz,x\y € Ftheny € F.
3. ifz,y e Fthena Ab € F.
4. ifx € Fthenz\zz, zx/z € F.
Proposition 4.2.4 Let A be an algebra andi’ be a deductive filter oA.. Then for any:, b € A,
1. ifa € Fanda < bthenb € F and

2. ifa,b € Fthena-beF.
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3. a\beFifandonlyifb/a € F.

Proof 1.
Leta < b. We havel < a\b. Thusa\b € F from definition of 1. By definition of 2, we show
beF.

2.
Leta, b € F. From definition of 4, we havk\ab € F. By definition of 2, we showb € F.

3.
Leta\b € F. We haveu(a\b)/a € F from definition of 4. We can show thata\b)/a < b/a.
Thusb/a € F. Converse is show by same way.

4.3 Relations between logics overL. and FL-algebras.

In this section we show some relations between logics B¥eand residuated lattices. We will
write A(V) for the lattice of subvarieties of a varietyand A(L) for the lattice of a logid..

Definition 4.3.1 A formula ¢ is valid in aFL-algebraA if v(¢) > 1 for every valuation.

Note that a formula is valid in A if and only if the identityp A 1 = 1 isvalid in A, i.e.,
A E pAl=1. Asequent’ = «isvalid in A if and only if a formulal™*\« is valid in A
wherel™ is~y - ...y, for~y, ..., v, € L.

Definition 4.3.2 Let A = (A A,V,-,—,0,1) is aFL-algebra. Avaluationv is a mapping
from set of all propositional variable t&. Furthermore thi® is extended to a mapping from
set of all formulas to\ as follows.

L v(p Avp) = v(p) Ao(y)

(
2. v(p V) = v(p) V()
3. v(p\) = v(p)\v(¥)
4. v(/p) = v(¥)/v(p)
5. v(p-¢) = v(p) - v(¥)
6. v(~ ) = v()\0
7. v(=p) = 0/v(p)

For a givenFL-algebraA, and let(A) be the set of all formulas such thaty) for any
valuationv onA.

Proposition 4.3.1 For eachFL-algebraA, L(A) is a substructural logics overL.
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Proof Itis easy to see th&L C L(A)

Let »(p) be a formula containing a propositional variabl@nd ¢(p) € L(A). By our
assumptiony(p(p)) > 1 for any valuatiorw. Now, consider any substitution instangéy) of
»(p) and any valuatiom on A. Letw(«) = a. Then, define a valuation' by v'(p) = a and
v'(q) = w(q) if q is different fromp. Then,q < v'(¢(p)) = w(e(«)). Thereforep(a) is valid
in A. Thusp(a) € L(A).

Let ¢, \v € L(A). Then for any valuation v(¢) > 1, v(p\¢) > 1. By the definition of
valuations we can show(y) < v(v). So fromu(p) > 1 andv(p) < v(v) v(v) > 1. Hence
v(y) > 1 for any valuatiorv. Thusy € L(A). ThusL(A) is closed under modus ponens.

Letp € L(A). Thenuv(p) > 1 for any valuatiorw. By the definition of valuations(y A
1) =v(p) Av(l). Sov(p) Av(l) > 1fromu(p) > 1. Hencev(p A 1) > 1 for any valuation.
Thusp A1 € L(A).

Let p € L(A) andv is an arbitrary formula. Then(y) > 1 for any valuatiorw. By the
definition of valuations

v(¥) < v(p) - o)

1<o(p) =
& 1 <v)(v(e) () = v\(@ - ).

Thusy)\(¢ - ) € L(A).
ThereforeL(A) is a logic.

The logicL(A) is called the logic characterized By.

Proposition 4.3.2 For any logicL over FL there exists soméL-algebraA such that
L=L(A).

(Out line of proof)  We show this by constructing the Lindenbaum algebrh.of
First we define a binary relatica between formula and+ as follows.

=1 < p\teLandy\p € L

© = 1) means thap and are logically equivalent. It is clear thatis an equivalence relation.
We can show moreover that is a congruence relation, i.e. ¢f = ¢, ¢’ = ¢/’ thenyp & ¢’ =

Y @ ¢’ for any logical connectives.

Next by using this congruence relatien construct the quotient set/ = wherey is a set
of all formulas. We writelp] equivalence class including. We can show that\ = (¢/ =
AV \, /L [T [L]) is aFL-algebra wherey, Vv, -\, / are defined as follows.

[p] U [¢] [p A Y]
IN[W] = [V
[l - [¥] = [p- 9]
[e\[Y] = [p\¥]
[Wl/le] = [¥/¢]

Finally we show thal. andL(A) correspond to each other, i.e.
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¢ € L & for any valuation oM, v(A) > [1]

This algebraA is called theLindenbaum algebraf a logicL.

Proposition 4.3.3 (completeness theoremifor any formulayp, ¢ is provable inFL if and only
if for any FL-algebraA and for any valuatior on A, v(p) > 1.

(Outline of proof) We show only-if part.
We define a valuation for a sequentyy, ..., a,, = ( as follows.

v(ag,...,an = f) =v(ag ... an)\v(F)

However if left-hand side of a sequent is empty thén> 5) = 1\v(3) and if right-hand side

of a sequent is empty thena, ..., a, =) =v(ag ... a,)\0.

We show this by induction on the construction of a proof of arfola . That is, for a given
valuationu, every sequent in a proofv(S) > 1. First we show base case. Initial sequents are
satisfies following condition. For example,

1. vla=a)>

o= T) > 1,
o L A=) >,
(=

)=

2
3
4. v
5 v0=)>1.

Second we show induction case. Let for each inference ryberupequents; and S, are
satisfie(S;) > 1 andv(Ss) > 1. Then lower sequerf is satisfies)(S) > 1.

Next we show if-part.

We show the contraposition of if-part. Suppose that for @igia formulay such thaty is not
provable inFL. Then by using Lindenbaum algebralok: there exist som&L-algebraA and
some valuation such that(p) # 1.

From a Proposition 4.3.3 we transcribe a Proposition 4 8fbleoows.
Proposition 4.3.4 A logic L(A) characterized by &'L-algebraA is a logic overFL.

Proof Itis clear from a Proposition 4.3.3 thRIL C L(A) for all FL-algebraA.
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4.4 Algebraic operations and inclusion relation among logis

In previous section,we show that tli¢A) is a logic L(A) over FL for eachFL-algebraA,
and conversely every logit over FL can be represented d$A) for someFL-algebraA.
Hereinafter we show the relations between three basic edgebperations and logic.

Proposition 4.4.1 (subalgebras)Let A and B are FL-algebras andA < B. ThenL(B) C
L(A) hold.

Proof Suppose th&& < B. Then any valuation oA can be considered to be the restriction
of a valuation orB of A. Soify is a element of.(B), i.e. v(¢) > 1 for any valuatiorv, then
u(p) > 1 for any valuation: on A. ThusL(B) C L(A).

Proposition 4.4.2 (quotient algebras)Let A is FL-algebra and) is a congruence oAA. Then
L(A) C L(A/6)

Proof Lety(py,...p,) be aformula, where,, ... p, are all propositional variables appearing
in ¢. And for some formulas(ps, . . . p,) We express a replacing logical connectives/, -, \

./ with A, Vv, -, \, / and a replacing propositional variablgswith z; by f,(z1,...,z,). Then
this is a element oF L-algebra.

Suppose thap(ps,...p,) € L(A). In other words for any valuationon A

v(p) = [ (v(p1), - v(pa)) = 1a.

Letd is a congruence oA. Then we can get

fMar,. w0 = [M(20/0,...,2,/0)
> 1a/0

= laye-

This holds for anyz, /6, ..., x,/0 € A/6. Sop € L(A/0). ThusL(A) C L(A/0).

Proposition 4.4.3 Let A andB are FL-algebras andx : A — B is a homomorphism. Then
the following holds.

1. If o is surjective ther.(A) C L(B).
2. Ifaisinjective then,(B) C L(A).
3. If ais bijective then,(A) = L(B).

Proof They follow from previous two propositions. In factdfis surjective them\ /ker(a) ~
B and ifa is injective thenA ~ Im(a) < B. Moreover 3 is clear from 1 and 2.
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Proposition 4.4.4 L(] [,c; As) = (;e; L(A;)

Proof We show this only for the case éf= {1, 2}.

()

a1 A X Ay — A, a0 A; X Ay, — A, are onto homomorphism. So from the previous
Proposition 4.4.3L(A; x As) C L(A1), L(A; x As) C L(Ay). ThusL(A; x A;) C
L(A) N L(Ay).

()

Letp € L(A;) andy € L(A,). In other words Let;(¢) > 1a, anduvs(p) > 14, for any
valuationv; andwv, on A; and A, respectively. Since any valuatianon A; x A, can be
expressed as(¢) = (vi(p), v2(p)) for valuationsv; andvy, on A; and A, respectively. So
from an assumption

(v1(p), v2())
> <1A17 1A2>

- 1A1><A2'

v(p)

Hencep € L(A; x Ay).

Above propositions intuitively mean that if an algebra bweedigger (smallen) then a logic
become smaller (bigger, respectively).

4.5 Logics overFL and varieties of FL-algebras

In previous two sections we discuss relations between $ogicl algebras. In this section we
discuss relation between logics and classdslehlgebras.

4.5.1 From logics to varieties
Definition 4.5.1 Let L be a logic ovelF'L.. We define a clas¥}, of FL-algebras by

VL ={Q:LC L(Q)}

Proposition 4.5.1 For every logic ovelF'L a classVy, of FL-algebras is a variety.

Proof It is enough to show thaty, is closed under homomorphic images, subalgebras, direct
products.

(homomorphic images)

Let A € Vi..ThenL C L(A). If a(A) is a homomorphic image ok then by Proposition 4.4.3
we can getf.(A) C L(a(A)). SoL C L(a(A)). Thus we can get(A) € V.

(subalgebras)

Let A € V, andB < A. Then by Proposition 4.4.1

L C L(A) C L(B)
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ThusB € V..

(direct products)

Let A € Vy, for eachi € I. Then by Proposition 4.4.4 we can ge[ [,.; Ai) = s L(A)).
Moreover from our assumptionI2 C L(A;) for anyi € I. So we can get

LC mzel ( ) - L(Hz‘el AZ)
Thus][,.; A; € Vv.

4.5.2 From varieties to logics

Definition 4.5.2 Let K be a class oF L-algebrasK is anidentity classf there exists some sets
Y of identities, i.e.

K={A:AEs~tforanys~tec X}.

We note that all identities can be expressed of a forma r for a termr. Because for any
identity s ~ ¢

st & s<tandt<s
& 1<s\tand1 <t\s
& 1< (s\t) A (t\s).

LetV is a variety ofFL-algebras. We define the set of formulag as follows.

Ly ={eVEenrlx1}
Then a following proposition holds.

Proposition 4.5.2 For any variety) of FL-algebrasL is a logic overFL.

Proof Lety € FL. Then from completeness theorem for &Hly-algebra and for any valuation
v(p) > 1a. For anyFL-algebraA € V
v(p) > 1a.
Ly is a logic which is a set of any formulasatisfyingC = v(v). So
v € Lk

ThusFL C L.

Let o(p1,...pn) € Ly. Suppose that substitution instang@/),...,v,) ¢ Ly. Then
there exists somA < V and valuatiorv on A such thaw(o(v1,...,1,)) 72 1a. Letv' be a
valuation onA defined byv'(p;) = v(¢;) fori € {1,...,n}. Then

V' (p(p1,--pn)) = @@ (p1),. ..,V (pn))
= @), .., v(¥n))
= (e, ..., Un))
Z 1a
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This is a contradiction. Thuky, is closed under substitution.
Letp, p\v) € Ly. Thenv(p) > 14, v(p\t)) > 14 forany A € V and valuationv. Hence

Ia <v(p\Y) & 1a <v(p)\v(y)
& v(p) <ov()
& 1a <w(¥).

