
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
規則と責任モデリングを用いたソフトウェアの自動進

化

Author(s) 黄, 明仁

Citation

Issue Date 2008-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/4202

Rights

Description Supervisor:片山卓也, 情報科学研究科, 博士

Using a Rule-Base Approach and Responsibility

Modeling for Automatic Software Evolution

by

Ming-Jen Huang

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Takuya Katayama

School of Information Science
Japan Advanced Institute of Science and Technology

March, 2008

 i

Abstract

The purpose of this research work is to improve software evolution by managing the complex

relationships between abstractions of different development stages. To this end, we propose

and implement an automation approach for managing these relationships. This approach is

based on the idea of capturing and reusing various types of relationships between abstractions.

A program realizes different types of high-level abstractions. As more functions are

added to the program, the realization relationship between the program and the high-level

abstractions conceived in the development process becomes more complex. To evolve a

program without degrading its quality, managing this complexity is the key point. To this end,

in this research work we propose a new development approach, which is based on three

theories. (1) First, to eliminate the gap between different worlds in software development

process, we use a single-type paradigm for modeling abstractions that are created in different

worlds but are also related at the same time. (2) Second, to simplify the evolution of the

relationships among abstractions, we propose directly creating a program by reusing

previously considered development knowledge of relationships among abstractions. More

specifically, a program is constructed from the modules of the relationships of abstractions

which are conceived in the development process and are recorded by the single-type

paradigm in (1). (3) Third, we propose using rule engine for implementing a tool for

automating software evolution by reusing and composing the modules mentioned in (2). The

automation provided by this approach is for the following three evolution scenarios: (a) when

the given business processes are evolving, (2) when the realization-development knowledge

is evolving, and (3) when a different implementation technology is adopted. To evaluate the

effectiveness of the proposing approach, a case study with three software systems is

conducted.

In this dissertation, we describe the construction of the proposing approach. In the

first step, the basic framework is constructed. This framework helps developers to capture

development knowledge they acquire in the development process. It includes a modeling

language and a set of graphical notations. We then describe how the modules of relationships

among abstractions can be used to construct/evolve a program. In the second step, the

 ii

implementation for automated program construction/evolution is developed. This

implementation provides the features of development knowledge modeling and program

construction/evolution automation. Finally, a case study is conducted. The results of the case

study provide the support for the proposing three theories for software evolution.

The evaluation results show that a single-type paradigm by using responsibility can be

effectively used to describe the relationships of abstractions within the four worlds. The

modularization of development knowledge can effectively capture how developers design

realization of abstractions of different worlds. Finally, a rule engine encodes the development

knowledge for inferring the development of system responsibilities, object responsibilities,

and program responsibilities.

 iii

Acknowledgments

This research work is supported by many people. I would like to thank to Professor Takuya

Katayama for his kindly guidance, encouragement, and support in many different forms. I am

very lucky to have him to be the supervisor of my master and PhD study.

I would like to thank to all committee members: Professor Motoshi Saeki, Professor

Koichiro Ochimizu, Professor Tomoji Kishi, Associate Professor Masato Suzuki, and

Associate Professor Toshiaki Aoki. Your comments are invaluable to me.

I would like to thank to my colleagues, especially Assistant Professor Kenrou Yatake,

Dr. Rami Yared, Dr. Samia Souissi, Mr. Nǎixué Xióng, and Ms Yàn Yáng.

I would like to thank to Professor Leon J. Osterweil at University of Massachusetts

Amherst and every people I met while I was there. This was the most exciting moment I had

so far.

I would like to thank to my family in Taiwan. Especially, I would like to thank to Mom

for making me love to read and to learn from my childhood. I would also like to thank to my

mother-in-law for her kindly help while I were finishing this dissertation. I would like to

thank Mr. and Mrs. Hamada in Nagoya for treating me like your family member.

Last but not least, I would like to thank to my wife Lisa, our lovely son Wei-Wei, and

our coming baby. You keep me moving forward.

 iv

Contents

Abstract ...i

Acknowledgments.. iii

Contents ..iv

List of Figures .. viii

List of Tables ..xi

Chapter 1 Introduction ...1

1.1 Problem..1

1.1.1 Background...1

1.1.2 Problems and Gap ...2

1.2 Overview of the solution..3

1.2.1 Basic idea of the solution..4

1.2.2 Fundamental theories of the solution..5

1.2.3 Scope of the solution...7

1.2.4 Construction of the solution..8

1.2.5 Case Study of the solution ..9

1.3 Organization of the dissertation ...12

Chapter 2 Related Work...14

2.1 Model-driven development..15

2.2 Abstraction decomposition ..17

2.3 Traceability management...18

Chapter 3 Basic Framework...19

3.1 Responsibility modeling for realization-development knowledge19

3.2 Essential modeling elements..21

3.2.1 ModelingElement..22

 v

3.2.2 Responsibility ...23

3.2.3 Task...23

3.2.4 Actor ...24

3.2.5 Document..24

3.3 Parameterized Realization unit (PRU)...24

3.3.1 PRU...26

3.3.2 Realization ..27

3.3.3 Collaboration...27

3.3.4 Constraints ..28

3.4 Management of modeling elements ...30

3.4.1 Domain..31

3.4.2 World ..31

3.4.3 RSDProject ...31

3.4.4 BusinessProcess ..31

3.5 Modeling Process...31

3.6 Graphical notations ..34

3.6.1 PRU...34

3.6.2 Actor, Document, and Task ..35

3.7 Stereotyping ...36

3.8 Summary ..38

Chapter 4 Reusing realization-development knowledge ...39

4.1 Approach overview..39

4.2 Constructing a program by PRUs ..41

4.3 Evolving a program by PRUs ..44

4.4 Automating the reusing of development knowledge ...48

4.4.1 Parameterized realization unit for knowledge reusing..49

4.4.2 Matching scheme of PRU selection..52

 vi

4.5 Why single-type paradigm modeling for abstraction and knowledge representation....52

4.6 Summary ..54

Chapter 5 Rule-based implementation...55

5.1 Features of RSDTools..55

5.2 Structure of RSDTools...56

5.3 Automatic Jess code generation ...58

5.3.1 Structure of modeling elements in Jess templates ..58

5.3.2 Example of Jess facts ..60

5.3.3 Jess rules ...65

5.4 Automation of program construction/evolution...67

5.4.1 RSD program construction ...68

5.4.2 RSD program evolution ..69

5.4.3 Business-processes evolution..70

5.4.4 Realization-development knowledge evolution..73

5.4.5 Technology evolution..76

5.4.6 Version control of RSD ..76

5.5 Summary ..78

Chapter 6 Case Study...79

6.1 Case study overview ..79

6.1.1 Business-MS ...79

6.1.2 Medical-SS..83

6.1.3 Shopping-WS..84

6.2 Evaluation ..85

6.3 Discussion ..92

6.4 Summary ..99

Chapter 7 Summary and Future Work ...100

7.1 To design the basic framework ..101

 vii

7.2 To implement the tool for supporting the automated construction/evolution of a

program..102

7.3 To develop a case study with three systems ..103

7.4 Contribution ...103

7.5 Future Work ...104

References..106

Publications..112

Appendix A: Use Cases ...113

A.1 Business-MS ..113

A.2 Medical-SS...114

A.3 Shopping-WS...114

Appendix B: Example output results of Jess...116

Appendix C: Examples of PRU Data ..120

C.1 PRUs for business-processes realization ...120

C.2 PRUs for user-requirements realization...121

C.3 PRUs for software-design realization ..123

 viii

List of Figures

Figure 1-1. Three fundamental theories for Evolution Automation ..7

Figure 1-2. Conceptual structure of the construction process..9

Figure 1-3. Creation order of the three systems...11

Figure 3-1. The cycle of four stages ..20

Figure 3-2. Metamodel of responsibility ...22

Figure 3-3. Metamodel of PRU ...25

Figure 3-4. Metamodel of domain. ..30

Figure 3-5. Metamodel of RSDProject ..30

Figure 3-6. Domain and application modeling ..33

Figure 3-7. An example of graphical notation of PRU..35

Figure 3-8. An example graphical notation for actor, document, and task..............................36

Figure 4-1. Software evolution helps by PRUs ...41

Figure 4-2 Creation of a RSD Program by using PRU. Intermediate abstractions are

instantiated by using PRUs. ...42

Figure 4-3. The details of the problem-solution process ...43

Figure 4-4. Evolution of a RSD program by using PRU ...45

Figure 4-5. Realization-development knowledge evolution..46

Figure 4-6. The evolution of two realizations shared one PRU...48

Figure 5-1. High-level structure of RSDTools ..57

Figure 5-2. deftemplate of Actor ...59

Figure 5-3. deftemplate of Document..59

Figure 5-4. deftemplate of BusinessProcoess...59

Figure 5-5. deftemplate of Responsibility ...60

Figure 5-6. deftemplate of PRU ..60

 ix

Figure 5-7. deftemplate of Collaboration..60

Figure 5-8. Example of Actor’s Jess facts. ...61

Figure 5-9. Example of Document’s Jess facts. ..62

Figure 5-10. Example of BusinessProcess’s Jess facts. ...62

Figure 5-11. Example of business-processes responsibility’s Jess facts.64

Figure 5-12. Example of business-processes PRU’s Jess facts. ..65

Figure 5-13. Example of Jess rules for selecting and instantiation abstractions.67

Figure 5-14. Jess rules for retract just-satisfied responsibility. ...67

Figure 5-15. The internal work of EAC when constructing the example RSD program.........68

Figure 5-16. The internal work of EAC when adding new business-processes responsibility.

..71

Figure 5-17. The internal work of EAC when removing business-processes responsibility...73

Figure 5-18. The internal work of EAC when evolving the realization-development

knowledge. ...75

Figure 5-19. Flatten structure of single evolution scenario. ..77

Figure 5-20. 2D structure of multiple development process...77

Figure 5-21. Flatten structure of mixed evolution scenarios ...78

Figure 6-1. Conceptual flow of Business-MS for Sales document processing........................80

Figure 6-2. Conceptual flow of Business-MS for procurement document processing............81

Figure 6-3. Conceptual flow of Business-MS for inventory document processing.................82

Figure 6-4. Conceptual flow of Medical-SS. ...84

Figure 6-5. Conceptual flow of Shopping-WS. ...85

Figure 6-6. Required and new PRUs of the JSP system of Business-MS.93

Figure 6-7. Reused ratios of the JSP system of Business-MS. ..94

Figure 6-8. Required and new PRUs of the JSP system of Medical-SS..................................95

Figure 6-9. Reused ratios of the JSP system of Medical-MS. ...96

Figure 6-10. Required and new PRUs of the JBoss Seam system of Shopping-WS...............97

 x

Figure 6-11. Reused ratios of the JBoss Seam system of Business-MS..................................98

Figure 6-12. Reused ratios of the JBoss Seam systems of both Business-MS and Medical-SS.

..98

 xi

List of Tables

Table 1-1. Implementation technology of the evaluating systems. ...12

Table 3-1. Modeling scenarios of meta-constructs creation ..33

Table 4-1. Example of business-processes responsibilities. ..49

Table 4-2. Example of user-requirements responsibilities ..49

Table 4-3. Example of a parameterized realization relationship ...50

Table 4-4. Matching scheme of PRUs ...52

Table 6-1. Document list of Business-MS. All of these three volumes are provided as

companion documents. ..82

Table 6-2. Numbers of required and new PRUs for each business processes for the JSP

system of Business-MS..87

Table 6-3. Numbers of required and new PRUs for each business processes for the JSP

system of Medical-SS ..87

Table 6-4. Numbers of required and new PRUs for each business processes for the JBoss

Seam system of Shopping-WS...89

Table 6-5. Numbers of required and new PRUs for each business processes for the JBoss

Seam system of Business-MS..90

Table 6-6. Numbers of required and new PRUs for each business processes for the JBoss

Seam system of Medical-SS ..91

 1

Chapter 1 Introduction

1.1 Problem

1.1.1 Background

A business software system is usually developed as a staged-process. Among other

activities, in each stage developers conceived abstractions to realize abstractions created in

a previous stage. For example, for developing a business system, developers firstly define

business tasks and business actors in a business process. From here, user requirements are

defined to realize these business activities, software design is created to realize user

requirements, and program is pondered to realize software design. Finally, a program that

realizes all these high-level abstractions is implemented. In this process, there are many

relationships designed by developers. We can see realization of abstractions between two

stages, collaboration of entities within a stage, or a constraint on the realization or

collaboration. As customers request more functions, a program is more bounded to

abstractions conceived in the process. It becomes harder to manage these relationships to

evolve software. The overall result is a quality-degraded program [1].

Previous research work focuses on different aspects of this problem. One concept that

is considered an effective approach for preventing a quality-degraded program is reusing.