Thusy € Ly,.

Let o € Lx. Thenwv(yp) > 14 for any A € V and valuationv. Hencev(p A 1) =
v(p) AN1a = 1a. Thusp A1 € Lg.

Let » € Lx andy be an arbitrary formula. Them) > 1, for any A € V and valuation
v. Hence

la <v(p) = o) <v(p) oY)
& 1a < v(@)\(v(p) - v(¥))
& la <o\(p-¥)).

Thusy\(p - ©) € L. Similarly we can showy - ¢) /¢ € L

Proposition 4.5.3 The mapsA(RL) — A(FL) and A(FL) — A(RL) are mutually inverse,
dual lattice isomorphism.

Proof LetL; C L,. Theny € L, for everyp € L;. Thus,V(Ly) E ¢ A1 = 1, so,
V(Ly) CV(Ly). LetV, TV, . If Vo = Alx1thenV, = Al = 1foranyy € V(Ly).
ThusL(V,) € L(Vy).

If p € LthenV(L) = ¢ A1 = 1. Hencep € L(V(L)). If ¢ ¢ L then there is
someFL-algebraA such thatA [« ¢ A1 ~ 1 andA € V(L) by Proposition 4.3.4. Hence
V(L) EpA1=1,s0p & L(V(L)).

Let A € V. Thenforanyp A1l ~ 1,if V= p A1l ~ 1thenA = o A1~ 1. Thus
AecMod{pN1=1VEpAlr1}),s0A € V(L(V)).

Conversely, leA € V(L(V)). ThenV EpAlx1=AEpAl~x1foranypAl 1.
Note that for any identity ~ s andFL-algebraB,

BEtrse Bl ((t\s)A(s\t)) A1~ 1.
Thus

ViEtrs © VE((t\s)A\E)A1x1
= AE((t\s)A(s\t)Al=1
& AREtrs

= A€ Mod({t ~s|VEt=s}).

By Proposition??, V = Mod({t ~ s|V | t = s}), thereforeA € V.
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Chapter 5

Algebraic characterization of disjunction
property

In this chapter, we will discuss about the disjunction prop€DP). Some of the basic sub-
structural logics are shown to have the DP by using cut edtion of sequent calculi for these
logics [16, 10, 1, 2]. On the other hand, this syntactic métvorks only for a limited number
of substructural logics. Here, we show first that Maksims\algebraic criterion on the DP
of superintuitionistic logics can be naturally extendedn@ on the DP of substructural logics
overFL. By using this criterion, we show the DP for some of the sulastrral logics for which
syntactic methods do not work well.

5.1 Disjunction property as a consequence of cut eliminatio

Definition 5.1.1 (disjunction property) A logic L has thedisjunction propertywhen for any
formulay andv if ¢ Vv ¢ is provable inL then at least one of the formulasands) is provable
init.

Classical logics does not have the disjunction property,\asp is provable but neither of
p or —p are provable.

Theorem 5.1.1 Intuitionistic logic has the disjunction property.

Proof We give here a syntactic proof, by using the sequent caldwlu®r intuitionistic logic
and the cut elimination. Suppose that the sequent Vv « is provable inLJ. Then there exists
cut-free proofP of — Vv 1. Let I be the last inference a?. I will be either— w or — V. If

I is — w then the upper sequent-s. It is impossible sinc&.J is consistent. Hencé must be
— V. Then the upper sequent-is p or — . Thusy or is provable.

We can show the following theorem in the same way as abovd,prsing the fact that cut
elimination holds in each of them.

Theorem 5.1.2 Each ofFL, FL., FL,,, FL.,, andFL.. has the disjunction property.
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Then, why the above proof does not work IoK? Let us consider of any cut-free proof of
—  V =, and let! be the last inference rule. Thémwill be (— w), (— V) or (— ¢). When
I'is(— c¢), then
—
f 0, f(p (_> _'>
= ppvp V)
— OV, Ve
— @V op

(= ¢

Thus, the similar argument as in the proof of the previousrii®s does not work. On the
other hand, the above proof of DP as shown in Theorem 5.1.ksnfor a logics ovelCFL
with a cut-free system, as long as it does not have).

Theorem 5.1.3 BothCFL, and CFL,, have the DP.

5.2 Algebraic characterization of disjunction property for log-
ics overFL

In the previous section we show the DP as a consequence difrirtagion theorem. But having
a cut-free sequent calculus is rather exceptional. In [#@ksimova gave an algebraic charac-
terization of the disjunction property fauperintuitionistic logicsi.e. logics over intuitionistic
logic Int. In this section we extend the Maksimova’s result to logisrd'L.

Definition 5.2.1 (well-connectednessf RL A iswell-connected foranyz,y € AzVy > 1
impliesz > 1ory > 1.

In every Heyting algebra the unit eleménis always the greatest element. Thus a Heyting
algebraA is well-connected iff for allke,y € A, x vV y = 1 implies eitherr = 1ory = 1. In
[13], L. Maksimova showed the following.

Theorem 5.2.1 (Maksimova) Suppose that a logi¢. over Int is complete with respect to a
class/C of Heyting algebras. Then, the following are equivalent;

1. L has the disjunction property,

2. For all Heyting algebrasA, B € K there exist a well-connected Heyting algeléasuch
that L is valid in C, and there is a surjective homomorphism fr@nonto the direct
productA x B of A andB.

In the same way as this, we can show the following Theoren25.2.

Theorem 5.2.2 Suppose that a logit over FL is complete with respect to a classof FL-
algebras. Then, the following are equivalent:

1. L has the disjunction property,
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2. Forall A, B € K there exist a well-connectdglL-algebraC € V (L), and a surjective
homomorphism fron onto the direct producA x B of A andB.

Proof We will show the Theorem, following Maksimova'’s idea, buttire context of logics
overFL. We show first that 2 implies 1. Suppose that 2 holds and th#tere nor ¢ is valid
in L for some formulag andy. We show thaty Vv ¢ is not valid.

Because of the completenessloWith respect toC we haveva (¢) 24 1a anduvg(v)) 28
1g for some valuations, in A andvg in B whereA,B € K. From 2 there exist a well-
connected CRLC such thatl is valid in C, and a surjective homomorphismfrom C onto
A x B. We define a valuatiom in C as follows. For any propositional variabte define
v(p) = a, wherea is an arbitrary element ia=!((va (p), vs(p))). Thus for any variable,

a(v(p)) = (va(p), vB(p)).

Then we can show inductively that for any formualax(v(d)) = (va(d),ve(d)). In particular,

a(v(d)) = (va(9), vB(¢)) < (1a, 1s) @nda(v(v)) = (va(¥), ve(¥)) < (1, 1B).

Hence, we have(¢) < 1c andv(¢) < 1c asa(lc) = (1a, 1g). Thusv(¢ V ¢) < 1¢ by the
well-connectedness @&. Thus¢ V ¢ is not valid inC.

Next we show that 1 implies 2. First, note thatlifhas the disjunction property, then all
free algebras of the corresponding varigtyL) = {C | L is valid in C} are well-connected.
For give A, B € K, their direct productA x B belongs tol’(L). By the universal mapping
property of free algebras, if we take an enough big free afgield/ (L) there exists a surjective
homomorphism fronC to A x B. This completes the proof.

5.3 Disjunction property of various substructural logics

As an application of Theorem 5.2.2, we show the disjunctiooperty of some logics over
FL. First we show the disjunction property &fL[E}| and FL.[ED] where EX: (p™\p")
(m > 0,n > 0). Note thatE™™ corresponds to the contractiveness whegr- 1 andn = 2.

Theorem 5.3.1 (Disjunction property for FL[E"|.) BothFL[E}| andFL.[E}] have the dis-
junction property for everyn, n.

The sequent calcluBL[E™] does not hold the cut-elimination theorem. To prove this the
orem we construct a suitablel, C, which satisfies the conditions stated in Theorem 5.2.2 for
give RLs A andB. Suppose thaA andB are given as follows.

L4 A= <A7 AA,VA,'A,/A,\A,OA>1A>!

e B = (B, Ag,Vs,B:/B: \B,08B, lB).
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Figure 5.1.

Define aRLC = (C, A, V, -, /,\,0,1) as follows;

Let 2 be the two element Boolean algebra with the univéfsd }. Take the direct product
A x B x 2. Consider a subsét = {(a,b,0)la € A, be By U{(a,b,1)jac A, be B, a >a
la, b > 1} of A x B x 2. Definel = (1a,15,1) and0 = (0a,0p,0). Note that the
operations, \, /on2 are defined by -2 =2,1-0=0-1=0,2\z = 1,1\0 = 0and0\1 =1
(/ is defined in the same way &k

Obviously,A x B x 2 is a lattice. Sinc& is closed under lattice operations, the algebra

(C, A, V) can be regarded as a sublatticetof B x 2.
Define the multiplication on C as follows:

(a,b,i)y - (a’, b, 7)) =(a-ad,b-gl,i-j).
Define the left residua| on C as follows:
. /1) <CL\ACL/, b\Bb/,Z\j> if <CL\ACL/, b\Bb/,Z\j> cC
b b,y = , , : , A
(@, byi)\{a, b, ) { (a\ad', D\l 0) if (a\ad',D\gl,i\j) & C
Similarly for the right residual.

We show thalC = (C, A, V, -, \,/,0,1) is a RL.

Lemma 5.3.2 The algebraC satisfies the law of residuation.

Proof Firstwe prove thata,, b, 4)-(as, ba, j) < (as, bs, k) implies{as, bo, j) < (a1, b1,)\(as, bs, k).
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Suppose thafay, by, i) - (as, be, j) < (as, bs, k) holds, we can easily show o as <a as,
by B by <p bz andi - j < k. Hence we can get, < a;\aas, bo < b1\Bbs, j < i\k. By the
definition of \ of C, we need to consider the following two cases.

e Suppose tha@al, b1, 7:>\<CL3, b3, k?> = <CL1\ACL3, bl\Bb3, Z\k}> Then
<a'27 b27j> S <a'1\Aa3a bl\Bb37 2\k> = <al7 bla i>\<a37 b?n k)

e Suppose thafay, by, i)\ (as, bs, k) = (a1\aas, b1\Bbs,0). Then we can prove,; #a 1a,
sinceay <A ai\aas anda;\aas #a 1a. Similarly we can prové, #g 1g. Soj cannot
bel. Thus

(ag, ba, j) < (ar\aas,b1\Bbs,0) = (a1, b1, )\ (as, bs, k).

Next we prove thatas, b, j) < (a1, b1,1)\(as, b, k) implies{ay, by, i)-(as, ba, j) < (as, bs, k).

° Suppose th’o‘(Tal, bl, i>\<a3, b3, k?> = <CL1\ACL3, bl\Bb3, Z\k}> Fr0m<a2, b2j> < <CL1\ACL3, bl\Bbg, Z\k}>,
We can prover; -a as <a as, by -g by <g b3, -j < k easily. Thus

<a17b17i> ' <a27627.j> < <a3ab37k>'

e Suppose thatay, by, i)\ (as, bs, k) = (a1\aas, b1\sbs,0). Then similarly we can prove
ay A az <A as, by - by <g bs. Sincei < 0we canshow-j =0 < k. Thus

<alyblyi> . <a’27b27j> = <CL1 ‘A aQabl ‘B b270> S <a3yb3ak>'

Now we show thaC satisfies the conditioR}, assuming that botA andB satisfyE>.
Lemma 5.3.3 If both A andB satisfy the conditioi* then so doe€’.

Proof From our assumptiot, < a™\a", 1g < b™\b" for alla € A andb € B. For all
(a,b,1) € C,

{a,b,)"\{a,b,i)"
= @\
= (a™\aa", b™\gb", " \i")
> <1A71B7 >

Hence(la, 18, 1) < (a,b,i)™\(a,b,7)™. ThusC satisfied.