This concept is closely related to modularization. In software engineering, we have various

modularization paradigms for creating implementation-based artifacts, such as functions in

function oriented programming, and objects in object-oriented programming (OOP). These

paradigms eliminate repetition when creating a program and help developers focus on a

small area of development without being bothered by other unrelated issues. The

construction repetition can be minimized because a function or a class (a class is the

definition of an object) can be reused many times to realize high-level abstractions. Another

similar concept is component-based reusing, such as COM on Windows [2] or EJB on Java

[3]. Different from the reusing paradigms introduced so far, which are at source-level and

 2

for single-platform reusing, the component-based reusing is binary-level, single/multi-

platform reusing.

Even the repetition of implementation can be reduced by the above approach, but one

kind of repetition that is rarely been considered is the abstraction realization between

different development stages. This kind of repletion can be observed in a development

project. It can be easily observed that some similar implementation modules are always

created for realizing some similar high-level abstractions. More specifically, certain

functions, objects, or a fragment of code are reused collectively and repeatedly for realizing

some similar high-level abstractions. Developers possibly only customize an existing

solution to realize high-level abstractions rather than creating a new solution every time.

For example, some similar business tasks are always realized by using similar object design,

and constructed in similar ways. However, current development methodologies or

programming paradigms do not provide formal support for reusing these customizable

solutions. Productivity provided by such a support is overlooked. The reusing mechanism

only focuses on the expected behavior provided by the programming modules, rather than

the high-level purpose of the modules construction. In the current ever-changing business

environment, design knowledge, and implementation technology, the management of these

relationships become more complex and more important.

In the following sections, the problem and the gap that motivates this research work

are discussed in details. The solution we propose in this research work is also introduced.

1.1.2 Problems and Gap

There are two problems when overlooking abstraction relationships. First, without

such information, developers are hard to answer such a simple question: “could you please

tell me which part in a program implements this requirement?” It is also hard to guarantee

that high-level and low-level abstraction is consistently constructed when evolution

happens. Second, we have to reinvent (or forget) a good design of abstraction relationships

to solve some similar problems.

 3

Although the abstraction relationship plays such an important role in software

development, the truth is that current technologies and practices usually focus on proposing

better approaches from a diagonal direction. That is, developers can easily add or modify a

method or an object to a program; however they lack an explicit support for relating this

newly added or modified part with other part in the program. Besides, they lack the support

of comprehending the relationships between the change of implementation-level artifacts

and high-level abstraction, such as requirements and software design.

A different strategy that fills this gap should be proposed. This approach should value

the importance of the relationships among abstractions. By this strategy, developers can

model the relationships conceived for different systems. By this model, developers can

focus on designing a small area of these relationships each time. Each small area of this

model is encapsulated as an independent unit. A solution for any given problem in the

development process can be created by combining these reusable units. The construction of

a program is simply the assembly of the units. This unit does not only provide as a reusable

knowledge for constructing a program, but also the information for comprehending the

design of a program.

Therefore, in this research work, a development approach that focuses on the

modularization of abstractions is proposed. In this dissertation, we describe how this idea

forms an approach for software evolution and how the implementation of this approach is

applied to the automation of program construction/evolution.

1.2 Overview of the solution

The problems and the gap motivate us to propose a new approach for software evolution.

This approach, as we mentioned before, values the importance of the abstraction

relationships. By this approach, a program is constructed and evolved by the application

and combination of reusable knowledge. Eventually, an implementation of this approach is

created for automating program construction/evolution.

 4

1.2.1 Basic idea of the solution

A program can be considered as a big solution to a big problem of the real world. A

relationship between high-level and low-level abstractions of this program can be

considered as a pair of one small problem and one small solution, which may belong to two

different development stages. We use the term, worlds, to represent these stages. It is

because a stage usually has abstractions that are specified to that stage which form as a

world. The problem of high-level abstractions in one world is solved, or realized, by the

solution of low-level abstractions in another world. Practically, there are patterns when

defining the realization between any two worlds. Developers reuse or customize exiting

relationship to create a solution to solve similar problems. This phenomenon is especially

true to the business domain. In business domain, we can observe

 Highly repetitive business processes. There are many similar business tasks in different

business processes.

 Structural system design. Developers usually use construct a system in a similar way,

for example, the application of three-layered architecture: presentation layer, business-

logic layer, and integration layer.

 Abundant object-design solution. There are many reusable solutions been considered

for the object-design problems.

Based on these observations, we make an assumption that in the business domain it is

possible to derive a pattern from a collection of similar abstraction relationships. This

pattern becomes an effective mechanism for creating other concrete relationship when

constructing/evolving a program. This proposing approach is constructed on this

assumption. By considering a program as a solution for the problem of business processes,

this program can be constructed/evolved by consulting these patterns. Moreover, when the

problems, solutions, and the realization relationships connecting them are encoded into a

computable form, a program can be automatically constructed or evolved.

 5

Each pattern, which is called a parameterized realization unit (PRU) in this approach,

is a reusable asset for constructing/evolving a program. PRUs are used to stored humans’

knowledge about abstraction realization. A PRU represents a piece of abstraction

realization-development knowledge between two worlds. It also contains other

relationships, i.e. collaboration and constraints, that are related to this realization. It works

as a template which can be instantiated for creating a concrete realization relationship,

where each instantiated instance provides a “small” solution to a “small” problem. From

this instance, developers know what abstractions (solution) should be created in one world,

when they encounter some abstractions (problem) in another world. The collection of these

instances relates all abstractions conceived in the development process of a program. The

evolution of a program becomes the addition, removal, or replacement of the instances of

these patterns. When developers learn more about the business domain, they can

construct/evolve a program more productive by only reusing the PRUs.

The problem and the solution pair effectively encode two types of information. The

first type is the condition of a solution. That is, when one solution that represents what

abstractions should be created when one problem is encountered. Therefore, the first type

of information tells developers when they should reuse a unit. The second type of

information tells developers what abstractions they should create when this unit is reused.

1.2.2 Fundamental theories of the solution

Before proposing this approach and implementing it as a tool for the evolution automation,

there are some fundamental issues that should be solved.

(1) First, the current multi-paradigm practice for software development may hamper

the creation of a PRU. Currently, different types of paradigms or concepts are used for

abstraction description. For example, while developers use a process oriented language to

describe a business process, they use different concepts, such as software objects for

realizing this business process. (2) Second, a pattern, i.e. a PRU helps human developers

record and reuse their development knowledge about abstraction realization for

constructing/evolving a program. This unit also helps machines for the same purpose with a

 6

step further beyond the manual way by humans. By encoding PRUs, and the problems and

solutions involving in the units, a machine knows how to construct/evolve a program

automatically. Therefore, (3) the third issue is to find an efficient platform for

implementing our idea. We need a platform that helps developers directly encode their

development knowledge in a computable form. This platform should also help us create the

actions for reusing the realization development knowledge.

The answers to the three issues are three fundamental theories, which are illustrated

in Figure 1-1. (1) First, to eliminate the gap between different worlds, we propose

responsibility modeling, a modeling approach based on single-type paradigm,

responsibilities. Responsibility in our approach is not only used for designing what work

should be done by software object [4][5], but also for modeling the tasks that should be

performed by entities of different worlds and different types of information that should be

processed by the entities. Most importantly, responsibilities provide a good abstraction for

describing the relationships among different entities. (2) Second, to simplify to manage the

abstraction relationships of a program, we propose capturing the connections among

abstraction as reusable and composable knowledge by the paradigm of responsibility. By

this theory, these connections become the first-class citizen for constructing and evolving a

program. (3) Third, to automate the reusing and composing of knowledge, we propose

using rule-based engine by encoding the realization-development knowledge. A tool

implementing on rule-based engine can automatically infer a program as the solution to the

problem of the given business processes.

 The combination of the three proposing theories is a development approach, called

Responsibility-Steering Development (RSD for short), will fill the gap we mentioned in

Section 1.1.2. The implementation of this approach is tool, called RSDTools, for

automating program construction/evolution.

 7

Singe-type paradigm
Responsibility

Parameterized
realization units

(PRUs)

Evolution Automation
Implementation

Rule-based engine

Bridge
abstraction

gap

Capture
realization-

development
knowledge

Manage
complexity

High-Level
Abstractions

A Program

Business Systems

realize in

Figure 1-1. Three fundamental theories for Evolution Automation

1.2.3 Scope of the solution

The scope of our solution can be discussed from two aspects:

First, its application domain is limited to business domain. The proposing approach

focuses on the modeling of the realization of humans’ responsibilities in a business by a

program. The automation support only applies to the evolution that happens between

humans’ responsibilities in a business and the program that automates the performing of

these responsibilities.

Second, by using RSD, the development of a business system can be dynamically

satisfied by using the collection of realization-development knowledge. Dynamically

satisfaction of software development by using realization-development knowledge

represents that developers can freely add new development knowledge to realize any

unrealized business responsibility without invalidating current realization.

This capability is limited to the following three evolution scenarios: business-

processes evolution, realization-development knowledge evolution, and technology

evolution.

 8

 Business-processes evolution: Assuming there is a program, which has been

constructed for realizing some business responsibilities by using a collection of

development knowledge, this program can be automatically evolved when the

given business responsibilities are added, modified, or removed.

 Realization-development knowledge evolution: Assuming there is a program,

which has been constructed for realizing some business responsibilities by

using a collection of development knowledge, this program can be

automatically evolved when the collection of development knowledge is added,

modified, or removed.

 Technology evolution: Assuming there is a program, which has been

constructed for realizing some business responsibilities by using a collection of

development knowledge; this program is automatically evolved when the

underlying implementation technology is changed.

1.2.4 Construction of the solution

We construct RSD in three steps (see Figure 1-2).

First, the basic framework of RSD is designed. This framework is used to help

developers to capture realization-development knowledge they acquire in the development

process. It includes a modeling language for capturing the realization-development

knowledge. It also includes the definition of four connected worlds, where each world

corresponds to one stage and provides a distinct context for creating abstractions. Finally, it

defines the process of using many small pieces of realization-development knowledge for

constructing/evolving a program.

Second, a tool for supporting the automated construction/evolution of a program is

developed. This tool is constructed based on the idea and the fundamental theories

mentioned before. Developers can use it to capture realization-development knowledge and

to model business processes by using the modeling language designed in the first step. It

 9

automates the construction/evolution of a program under the three scenarios described in

Section 1.2.3.

Finally, a case study which includes three business systems is developed. We use this

case study to evaluate the effectiveness of the proposing approach. More details about these

three systems are given in Section 1.2.5.

Design of Framework

Modeling
Language

Four worlds

Tool Support

Capturing
realization

development
knowledge

Automate
program

construction/
evolution

Case Study

Business
MS

Medical
SS

Shopping
WS

Figure 1-2. Conceptual structure of the construction process

1.2.5 Case Study of the solution

A case study for evaluating the effectiveness of the proposing approach is conducted. This

case study includes the development of three software systems, a business-process

management system (called Business-MS), a medical supporting system (called Medical-

 10

SS), and shopping-mall-on-web system (called Shopping-WS). The first system has been

commercially deployed. The second system is a research based on the paper [6]. The third

system will be commercially deployed in future. These three systems verify the claim that

made in Section 1.2.3. This claim is that in the three evolution scenarios, the development

of a business software system can be dynamically satisfied by the collection of realization-

development knowledge. Dynamically satisfaction of software development by using

realization-development knowledge represents that developers can freely add new

development knowledge to realize any unrealized business responsibility without

invalidating current realization under the three evolution scenarios mentioned above.

Therefore, this case study is intended to verify the business-process evolution and

realization-development knowledge. The technology evolution is verified by using

development technologies to create different variations from the same set of business-

process responsibilities.

To simulate different evolution scenarios, the same set of requirements of the three

systems are implemented by using different technologies. The first (Business-MS) and the

second (Medical-SS) systems have two variations. One is implemented by using JavaServer

Pages (JSP) [7] and JavaBeans [8][9]. JSP is for information visualization and JavaBeans is

for information processing logic. The other is implemented by using JBoss Seam [10][11],

which is a new programming model for creating Java enterprise system. However, the third

system (Shopping-WS) is only implemented by using JBoss Seam.

 11

Business-MS
JSP system

Medical-SS
JSP system

Shopping-WS
Seam system

Business-MS
Seam system

Medical-SS
Seam system

Business-process evolution
Realization-development-knowledge evolution

Technology evolution

Figure 1-3. Creation order of the three systems

The creation order of these three systems implies the evolution process, which is

shown in Figure 1-3. The creations of the first variation of Business-MS and Medical-SS

illustrate business-process evolution and realization-development-knowledge evolution.