ThusC = (C, A, V,-,\,/,0,1) isaRL.

Lemma 5.3.4 The residuated lattic€ is well-connected.
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Proof Suppose thata, b, i), (a’,V,j) € C. If {(a,b,i) 2 1, (d',V,j) #* 1theni = j = 0.
Then

{a,b,1) V{d', V', 7j)
= (aVad,bVvgl, iVj)
= (aVad,bVvgl,0)
¥ 1.

ThusC is well-connected.

It is clear that if bothA andB are commutative then so ¢S.

Lemma 5.3.5 A mappingx from C to A x B defined by

oz((a, b, Z)) = <CL, b)

is a surjective homomorphism.
Proof The mappingy is clearly surjective. Thus, it remains to show thas a homomorphism.

a({a,biy v {d',V,j) = al{avad,bVvgb,iVj))
== <CL \/A a’,b\/B b/>
= {(a,b) Vv (d,V)
= af{a,b,9)) Va((d,V, j))

We can show(({a, b, i) A (a', V', j)) = a({a, b, i) A a({d,V, j)) anda({a, b, 1) - (a',V', j)) =
a((a,b,i)) - a({d',V, 7)) in the same way as above.

a()a,b,i(\(a’, V', 7)) is eithera({a\ad’, b\V,i\j)) or a({a\ad’, b\gl,0)). Therefore

a({a,b,))\(d",V,j)) = (a\ad',b\sl')
= (a,b)\(d", V)
= a((a,b,i)\a((d,V, ).

Similarly we can show({a’, ', j)/{a,b,i)) = a({d',V, j))/a({a,b,i}).
Thusa is surjective homomorphism.

Next we consider the following axioms:
o Ey: pFt1\p* (weakk-potencyi.e. Ert
e Dis: ((pVag)A(pVr)\(pV (¢ Ar)) (distributivity)

Corollary 5.3.6 FL, FL,, FL[E,] andFL.[Ey] have the disjunction property for evety
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Remark that sinc&} is the axiom of contraction, the DP &1L, follows also.

We note that in this proof if we assume moreover that bathnd B satisfyDis, i.e. their
lattice reducts are distributive, thek x B x 2 is distributive. The lattice reduct of is a
sublattice of lattice reduct oA x B x 2. Since the distributivity is represented as idenidy,
satisfyDis. Hence we have also the following theorem.

Corollary 5.3.7 BothFL[E, Dis|] andFL,[E}, Dis|] have the disjunction property. In partic-
ular FL[Dis] have the disjunction property.

As the existence of the zero elem@&mnf C does not play any particular role in the proof of
Theorem 5.3.1, we can derive that each positive fragmenhiesit logics has also the disjunction
property. Itis well-known that the positive relevant lolc is equal to the positive fragment of
FL.[E}, Dis]. Hence we can get an alternative proof of the disjunctiopery of R, which
was firstly proved by R. K. Meyer in [14].

5.4 Disjunction property of involutive substructural logics

In this section we discuss about involutive substructurgids. Here, we say that a substructural
logic is ainvolutive when the following law of double negation

DN: (~ —p\p) A (= ~ p\p)

holds in it.
In general, the RIC in the proof of Theorem 5.3.1 does not satiBfi{, even if bothA and
B satisfyDN. For example ifiy <a a, 1g < bthen

~ —(a,b,0)\(a,b,0) = (~a —aa,~s —8b,1)\(a,b,0)
= (~a —aa\aa,~p —Bb\Bb,0)
? (la,1g,1).

So we need to introduce a differeRi. C in proving the disjunction property &FL[DN].

Note thatFL.[DN] is nothing but the multiplicative additive linear logic MAL As men-
tioned in section 5.1 and [16FL.[DN] has the DP since it is formulated by a cut-free sequent
system without the right contraction rule. Here, we give lgelaraic proof of it.

Theorem 5.4.1 BothFL|DN] andFL.[DN] have the disjunction property.

We prove this theorem in the same way as Theorem 5.3.1. SepipaA andB are given.
DefineaRLD = (D, A, V,-,\,/,0,1) as follows;

Let C; be the three element MV-algebra with the univef8e;, 1}. Take the direct product
A x B x Cs. Consider a subseD = {(a,b,3)la € A, b € B} U {(ab,
Da € A, be B, a>a 1a, b > 1} U{(a,b,0)]a € A, b € B, a <a 0a, b <g Op}
of A x B x Cs. Note that since th€; is a residuated lattice, \ and/ on C3 are defined by
xecot0 =0-x =z, -1 = 1-x:x,%~% = %,xﬁyimpliESx\y: 1, 1\% :%and
1\0=3\0=0.

It is easy to see that the detis closed under the lattice operations®dfx B x Cz. Thus,
D can be regarded as a sublattice of the lattice reduat af B x Cs.

Define multiplication orD as follows:
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Figure 5.2.

o Ifa ‘A a < Oa,bB b <g Op andi,j c {0, %} then
(a,b,7) - (a',b,j) = (a-ad,b-gl,0).
e Otherwise

o [ laadibesbiicf) flaad,bgl,ioj)eD
(a,b, i) <a>b7j>_{ (a~Aa’,b-Bb’,%) if (a-ad,b-pl,i-j)e&D

Next define residuals on as follows:
e If i =2 and(d,V,j) < (0a,0g,0) then
(a,b,)\(d, V', j) = (a\aa’,b\BY', 3).
e Otherwise,

T (a\ad',b\gl,i\j) if (a\ad, b\gb,i\j) €D
{a,b,0)\{a', b, ) :{ (aAiAa’,b\Bb’,; i <a\ia’,b\Bb’,i\;> 2D

Similarly for the left residuals.
Lemma 5.4.2 The tuple(D, -, 1) is @ monoid.

Lemma 5.4.3 The algebraD satisfies the law of residuation.
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Lemma 5.4.2 and 5.4.3 can be shown by long, tedious calonktiSo, we put them in the
Appendix of our thesis.

Definition 5.4.1 For any(a, b, ) € D we define unary operations, — by following;

Note that ifa >4 15 then~A a <p 0p andifa <, 0 then~a a >a 14. Similarly we
define—.

Lemma 5.4.4 If A andB satisfy the conditio®N then so doe®.
Proof Forall(a,b,i) € D,

~ —<CL, b, i>\<a7 b, 7’> = <NA —Aa,~B —Bb, 7;>\<Cl, b, ’L>
= (~a —aa\aa,~B —Bb\b,1\7)
> (1la,1p,1).

Similarly we can easily show- ~ (a,b,i)\(a,b,i) > (1a,1p,1). So(~ —(a,b,i)\(a,b,
i)) A (=~ (a,b,7)\{a,b,i)) > (1a,1p,1). Thus the algebr® satisfiesDN.

Lemma 5.4.5 The residuated lattic® is well-connected

Proof Suppose thal, b,i), (a',V, j) € D. If (a,b,i) # (La, 1p, 1) and(a’, ¥, j) # (1, Ln, 1)
theni = j = 1.

(a,b,1) vV (d', V', j)
= (aVad,bVgl,iVj)

1
= <CL Va a',b\/B b,, 5)
¥ 1.

ThusD is well-connected.

Lemma 5.4.6 A mappingxy fromD to A x B defined by

a({a,b,i)) = (a,b).

is a surjective homomorphism.
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Proof We can easily show that

a((a,b,i) ® (@,V,j)) = a(a@ad bEsl,k))
= (a®ad,bppl)
= (a,b,1) Daxs (d,V,7)
= a({a,b,i)) ®axs a({d,V, 7))

(ford € {A,V,-,\,/}). Hencea is a homomorphism. The mappings clearly surjective.

O

Now, by Theorem 5.2.Z'L[DN] has the DP. It is clear that if both andB are commutative
then so iD. Thus, the DP oFL,.[DN] follows also. Hence we have Theorem 5.4.1.

In the proof of Theorem 5.4.1, suppose moreover that BoamdB satisfy the formul@is.
It means that botlA andB are distributive. Sinc€; is distributive, the producA x B x C;
is also distributive. The latticéD, A, V) is a sublattice oA x B x Cs. Thus,D is distributive.
Hence the following corollary holds.

Corollary 5.4.7 BothFL[Dis, DN| andFL[Dis, DN| have the disjunction property.

Note thatFL,[Dis, DN] is equivalent to the contraction-less relevant loB%, whose
disjunction property is shown in [18] by usimgetavaluations

We can show the following by extending Theorems 5.3.1 and 5vien we have weakening
rules, i.e. when we assume< 1 and0 < x for anyz in algebras.

Corollary 5.4.8 FLey [E™], FLew[DN], FL,, [E™, Dis] and FL,, [DN, Dis] have the disjunc-
tion property.

SinceFL.y[E3] is equal to intuitionistic logidnt, the above corollary also covers the DP
of Int.

On the other hand, these proofs cannot always be combinethirg That is, the argument
does not work well fofFL,[EX, DN], wherex is either empty oe or ew. In fact, the DP does
not hold for cases lik&' L., [E3, DN], since the latter is equal to classical logic. Note that & th
proof of Theorem 5.4.1D) is not always a Boolean algebra even if bétlandB are Boolean
algebras.

Our proof works well forFLey,, FLew [Ex] andFLg[DN] as we have mentioned in the
above [19]. In these casel, andly are the greatest,, andOg are the least elements af
andB, respectively. In such a case residuated lattices showigimé5.3 become the following.
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Chapter 6

Minimal subvarieties of RL

In this chapter we discuss about minimal subvarieties ofstiievariety lattice of residuated
lattice. As we mentioned before (Theorem 4.5.3), the lattit substructural logics is dually
isomorphic to the lattice di'L-algebras. So the number of minimal subvarieties corredptm
the number of maximal consistent logics. The maximal caestdogic over intuitionistic logic
Int (even oveF'L.,) is only classical logicCl. The goal of this chapter is to show that there
exist uncountably many minimal subvarieties of boundedlumwe representable residuated
lattices with mingle axiom, but there are only two minimabsarieties of bounded involutive
representable residuated lattice with idempotent axiom.

6.1 General facts about minimal subvarieteis

A non-trivial varietyV is calledminimaliff the trivial variety is only one proper subvariety of
V.

A non-trivial algebraA is astrictly simple if it has neither non-trivial proper subalgebra
nor non-trivial congruences. Note that for infinite algehrdne notion of proper subalgebras
is defined in such a way that a subalgeBraf A is properif B is not isomorphic toA. The
fact that an algebra has no non-trivial proper subalgebeaasigh to establish strict simplicity
for RL but not in general foFL. For, congruences on residuated lattices correspond te@egon
normal subalgebras and thus the lack of non-trivial propbakyebras is enough to establish
strict simplicity.

The elementL € A is anearly term-definable lower bound _L is the bottom element of
A and there is an n-ary term-operatitix) on A such that for anyt # (1,...,1), t(z) = L

W—/
n-times
holds.

We write the variety ofnRL with mingle axiom:z? < x by ZnR L-mingle. The following
result was proved in [5].

Lemma 6.1.1 Let A be a strictly simple algebra with the bottom elemémearly term defin-
able by an n-ary term.. Then,VV(A) is a minimal subvariety.

Proof LetV be a variety generated by, i.e. V = V(A). By Jonsson’s Lemma (see 3.4.4),
for congruence distributive varieties, the subdirectduable algebras of are contained in
HSPy(A). Therefore ifD is subdirect irreducible algebra dfthen there exist an ultrapower
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B = A’/U and a non-trivial subalgebi@ of B such thatD = f(C) for some homomorphism
f. SinceA is strictly simple,A is generated by . Note thatA satisfies

(Vay,...zn)((x1 £ Llor ... orx, # 1) implies (t(x1,...,x,) = L)). (x)

ThereforeB satisfies(x), with | being the elementL : i € I)/U by properties of ultraprod-
ucts. Since(x) is a universal formula, for any subalgehté of B satisfies(x). Hence any
non-trivial subalgebrd& of B containsa # 1. ThenE satisfiest(a,...,a) = L. ThusE
containsL. SinceA is a subalgebra dB generated byl , every non-trivial subalgebra da
containsA as a subalgebra. In particular we takeas such subalgebra th€hcontainsA as a
subalgebra.

Suppose thaf(u) = f(v) for distinct elements, v € A C C. For anyz,y € A, if we
definex ~ y by f(z) = f(y) then~ is a congruence. Sinck is simple, congruences ch
is only identity relationA and full relationV. ~ is not the identity relation since # v. Thus
foranyz,y € A, z ~ y,i.e. f(z) = f(y). In particularf(L) = f(1) = 1. But L is the
bottom elemento€C. Let | ~ 1. Thenl = 1 -z ~1-2 = x. Sincez,y € Cx ~ 1 ~ y,
Cg®(u,v) = Cg®(L, 1) is the full congruence. SH(C) = D is a singleton. It contradicts that
D is a subdirect irreducible algebra. Therefgris injective onA and f(A) is a subalgebra of
D. ThusA is isomorphic to a subalgebra of every subdirect irredeaibember ol). Hencey
is a minimal.

6.2 Representable minimal subvarieties

Our results shown in Section 6.4 are the number of minimavaudties of some classes of
involutive representable residuated lattices. In thegresection, we discuss two important
results on minimal subvarieties of some classes of reptasieresiduated lattices.

6.2.1 Bounded representable 3-potent minimal subvarietse

Here we show that there exists uncountable many minimal asidiies of bounded repre-
sentable 3-potent residuated lattices, where 3-potentrais2® = z*, shown by P. Jipsen and
C. Tsinakis, in [11]. To prove this we construct uncountaflgny strictly simple residuated
lattices and show that they generate distinct varieties.

Let S be any subset af. Define the algebrds = (Js, vV, A, -, \,/,1, L, T). The universe
of Jg is the set

{L,a,0,1, T}U{¢li € w} U{d;]i € w}.
The order is defined by
1<a<b<cgp<g<-- < <di<dp<e<T.

The monoid operation is defined by @) = x =ze, Q) le = L =21, B) Te =z =T
andaz = 1 = za andbx = 1 = zbforanyz ¢ {1, T}. Moreover, for any, j € w,
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CiCj = 1

did; = b

1L ifi<y
cid; = a fi=jori=j+1landje s
b otherwise,

(L i
d"cj_{ b otherwise.

The following table is monoid operation table fdg. The element; in the table are equal to
a(ifieS)orb(ifi g 9).

. T 1 do dl dg Cy C1 (g b a L
T T T do d1 dg Cy C1 (g b a 1
1 T 1 do dl dg Cy C1 (g b a L
do|do do| b b b b o L1 1 1
di|dy di| b b b b 1L L L 1L 1
dy|dy dy| b b b 1 1L L|L 1 L
cy |y el b 81 a 1l 1 L|L 1 1L
clec e |sg a L . 1L 1LjL 1 L
cplcg ol a L L l 1L 1L 1 L
b|b b | L 1L 1L L L)L L 1
ala a| L 1L L 1 1L L|L 1 L
1L L|L L 1 1 1L L|L 1 L

It is easy to show thatyz = | wheneven, T ¢ {z,y, z} andJ 5 satisfies residuation law.
ThusJg is bounded 3-potent representable residuated lattice.

Now T = L\1l,dy = T\1, ¢ = d;\L andd,;;; = ¢;\L, so the algebrds generated by
1 and L is nearly term-definable by(z) = (z\1 A x)3. HencelJs is strictly simple residuated
lattice with nearly term definable lower bound. Moreoverdoy distinct setS;, S, € w, Jg,
andJg, generates distinct varieties. Then the following theorehdl

Theorem 6.2.1 There are uncountably many minimal subvarieties of bourg8dpdtent repre-
sentable residuated lattices.

6.2.2 Representable idempotent minimal subvarieties

Next we explain the result that there exists uncountablyyn@presentable idempotent minimal
subvarieties, shown by N. Galatos, in [5, 4].
Define idempotent representafil®é Ng = (N, A, V, -5, \, /, 1). Let us define a séX.

N=A{a;lt € Z} U{b;|i € Z} U{1}.
We define order oiN as follows;

b <b;<1<a,<ag«forallijklecZi<jandk >l
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Figure 6.1.

Obviously, this is a total order. L&t C Z. We define multiplication oN depending of, by

Qi s Qj = Gmin{i,j}
bz‘ ‘S bj - bmzn{z,]}
b e — b; ifj<iori=je€8
I8%T ) q ifi<jori=j¢8
Cp = Lo fi<jori=j€8
a; *g bj = b, ifj<iori=j;¢5
Finally, we define two division operations, by

v\y = \V{zlr sz <y}
y/r=\{z|z s <y}

It is easy to see that multiplication is associative anddigstied by the division operations. So
Ny is a boundedL (a, is the top element anfg is the bottom element). Moreover it satisfies
idempotent axiom as s = = .

We define following terms

l(x) =2\1,r(x) =1/x,
t(x) =1/x Vv a\l,
m(z) = U(x) Nr(z) Ari(z) Arr(x),

p(x) = U(x) Vir(x) Vri(x) Vrr(z)
Moreover, consider binary relations defined by,

5y er(r)=
x—l>y<:>l(x)

Y,
Y

r—y<sr(x)=yorl(z) =y.
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A wordover{0, 1} is a functionw : A — {0, 1}, whereA is a subinterval of.. A is called
support supp(w), of w. If |A| < N (JA| = N*, |A| = Z) then we callw is finite (infinite,
bi-infinite, respectively). Letv is a word and is a finite word. If there exists an integesuch
thatv(i) = w(i + k) for anyi € supp(v) then we say that is asubwordof w. Note thatwg
of S C Z is a bi-infinite word wherevs(i) = 1 < i € S. Define preordex by for any word
wy, wo every finite subword ofv; is a subword ofv,. Definew; = wy by wi < wy < wy. We
say that a bi-infinite wordv is minimal, if w’ < w < w = w’ for every bi-infinite wordw’ .

In the followingz < y meansthat < yandz <z <y=z=xzo0rz =y.

Lemma 6.2.2 For any S C Z the following properties hold foNg.

1.

a & W DN

For anyi € 7, m(bz) = b;_1, p(bz) = bi+1, m(az) = Qj41, p(az) = Qj_1, ( ) = b; and

Foranyx,y,x <yory < x.
For everyz, {zt(z),t(x)x} = {z,t(z)}.
Ifx <1<y, thenm(z) <z <p(x) <1<m(y) <y <ply)andt(y) <1 < t(z).

For everyz, m(t(x)) = t(p(x)), p(t(z)) = t(m(x)), m(p(x)) = p(m(z)) = = and
t(t(x)) = .

If = is negative, then

R forz <y < t(z)
y=yr= y fory <zort(x) <y

If = is positive, then

fort <
xy:yx:{x (z) < %(;

s
y fory<t(x)orz<y

Foranyz,y,z Ay, xVy,xzy € {z,y}.

Foranyz, y, x/y, y\v € {z, m(x), p(x), t(x), m(t(x)), t(y), m(t(y)), p(t(y))}-

For every finite word there exists a universal first order formulga, such that is not a
subword ofwy iff ¢, is satisfied inNg.

Proof Itis easy to see that

Thus we can show thatb;) = a; andt(a;) = b;. Moreover,

{T(r(bi))’ r(l(bz))a l(r(bz))a l(l(bl))} = {bi—la bi> bi-i-l}’
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som(b;) = b;_; andp(b;) = b;y1. Similarly, we can shown(a;) = a;11 andp(a;) = a;_1.
Thus 1 holds. 2 is shown by the definition. 3-7 are shown by & r8utine to check. Finally
we show 9. The first order formula associated to a finite wop,, defined as

VEy, ooy Ty Y1y ey Ynl(T1 < -+ <2, < 1 <y, <yp and
t(z1) =yiand ... and t(z,) = yn)
= not (r1y; = s1) and ... and (T, Y, = Sp),

wheren is the length of, if v(i) = 1 thens; = z; and ifv(i) = 0 thens; = y;. Since we
can replacer; < z;41 by x; = m(x;11) andy;.1 < v; by y; = p(vi11), ¢, IS €quivalent to a
universal quantified first-order formula in the languageesiduated lattices.

O

For anya,b € Ng\{1}, (a,b) is transitive closure of the relation-. So the following
corollary holds.

Corollary 6.2.3 The residuated lattic& s is strictly simple.

Lemma 6.2.4 Every non-trivial one-generated subalgebra of an ultrapowf N is isomor-
phic toNg, for some set of integers.

Proof Every first order formula which is true iNg is also true in an ultrapower of it. Since
properties 2-8 of lemma 6.2.2 can be expressed as first avdaufa, they hold in ultrapower
of N.

By 2, any ultrapoweB of N is totally ordered, so same holds for every subalgebia.of
Let A be a non-trivial one-generate subalgebr8ofnda be a generator foA. The element
a can be taken to be negative.dlfis positive thert(a) is negative and it generates, because
t(t(a)) = a.

By 7 and 8,A is the set of evaluations of the terms composed by the term ¢ and1. By
5, these compositions reduce to one of the fornigzx), p"(z), p"(t(x)) andm”(t(x)) for n a
natural number.

For any natural numbes, setb_, = m"(a), b, = p"(a), a_, = p"(t(a)) anda, =
m™(t(a)). A consists of exactly these elements together witlDefine a subse$’ of Z by
S" = {m|bya,, = by}, andthe mag : A — Ng by f(b;) = b, f(a;) = a,andf(1) = 1’ for
b;, CL;, 1 € Ng.

By 4, f is an order isomorphism and consequently, a lattice isomemp By,3 and 6,f
is monoid homomorphism. Every lattice isomorphisms preseiisting join, sof preserve
division operation. Thud is isomorphic tdN g.

O

Lemma 6.2.5 Let A be a one-generated residuated lattice afich subset ofZ. ThenA €
HSPy(Ns) < A = Ng/, for someS’ such thatws < wg.

Proof First we show if part. LeB = (Ng)"/U whereU is a non principal ultrafilter ovel
andNg = {b;|i € Z} U{a;i € Z} U {1}. We will show thatNs € ISPy(Nyg).

For any natural number v, is a finite approximation of the bi-infinite words: defined by
v, (1) = wg (i) for anyi € [—n,n|z. Sincews: < wg, the wordsv,, are subwords ofvs. So for
anyn € N there existdy,, € N such thav,, (i) = ws(K, +1i) forany: € supp(v,) = [—n, n|z.
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Let b = (bk, Jneny Whereby, € Ng. By lemma 6.2.5 the subalgebra Bf generated by
b = [b] is isomorphic taN g with Nz = {b;|i € Z} U {a;|i € Z} U {1} for some subsef of Z.
[b] is equivalence class 6fynderU. We identify the subalgebra generatedibyith Ng and
we choosé such thab, = b. We will show thatS = 9.

There existd, .., G € Ng such that,, = [(bx,1m)nen] @A = [(ax, +m)nen]. By
using the definition o, lemma 6.2.2, induction and following facts

itis easy to prove thalt,, = [(bx,+m)ner] ANdan, = [(@k,+m)nen]-
Now, for |m| < n, i.e.,m € supp(v,), we have

K,+meS < wyK,+m)=1
— v,(m)=1
— wg(m)=1
<~ med

WhenK,,+m € S, bk, tmar, +m = bk, +m €Xxactly. We getthatifm| < nthenbg, i mak, +m =
bk, +m IS €quivalent ton € S'.