The creations of Shopping-WS and the second variation of Business-MS and Medical-SS

illustrate technology evolution. We use the PRUs created for the third system to develop

the second variation of Business-MS and Medical-SS. Table 1-1 summaries the

implementation technologies used by each system.

 12

Table 1-1. Implementation technology of the evaluating systems.

Implementation Technology Evaluating
System JSP JBoss Seam

Business-MS

1st variation

2nd variation

Medical-SS

1st variation

2nd variation

Shopping-WS

1.3 Organization of the dissertation

This paper is organized as follows:

In Chapter 1, we describe research topic. We state the problem and gap that

motivates us to propose the approach. We describe the proposing approach for software

evolution by explaining its basic idea and fundamental theories. We also state the intended

evolution scenarios of the proposing approach. Finally, the construction and the evaluation

of this approach are summarized.

In Chapter 2, we review some previous work that is related to our research topic.

In Chapter 3, we describe the basic framework that helps developers to capture

realization-development knowledge they acquire in the development process. It includes a

modeling language for capturing realization-development knowledge. A supplementary set

of graphical notations is also provided for visualizing the captured development knowledge.

In Chapter 4, we describe how program construction/evolution is achieved by reusing

the realization-development knowledge. The reuse is centered about an idea called

parameterized realization unit (PRU), which is a customizable realization relationship.

 13

PRUs are used to store humans’ knowledge for reusing. We show that how a program

constructed by using PRUs is also capable of to be evolved by the same mechanism of

PRUs.

 In Chapter 5, we describe the implementation of the supporting tool. We show the

features the tool provides, the structure the tool is constructed, and the internal work it

performs for the automation of program construction/evolution. This tool does not only

provide the modeling of realization development-knowledge, but also has a rule-based

engine integrated for program construction/evolution automation. We show how rules are

implemented for this automation.

In Chapter 6, we describe the evaluation of the proposing approach. We show the

statistics of the evaluating results, which characterizes the novelty of this approach.

In Chapter 7, we summarize this dissertation and future work.

 14

Chapter 2 Related Work

Software evolution becomes an emerging area of research work. Lehman and Ramil [12]

discussed the definition of software evolution. From their definition, we can separate the

study of software evolution into the means and the observation. The former concerns how

and the later concerns when and what. There are fewer research work about the later [13, 14,

15, 16, 17, 18, 19, 20, 21]. The topics of the former are various. We have program

evolution by refactoring [22, 23, 24] for source code evolution. Another important area is

higher-level abstraction evolution, which concerns more on requirements or design aspect

of a program [25, 26, 27, 28]. There is also some research work about external environment

(e.g. business, work, etc.) evolution [29. 30].

Our research work limits its applicability the evolution of higher-level abstractions

and to the business domain. One important characteristic of the software systems of this

domain is that they concern the real-world business activities. As suggested by Lehman and

Fernandez-Ramil [31], the systems for the business domain, which were also called E-type

systems by their work, have an important characteristic that their behavior must satisfy the

operational context. That is, they must exhibit the behavior defined in terms of computer

abstraction that satisfies user requirements defined in terms of the real-world abstraction.

Synchronizing the two worlds reveals one of the challenges in the study of software

evolution [32].

This is such a complex issue that is approached by previous work from different

aspects. Since it is not possible to review all of the aspects in this dissertation, we limit the

review of previous work to those that are possible to solve the problem of dis-synchronized

between real-world and computer-world abstractions. The following research aspects are

discussed.

 15

2.1 Model-driven development

The first is an attempt that tries to use a set of universal rules for mapping between the real-

world and the computer world. This set of universal rules will transform any given real-

world problem to any computer-world solution. This approach is usually called model-

driven development (MDD), since the problem domain, the solution domain, and the

mapping rules are defined under a metamodel [33][34][35]. A metamodel is a model for

defining other models, which can be used to define the concepts for describing the facts of

the real-world (i.e. the problem domain), the computer-world (i.e. the solution domain), and

the mapping between these two worlds. Since both worlds are defined in terms of the same

modeling paradigm, the mapping rules can be easily created. One example that has been

discussed frequently is MDA (model-driven architecture) [36].

We use MDA to discuss the general approach adopted by MDD. The single most

important element of MDD is the transformation definition between models. In MDA, there

is a standardized metamodel called MOF for defining transformation. Consequently, the

source and the target of transformation is also defined in this meteamodel. The significance

of MDA transformation is that abstractions of the real-world problem should be separated

by the computer-world. That is, the modeling of the real-world problem has no concerns of

the solution of the problem. The solution is derived i by the transformation definition. It is a

very important characteristic because such the separation cannot be easily achieved by

other traditional approach. The metamodel MOF define the scope of modeling different

worlds. Under MDA’s terminology, the source of transformation is called PIM (platform-

independent model), and the target of transformation is called PSM (platform-specific

model). A PIM is always impendent from some form of abstractions. For example, a model

for describing business processes is independent from how a system is automated by a

software system. Therefore, a model that describes business processes is a PIM and the

model that describes the automation of business processes by a software system is a PSM.

The meaning of this approach to the synchronization of the two worlds under the context of

software evolution is apparently. Since there is a transformation definition that is

 16

universally capable to transform between any two models which belong to one pair of two

specific domains, the solution for a continually evolving problem domain can always be

inferred.

Since the implementation of model transformation, i.e. the actual logic that use the

transformation definition to create the target model from the source model, is not specified

by MDA, research work and industrial products based on MDA’s standards or concepts are

abundant, and usually has different focuses. At the same time, it is also hard to clearly

distinguish an approach that adheres to MDA speciation and those that are merely based on

the concept of model-driven development. As Sendall and Kozaczynski [37] summarize the

various mechanisms into there are three types, which are direct model manipulation,

intermediate representation, and transformation language support. Examples of the first

type are some commercial tools such as Rational XDE, which uses a set of VB API for

model manipulation. Action language [38] also falls into this category. Examples of the

second type include XML-based representations such as XMI [39].

Some work are reviewed below. Since this dissertation is not on the topic of MDA

but about software evolution in general, the work reviewed below are not limited to MDA-

compliant.

Arlow et. al. [40] describes a transformation approach called archetype patterns that

each archetype pattern specifies a mapping rule between the problem (analysis, design) and

the solution (design) domains. An archetype pattern may have various variations for fitting

in different context. They describe their approach can be defined in MDA’s standards and

automated by tools. Wegmann et. al. [41] proposes combining three elements, MDA,

enterprise architecture (EA), and the living system theory (LST) to integrate different

models in a hierarchical structure that includes business, organization, design, and

implementation concepts. Each layer in the hierarchical structure consists of models and

mappings are defined between layers. The significance of their work is incorporating the

three aspects, technology (MDA’s standards), business (EA), and information (LST’s

integration of layers) to provide a sound solution for model transformation.

 17

2.2 Abstraction decomposition

The second approach is an attempt that tries to decompose the real-world problem into

small pieces and derives the solution from the decomposed problems. Decomposition is

also called divide and conquers, which is a word originated from ancient Latin saying, for

referring a strategy by breaking big problem into small ones in order to manage one small

problem at a time. This is a very general approach that has long been used to solve

problems of many different domains, from mathematical proving [42] to computer

hardware design [43]. The meaning of this approach to software evolution is the ease of

evolution spotting. Evolution spotting is an action of finding related parts that should be

changed as well when one specific part is changing (or changed). Since the problem, the

solution, and the mapping between them are decomposed into smaller parts, it is easier to

look up all parts that should be changed. However, it is important to choose abstractions for

decomposition when the problem and the solution are at different worlds. This is the

characteristic of E-type systems. We need a good abstraction (or abstractions) that can

express the real-world and the computer world.

Two works that apply the idea of divide and conquer is reviewed here, one is Multi-

Dimensional Separation of Concerns (MDSC) [44] and the other is Feature-Oriented

Programming (FOP) [45]. These have two distinct choices of abstractions for

decomposition. In MDSC, Clarke, Harrison, Ossher, and Tarr recognize the necessary of

separating different types of concerns (features, business rules, objects etc) within programs.

After these concerns are identified, programs can be composed and evolved as concerns

change. They propose using different paradigms, where each paradigm is suitable for

describing a single type of concerns. Conversely, FOP uses the one-single abstraction,

called feature, for decomposing and composing different types of concerns. In FOP,

software evolution of a program family can be incrementally synthesized [45] and evolved

[46] from small features. Although they have different choices of abstraction representation,

generally they both recognize the importance of choosing abstractions that are more closed

to the problem domain. This is different from the functional decomposition [47]. This

 18

approach concerns the solution provided by the external and internal functions of a system

more than the other side (problem) of software development.

2.3 Traceability management

Finally, an approach that attempts to intuitively record every related part of any artifact is

described. This approach is usually called traceability, which is a technique of linking

different artifacts that produced during the process of software development, such as

business cases, requirements, design relational, detailed design, code, documentation, and

test cases. By recording how an item in an artifact is originated from other artifacts, it is

possible to navigate to the artifacts that need to change when an artifact is changed.

Ranging from using pen and paper to software support, it can provide an easy and powerful

approach for maintaining the consistency between design and implementation. But tool

support and automation of this technique is important for practical application.

Alves-Foss et. al. [48] describes a framework that represents design and

implementation artifacts in XML. Xlink, a technology that provides the ability of linking

between different XML documents, is used for providing traceability between XML

documents transformed from UML design model and Java code. They use XSLT to

transform the tracing Xlink to HTML document that provides hyperlinks between design

specification and code. In [49], Anderson et. al. introduce an automatic approach for

creating and maintaining traceability between different types of artifacts. Their work, based

on the concept of information integration, defines different steps for managing tracing

information and provides a conceptual framework consists of different entities for

maintaining different types of artifacts in an uniform format. Similar to the approach of

Alves-Foss et al, they also implement their framework by using XML, Xink, and XSLT.

Different from our approach, both of their work use common design and implementation

representation, such as UML, for defining traceability.

 19

Chapter 3 Basic Framework

This chapter describes the basic framework of RSD. The purpose of this framework is to

help developers to capture realization-development knowledge they acquire in the

development process. In this chapter, a modeling language for this purpose is described

from Sections 3.1 to 3.4. Section 3.5 describes the two distinct but also related modeling

scenarios when using this modeling language. One is domain modeling for creating PRUs

of one domain. The other is application modeling for reusing PRUs in one specific project.

Section 3.6 describes supplementary graphical nations for visualizing realization-

development knowledge.

3.1 Responsibility modeling for realization-development

knowledge

Responsibility modeling is the modeling approach we use to capture the realization

development knowledge. The core concept of this approach is responsibilities. We use this

concept for modeling abstractions of different worlds. A responsibility in this approach

concerns a task that should be performed by an entity on a type of information. From this

definition, we can also model relationships between entities, which are defined as the

connections between responsibilities. One important characteristic of responsibility is its

wide-range of description. It does not only describe responsibilities of human entities but

also artificial entities, such as business documents, or computable entities, such as software

objects. To maintain the uniformity of modeling, we use the same structure of

responsibility to model different work of different worlds. At the same time, we also

provide flexibility of modeling. We can use constraints to give more details to a

responsibility.

Responsibility modeling groups responsibilities into four worlds, where each world

corresponds to a stage in the business system development process. Figure 3-1 depicts this

 20

process as a cycle. The two outer boxes depict the main roles (system users and developers)

involving in the stages. Responsibilities of each world represent different types of

abstractions. In the world of business processes, responsibilities represent the collaborative

work that is performed by business actors and business data that is processed by business

actors. For example, a sales staff (a business actor) creates (work) a sales order (business

data) for recording a purchase of goods or services (business data), and queries (work) the

inventory of goods (business data) stocking for a customer (a business actor). In the world

of user requirements, responsibilities represent the work that should be performed by the

target system and the information that should be processed by the target software system.

For example, the target software system performs a series of calculation and data accessing

logic for automating the processing of a purchase that is inputted by a sales staff. In the

world of software design, responsibilities represent the collaborative work of programming

modules of the target system. For example, two software objects, one takes the

responsibility to manage the data model of a purchase and the other is to access database,

collaborate together for processing the electronic record of a purchase. In the world of

program design, responsibilities represent the programming constructs that are used to give

instructions to machines.

Business
processes

User
requirements

Software
design

Program
design

Users concepts

Developers concepts

Figure 3-1. The cycle of four stages

 21

To capture these different concepts in a well-formedness form, a metamodel is

created that defines meta-constructs for describing these concepts. This metamodel is

augmented by Object-Constraint Language (OCL) [50] that defines the detailed semantics

these meta-constructs. One thing should be noticed is that this metamodel is defined within

the framework, which implies it is specifically defined for the business domain. This

metamodel includes three parts. Section 3.2 is the first part that defines the essential

modeling elements. Section 3.3 is the second part that defines the modeling elements

related to parameterized realization units (PRU). Section 3.4 is the third part that defines

the modeling elements for managing other elements.