In other words{n||m| < n} C {n|bk, +max,+m = bx,+m < m € S'}. Since{n||m| <
n} € U, {nlbk,+mark, +m = bk, +m < m € S’} € U. Itisnothard to check thdtn|bk, 1 mar, 1m =
bi,+m} € U is equivalent tan € 5. bya,, = by, is equivalent tan € ', hencem € S <
m € S'. ThusS = §'.

Next we show only if part. We will prove the implication fé&x € SPy(Ng). Since un-
der homomorphism every one-generated subalgebra wikreittap isomorphically or to the
identity element because of the strictly simple nature efdlyebradiN g/, it is sufficient.

Let A be a subalgebra of an ultrapowerNf. By lemma 6.2.5A is isomorphic tong:,
for some subse$’ of Z. To showws < wg it is suffices to show that for any finite word
if v is not a subword ofvg thenNy satisfiesp, of lemma 6.2.2. Hence every ultrapower of
Ny satisfiesp,. Sinceyp, is universal formula an®N s is subalgebra of ultrapower ™5, N/
satisfiesp,. Thus by lemma 6.2.2 is not a subword ofvg:.

Corollary 6.2.6 LetS, S’ C Z.
1. V(NS/) C V(NS) S wyg < wg,
2. If wg is minimal with respect te, then) = V(Ny) is a minimal subvariety oR L.

Proof 1.

First we show if part. By lemma 6.2.5 we can shd¥, € HSPy(Ng) C V(Ng). Thus

V(Ng) C V(Ng). Next we show only if partNg € V(Ng) sinceNg is subdirect irreducible

by lemma 6.2.2. So by Jénsson’s lemMNg € HSPy(Ng). Thusws < wg by lemma 6.2.5.
2.

Let L be a subdirect irreducible algebra fromn thenL € HSPy(Ng) by Jonsson's lemma.

For any subalgebra of L A € SHSP,(Ngs) € HSPy(Ng) so A is isomorphic to som& g/,
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wherews < wg. We havews: = wg sincewg is minimal. HenceY(Ng) = V(Ng/) by 1.
ThusY = V(Ng) = V(A) C V(L) C V. SinceV = V(L) for every subdirect irreduciblk in
V, V is a minimal subvariety.

O

Lemma 6.2.7 There are uncountably many minimal subvarietieRiRL + (v = x?)

6.3 Involutive minimal subvarieties

In the previous section, to show the number of minimal subtias we construct strictly sim-
ple residuated lattices. In this section we introduce a waypnstructing a bounded involutive
residuated lattice from a given residuated lattice and vesvghat residuated lattices thus ob-
tained generate minimal subvarieties shown by C. Tsinaidsfa Wille.

6.3.1 From modules to dualizing RL

Definition 6.3.1 LetL be a residuated lattice add = (M, A, VL) be a lower bounded lattice.
For anyz,y € M anda, b € L, aright moduleaction ofL intoM isamap«: M x L — M
satisfying the following conditions.

Q) z*xe =z,
(2) zx(axb) = (z*a)x*b,
) zxa<ysz<y/.a.

We callM aright L-module A left L-modules defined analogously with the module action
on the left. AL-bimoduleis a left and righfl.-module which satisfies the following condition,
foranyxr € M anda, b € L.

(4) (axz)*xb=ax*(zxb).

Lemma 6.3.1 Let M be a rightL-module. Then, for any € L andx,y € M, the following
conditions hold.

1. Lxa=ax*l.
2. (zVy)xa=z*xaVy=*a.

Proof First we show 1. Since is the least element &l and L xa, L /,a € M, L < L xa
and L < 1/,a. Thuswe can show xa =a* L.
Next we show 2.

(xVy)xa<(zVy)xa < (xVy)<((xVy)=*a)/.a
= x<((zxVy)*a)/.a
<— zxxa<(zVy)*a.

We can gety x a < (z V y) x a by same way. Thus we can shaw a V y xa < (x V y) * a.
From residuation we can show< (z xa V y * a)/.a andy < (z xa V y x a)/.a. Hence we
canshowz Vy)xa<xxaVy=*a.
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The corresponding condition hold for a Iéftmodule.

Lemma 6.3.2 For anyL-bimoduleM gives rise to a residuated lattidecM = (LxM, A, V, -, \,
/, (e, 1)) defined by follows.

(a,z) A (b,y) (aNbxAy)

(a,z) V (b,y) = (aVbzVy)
(a,z)(b,y) = (ab,axyAx=Db)
(@, 2)\(b,y) = (a\bAz\.y,a\y)
(a,2)/(by) = (a/bAx/y,x/.b)

Proof (Lo M, V,A)is clearly a lattice. For any € L andz € M,

(a,z)(e, L) = (ae,ax LVaxe)=(a,LVax)=azx),
(e, L)(a,z) = (ea,exxV Lxa)=(a,zV L) =(a,e).

Hence(e, 1) is a identity element. For any, b, c € L andzx, y, z € M,

((a,x)(b,y))(c,z) = ((ab)c,abx zV (a*xy Vx*b)x*c)
(ab)c,ax (bxz)V (axy)*cV (x*b)*c)
a(bc) x (bx2) Vax(y*c)Vxx*be)
( x (b zVy*c)Vxxbc)

'Y)

(¢, 2))

Thus(LL.o M, -, (e, L) is a monoid.
It remains to prove that the residuation law. For any, c € L andx, y, z € M,

(a,2)(b,y) < (c,z) & ab<candaxyVz*xb<z
& ab < canda < z/,y andx < z/,b
s a<c/bNz/wyandx < z/.b
& (a,2) < (¢, 2)/(b,y)

(a,2)(b,y) < (¢,2) < (b,y) < (a,2)\(c, 2) is obtained by a similar way.
ThusL ¢ M is a residuated lattice.

By using this lemma, we can easily show the next corollary.

Corollary 6.3.3 Let L be a upper bounded residuated lattice. THen= (L x LAV, 05\,
/, (e, T)) is aresiduated lattice defined by follows.

(@, 2) A(by) = (aNbaVy)
(@,2) vV (by) = (aVbxAy)
(a,2)(b,y) = (ab,y/a Ab\x)
(@, 2)\(b,y) = (a\bAz/y,ya)
(a,2)/(by) = (a/bAx\y,br)
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Corollary 6.3.4 Maintaining the notation established in Corollary 6.3.3 Wave the follow-
ing:
1. The elemenb = (T, e¢) is a involutive constant dt. More specifically, for alk, z € L,
(@, 2)\(T,e) = (z,a) = (T,e)/(a,z).

2. L = (L x L,A,V,-,\,/, E, D) is a involutive residuated lattice, whe® = (e, T),
D = (T, e) and the order operations are defined as in Corollary 6.3.3.

3. Letl* = (L*, A, V, -, \*, /*, E), where

L*=Lx{T}
B/*A =B/AA(T,T),
A\*B = A\BA (T, T).

Then the map : L — L*,defined by:(a) = (a, T) for all a € L, is a residuated lattice
isomorphism. Furthermore, it restricts to a residuatedita isomorphism fronL.™ to
L~

Proof 1 is shown by following.

(a,2)\(T,e) = (a\T Az/e, ea)
= (z,a)
(T/a N e\x,ae)
(T

ve)/(a, )
Thus 2 is follows from 1 and Corollary 6.3.3. To prove 3, ndtatf for anya, b € L,

e(a)e(b) = (a, T)(b, T) = (ab, T/a AD\T) = (ab, T),

and
e(a)/*e(b) = (a, T)/*(b, T) = (a/bAT\T,bT)A(T,T) = (a/b, T).
Furthermore,
e(@)\"e(b) = (a, TI\*(b, T) = (a\b, T),
e(a) Ne(b) =(a, T)AN(b, T)= (aNnbT),
e(a)Veld) =(a, T)V(hT)= (aVbT),
e(e) =(e,T)= E

Sincee is clearly a bijection, henck* is a residuated lattice andis a residuated lattice iso-
morphism. Lastly, it is also clear thatestricts to a residuated lattice isomorphism frbmto
L~
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6.3.2 Minimal subvarieties of involutive residuated lattces

By using results in 6.3.1 we show that there exists uncoiyntabny involutive minimal sub-
varieties. The result is shown by C. Tsinakis and A. Willg/2h].

Let S be a subset af, J ¢ be a strictly simple residuated lattice constructed inl6atdJ g
be defined in Corollary 6.3.4.

Let L be the subalgebra dfs generated byz andD. SinceD - D = (T,e/T AT\e) =
(T,dy) € Lg, Lg has elements other thanand D.

Lemma 6.3.5{(z, T)|z € Js\{T}} C Lgand{(T,z)|z € Js\{T}} C Ls. Furthermore,
{(z, T)|z € Js\{T}} is closed under monoid operation.

Proof Firstwe show{(x, T)|z € Js\{T}} € Lgand{(T,z)|z € Js\{T}} C Ls.
We know thatF, D, (T, dy) € Lg.

D/(T,doy) = (Do, T) € Lg,

(do, T)® = (L, T) € Lg,
D/(J—7T) = (TaJ—> € Ls,

(L, T)/(do, T) = (co,do) € Ls,
(co,do) A\ (E) = (co, T) € Lg, and
D/(co, T) = (T,co) € Ls,

For any:; € w, we can show

(L, T)/(d, TYANE = (c;,d;)) NE = (c;, T), and
(L, T)/(CZ, T) NE = (di+1, Ci) NE = (di—i-b T)

Since(dy, T), (co, T) € Lg, for anyi € w we can showd;, T), (¢;, T) € Lg inductively.
Furthermore,

D/(c;; T)=(T,¢) € Lgand
D/(d;, T)=(T,d;) € Lg.

Moreover,

(do, T)2 = (b, T) € Lg,

D/(b, T) = (T,b) € Ls,

(C(), T)(do, T) = (CL, T) € Lg and
D/(a,T) = (T.a) € Ls.

Second we shoW(z, T)|z € Jg\{T}} is closed under monoid operation.
Letz,y € Js\{T}. Thenzy € Js\{T}and(z, T)(y, T) = (zy, T/x Ay\T) = (zy, T).

O

Note that(_L, T) is the least element ar{d’, L) is the greatest element &f.

Theorem 6.3.6 There are uncountably many minimal subvarieties of inwedutesiduated lat-
tices.

Proof To prove this theorem we show following three conditions.
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1. For anyS C w, Lg is strictly simple.
2. (L, T) € Lgis a nearly term definable.

3. For any pair of distinct setS;, S; C w, Lg, andLg, generate distinct varieties.

First we show (2). Letz,y) € Lgs. If (z,y) 2 Ethen(z,y) NE < E. If (z,y) > E then
E/(z,y) AE < E. Thus(((z,y) A E) A (E/(x,y) A E))* = (L, T).

Second we prove (1). Sindey is generated by £, D} it has no proper subalgebras.

Finally we show (3). LetS; and.S; be tow distinct subsets af. From lemma 6.3.5 we can
find constant termg.,  , 1, g, 1), 9(,7) @Ndg(, ) such that

f(Q(ci+1,T)) = (Ci—i-la T)

fa@,m) = (di, T)
f(q(a,'l')) = (a’ T)
f(q(b,'l')) = (b> T)

for any assignment of L. Without loss of generality, we can assume that there ekists
such that € S; andi ¢ S,. By the definition(c; 1, T) -1 (d;, T) = (a, T) but (¢i41, T) 1
(d;, T)= (b, T). Then

® Ls = qer, ) - 9,y & G,y @NALG = Giery ) - Qeds, ) R Q0,7

® Ls ¥ deeiys 1) - 4(ai,T) = 4o 1) @NALs = G0, )~ 4 T) & 406,T)
HenceLg, andLg, generate distinct varieties.

Proposition 6.3.7 Each subvariety generated lhy satisfies the identity* ~ 2°.

Proof For anyz € Js with z < e, 23 = 1. Moreover we havézr,y)? = (22,y/z A z\y)
and (z,y)* = (2%, (y/x A 2\y)/2* A 2*\(y/x A z\y)) for any (z,y) € Lg. If x # e then
T-x=x-T =uz. Itfollows that

r#eandr <y=y/xAz\y=T (6.1)
and therefore,
r <eandz? <y/z Ar\y = (2,9)* = (z,9)°, (6.2)

where(z, y)* = (L, T).

(caser =)

If y # ethen(T,y)? = (T,y). If y = ethen(T,e)* = (T,dy)?> = (T,dy) and(T,e)> =
(

(T,do)(T,e)=(T,e).

(caser = e)

(e,y)* = (e*,y/e Ne\y) = (e,y).
(caser < e)

We showz? < y/x A x\y then by (6.2)(x,y)* = (z,y)° holds. Ifz < y then from (6.1)
2?2 <vy/x Ax\y.

If z =d; andx > y thena?® = d? = bd; = L andb < y/d; A d;\y.

If z < d; thena? = L. Thusz? < y/xz A z\y.
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6.4 Main theorems

In the previous sections the number of minimal subvarieifale following varieties is inves-
tigated, and is shown to be uncountably many in all of thesexa

e RRL, + Mod(z? = x*)
o RRL + Mod(x? = x)

o InRL

It is natural to ask what will happen if these two conditiares,, representability and involutive-
ness, are combined. Main results of this chapter shown srségtion answer this question.

First, we show in Theorem 6.4.1 that the number of minimalaubties of bounded in-
volutive representable residuated lattices is still umtably many, even if the mingle axiom
x? < xis assumed. Interestingly enough, if we replace the mingjena by the idempotent
axiomz = 22, the number becomes only two.

6.4.1 Adding involution (preserving mingle axiom)

To show the first result we construct a strictly simple bowhohwolutive representable resid-
uated lattice with mingle axiom from a given upper-boundesiduated lattice with mingle
axiom. This construction is given by N. Galatos and J. G. &wfin [9].

LetA = (A, A,V, -, /,\,1) be an upper-boundetlL.. LetA~ = {a"|a € A} be a disjoint
copy ofA andA* = AUA".
We extend the lattice ordef on A to A* by stipulating that for any, b € A,

1. a <band
2.0 <b < b<a.

Thus, (A*, <) is order-isomorphic to the ordinal sum of the dual posetAf<) and (A, <)
itself. Let T be the greatest element Af We definel. = T~ and0 = 1~. Then_L is the least
element ofA*. For anyx € A, we define(z~)" = z andz’ = x~. Then’ becomes a unary
operation oM * and satisfies an equatiofi ~ x. From now on we identify and’.

Next we extend the monoid operation Arto A* as follows: ifa,b € A then
1.a-V=(b/a),VV-a=(a\b) and
2.4 -V = 1.
Finally, we extend the division operation as follows: fdralb € A
1.a\b/ =d /b= (b-a),
2. \a=a/ll =T,
3. d\b/ =a/b,
4.0 /d =b\a.

Then we can show that associative law and residuation ladsho!’” = x andz\y' = 2//y
hold from definition of. If A € ZnRL + Mod(z* < z) thenforanyr € A, z-x < z and
72’ = 1 <. ThusA* € InRL + Mod(2? < ).
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6.4.2 Bounded representable involutive residuated lattewith mingle ax-
iom

In the Sections 6.2, we already show that there exists uiablyrmany minimal subvarieties in
the subvariety lattice of both bounded representable 8maesiduated lattices and involutive
residuated lattices. We show now that there exists uncblyntaany minimal subvarieties in
the subvariety lattice of bounded representable invadutasiduated lattices with mingle axiom,

too.
Define an idempotent representaBle Ds = (D, A, V, -s,\, /, 1) as follows. Let us define
a setD.

D = {a;]i e Nt} U {b]i € N} U {1}.
We define an ordex onD as follows;
by < b; Sb] <1 SCL}CSCL[@fOfa”i,j,k’,lEN,iSjandeZl.

Obviously, this is a total order. L&t C w. We define a multiplications on D depending of,

ap =T

a2
as
| +I
b
b1
bo

Figure 6.2.

by

Qi s G = Gmin{i,j}
bi ‘S bj == bmzn{z,]}

b — b ifj<iori=j5€S8
iU T g fi<jori=j¢S

RS I fi<jori=j¢€S8
G Ty ifj<iori=j ¢S

Finally, we define two division operations, by

2\sy = V{zlz s 2 <y}
y/se=\V{zlz-sz <yj
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(For the simplicity’s sake, we omit the subscripof \ s and /s below.) Itis easy to see that the
multiplication is associative and is residuated by thegibn operations. SBg is a bounded
RL (a, is the top element ank, is the bottom element). Moreover it satisfies the idempotent
axiomasr -g r = .

We construct a boundebhRL D§ from algebraDgs by the Galatos-Raftery construction
mentioned in 6.4.1. Note th&y is representable, bu for anye Dy = - x = L. Thus, it does
not satisfy the idempotent axiom any more, but still it f&tsthe mingle axiom? < z.

ar =T

Figure 6.3.

Theorem 6.4.1 There are uncountably many minimal subvarieties of boundealutive rep-
resentable residuated lattices with mingle axiom.

Proof It is enough to prove the following:
1. For anyS C w, Dj is a strictly simple algebra.
2. The element. € Dy is nearly term definable lower bound.
3. If Sy andsS; are distinct subset of thenDg, andDg, generate distinct varieties.

To prove thatDy is strictly simple, it suffices to show th&y is generated by. Obviously,
0 =1"and0\1 = T. We have

if i e Sw thenl/ai =b; andl/bz = Qj+1,
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if € Sw thenai\l = andbl\]_ = ;41

and1/a; A a;\1 = by. We can generate all elementsIof; inductively. Finally, we can get;’
andb;’ by

CLZ\O = CLZ'/ andb,\O = bi,.
HenceDj is strictly simple.

Now we define a term_ (x) as follows;

qL(z) = (z N 2')2

Suppose that # 1. If = € Dg thenz > 2’ € Ds. If z € D thenz < 2’ € Dg. Hence
(x Az')? = L. Thus_L is nearly term-definable lower bound.

Now we show that for any pair of distinct sefs, So € w, V(Ds,) andV(Dg,) generate
distinct varieties. We define termg ¢, andt as follows.

to(z) =1/ A2\l
ty(z) = l/x\/x\l
t(x) = ta(ts(x))

Let .S, andS; be distinct sets. Without loss of generality, we can assinaethere exists € N*
such that € Sy, ¢ S;. Thenb; -1 a; = b; butb; -5 a; = a;. Now we define terms

v, = tb(tz_l(ll\l))
qa; = tH1\1).

Thus the following holds.
The equationy, - ¢,, =~ g, holds inDg_, but not inDg, sinceb; -, a; = a; # b;.

SoV (Dyg, ) satisfies the equatiap, -q., =~ g,, butV (Dg,) does not satisfy it. Hendé(Dg, ) #
V(Ds,).

6.4.3 Bounded representable idempotent involutive resicated lattice

On the contrary, we show that the number of minimal subviasedf bounded representable
idempotent involutive residuated lattices is only two.

First we define three bounded representadhlgLs with idempotent axiom = z? as fol-
lows.
2= <27 /\27 \/27 ‘2, /27 \27 ]-7 1,>|
3= <37 N3, V3,3, /37 \37 ]-7 1> and
4= (4,N4,Va, 4, /2, \2, 1, 1),
where2, 3 and 4 denote underlying sets defined By= {1’,1}, 3 = {L1,1, T} and4 =
{L,1',1, T}, respectively. We define orders &n3 and4 by

e l=1<1=T
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e | <1I'=1<T

e | <1I'K1<LT

We define also monoid operation @n3 and4 by the following tables.

4! T 1 1 1
s | T 11 TIT T T 1
T| T T L1 ,
17T 1 1 L
1117 1 1 , ) ,
IR 1’|/ T7T 1 1 L
S O N R
Involution is defined as follows.
z | ix/
x|z 1T T L
111 111 1171
111 1] 1
LT 1| T

Note that involution is defined by’ = 1, T/ = 1L and L’ = T in all of these algebras.
We can show easily that the residuation law holds in a2, and4. Thus they are bounded

involutive representable residuated lattices with idetapbaxiom.

-
[ ]
-
[ ]
1 1
[ ]
1
[ ]
1 1
[ ]
1
[ ]
1
[ ]
Figure 6.4.

By using theses algebras, we can show the following theorem.

Theorem 6.4.2 There exists only two minimal subvarieties of bounded utixa representable

residuated lattice with idempotent axiom.
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Proof First we show that any subdirect irreducide € ZnRRL, + Mod(x = 2?) has a
subalgebra which is isomorphic to one2)f3 and4. SinceA satisfies the idempotent axiom
we can show = 1”7 = (1" - 1') = (1’\1”)” = 1"\1. Thusl’ < 1. Also, itis

1=1 <= 1'=1"
<— T =1.

Suppose thaf satisfiesl’ = 1. Clearly{ 1,1, T} C A and itis closed under involution
as mentioned beforel - L = L. Moreover,T\1 = (T\1")” = (T1)’ = T’ = L holds from
lemma 4.2.2. Hencél, 1, T} is a subalgebra oA which is isomorphic t@3.

Suppose thaA satisfiesl’ < 1 andT = 1. Thenl is the greatest and is the least element
of A. Clearly{1’,1} is closed under monoid operation, residuation and invatutiHence
{1’,1} is a subalgebra oA which is isomorphic te.

Finally suppose thaA satisfiesl’ < 1 andT # 1. We havel # 1". Clearly{ 1,11, T} C
A and itis closed under involution. Lét\ 1L = z. If z > 1"thenl’ = 1? < 1’'-z = L. This
is a contradiction. Se < 1’. Thenz = 2> < z-1' = L. Thusl’\L = L. By lemma 4.2.2 we
have

T-U'=0\T)Y=>1\1)=1"=T.
Hence{ L, 1,1, T} is closed under monoid operation. Moreover,

T\1=(T\1")"=(1'-T) =T = Land
1/\1 — (1/\1//)// — (1/ . 1/)/ — 1// — 1

hold by lemma 4.2.2. We can show that it is closed under resiol. Hence{ L,1',1, T} is
subalgebra oA which is isomorphic tat.

On the other hand, we show that the alge®ria a homomorphic image of. In fact, the
map f defined byf(T) = T, f(1) = f(1') = 1 and f(L) = L gives such a homomorphism.
So3 is a element of the subvariety generateddbyoreover it is clear that

T f

—r
1

e
1/

%
1

4 3

Figure 6.5. homomorphism forshonto 3

Tol'=1,1=1
T'31,:—|—'31:—|—.
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Hencel/(2) andV'(3) are distinct varieties. It is easy to see tBand3 has no proper subal-
gebras. Therefore, only(2) andV(3) are minimal subvarieties @nRRL, + (z = z?).

The following table shows conclusion of this chapter.

variety minimal subvarieties
PsRRL | uncountably many (Jipsen-Tsinakis)
RRL + (v = x?) uncountably many (Galatos)
InRL uncountably many (Tsinakis-Wille
InRRL, + (22 < x) uncountably many
InRRL, + (z = 2?%) only 2 (V(2) andV(3))

6.5 Logical consequences

In this section we show that what our theorems mean from adbgioint of view. First we
introduce the logidnFL’ which corresponds to variety of involutive residuatedidat. The
logicInFL' is introduced as a sequent calculus obtained fRdurby deleting an initial sequent
and an inference rule for the logical constaniMoreover we add following an initial sequent
and inference rules.

T = A

a, ' =
I'=> -«

T=a %1 = :
(=) 1= 0= gz (ding)

We show the following lemma.
Lemma 6.5.1 (1) L(ZnRL) = InFL/. (2) V(InFL') = InRL.
Proof First we show that
(@) InFL' C L(ZnRL).