3.2 Essential modeling elements

-metaClass
-isDefault : Boolean

-work

0..*

-holder

0..1

-receiver0..1
-work 0..*

-isDefault : Boolean
-document

0..1

-work

0..*

-isDefault : Boolean

-task1
-work0..*

+isIdentical(in e : ModelingElement) : Boolean

-name : String
-world : World

+isHigher(in l : World) : Boolean
+isOneLevelAbove(in l : World) : Boolean
+isOneLevelBelow(in l : World) : Boolean

-name : BusinessDomainWorldName
-order : Integer+BusinessProcesses

+UserRequirements
+SoftwareDesign
+ProgramConstruction

<<enumeration>>

 22

Figure 3-2 shows the metamodel for the essential meta-constructs. The essential meta-

constructs, which include ModelingElement, Responsibility, Task, Actor, and

Document, are described separately in the following sections.

-metaClass
-isDefault : Boolean

-work

0..*

-holder

0..1

-receiver0..1
-work 0..*

-isDefault : Boolean
-document

0..1

-work

0..*

-isDefault : Boolean

-task1
-work0..*

+isIdentical(in e : ModelingElement) : Boolean

-name : String
-world : World

+isHigher(in l : World) : Boolean
+isOneLevelAbove(in l : World) : Boolean
+isOneLevelBelow(in l : World) : Boolean

-name : BusinessDomainWorldName
-order : Integer+BusinessProcesses

+UserRequirements
+SoftwareDesign
+ProgramConstruction

<<enumeration>>

Figure 3-2. Metamodel of responsibility

3.2.1 ModelingElement

ModelingElement models the basic construct that can be extended. They define two

attributes; name and world that can be inherit by other constructs, i.e. Actor, Concept,

Document, Responsibility, and Task. ModelingElement has also a method

isIdentical() to decide the identity of two instances of same type. This method

should be overridden by subclasses of ModelingElement to define their specific logic.

 23

[OCL-1] isIdentical()

The identity of two modeling elements is

context ModelingElement::isIdentical(e: ModelingElement) :
Boolean

body: self.world = e.world and
 self.name = e.name

3.2.2 Responsibility

Responsibility models a task that should be accomplished by an actor on some types

of information. They are identified by name, and belonged to a world. They execute

operations identify by task task. The operations perform on document. They are

performed by actor holder and the results are sent to actor receiver.

[OCL-2] inTheSameLayer

The world of holder, receiver, task, and target should identical to the world of

the responsibility. This can be expressed as an invariant of responsibility described by OCL.

More details of the concept of world were already given in Section 3.1.

context Responsibility

inv inTheSameWorld: world = holder.world and

 world = receiver.world and

 world = task.world and

 world = target.world

3.2.3 Task

Task models the operation of a responsibility performs. They are identified by name, and

do not specify the actual behavior it performs. RSD focus on the modeling of the

relationships of abstraction not the detailed specification of operations. Task has

 24

isDefault that is used to indicate an instance of Task set in a responsibility is a default

value or not. Actor and Document both have the same property. isDefault is used to

define the property values of PRU.

3.2.4 Actor

Actor models an entity of a world that assumes a responsibility work. It can also model

an entity that receives the performing results of a responsibility. Actors are identified by

name, and can contain a number of attributes (not included in the essential metamodel). An

actor could perform the work of a responsibility or receive the performing results of another

responsibility.

3.2.5 Document

Document models a type of information that is processed by a responsibility work. They

are identified by name, and can contain a number of attributes (not included in the essential

metamodel).

3.3 Parameterized Realization unit (PRU)

RSD is different from other development methodologies. It focuses on realization

relationship reusing, rather than implementation-based reusing. This approach is centered

on a concept, called parameterized realization units (PRU), which models realization-

development knowledge.

The main purpose of a PRU is to capture three types of relationships, which include

(1) the realization of responsibilities between two worlds, (2) the collaboration between

entities in the same world, (3) and the constraints that entities should follow. Each PRU

provides a template for creating related abstractions between two worlds (i.e. stages) in one

specific condition.

 The idea of PRU can be understood better by the following example. When

developers encounter a user requirement for displaying a list of open-orders, they create a

 25

design, which may include several objects for realizing this user requirement. Without

capturing this realization relationship between user requirements and software design in a

model, developers may encounter the troubles of: (1) the necessary to locate where they

have to make change in software design when this user requirement is evolved, (2) unaware

of the accidentally change to the user requirement when the objects are changed, and (3) the

worse is that they have to repeatedly re-create this relationship every time when they have

to realize the same user requirement. They may create several designs with minor variation

for every occurrence of this user requirement. The overall result is the inconstancy structure

of software systems which are hard to be maintained. PRUs is to remedy all these troubles.

To clarify the semantics of meta-constructs that are used to create PRUs, a

metamodel is provided in the basic framework. This is depicted in Figure 3-3. The

following sections detail each meta-construct in the metamodel.

Figure 3-3. Metamodel of PRU

 26

3.3.1 PRU

A PRU capture three types of relationships. To model the realization relationship between

two worlds, a PRU contains a realization, which links two groups of abstractions. The

first group is a responsibility source. The second group contains a collection of

collaborative responsibilities target. At the same time, the responsibilities in the second

group are connected together by a collaboration to model the collaboration between

entities of the same world. Since there are four worlds defined in responsibility modeling,

PRUs can be grouped into three categories, which describes the realization relationships

between

 Business processes and user requirements

 User requirements and software design

 Software design and program construction

Finally, each PRU has constraints, which models some conditions that should be

satisfied at (1) design and (2) implementation time.

For (1), it means that target should satisfy source when developers create a PRU.

It applies to the PRU in the business-process and the user-requirements worlds. The

semantics of constraints is propagated. Therefore, constraints in the earlier stage should be

satisfied in the stages hereafter. For example, a constraint that states a nun-functional

requirement of a business process should be realized by the user-requirements

responsibilities that realize this business process, by software-design responsibilities that

realize the user-requirements responsibilities, and by program-construction responsibilities

that realize the software-design responsibilities.

For (2), it means that the implementation of the responsibilities of target should

satisfy constraints. It only applies to the PRU in the software-design world because it

defines the lowest-level of responsibilities that should be assumed by a program. A

responsibility in the program-construction world has a PartialProgram attaching for

defining the concrete implementation of this responsibility.

 27

[OCL-3] .u ninn ninTwoWorlds

source and target should not belong to the same world.

context PRU

inv inTwoWorlds: source.world <> target.world

3.3.2 Realization

Realization models the links between two set of abstractions, source and target.

source is a responsibility at one world and target is collaborations, which

contains one or more Collaborations, which in turn contains one or more

Responsibilities. target is ordered, which means each collaboration of target

is executed one by one (sequentially).

[OCL-4] realizeBetweenTwoWorlds

source should be in a world below target.

context Realization

inv realizeBetweenTwoWorlds:

 source.world.isOneLevelBelow(target.world)

3.3.3 Collaboration

Collaboration models the work that should be accomplished by one or more

responsibilities, where each responsibility is a part of this work. Therefore, a collaboration

can be conceptually considered as a bigger responsibility with many smaller

responsibilities. Each collaboration has collaborationType indicating the execution

type of the containing responsibilities. Therefore, responsibilities within one

collaboration can be Parallel, Sequential, and NA (i.e. unknown). When a

collaboration relationship is parallel, its contained responsibilities finishing their work at

the same time. Conversely, when the type is sequential, its contained responsibilities finish

their work one by one (sequentially).

 28

[OCL-5] collaborateAtTheSameWorld

The contained responsibilities of a collaboration should be at the same world.

context Collaboration

inv collaborateAtTheSameWorld: work.world.name =
BusinessDomainWorldName.BusinessProcesses or
BusinessDomainWorldName.UserRequirements or
BusinessDomainWorldName.SoftwareDesign or
BusinessDomainWorldName.ProgramConstruction

3.3.4 Constraints

Constraints is extended from Responsibility. We consider Constraints is

also a responsibility that should assumed by entities. The difference between a constraint

and a normal responsibility is their application scope. A normal responsibility is a piece of

a work performing by an entity. A constraint should be followed by all entities that are

restricted by this constraint. For example, all business actors that involving in a business

process. Therefore, it is suitable to define wider-scope requirements, such as the

implementation technology of a target system or non-functional requirements of a target

system.

Constraints are identified by name. constraintsType specifies the types

of conditions, i.e. Invariable, Pre (i.e. pre-condition), and Post (i.e. post-condition).

condition is the contents of a constraint. condition can be assigned by using any

type of languages, e.g. OCL or natural language. RSD does not confine to any specific

constraint language.

 The types of a constraint are various. It can be a domain constraint which specifies

an additional condition in terms of domain-specific concepts. For example, a constraint

confines that a business-process responsibility should only list open orders. It can be a non-

functional constraint which specifies non-behavioral condition. For example, a constraint

confines that the query of all open orders should be completed within three seconds.

 29

A constraint of a business-processes PRU (i.e. a PRU belongs to the business-

processes world of which world is BusinessProcess) represents that the design of a

business-processes PRU, including the source responsibility and target

responsibilities of a collaboration, should satisfy this constraint. Therefore, the design of

user-requirements responsibilities of this PRU does not only realize the work of the

source responsibility but also confine to this constraint at the same time.

 A constraint of a user-requirements PRU (i.e. a PRU belongs to the user-

requirements world of which world is UserRequirements) represents that the design

of a user-requirements PRU, including the source responsibility and target

responsibilities of a collaboration, should satisfy this constraint. Therefore, the design of

software-design responsibilities of this PRU does not only realize the work of the source

responsibility but also confine to this constraint at the same time.

A constraint of a software-design PRU (i.e. a PRU belongs to the software-design

world of which world is SoftwareDesign) represents that the design of a software-

design PRU, including the source responsibility and target responsibilities of a

collaboration, should satisfy this constraint. Therefore, the design of program-construction

responsibilities of this PRU does not only realize the work of the source responsibility

but also confine to this constraint at the same time.

 One important thing should be noticed is that these properties to detail the design of

PRU, such as collaborationType of Collaboration, constraintsType of

Constraints, attributes of Document and Actor, are simply a mechanism for

developers to record their design. They are not significant to RSD. That is, RSD and its

implementation do not take the semantics of the values of these properties into

consideration when evolving a software system. They are only used to for selecting a PRU

for reusing. More details of PRU selection will be revealed lately in Section 4.4.2. But it

will be an interesting extension as our future work.

 30

3.4 Management of modeling elements

In order to manage PRUs created by developers, RSD provides the following meta-

constructs. Figure 3-4 and Figure 3-5are the metamodel diagram.

Domain

-domain1

-worlds1..*

+isHigher(in l : World) : Boolean
+isOneLevelAbove(in l : World) : Boolean
+isOneLevelBelow(in l : World) : Boolean

-name : BusinessDomainWorldName
-order : Integer

World
+BusinessProcesses
+UserRequirements
+SoftwareDesign
+ProgramConstruction

<<enumeration>>BusinessDomainWorldName

Actor Document PRU Task

1 *1 *1* 1*

Responsibility

1 *

Figure 3-4. Metamodel of domain.

RSDProject

+isIdentical(in e : ModelingElement) : Boolean

-name : String
-world : World

ModelingElement

BusinessProcess-project

1

-businessProcesses

*

Responsibility

-collaborationType : CollaborationType
Collaboration

-constraintType : ConstraintType
-condition : String

Constraint

-businessProcess

1
-constraints0..*

Figure 3-5. Metamodel of RSDProject

 31

3.4.1 Domain

Domain models a container that can hold World (Section 3.4.2). Basically, the number

and types of worlds are different for different domain. In this research work, there are four

worlds defined, i.e. BusunessProcess, UserRequirements, SoftwareDesign,

and ProgramConstruction, which are defined by BusinessDomainWorldName.

3.4.2 World

A World models a container that contains Actor, Document, Task,

Responsibility, and PRU conceived in the corresponding stage.

3.4.3 RSDProject

A RSDProject models a container that contains business processes

businessProcesses of one specific project. Different from Domain that contains

abstractions to one domain, RSDProject contains abstractions that are specific to one

single project.

3.4.4 BusinessProcess

A BusinessProcess models a container that contains one or many business-processes

responsibilities businessProcessResponsibilities. It also models the

collaboration of responsibilities. Therefore, it is extended from Collaboration. It is

restricted by constraints, consequently all other responsibilities that realize this

business process should honor this constraints.

3.5 Modeling Process

Sections 3.1 to 3.4 detailed the modeling language for capturing realization-development

knowledge. This section describes how to use this modeling language in software

development process.