It is enough to show thdt = ( is provable inlnFL’ implies thatl' = FisvalidinZnRL, i.e.

A ET* < pgineveryA € InRL. To prove this we use induction on the length of a proof of
I' = g. Itis trivial that initial sequents and inference ruleddi. We discuss only about above
an initial sequent and inference rules.

(Initial sequent-—a = «)
From definition of involution we can show = z. Thus,m—a = « is valid.

(Inference rule= —) Letxz, a € A. By the hypothesis of induction, we can assume that =
is valid. We haveA = a -2 < 1’. Then

a-z<1l=z<d\l'=d/l=4d.
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ThusA | z < d'. Hencel' = -« is valid.

(Inference rule- =) Letz,a € A. By the hypothesis of induction, we can assume that o
is valid. We haveA = = < a. Then

r<a = z<d =d/1=d\l
= d -z<1.

ThusA o -z < 1. Hence-a, I = is valid.

(Inference rulecycling) Let x,y € A. By the hypothesis of induction, we can assume that
¥, ' = isvalid. We haveA =z -y < 1'. Then

zy<l = y<a\I'=2"/1=2'=1\a'"=1/z
= y-x<1.

ThusA =y -z < 1'. Hencel', X = is valid.
Next we show that
(b) ZnRL O V(InFL').

It is enough to show that = ¢ andt = s is provable inInFL’ for every equations =~ ¢
of ZnRL. ltis clear thats = t andt = s is provable for any equation ~ ¢t of RL. The
following proofs

B=0 ﬂoéz:;i =)
b=0 (o) == (/=)
o= _'ﬂaﬂj (\ :>) _‘Oé/ﬂ,ﬂ,Oéi (C clin )
O‘aa\_'ﬁaﬂé ﬁ,a,—'oz/ﬁ:> Y g
B =" ) =g )
: (=/) : (=\)
a\=f = -a/f —a/fB = a\=f

show thato\ -4 = —a/f and—a/F = «o\—-5 are provable ifnFL'.

From (b) we can show.(ZnRL) C L(V(InFL')) = InFL’. Since (a) and above holds
we haveInFL’' = L(ZnRL). Moreover from (a) we can shoW(InFL') O V(L(ZnRL)) =
InRL,asInRL is a variety. Since (b) and above holds we ha\(@nFL') = ZnRL.

O

Note that the logidnFL’ + exchange is corresponding to the logimFL, since—1 is defined
by 1 — 0(= 0) in FL.. Next we give an axiomatization of the logic determinedRi L and
RL, respectively. The varietR R L is axiomatized by

A((zVy)/x) Vpu((zVy)/y) = 1.
Thus the sequent calculus of the logic determined by thetyeRR L has

R)= Aol V) /o) V ps((p V) /1)

as initial sequents wherke (p,,) is a left conjugate (and right conjugate, respectively).

The sequent calculus of the logic determined by the vafiefy, has the following initial
sequents.
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MTIT=T
B) I LLA=+«y

Thus from a logical point of view our theorems mean the foltayv

e The number of maximal consistent logics o¥aF L'+ (R) + (T) + (B) +(a - a = «)
IS uncountably many.

e There exists only two maximal consistent logics cueFL'+ (R) + (T) + (B) + (-« =
a)+ (o= a-a).
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Chapter 7

Conclusions and future works

In this thesis we have two topics about logics oFdr. In Chapter 5, we show the algebraic
characterization of the disjunction properties. Moreaveishow that many substructural logics
have the disjunction property by applying the algebraicatizrization.

e An algebraic characterization of the disjunction propéstgiven.
e The disjunction property of many substructural logics isvgh by applying it.

In Chapter 6, we show the number of the maximal consistemtsddgy using dual isomorphism
between lattice of logics and subvariety lattice of residddattice.

e The existence of uncountably many minimal subvarieti€griRR L, N Mod(z? < x)
is shown.

e On the other hand only two exist itnRR L, N Mod(x = x?).

Algebraic characterizations of some logical propertieseixample the Hallden completeness
and deductive principle of variable separations. Algebchiaracterization of Harrop-style dis-
junction property is not given. Thus we have following fiewvorks about this topic.

e Give an algebraic characterization of Harrop-style disjiom property.

e How to extend algebraic characterization of disjunctiompgrty to modal substructural
logics?

Results of this thesis we discuss about mingle axiom and paésnt axiom but we do
not discuss about contraction axiom. Commutative reptabénresiduated latice has at least
countably many minimal subvarieties (s@@). In this thesis we discuss about only non-
commutative case. Thus we have follwoing future works ab@ntmal subvarieties.

e How many minimal subvarieties are thereinRR L, N Mod(z < x?) (contraction)?
e How many minimal subvarieties are thereZinCRRL , ?

¢ Is there a natural condition that the number of minimal subktias is countably many?
Find such a condition, if any.

e Axiomatize the logic determined by the variéty3).
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Appendix A

A.1 The proof of Lemma 5.4.2

Lemma 5.4.2The tuple(D, -, 1) is a monoid.
Proof For every(a,b,i) in D, (a,b,7) - (1a,1B,1) = (1a, 18, 1) - {a,b,i) = (a,b,i). Thus
(1a, 1, 1) is the identity element.
Next we prove that the associative law holds.
1. <a1.b1.i> . <CL2, bg,j> = <CL1 ‘A A9, bl ‘B bg,i . j>
(@) 4,5 € {0,5} or ¢ = 1 andj = 0)
(b) i=0andj =1
(c)i=3andj =1
(d)i=1landj =1

2
(e)i=j=1

2. {(ay.by.i) - {ag, by, j) = {ay -a ag, by B by, %>
@ k=1
(b) k=3
() k=0

3. (ay.b1.7) - (az, by, j) = (a1 -a az, b1 -B b2, 0)

(@) (aj -a az, by ‘B b2,0) - {as, b3, k) = ((a1 -a az) -a a3, (by ‘B by) -8 b3, 0)
(b) (a1 -a as,b1 B b2, 0) - (a3, b3, k) = ((a1 -a a2) -4 as, (b1 -B b2) ‘B b3, 3)
(case la)l et
(a2, b2, ) - (as, b3, k) = (a2 -a az, b2 -B b3, m)
wherem € {0, 3}.
Suppose thafa; o as, by B b2,0) - (as, bs, k) = ((a1 -a az2) -a as, (b1 ‘B b2) ‘B b3,0). Then

(a1 A a2) ‘A a3 < 05 and(by -g b2) ‘B b3 < 0g. Thus we can show

(a1,b1,17) - {(as - as, by - by, m) = (a1 -a (a2 -a a3), b1 - (b2 B b3),0).
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Suppose thafa, -4 az, b1 B b2, 0) - (as, bs, k) = ((a1 -a a2) -4 as, (b1 -B b2) B b3, 3). Then
(a1 -a az) -a ag £ 0a OF (by -B by) -B b3 £ 0. Thus we can show

<CL17 b1>i> ’ <a2 ‘A a3,b2 B b3,m> = <a1 ‘A (a2 ‘A a3), b1 B (bz ‘B 53)7 %)

(case 1b)etk = 1.
<CL27 by, 1) : <a3,b3, k) = <a2 ‘A a3, by B b3, 1)-

Suppose tha{(al ‘A A9, bi ‘B bg, 0> . <CL3, bg, 1> = <(CL1 ‘A a2) ‘A A3, (b1 ‘B bg) ‘B bg, 0> Then
(a1 A a2) A a3 < 05 and(by -g b2) ‘B b3 < 0g. Thus we can show

(a1,b1,0) - (ag -a as, by - b3, 1) = (a1 -a (a2 -a a3), b1 - (b2 B b3),0).

Suppose thafa, -5 az, by B b2, 0) - (a3, b3, 1) = ((a1 -a a2) - a3, (b1 -B b2) B b3, 3). Then
(a1 -a az) A ag £ 0a OF (by -g by) -B b3 £ 0. Thus we can show

<CL17 51,0> : <a2 ‘A a3, by B b3, 1) = <Cl1 A (Clz A a3)>b1 ‘B (b2 ‘B 53), %>
Letk = 1.
<a'27 b27 1> : <a3763a k) = <a2 ‘A a37b2 ‘B b37 %>

Suppose thafa, -4 ag, b1 B b2, 0) - (a3, bs, 5) = (a1 -a az) -a as, (b1 B b) -8 b3, 0). Then
(a1 -a a2) -a a3 < 04 @and(by ‘g by) B bg < 0. Thus we can show

<CL17 51,0> : <a2 ‘A a3, by B b3, %) = <a1 ‘A (Clz ‘A a3)>b1 ‘B (b2 ‘B 53),(])-

Suppose thafa; -a az, b1 ‘B b2, 0) - (as, bs, %) = ((a1-a a2) A a3, (b1 ‘B b2) -B b3, %> Then
(a1 A G2) A a3 £ 04 OF (by 'B bo) B b3 £ Og. Thus we can show

(ab b1>0> : <az ‘A 03, b2 B b3, %) = <a1 A (CLQ ‘A a'3)>bl ‘B (bz ‘B b3), %)
Letk = 0.
<CL27 ba, 1) : <a3,b3, k) = <a2 ‘A a3,b2 B b3,m>

wherem € {0, 3}.
Suppose thafa; -4 az, by B ba, 0) - (a3, b3,0) = ((a1 -a az2) -a a3, (b1 B b2) *B b3,0). Then
(a1 A a2) ‘A a3 < 05 and(by -g b2) ‘B b3 < 0g. Thus we can show

(ab b1>0> : <az ‘A 03,02 B b3>m> = <a1 ‘A (az ‘A a'3)>bl ‘B (52 ‘B 53),0>-

Suppose tha{(al ‘A A9, bi B b2,0> . <a3,b3,0> = <(CL1 ‘A CLQ) ‘A A3, (bl ‘B bg) ‘B b3, %> Then
(a1 -a az) A ag £ 0a OF (by -g by) -B b3 £ 0. Thus we can show

<CL17 51,0> : <a2 ‘A a3,b2 B b3,m> = <a1 A (a2 ‘A a3)>b1 ‘B (bz ‘B 53), %)
(Case 1C)_etk3 =1. Then<a1 ‘A Ao, biB bg, %) . <CL3, b3, 1> = <(CL1 ‘A CLQ) ‘A 03, (bl ‘B bg) ‘B b3, %>
Since(asg, b, 1) - (as, bs, k) = (as -a a3, by -5 b3, 1). We can show

(a1,b1,5) - ({a,b2,1) - (as, bs, k) = (a1 -a (a2 -a a3),b1 B (b2 B b3), 3)-

Letk = 3.
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<CL27 ba, 1) : <a3,b3, k) = <a2 ‘A a3, by B b3, %>

Suppose thata, - az, by B by, 5) - (a3, b3, 3) = ((a1 - a2) -a as, (b1 -B b2) -B b3, 0). Then
(a1 A a2) ‘A a3 < 05 and(by -g b2) ‘g b3 < 0g. Thus we can show

(al, b1, %) : <az ‘A a3, b2 B b3, %) = <a1 A (az A a3)>bl ‘B (52 ‘B 53),0>-

Suppose thafa, -a az, by - bo, %> - {as, bs, %> = ((a1 A a2) -a a3, (b1 - b2) ‘B b3, %> Then
(a1 A G2) A a3 £ 0a OF (by 'B bo) B b3 £ Og. Thus we can show

<CL17 by, %) : <a2 ‘A a3, by B b3, %) = <a1 A (a2 A a3),bl ‘B (bz ‘B 53), %)
Letk = 0.
<a'27 b27 1> : <a3763a k) = <a2 A a37b2 ‘B b37m>

wherem € {0, 3}.
Suppose thafa, - a2, b1 B ba, 3) - (a3, b3,0) = ((a1 - a2) -a as, (b1 B b2) -B b, 0). Then
(a1 A a2) A a3 < 05 and(by -g b2) ‘B b3 < 0g. Thus we can show