 32

The creation of RSD meta-constructs can be discussed from two modeling scenarios.

The first is the modeling of abstractions that belong to one domain. The second is the

modeling of abstractions that belong to one single project. The distinction between these

two scenarios is clear. The first scenario is domain modeling. In domain modeling,

developers create PRUs that can be reused for every project that belonging to the domain.

The second scenario is application modeling. In application modeling, developers create

business-process responsibilities and reuse PRUs created in the domain modeling for the

creation/evolution of a program which realizes the business-process responsibilities. At the

same time, the experience gained in application modeling also provides feedback to evolve

PRUs. This distinction is similar to product-line development [51, 52]. It is depicted in

Figure 3-6. Table 3-1 summaries the occurrence of meta-construct creation in these two

scenarios. To read this table, the meta-construct that has marked the symbol means it is

created in that scenario, otherwise, the symbol . Basically, those constructs related to

PRU are created in the domain modeling. Otherwise, they are the application modeling.

 33

PRUs

application Feedback

Programs

Domain modeling

Application modeling

Figure 3-6. Domain and application modeling

Table 3-1. Modeling scenarios of meta-constructs creation

Meta-construct Domain Modeling Application Modeling

Responsibility

Task

Actor

Document

Realization

Collaboration

 34

Meta-construct Domain Modeling Application Modeling

Constraints

Domain

World

RSDProject

BusinessProcess

3.6 Graphical notations

3.6.1 PRU

Figure 3-7 shows an example of the graphical notation for modeling a PRU. A PRU is

diagramed as a rounded rectangle. It has four compartments. From top to bottom, they are

world and name of the PRU, constraints, source and target of responsibilities.

A responsibility is diagramed as a rectangle. Its properties are placed from top to bottom as

world, task, document, and holder and receiver. holder and receiver are

surround by the symbol [], and are connected by the symbol . There is no explicit visual

modeling of constraints, realization, and collaboration. Instead, they are

defined within different compartments.

It can be noticed that the responsibilities of Figure 3-7 (a) and Figure 3-7 (b) are

different. In (a), document of each responsibility of source and target has a value

specified. Conversely, in (b) document has ? set instead, which indicates this property is

parameterized. This parameterized property is the name Parameterized Realization Unit

comes from. A parameterized property is a placeholder to accept different values. Therefore,

this parameterized PRU can be instantiated with different documents, e.g. SalesOrder,

CustomerRecord, etc., to create various similar realization design. More details of a

 35

parameterized PRU are given in Section 4.4.1. Their real power will be revealed when the

automatic implementation is described in Section 5.4.

«BusinessProcesses»
ListSalesOrder

ListOpenOrder

«BusinessProcesses»
List

SalesOrder
[SalesStaff]→[Customer]

«UserRequirements»
List

SalesOrder
[TargetSystem]→[Customer]

«UserRequirements»
List？

«UserRequirements»
List
？

«SoftwareDesign»
ExecuteProcess

«SoftwareDesign»
Get
?

«SoftwareDesign»
QueryStorage

?

«SoftwareDesign»
Format

?

PRU

constraints

source

target

world
name

responsibility

world
task
target

Figure 3-7. An example of graphical notation of PRU

3.6.2 Actor, Document, and Task

Actor, Document, and Task are modeled by using class notation of UML diagram. We

use stereotype notation to distinguish the type of elements, i.e. «actor» for Actor,

«document» for Document, and «task» for Task. Different from the modeling of

PRU, the property world of these meta-constructs is not shown as stereotype but an

attribute.

(a)

(b)

 36

BusinessProcesse:world

«Actor»
SalesStaff

BusinessProcesse:world

«Document»
SalesOrder

BusinessProcesse:world

«Task»
List

BusinessProcesse:world

«Task»
Select

BusinessProcesse:world

«Task»
Hold

Figure 3-8. An example graphical notation for actor, document, and task

3.7 Stereotyping

Responsibility provides a concise concept for describing the task that should be

accomplished by an entity of different worlds. The collaboration between entities provides

another concise concept for describing how a “bigger” task is accomplished by multiple

entities. However, one obvious problem that will rise is that the design of responsibilities

and their collaboration should be created in a structured way. It is because that they also

represent the design of a system. A structured design of responsibilities and their

collaboration will bring a structured design of system.

 To avoid an ad hoc design, we introduce another concept called stereotyping. Each

responsibility of software design world will have a property stereotype, which can be one

 37

of six values. Stereotypes characterize each responsibility with a specific role.

Responsibilities with the same role exhibit same kind of work. The concept of stereotypes

is firstly introduced in Responsibility-Driven Design (RDD) for helping developers design

responsibilities and objects [5]. By stereotypes, it is easier for developers to create

responsibilities.

In our research, we extend the application scope from finding responsibilities to

constrain the communication path among object. That is, objects of certain stereotype will

only communicate with objects of certain stereotypes. Following the original proposal of

the six stereotypes, each responsibility of the software layer is characterized by one of the

six stereotypes. They are list as follows:

• Holding information - know something

• Structuring - manage a set of structured objects

• Providing service - do something upon request

• Coordinating - reacts to events

• Controlling - Decide the process upon some criteria

• Interfacing - Process external request

We should decompose responsibilities based on these stereotypes. We should define a

logical collaboration that require objects that commanding the work of other objects and

taking different actions for different conditions. There are objects that interpret messages

coming external to the target software system. The commanding objects decide the actions

to take according the messages interpreting by these objects. They will also ask objects that

hold information to pass information to other objects that providing services to process

 38

information. At the same time, there should be objects that help the commanding objects

managing those objects providing information and services. By these managing objects, the

commanding objects can effectively retrieve the information they need and find the services

they desire. When decomposing responsibilities from the system layer, developers follow

the communication paths described above to design the work of responsibilities and the

collaboration of responsibilities.

3.8 Summary

This chapter describes the basic framework of RSD. This framework helps developers to

capture realization-development knowledge they acquire in the development process. A

modeling language for capturing the realization-development knowledge is described. We

describe its metamodel, which clarifies the semantics of meta-constructs, and its graphical

notations, which is for visualization. We also states two different modeling scenarios,

domain modeling and application modeling. In the domain modeling, developers create

PRUs, the reusable modules of realization-development knowledge, for one specific

domain. In the application modeling, developers reuse PRUs for the construction/evolution

of a program.

 39

Chapter 4 Reusing realization-
development knowledge

This chapter describes the usage of PRUs, i.e. the modularization of realization-

development knowledge, in program construction/evolution. Section 4.1 firstly gives an

overview of this usage. In Section 4.2, we describe how a program can be constructed by

only using PRUs. In Section 4.3, we describe how a program constructed by this way is

easier to be evolved than by using other approaches. Section 4.4 differentiates the

difference between a parameterized PRU and one that is not. It also describes a set of rules

for prioritizing properties for PRU selection. After the introduction of how to

construct/evolve a program by using PRUs, we clarify the reason of using responsibility for

capturing realization-development knowledge.

4.1 Approach overview

We consider that for software evolution it is necessary to separate two type of activities,

evolution spotting and evolution action. Evolution spotting is the activities to locate the part

that should be changed in the development artifacts because of the changes of other parts.

Evolution action is the activities to remove the existing artifacts to be replaced of by the

new artifacts, and the integration of the new artifacts with the unchanged artifacts. To

evaluate the ease of software evolution approach, we can see how these two activities are

conducted.

Consider an example, where a sales staff has to add a new task in a sales-order-

creation business process. This new task is to provide the real-time amount of stocking

items to a customer, which was only collected every night. In order to realize this new task

in the target system, developers have to locate the user requirements that realize the old

business process, and then have to locate the objects that design to process the sales-order-

 40

creation in database, and the concrete implementation of these objects. After these

evolution spotting activities, developers have to take evolution actions to modify user

requirements, software objects design, and program that realize the high-level abstractions.

For a traditional multi-paradigm development methodology, developers have to switch their

minds between textual representation and graphical representation, and between system

behavior description, object structural and behavioral description, and various types of

programming constructs, such as flow-control or variable definition.

RSD aims at remedying this issue. The assumption here is that when a program is

constructed from the instantiation of PRUs then evolution spotting and evolution action is

simplified as shown in Figure 4-1. This figure shows that how evolution spotting and

evolution actions are simplified. For evolution spotting, instead of looking source code to

locate a part that should be evolved, we can consult PRUs to match a PRU that is the old

part instantiated from. Evolution spotting is simplified because the matched PRU has the

information to find the related abstractions. For evolution actions, instead of manipulate

source code to add a new part, we can consult PRUs to match a new PRU that can realize

the new change. Evolution action is simplified because the repletion in software

development is eliminated. In the figures, the old program is constructed by using the PRUs

1, 2, and 3. However, in the new program 1 and 3 are replaced by 4 and 5. If there is no

suitable PRUs for realizing a new change, developers can create new PRUs for this new

change which can also be reused for further development.

 41

Evolution actionEvolution spotting

3

1

2

PRUs

1

2

3

The old
program

constructed by
PRUs

business processes

user requirements

software design

program construction
5

4

2

PRUs

4

2

5

The new
program

constructed by
PRUs

business processes

user requirements

software design

program construction

The lines indicate where a
part of a program is

instantiated from

Figure 4-1. Software evolution helps by PRUs

Besides, since every PRU is described by a single-type paradigm, there is no

necessary for developers to switch between different types of representation. Therefore, the

following sections describe how a program that is constructed by PRUs is evolved by this

approach.

4.2 Constructing a program by PRUs

A PRU contains responsibilities and the relationships of responsibilities. The combination

of many instantiated PRUs represents all of the related responsibilities of a program that

should be assumed. Since PRUs are categorized in terms of stages of software development

process, to represent all of the responsibilities of one world (i.e. development stage in terms

of RSD’s terminology) that a program should assume, developers only have to find PRUs

of that world. From the collaboration relationship, developers know how entities of that

world collaborate together to assume their responsibilities. At the same time, from the

realization relationship, developers know how these responsibilities are realized in the next

stage. From this knowledge, we can find PRUs of each world and to instantiated all related

responsibilities of a program. Finally, from the responsibilities of the program-construction

world, there is a partial program attaching to a program-construction responsibility for

combining into a complete program with other partial programs.

 42

Project B

Business
processes

User
requirements

Software
design

Program
construction

application

feedback

Program

Program for
project B

Intermediate
Abstractions

Intermediate
Abstractions

Realization
development
knowledge

Business
processes of

project A

Business
processes of

project B

Project A

Figure 4-2 Creation of a RSD Program by using PRU. Intermediate abstractions are

instantiated by using PRUs.

Figure 4-2 conceptually depicts creation process of a program by using PRUs. The

central role of the program creation is played by the storage of the realization-development

knowledge. While different projects use this central storage for creating intermediate

abstractions and programs, each project also provides feedback to this central storage.

Business processes are the input of this process. When the business processes of different

projects that are represented as responsibilities are created, developers find intermediate

abstractions by using PRUs that satisfy the input business-processes responsibilities, which

in turn the user-requirements PRUs, and the software-design PRUs. Finally, from the

software-design PRUs, the program-construction responsibilities and their attaching partial

programs are known to create the two programs for the projects A and B. This central

storage is live. It evolves at the same time. New PRUs are added to this when developers

 43

acquire new realization-development knowledge. PRUs are removed from the central

storage when some PRUs do not satisfy current development requirements.

The finding of PRUs can also be considered as a problem-to-solution process. The

problem is an unrealized responsibility in one world and the solution is one or more

responsibilities in another world that can be used to realize the unrealized responsibility. In

this process, developers use this unrealized responsibility to find a PRU that knows how to

realize this responsibility. The derived solution then becomes the new problem that should

be solved. New PRUs for this world should then be found to realize these newly unrealized

responsibilities. It should be noticed that this is different from the concept of design

patterns [53] when a design pattern only describes the problem and the solution in the same

world.

Realization
development
knowledge

Business process
responsibility

Derived
realization

relationship

Integrated partial
programs

❹

❶

❷

❸

❺ ❻ ❼

Figure 4-3. The details of the problem-solution process

More details of this process are shown in Figure 4-3. First, when a business-process

responsibility is given (in the figure), developers find a PRU (two in the figure) where

 44

its source satisfies this responsibility. From target of , one or more user-requirements

responsibilities (two in this example) is created. For each of these two user-requirements

responsibilities, developers instantiate one PRU for its realization (and in the figure).

This creates software-design responsibilities (a total of three in this example) for realizing

the two user-requirements responsibilities. These software-design responsibilities represent

the collaborative work that should be done by some programming modules, such as

software objects, components, or HTML files. The details of the implementation will not be

revealed until PRUs are found to realize these three software design responsibilities.