<CL17 b1, %) : <a2 ‘A a3,b2 B b3,m> = <a1 ‘A (a2 ‘A a3), b1 B (bz ‘B 53)70>-

Suppose thafa; - az, by B bo, %> - (as, b3,0) = ((a1-a a2) A a3, (b1 ‘B b2) -B b3, %> Then
(a1 -a az) -a ag £ 0a OF (by -B by) -B b3 £ 0. Thus we can show

<CL17 b1, %) : <a2 ‘A a3,b2 B b3,m> = <a1 ‘A (a2 ‘A a3), b1 B (bz ‘B 53)7 %)
(case 1d)yetk = 1. Then(a;-a as, by - by, 3) - (a3, b3, 1) = ((a1-a az)-a as, (b1 -Bb2) B3, 3).
Since<&2, bg, %) . <CL3, bg, k’> = <CL2 A Q3, by ‘B bg, %) We can show
<CL17 b1, 1) : (<a2,b2, %> : <a37b37 1>) = <a1 ‘A (a2 ‘A a3),bl ‘B (bz ‘B 53), %)
Let k € {0, %}
(ag, b, %) -{az, b3, k) = (az -a a3, by -B b3, m)
wherem € {0, 3}.
Suppose thafa, - az, by B b, 3) - (a3, bs, k) = ((a1 - a2) -a as, (b1 -B b2) -B b3, 0). Then
(a1 A a2) ‘A a3 < 05 and(by -g b2) ‘B b3 < 0g. Thus we can show
(ar,b1,1) - (az -a a3, by - b3, m) = (a1 -a (a2 -a a3), by -B (b2 - b3),0).

Suppose thafa, -5 as, b1 B o, %> -{as, bg, k) = ((a1 -a az) -a as, (b 'B b2) -B bs, %> Then
(a1 A G2) A a3 £ 0a OF (by 'B bo) B b3 £ Og. Thus we can show

<CL17 b1, 1) : <a2 ‘A a3,b2 B b3,m> = <a1 ‘A (a2 ‘A a3)>b1 ‘B (bz ‘B 53), %)

(case leletk € {%, 1}. Then({ay, by, i) - (ag,ba, 7)) - {as, bs, k) = ((a1 -a a2) -a as, (b1 ‘B
by) ‘B bs, k). We can show

<a'27 b27 1> : <a3763a k) = <a2 A a37b2 ‘B b37 k>
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Thus<a17b17i> : (<6L2, b27.j> : <a37b3> k>) = <CL1 ‘A (a2 ‘A CL3), bl ‘B (b2 ‘B b3)7 k)
Letk = 0. Then

<a'27 b27 1> : <a3763a k) = <a2 ‘A a37b2 ‘B b37m>

wherem € {0, 3}.
Suppose thafa, -4 az, by B b2, 1) - (a3, b3, k) = ((a1 -a a2) -a as, (b1 -B b2) B b3,0). Then
(a1 -a a2) -a a3 < 04 @and(by ‘g by) B bs < 0. Thus we can show

(ab b1> 1) : <az ‘A 03,02 B b3>m> = <a1 ‘A (az ‘A a'3)>bl ‘B (52 ‘B 53),0>-

Suppose thafa; - a2, by ‘B ba, 1) - (a3, b3, k) = (a1 -a a2) -a as, (b1 -B b2) B b3, 3). Then
(a1 A G2) A a3 £ 04 OF (by 'B bo) B b3 £ Og. Thus we can show

<CL17 b1, 1) : <a2 ‘A a3,b2 B b3,m> = <a1 A (a2 ‘A a3)>b1 ‘B (bz ‘B 53), %)

(case 2aMWe can show

(a1 -a asz)-a a3 £a 0a 0O (by - b2) B b3 £8 OB

from ai -A Qo ﬁA (N andb1 B by ﬁB 0. So

. . 1
(<a1,bl,l> : <a'27b27]>) ’ <a37b3a k) = <al A U2, bl ‘B b27 §> ’ <a3763a k)
1
= <(a1 A a2) A (3, (b1 ‘B bz) ‘B b3, 5)

We can easily showao, bs, j) - (as, bs, k) = (as -a a3, by -5 b3, 1) suchthat = jorl = %
If l = jthenfromi-j =0, (a;-aaz)-a a3 £a 04 and(b; -g bs) ‘B b3 £ O We can show

<CL17 b1>i> ’ <a2 ‘A a3,b2 B b3,j> = <a1 ‘A (a2 ‘A CL3)= b1 B (b2 ‘B 53)7 %>
If | = 5 then from(a; - as) -a a3 £a 0a @and(b; g b2) -B b3 £p O We can get

<CL17 b1>i> ’ <a2 ‘A 03,02 B b3, %) = <a1 ‘A (a2 ‘A a3), b1 B (bz ‘B 53)7 %)

(case 2b)

(a1 - az, b1 B by, ) - (as, by, 5) = (a1 -a a2) -a a3, (b1 -B b2) ‘B b3, 1)

such that = ; orl = 0.
If | = 5 then

(a1-a a2) -a a3 £a 04 OF (by B b2) ‘B b3 LB OB.

Let <CL2, bg,j> . <a,3,bg, k’> = <CL2 ‘A &3,62 ‘B bg,m> such thatn € {O, %}
If + = 0then from(al ‘A ag) ‘A Q3 ﬁA 0 Or (bl ‘B bg) -B b3 fB Og,

<CL17 51,0> : <a2 ‘A a3,b2 B b3,m> = <a1 ‘A (a2 ‘A a3)>b1 ‘B (bz ‘B 53), %)
If i #0,i.e.j =0. Then in the same way as the previous case

(ab bbi) : <a2 ‘A 03,02 B b3>m> = <a1 A (az A ag), b1 B (52 ‘B 53), %)
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If { = 0then
(a1 -a asz)-a a3 <a 0a and(b; -g b2) -g b3 <g Og.

Suppose thafas, bs, j) - (a3, bs,0) = (as -a as, bs - b3, m) such thatn € {0,%}. So
(a1,b1,1) - (az -4 as,be - by, m) = (ay -a (ag -a a3), by - (b2 ‘B b3), 0)

by (a1 -a a2) -a az <a 0a and(b; g b2) ‘B b3 < Op.

(case 2¢)
(aj -A asz,by B be, %> - (as, b3,0) = ((ay -a az) -a as, (by ‘B ba) ‘B b3, )

such thaf = ; orl = 0.
If { =0then

(ag,ba, j) - (as, bs,0) = (az -a as, bs - b3, m) such thain € {0, %}
So
(a1,b1,17) - {(as - as, by - by, m) = (a1 -a (a2 -a a3), b1 - (b2 B b3),0).

by (a1 -a a2) -a a3 <a 04 and(b; -g b2) ‘B b3 <p Op
If { = 1 then

(a1 -a a2) -a a3 £a 04 @and(b; -g b2) ‘B b3 L OB.
Suppose thafas, by, j) - (as, bs,0) = (as -a as, by -g b3, m) such thatn € {0, }. So
<a1, b1>i> : <a2 ‘A 03,02 B b3,m> = <a1 ‘A (a2 ‘A a3), b ‘B (bz ‘B 53)70>'

by (a1 -a a2) -a a3 £a 04 and(by -g b2) ‘B b3 £B OB

A.2 The proof of Lemma 5.4.3

Lemma 5.4.3The algebrad satisfies the law of residuation.
Proof First we show the only-if part. It is enough to prove that tbkofving cases.
1. <a'17 b172.> ) <a'27 b27j> = <al A G2, bl ‘B b272. : .])

(@) (a1, b1,5)\(as, b, k) = (a1\aas, bi1\Bbs, i\ k)
(b) (a1, b1,7)\(as, bs, k) = (a1\aas, b1\Bbs, 5)

2. {a,b1,1) - (az, b2, ) = (a1 -a a2, b1 B by, %)

(@ j=0
(b) j=1
©j=3
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3. <a1,b1>’i> ) <a2,bz>j> = <a1 ‘A G2,b1 B 52,0>
@ k>3
(b) k=0

Here we show each case.
(case la)Then clearly

<a1,b1,i> . <a2,b2,j> < <a3,b3,k> if and Only if <a2,62,j> < <a1,b1,i>\<a3,b3,]€>.

(case 1b)Then

as <a a1\aas, by <p b1\Bbs3, j < i\k.

If i\k = 0 then
j<i\k <3
If i\k = 1 then

a1\aas 2a la,
bi\sbs B 1lB.

So
az 2a 1a andb, 2g 1s.

Thusj # 1. Hence

<CL2, b2>j> S <a1, bla Z‘>\<a37 b?n k)

(case 2alearly
<CL2, b27j> < <a17 bla 7;>\<CL3, b37 k)

Note that ifj ## 0 theni = 0.
(case 2b)We can get

i\k =1,
1a <a as <a aj\aas,
1 < by <p b1 \Bbs.

So

(as, by, j) < {ar,br,0)\(as, bs, k).
(case 2cBy i\k = 1,

(as, by, j) < (ar\aas, bi\Bbs,3) < (a1, b1, i)\ (as, bs, k).
(case 3aMWe can get

(a1\aas, b1 \Bbs, %) < (ay,b1,1)\{as, bs, k)
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fromi\k = 1. So
(ag,ba, ) < (a1\aas, bi\Bbs, 5) < (a1, b1,9)\(as, bs, k).
(case 3b)if : = 0 then
<a'1\Aa3a bl\Bb37 %) S <al7 bla i>\<a37 b37 k>
byi\k = 1.
If i = 3 then(ay, by, 4)\(as, bs, k) = (a1\aas, bi\gbs, 3) from definition. So
(ag,ba,7) < (a1\aas, bi\Bbs, 5) < (a1, b1,9)\(as, bs, k).
Next we prove if-part. It is enough to prove that the follogicases.
1. (a1, b1,4)\(as, bs, k) = (a1\aas, b1\Bbs3, 1\k)

(@) (a1,b1,1) - (ag, b2, j) = (a1 -a az, by -B by, i - j) Or (ay -a az, by ‘B be,0)
(b) (ai,by,14) - (az, ba, j) = (a1 -a az, b1 -B b, %)

2. (a1, bi, )\ (az, by, k) = (a1\aaz, b1\gbs, 3)
(@ i\k=1

i (a1, b1,17) - (az, b2, 7 = (a1 -a az,b1 B by, %)
ii. (a1,b1,17) - (ag, ba, j = (ay -a az,by ‘B b2, 0) OF (a1 -a a2,b1 ‘B b, 1)
(b) \k =0

Here we show the each cases.
(case lalWe can showi, -5 as <a as, by -g by <g bz and0 <i-j < k.
Thus

(a1 -a ag, b1 -B by, 0) < (a1,b1,1) - (a2, b2,7) < {as, b3, k).
(case 1b)We can show

as <a a1\aas, by < b1\Bb3, a1 ‘A as LA 0a b1 ‘B b2 LB Op.

So clearlyaz €4 05 andbs £ 0g. Hencek # 0. Thus
(a1, b1,1) - (ag, by, j) < (a1 -a az,by B bo, 5) < (as, bs, k).
(case 2(a)i)We can show
ay - az £a 0a Orb; ‘g by £B OB.
So
az £a 0a Orbs £p Op.
Hencek # 0.
(case 2(a)ii)Clearly
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<a17b17i> ' <a27b27.j> < <a37b37k>'

(case 2b)We can show

a1 A a2 <A az <a Oa,
by B b2 < b3 < Up

fromay <a a;\aas andb, <g b;\pbs respectively. Hence

<a'lab1>2.> ' <a’27b27j> = <al ‘A a2ab1 ‘B b270> S <a'3ab37k>'
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