Two unrealized software-design responsibilities created by the PRU of are then

realized by the instantiation of PRUs of and . One unrealized software-design

responsibility created by the PRU of is then realized by the instantiated PRU of .

These three PRUs that define the realization between software design and program

construction have three partial programs attaching. The integrated program is the

implementation for realizing the given business process and the intermediate abstractions

found from these PRUs.

4.3 Evolving a program by PRUs

As shown in this example Figure 4-3, the central storage eliminates the repetition when

realizing abstractions. When a program is constructed by this approach, we know (1) all

intermediate abstractions between business processes and a concrete program, (2) all the

connections between these abstractions and the program. (3) The knowledge that are used

for deriving realization relationship. They are useful for evolving software within the scope

of the three evolution scenarios, i.e. business-processes evolution, realization-development-

knowledge evolution, and technology evolution. Figure 4-4 and Figure 4-5 depicts this.

 45

Realization
development
knowledge

❶

❷

❸

Figure 4-4. Evolution of a RSD program by using PRU

 Business-process evolution. When a new business-processes responsibility is added

(see in Figure 4-4), the same process described in Section 4.2 is applied again. The

newly derived partial programs (in the figure) are integrated with the existing

program that realizes a previously defined business-processes responsibility (in the

figure). This evolution scenario applies to the case where a new task is added to a

previously realized business process.

 When a business-processes responsibility should be removed, the realization-

development knowledge of PRUs is the source for locating the partial programs that

realize this responsibility. By going through the same process described in Section 4.2,

the partial programs can be found and removed.

 46

 When the realization-development knowledge evolves, it is modeled as the removal of

an existing PRU and the addition of a new PRU. The removal of a PRU represents that

any RSD program generated before should be re-created in accordance to the newest

development knowledge. The simplest approach is to use the same set of business

processes responsibilities, apply the same process described in Section4.2, but use the

new set of PRUs. Any RSD program can completely re-create. However, this is a very

inefficient approach.

Realization
development
knowledge

❶

❸

❷

❹

❺

❻

Figure 4-5. Realization-development knowledge evolution

Figure 4-5 depicts another algorithm. At start, the PRU that should be removed ()

and the original set of business process responsibilities () are given. The same process

described in Section 4.2 is applied again. However, instead of finding those partial

 47

programs for realization, the purpose of this process is to find the partial programs that

were created from the old PRU (). When the realization relationship that is instantiated

from the to-be-removed PRU is found (), other realization relationships (and) that

were instantiated after this PRU are also located. Eventually, we find those partial programs

(and) that were created for realizing the unchanged business-process responsibilities

and the original development knowledge. These partial programs should be removed from

the complete program because they are created based on the assumption of the to-be-

removed PRU. This evolution spotting activity removes the partial programs of (and)

from the complete program.

Now we have an unrealized user-requirements responsibility (in Figure 4-5) to be

realized. Developers have to use the same process described in Section 4.2 to find PRUs to

realize this responsibility. If there is no PRU found in this process, they have to conceive

new PRUs for realization.

One dilemma that we may face is the sharing of one PRU among several instances

instantiated from that PRU. When a PRU should be removed, all instances that instantiated

from this PRU should be removed as well. This situation may trigger a large-scale of

program evolution because all instances of other PRUs for realizing this PRU should be

removed as well. By using the modularization of development knowledge, we can solve

such dilemma easily than other approaches. This can be understood better by Figure 4-6. It

shows that the realizations for two business responsibilities both applied one shared PRU

(in the left and right). They can be easily evolved by the approach proposing in this

research work.

 48

Realization
development
knowledge

❶ ❶

Figure 4-6. The evolution of two realizations shared one PRU.

4.4 Automating the reusing of development knowledge

The construction and evolution by using RPUs described so far can be automated. This

automation is based on parameterized PRUs. A parameterized PRU has one or more

properties set to no value when it is created, and are instantiated when a PRU is reused. It is

used to create customizable realization relationship. We differentiate a parameterized PRU

and one that is not in Section 4.4.1. The properties of a parameterized PRU represent

different semantics. Therefore, the selection of a parameterized PRU for reusing should

consider the semantics of properties. This consideration is called matching scheme, which

is a set of rules that define which property should be matched first than others. This set of

rules is described in Section 4.4.2.

 49

4.4.1 Parameterized realization unit for knowledge reusing

Section 3.6.1 briefly introduced what a parameterized PRU is. This section gives more

details of this matter. A PRU provides the customization of realization relationship creation.

That is, from one single PRU, developers can create various similar concrete realization

relationships by filling parameterized properties of responsibilities with different values.

Consider the following business process,

 A shop owner selects desired features

 A customer selects purchasing items.

 A sales staff selects shipping items from stock

We represent each of these as a responsibility in Table 4-1.

Table 4-1. Example of business-processes responsibilities.

name task holder documents world

1a Select ShopOwner Features BusinessProcesses

2a Select Customer Items BusinessProcesses

3a Select SalesStaff Items BusinessProcesses

In order to realize these business-processes responsibilities, the following user requirements

are defined.

 The target system has to list features for selection

 The target system has to list items for selection

 The target system has to list items for selection

Their responsibility representation is shown in Table 4-2.

Table 4-2. Example of user-requirements responsibilities

name task holder documents world

1b ListForSelection TargetSystem Features UserRequirements

 50

name task holder documents world

2b ListForSelection TargetSystem Items UserRequirements

3b ListForSelection TargetSystem Items UserRequirements

The pairs of 1a and 1b, 2a and 2b, and 3a and 3b form three PRUs. 1a, 2a, and 3a

are source. 1b, 2b, and 3b are target. Therefore, when there is an unrealized

responsibility na, developers should create the responsibility nb. However, from these

three units we can only create three concrete realization relationships. Actually, these three

PRUs share a common structure. That is, they share one generic user-requirement

responsibility of listing one type of information for selection. To model this generic

responsibility, a very convenient approach is to parameterize the properties of a user-

requirements responsibility by leaving some of its properties to be empty. These empty

properties can be instantiated with different values for crating different responsibilities

under different situations.

Both source and target of a PRU can be parameterized. The parameterized

properties of source create an application condition that only those non-parameterized

properties should be satisfied. The parameterized properties of target are placeholders to

be filled with values for creating concrete responsibilities. Therefore, for this example we

can create a new parameterized realization unit that can create abstractions of 1b, 2b, and

3b. This PRU is listed in Table 4-3.

Table 4-3. Example of a parameterized realization relationship

task holder world

source

Select BusinessProcesses

target

ListForSelection TargetSystem UserRequirements

 51

This PRU satisfies the given business process responsibilities 1a, 2a, and 3a,

because their values in the properties task and world are identical to the same properties

of the responsibility source of this PRU. The non-parameterized properties task, holder,

and world of the parameterized responsibility in target are the default values when

creating the user-requirements responsibility. The parameterized property documents of

the responsibility target of this PRU are assigned the values from 1a, 2a, and 3a, that is,

Features, Items, and Items respectively. The resulting user-requirements responsibilities

are identical to 1b, 2b, and 3b in Table 4-2. This PUR is actually reused three times to

cerate three realization relationships.

We call a PRU a base when its source responsibility has only task and world

unparameterized, and has no constraint attached. It is because that it provides a most

general situation for creating abstractions. Other PRUs that have identical values in task

and world but different unparameterized properties and constraints defined are variations.

Variations provide the chance for developers to fine tune the creation of a concrete

realization relationship. For example, we can have one base PRU, which has task

(=Select) and world (= BusinessProcesses), and a variation PRU, which has task

(=Select), world (= BusinessProcesses), and documents (Items). Therefore, the

creation of the realization relationship for selecting Items is different from the selection of

other type of information.

One category of PRUs, i.e. the collection of PRUs that define the realization between

the same pair of two different worlds, can be considered as the collection of many logical

sub-categories. For every PRU in a logical sub-category, its task and world are assigned

the same pair of values. For example, we may have a base PRU of which task is

LogError and world is UserRequirements. There is also a variation of which task is

LogError, world is UserRequirements, and documents is InvalidAuthenticaiton.

These two PRUs, the base and the variation, form a logical sub-category for realizing any

responsibility of which properties has at least task and target set to LogError and

UserRequirements.

 52

4.4.2 Matching scheme of PRU selection

A difficult situation created by the base and multiple variations of PRUs is that which PRU

should be used from a sub-category. We summarize the matching scheme of PRU selection

in Table 4-4. The left column is the name of property and the right column is the matching

priority. A property with higher priority value is matched first.

Table 4-4. Matching scheme of PRUs

Property Priority

world 1

task 1

documents 2

holder 3

receiver 4

constraints *

In the selection process of PRU, the property with higher priority value is matched

first. Therefore, for an unrealized responsibility, developers firstly pickup a PRU, and

starting compare the values of world between the responsibility and the PRU, and the

values of task between the responsibility and the PRU. If the values are identical, then

developers go to the next property with the highest priority value. When they encounter a

different value, they stop the matching process. They then check if the constraints of PRUs

are satisfied. If it is, then this PRU is selected for realization. If it is not, then they pick

another PRU and restart the process.

4.5 Why single-type paradigm modeling for abstraction and

knowledge representation

After the description of RSD’s basic approach for program construction/evolution, it is

easier to explain why RSD is designed in this way. We clarify the reasons of choosing the

 53

single-type paradigm for modeling and responsibilities for abstraction and knowledge

representation in this section.

When considering the different choices of modeling approach, such as single-type

modeling paradigm vs. multi-type modeling paradigm or general-purpose vs. domain-

specific modeling approaches, we have two goals in mind.

 We want to narrow the gap between different contexts.

 We want to raise the abstraction level of program construction.

The first goal leads to the choice of single-type modeling paradigm. The second goal leads

to the choice of domain-specific modeling approach. A single-type modeling paradigm

simplifies the work of developers when creating connections between abstractions in

different worlds. For example, when consider the realization of system behavior description

by software objects, since the core concepts of these world, i.e., behavior of the target

system and the behavior of objects, are different, developers have to switch their mind

between two contexts and may have trouble to come up a solution. The inherent distance

between these two worlds should be bridged by a single-type modeling paradigm, instead

of the multi-type modeling paradigm which may aggravate the problem.

The current trend of implementation technologies is the variety of mechanisms. For

example, in J2EE 1.4, we can use XML configuration files to designate the development or

run-time properties of a system. However, in the newest version of 1.5, annotation is the

preferred approach to accomplish the same task. This example also illustrates that not

everything in code can be simply interpreted as objects or functions. It is better to provide a

domain-specific language that provides another level of abstraction to isolate the evolution

of programming models and to absorb the difference between different versions or different

types of implementation technologies. The raising of abstraction level should also provide

the necessary mechanism to link between high-level abstraction and their realization in a

program.

However, these two goals are somehow contradict. It is because we need to find a

single representation that does not only describe different upstream contexts in the

 54

development process but also different implementation mechanisms used in a program. The

decision we made is responsibility, a modeling paradigm we consider that does not only a

well-recognized tool for designing objects [4, 5] or architecture but also a common concept

existing in our real world. This characteristic is very useful when developers create higher-

level abstractions in business processes and user requirements. We can model the work that

should be done by business actors and the collaboration between business actors as

responsibilities. We can also model the work of the target system that automates the work

of business actors as responsibilities. It is even more useful when creating the design and

implementation of a program. For example, representing the interaction between an EJB

component and a XML configuration file as the responsibilities of two entities is more

intuitive and integrated than as an association between an object and a file.

4.6 Summary

This chapter describes “what” have to do for constructing/evolving a program by using

RSD. We firstly gave an overview of why a program created by using traditional

development approach is inherently hard to be evolved. We then show that developers can

create a program by deriving the intermediate abstractions from PRUs of different worlds.

This can also be considered as a problem-to-solution process. The problem is an unrealized

responsibility in one world and the solution is one or more responsibilities in another world

that can be used to realize the unrealized responsibilities. After a program is constructed by

using this approach, it contains the necessary information for evolution. We then describe

how this information is used for three evolution scenarios: (1) business-process evolution,

(2) knowledge evolution, and (3) technology evolution. We also detailed what a

parameterized PRU is. A parameterized PRU has one or more properties set to no value

when it is created, and is instantiated when it is used. It is used to create customizable

realization relationship. Its power is used in automatic program construction/evolution and

will be revealed in Chapter 5. Finally, we clarified the reasons of why RSD is designed in

this way.

 55

Chapter 5 Rule-based implementation

This chapter describes a rule-based implementation of RSD, which is called RSDTools. We

describe the features it provides, the structure it is constructed, and the internal work of Jess

[53], a Java-based rule-based engine, for automating the three evolution scenarios. Finally,

we explain shortly of a possible implementation of version control in RSDTools.

Based on the basic framework, which contains metamodel and graphical notations,

and the idea of reusing PRUs in software construction/evolution, a tool, called RSDTools,

for automating software construction/evolution is implemented. By this tool, the

complexity of three types of evolution scenarios can be managed by its automated

capability.

Based on the third theory, RSDTools is implemented by integrating a rule engine for

reasoning a program that realizes the given business processes. In this rule-based engine,

two types of knowledge are encoded. The first type is PURs, which represent the

realization-development knowledge. The second type is the matching scheme for selecting

and instantiating a PRU. By the combination of these two, this tool achieves the research

goal of realization-evolution automation.

5.1 Features of RSDTools

RSDToools provides the following features:

 Graphical modeling for both the domain modeling and the application modeling.

In the domain modeling, developers design PRUs for reusing. In the application

modeling, developers create business-processes responsibilities and reusing PRUs

created in the domain modeling for constructing and evolving a program.

 Automatic Jess facts generation. Jess facts encode realization-development

knowledge. This feature includes the generation of PRUs and unrealized business-

process responsibilities to Jess facts.

 56

 Jess rules for PRUs selection and instantiation implementation. Jess rules encode

the matching scheme of PURs selection and instantiation. These Jess rules are pre-

loaded onto Jess for automatic software evolution. These rules infer partial

programs that will be used to realize business-process responsibilities created in

the application modeling.

5.2 Structure of RSDTools

Figure 5-1 shows the overall structure of RSDTools. RSDTools is constituted of three major

components. Graphical modeling component (GMC) provides a graphical environment for

modeling realization-development knowledge and unrealized business processes. More

specifically, developers use the concept of responsibility for creating the models of (1) the

collection of the three categories of PURs, which includes those between business

processes and user requirements, those between user requirements and software design, and

those between software design and program design, and (2) the collection of business-

processes responsibilities that should be realized. These two models follow the semantics

described in Sections 3.2 to 3.4. We call the first model PRU model and the second business

process model (BP model for short).

 57

PRU
Model

BP
Model

Graphical modeling
component

Jess code
transformation

component

Evolution
automation
component

Jess
facts

RSD
Program

RSDTools

Developers

Figure 5-1. High-level structure of RSDTools

Jess code transformation component (JTC) provides the automatic transformation

from the PRU model and BP model to Jess facts. Evolution automation component (EAC)

is the core of this tool. It is the integration of Jess. This component contains Jess rules for

selecting and instantiating PRUs. The input of this component is the Jess facts of PRU

model and BP model, which are generated by JTC, and the output is the partial programs

which is reasoning by the Jess rules for realizing the BP model.

RSDTools is based on several Eclipse technologies. We use Eclipse Modeling

Framework (EMF) [55, 56], which is a modeling framework and code generation facilitate,

to generate basic modeling implementation. Another technology is Graphical Editor

Framework (GEF) [57]. We combine GEF and its supporting graphical drawing library,

draw2D, with EMF for implementing Graphical modeling component (GMC). EMF

 58

provides the functionality of creating the concept model and the responsibility models. GEF

provides a graphical front-end for visually modeling. However, this combination is far from

productivity. One major flaw of this combination is that synchronization between the

metamodel created in EMF and the graphical representation created in GEF should be

managed manually. Once there is any change in the metamodel, it is hard to make

necessary changes in GEF. Finally, we adopt Graphical Modeling Framework (GMF) [58],

which is another Eclipse technology. By GMF, graphical representation can be

automatically created from the metamodel created in EMF.

5.3 Automatic Jess code generation

JTC transforms the PRU model and the BP model to Jess facts. Jess rules are preloaded

onto Jess by our implementation. We describe the generated Jess facts of the PRU model

and BP model in Section 5.3.1. We describe the preloaded Jess rules for

construction/evolution in Section 5.3.2. We show the output results from Jess of this

example in Appendix B.

5.3.1 Structure of modeling elements in Jess templates

Each Jess template defines a type of concepts. It is similar to classes in OOP. Jess facts are

created from these templates. Therefore, Jess facts are similar to instances in OOP. Jess

template should be defined by using deftemplate, slot, and multislot as the

keywords. deftemplate starts a definition of a type of concepts. slot defines a single

value property of the concept. multislot defines a multi-value property of the concept.

Figures 5-2 to 5-7 list Jess templates for Actor, Document, BusinessProcess,

Responsibility, PRU, and Collaboration. Realization does not explicit

transform as a concept (i.e. a Jess template), but is embedded as properties (i.e. slot) of

Responsibility’s Jess template.

(deftemplate actor

 (slot id)

 59

 (slot project)

 (slot name)

 (slot collection-name)

 (multislot propertyTypes)

 (multislot propertyNames)

)

Figure 5-2. deftemplate of Actor

(deftemplate document

 (slot id)

 (slot project)

 (slot name)

 (slot collection-name)

 (multislot propertyTypes)

 (multislot propertyNames)

)

Figure 5-3. deftemplate of Document

(deftemplate process

 (slot id)

 (slot project)

 (slot name)

)

Figure 5-4. deftemplate of BusinessProcoess

(deftemplate responsibility

 (slot id)

 (slot project)

 (slot name)

 (slot from-pru)

 (slot world)

 (slot process)

 (slot task)

 60

 (slot holder)

 (slot receiver)

 (slot document)

 ;; this slot keeps the ids of realized target

 (slot target-counter))

Figure 5-5. deftemplate of Responsibility

(deftemplate pru

 (slot id)

 (slot world)

 (slot name)

 (slot source)

 (slot target-count)

)

Figure 5-6. deftemplate of PRU

(deftemplate collaboration

 (slot pru)

 (slot sequence)

 (slot target)

)

Figure 5-7. deftemplate of Collaboration

5.3.2 Example of Jess facts

From Figures 5-8 to 5-12 , we list the examples of the generated Jess facts in the Business-

MS system. These examples are generated for the scenario. Figure 5-8 lists Jess facts for

two actors, SalesPerson and Customer. We generate one unique id number for each

Actor in case of any possible duplicated name between two actors. Actors are general to

one project. Therefore they can be shared between business processes of that project. In the

example, these two actors belong to the project Business-MS.

(deffacts BPMS-Actors

 61

 "BPMS Aactors"

 (actor (id 0)

 (project Business-MS)

 (name SalesPerson)

 (collection-name SalesPeople)

 (propertyTypes Department)

 (propertyNames String))

 (actor (id 1)

 (project Business-MS)

 (name Customer)

 (collection-name SalesPeople)

 (propertyTypes Credit)

 (propertyNames Money))

)

Figure 5-8. Example of Actor’s Jess facts.

Figure 5-9 lists Jess facts for four documents, SalesOrder, ItemCatalog,

Item, and ShoppingCart. We also generate one unique id number for each Document

in case of any possible duplicated name between two documents. Documents are general to

one project. Therefore they can also be shared between business processes of that project.

In the example, these four actors belong to the project Business-MS.

(deffacts BPMS-Document

 "BPMS Documents"

 (document (id 0)

 (project Business-MS)

 (name SalesOrder)

 (collection-name SalesOrders)

)

 (document (id 1)

 (project Business-MS)

 (name ItemCatalog)

 62

 (collection-name SalesOrders)

)

 (document (id 2)

 (project Business-MS)

 (name Item)

 (collection-name Items)

)

 (document (id 3)

 (project Business-MS)

 (name ShoppingCart)

 (collection-name Items)

)

)

Figure 5-9. Example of Document’s Jess facts.

Figure 5-10 lists facts for the business process CreateSalesOrder we intend to

realize. We also generate one unique id number for one business process.

(deffacts BPMS-process

 "BPMS Business Processes"

 (process (id 0)

 (project Business-MS)

 (name CreateSalesOrder))

)

Figure 5-10. Example of BusinessProcess’s Jess facts.

Figure 5-11 lists Jess facts for business-processes responsibilities. They are the

unrealized responsibilities that can be solved by our RSDTools implementation. Similar to

Actor and Document, Responsibility is also given one unique id number.

(deffacts BPMS-CreateSalesOrder-Responsibilities

 "BPMS CreateSalesOrder Responsibilities"

 (responsibility (id 0)

 63

 (project BPMS)

 (process 0)

 (task List)

 (holder SalesPerson)

 (document ItemCatalog)

 (target-counter -1))

 (responsibility (id 1)

 (project BPMS)

 (process 0)

 (task Select)

 (holder Customer)

 (document Item)

 (target-counter -1))

 (responsibility (id 2)

 (project BPMS)

 (process 0)

 (task Hold)

 (holder SalesPerson)

 (document ShoppingCart)

 (target-counter -1))

 (responsibility (id 3)

 (project BPMS)

 (process 0)

 (task Checkout)

 (holder Customer)

 (document ShoppingCart)

 (target-counter -1))

 (responsibility (id 4)

 (project BPMS)

 (process 0)

 (task Create)

 64

 (holder SalesPerson)

 (document SalesOrder)

 (target-counter -1))

)

Figure 5-11. Example of business-processes responsibility’s Jess facts.

Figure 5-12 lists Jess facts for PRUs. There are two business-processes PRUs. It can

be observed that there are two parts in these Jess facts. One defines the properties of PRUs.

The other defines parameterized responsibilities source and target.

(deffacts Business-Process-World-PRUs

 "PRUs of the business process world"

 (pru (id 0)

 (world BusinessProceses)

 (name pru-0)

 (source 0)

 (target-count 1)

)

 (collaboration

 (pru 0)

 (sequence 1)

 (target 1)

)

)

(deffacts Business-Processes-World-Responsibilities

 "source responsibilities and target responsibilities"

 (responsibility

 (id 0)

 (world BusinessProcesses)

 (task List)

)

 65

 (responsibility

 (id 1)

 (world UserRequirements)

 (task List)

)

)

Figure 5-12. Example of business-processes PRU’s Jess facts.

5.3.3 Jess rules

We implement the selection and instantiation of PRUs for realizing abstractions of different

stages as Jess rules. Jess rules are defined by the Jess defrule construct. The symbol =>

separates the two parts of rules. Before this symbol is the IF-part and after this symbol is

the THEN-part. The IF-part contains patterns that match Jess facts. Operations of the

THEN-part are invoked when the patterns in the IF-part match some Jess facts. The

operations usually made modification to Jess facts or call external Java programs.

We list one example of this implementation in Figure 5-13. This example select

PRU between base and the variation with one target defined for realizing any unrealized

responsibility. This rule applies to all three worlds, business-processes, user requirements,

and software-design. In the IF-part, i.e. before the symbol => this rule tries to select one

PRU and one responsibility in target of that PRU. This responsibility in target can realize

the unrealized responsibility. The THEN-part, i.e. after the symbol =>, instantiates (i.e.

assert) this responsibility in target. This rule instantiates one responsibility at a time. When

all responsibilities for realizing a unrealized responsibility are instantiated, another rule,

which is shown in Figure 5-14 will remove this just-satisfied responsibility.

(defrule realize-unrealized-responsibility-use-base

 "This rule realize an unrealize business-processes
responsibilities"

 ;; match a constraint

 ;; ?c <- (constraint (id ?cnt-id) (lowLevel-counter nil))

 66

 ;; an unrealized responsibility

 ?un-r <- (responsibility (id ?un-r-id)(project ?un-p-
id)(task ?un-r-task)

 (document ?un-r-target)(target-counter ?un-r-target-
counter&:(neq ?un-r-target-counter 0)))

 (or (and

 ;; match a PRU

 ?pru <- (pru (id ?pru-id)(source ?r-id-s)(target-
count ?r-target-count))

 ;; who's source and the concept both have same
task and same target

 (responsibility (id ?r-id-s)(world ?r-world-s)
(task ?un-r-task)

 (document ?r-target-s&:(eq ?r-target-s ?un-
r-target))))

 ;; or

 (and

 ;; match a PRU

 ?pru <- (pru (id ?pru-id)(source ?r-id-s)(target-
count ?r-target-count))

 ;; who's source has no target set, i.e. base PRU.

 (responsibility (id ?r-id-s)(world ?r-world-s)
(task ?un-r-task)

 (document ?r-target-s&:(eq ?r-target-s nil))))

)

 (collaboration (pru ?pru-id)(target ?r-id-t))

 ;; whose target is in the next stage

 (responsibility (id ?r-id-t)(world ?r-world-t&:(eq ?r-
world-t (next-world ?r-world-s)))

 (task ?r-task-t) (document ?r-target-t))

 ?done-target <- (done-target (source ?un-r-id) (done
$?done&:(not (member$?r-id-t ?done))))

 =>

 ;; get a new unique id for a respoonsibility

 67

 (bind ?ed-r-id (get-responsibility-id))

 ;; add a new unrealized responsibility.

 (assert (responsibility (id ?ed-r-id)(from-pru ?pru-
id)(world ?r-world-t) (task ?r-task-t) (document ?r-target-
t)))

 ; decreae one of counter

 (modify ?un-r (target-counter (- ?un-r-target-counter 1)))

 (modify ?done-target (done (insert$?done 1 ?r-id-t))))

Figure 5-13. Example of Jess rules for selecting and instantiation abstractions.

In Figure 5-14, we list the rule to remove (i.e. retract) the responsibility that is satisfied by

the instantiation of responsibilities by the rule in Figure 5-14. We use a special slot target-

counter to record how many remaining responsibilities are necessary to realize this

responsibility. Therefore, once this slot is set to 0, Jess will retract this just-satisfied

responsibility.

(defrule retract-satisfied-responsibility

 "Retract a satisfied responsibility"

 ;; This rule should have highest priority

 (declare (salience 100))

 ?r <- (responsibility (target-counter 0))

 =>

 (retract ?r))

Figure 5-14. Jess rules for retract just-satisfied responsibility.

5.4 Automation of program construction/evolution

In the Evolution automation component (EAC), Jess rules are used to automate the

construction/evolution of a program by matching between Jess facts of unrealized

responsibilities of a project and Jess facts of PRUs of the business domain. Section 5.4.1

describes the internal work of EAC when constructing a RSD program. Sections 5.4.3 to

5.4.5 describe the internal work of EAC when evolving a RSD program.

 68

5.4.1 RSD program construction

Figure 5-15 depicts the internal work of EAC when constructing a RSD program. When the

Jess facts of a business-processes responsibility R1 asserted (i.e. added) to Jess by JTC,

Jess consults Jess facts of PRUs. In the diagram, it shows that U1 is the PRU found because

it specifies the realization of R1. From U1, the matching rules 1 generate the user-

requirements responsibilities, which are the responsibilities R2 and R3, from the

specification of U1 (in the right of Figure 21). After R2 and R3 are generated, the matching

rules found that U2 and U3 are the PRUs that specifies the realization of the newly

generated R2 and R3. This time, the matching rules will create the software-design

responsibilities from the specifications of U2 and U3. Following the same manner, U4 is

found for R4, and U5 and U6 are found for R5 and R6.

Matching
Rules

U1

U2 U3

U6U5U4

Jess

P1 P2 P3

Merging
Rules

PA

R2

R1

R3

R4 R5 R6

Development knowledge
R1

R2 R3

U1

U2

R2

R4

R3

R5 R6

U3
User

requirements

Business
processes

Software
design

Intermediate
Abstractions

Program templates Software
design

Program
design

R4 R5 R6

R40 R50 R60

U4 U5 U6
R40 R50 R60

Business
process A

Figure 5-15. The internal work of EAC when constructing the example RSD program.

1 The matching rules are those Jess rules for matching PRUs. They are different from merging rules,

which are Jess rules for integrating partial programs into a complete program.

 69

These automatically generated responsibilities of Jess facts represent the

intermediate abstractions that should be created by developers when using a manual

development. It is because the generated responsibilities can represent different work of

different worlds. The generated responsibilities in the user-requirements world should be

assumed by the target software system. The generated responsibilities in the software-

design world should be assumed by programming modules, such as objects, JSP pages. The

generated responsibilities in the programming-construction world should be assumed by

partial programs that are created by using different technologies. The combination of these

partial programs is a complete program that realizes the given business-processes

responsibilities.

Figure 5-15 also shows an example of the combination that a program PA is

combined from three partial programs, P1, P2, and P3. PA realizes the responsibilities of

R1, R2, R3, R4, R5, and R6. Merging rules shown in Figure 5-15 serve for this purpose.

However in the current version of RSDSTools, only matching rules are implemented.

5.4.2 RSD program evolution

The automation of RSD program evolution is similar to the automation of RSD program

construction. While PRUs are used for finding partial programs when constructing a RSD

program, they are also used for removing partial programs when evolving a RSD program.

We separate the discussion into four types of evolution automation.

 The addition of business-processes responsibility. The addition of business-

processes responsibility represents that the target system should exhibits more

functions. We need to integrate new partial programs into the existing program.

 The removal of business-processes responsibility. The removal of business-

processes responsibility represents that the target system should exhibits less

functions. We need to remove the partial programs from the existing program.

 The change of realization-development knowledge. The change of

realization-development knowledge represents that the partial programs

inferred from the old development knowledge should be removed. And new

 70

partial programs should be created from the new development knowledge and

integrate into the existing program.

 The adoption of new implementation technology. It means that a program

was originally created by one type or the combination of some types of

implementation technologies, but now these implementation technologies

should be replaced. The difference between the old and new implementation

technologies can be two totally different platforms, such as from Java platform

to .NET platform. Or they are only a minor upgrade between two versions of

the same platform. In the context of RSD, this type of evolution is similar to the

realization-development-knowledge evolution. It is because that in order to

create a program by a different technology, we need to create another group of

PRUs that describe the realization relationships and partial programs specific to

the new technology. There may be some common PRUs sharing for different

implementation technologies.

5.4.3 Business-processes evolution

We model business-processes evolution as the change of business-processes responsibilities.

Examples of this change are various, which may include the assignment of different values

to the properties of a business-processes responsibility, the modification of constraint of a

business processes responsibility, a new business task adding to a business process, etc.

 71

Program templates

U4

U2

U1

Matching
Rules

U7

U8U3

U6U5 U9

Expert System

P1 P2 P3

Merging
Rules

R1

Development
knowledge

R7

R3 R8

U7

U8

R8

R9

R3

R5 R6

U3

User
requirements

Business
processes

Software
design

R7

P4

PA*

P2 P3

R8

Intermediate Abstractions

R6R5R4

R3R2

R9R6

R3

R5

Software
design

Program
design

R9

R90

U9R40 R8 R9 R90R50 R60

Business
process A

Figure 5-16. The internal work of EAC when adding new business-processes

responsibility.

Figure 5-16 illustrates the internal work of the Evolution automation component (EAC)

when adding new business-processes responsibility. It shows that there is a new business-

processes responsibility R7 added, which is waiting for realization. This process is identical

to the RSD program construction, which was described in Section 5.4.1. P4 is the only

partial program that is new to this example. The other partial programs found, i.e. P2 and

P3, are already one part of the existing program. The partial program P4 is merged with the

existing program by the merging rules.

 72

Matching
Rules

Expert System

Merging
Rules

R1 R7 R10

Program templates

U4

U2

U1 U7

U8U3

U6U5 U9

P1 P2 P3

Development
knowledge

R7

R3 R8

U7

U8

R8

R9

R3

R5 R6

U3

User
requirements

Business
processes

Software
design

Software
design

Program
design

R9

R90

U9

R2 R3

R4 R5 R6

Intermediate
Absractions

R40 R50 R60

Business
process A

(a)

Program templates

U3

U7U1

Matching
Rules

U2

U4

Expert System

P1 P2 P3

Merging
Rules

R1

Development
knowledge

R10

R2

U2

R2

R4

User
requirements

Business
processes

Software
design

R7

PA**

Intermediate Abstractions

R6R5R4

R3R2

R10

U10

U8

U5 U6 U9

P1

R2

R4
R4

R40

U4

Program
design

U10

R40R40 R50 R60

Business
process A

(b)

 73

Figure 5-17. The internal work of EAC when removing business-processes

responsibility.

Figure 5-17 illustrates the internal of the Evolution automation component (EAC)

when removing existing business-processes responsibility. This example is that the

business-processes responsibility R7 is replaced by a new business-processes responsibility

R10. While Figure 5-17 (a) shows the removal of R7, Figure 5-17 (b) shows the additional

of R10. For realizing R10, the old partial programs should be firstly located and removed.

This evolution spotting activity is identical to the process described in the previous section.

However, only the partial program P4 is removed. The partial programs P2 and P3 do not

have to be removed because they are still used to realize R1.

The detection of partial program preserving for other unchanged business-processes

responsibilities can be easily implemented by the rule-based engine. Since RSDTools adds

Jess facts of partial program representation when they are derived by PRUs, there may be

multiple Jess facts asserted for one single program-construction responsibility. When there

is at least one Jess fact of a program-design responsibility in Jess, the partial program of

that program-design responsibility should not be removed. It can be observed by comparing

between Figure 5-16 and Figure 5-17. There are multiple R50 and R60, but only one R90 in

Figure 5-15. When R7 is removed in Figure 5-16, the Jess facts of R50, R60, and R90 are

removed as well. However, since there is still one R50 and one R60 in Jess, their attaching

partial programs P2 and P3 should not be removed.

5.4.4 Realization-development knowledge evolution

The evolution of the realization-development knowledge is represented as the changes of

PRUs. The changes of PRUs may result from many reasons, such as the unsatisfied testing

or execution results of the current system or the acquirement of new development

knowledge during development process. This type of change is represented as the addition

and the removal of PRUs.

 74

Program templates

U3

U7U1

Matching
Rules

U2

U4

Expert System

P1 P2 P3

Merging
Rules

R1

Development
knowledge

PA**

Intermediate Abstractions

R6R5R4

R3R2

R10

U10

U8

U5 U6 U9

P1

R2

R4

R40R40 R50 R60

R3

R11 R6

U3*
User

requirements

Software
design

Business
process A

(a)

 75

Program templates

U7U1

Matching
Rules

U2

U4

Expert System

P1 P5 P3

Merging
Rules

Development
knowledge

PA***

Intermediate Abstractions

R6R4

R3R2

U10

U8

U6 U9

P1

R2

R4

R40R40

R3

R11 R6

U3*
User

requirements

Software
design

U3*

R60
Software
design

Program
design

R11 R6

R70 R60

U11 U6
U11R11

R70

R1 R10

Business
process A

(b)

Figure 5-18. The internal work of EAC when evolving the realization-development

knowledge.

Figure 5-18 illustrates the internal work of the Evolution automation component

(EAC) when evolving the realization-development knowledge. In Figure 5-18 (a), it shows

that the PRU U3 is evolved to a different design. That is, R3 is newly realized by R11 and

R6. The first step is evolution spotting. The partial programs that are derived from the old

U3 should be located and removed. The same process illustrated in Figure 5-17 (a) is

proceeded again. However, when a PRU found by Jess rules has its old set to TRUE, Jess

rules retract (i.e remove, in Jess’s term) any responsibility (R5, R6, R50, and R60 in the

example) that are created from those PURs (U5 and U6 in the figure) derived after this

PRU. This also removes the partial programs P2 and P3 from the complete program PA**.

In Figure 5-18 (b), it shows that after these responsibilities are removed, R3

becomes an unrealized responsibility to be realized. Jess rules will match new PRU for this

 76

responsibility. The new U3* is matched, and R11 and R6 are instantiated. U11 and U6 are

then matched to realize these two responsibilities. And finally the partial programs P5 and

P3 are integrated to form the new complete program PA***.

5.4.5 Technology evolution

The automation evolution for the adoption of new implementation technology is identical to

the evolution of realization-development knowledge. However, we need to add a constraint

to PRUs to specify the new implementation technology used. By adding the same

constraint to the unrealized business-processes responsibilities that intended to be

implemented by this new implementation technology, Jess rules can match between these

two. Different from MDA’s idea [59, 60], RSD does not require to create a different

mapping specification, one single uniformed mapping specification is used to create

different variations from the same set of business processes.

5.4.6 Version control of RSD

As an important topic in configuration management [61, 62], which can be used to manage

software evolution and its artifacts, we discuss version control in this section. For any

model-driven approach for constructing and evolving a program, such as the one we

propose in this research work, we need to shift the focus. As we can observe from some

recent model-driven implementation, such as EMF in Eclipse, since code and configuration

files can be automatically generated, we need to manage modeling activities in software

development [63]. This may include the models and the mapping specification. In RSD,

these include the humans’ knowledge of PRU model and the business processes of BP

model. As a supplementary topic of this research work, we only discuss the management of

different versions of development artifacts in this section. We do not consider other issues,

such as comparison or merge of artifacts.

 To implement a version management for PRU model and BP model, we need to

look back to the three evolution scenarios. When a development process only has a single

evolution scenario, such as only business-processes evolution, the modeling activities

merely are the addition and removal of unrealized business-process responsibilities. Since

 77

the structure of responsibility modeling and the distinction between modeling elements are

clear, all actions of addition or removal can be considered as a flatten structure, where each

action can be considered as an individual version as shown in Figure 5-19. Without

considering the efficiency between different concrete implementation, we can easily roll

back to any version before V6 in the diagram. This also applies to realization-development

knowledge realization.

Addtion Addtion Removal Addtion Addtion Removal

V1 V2 V3 V4 V5 V6

Unrealized business-
processes

responsibilities

Figure 5-19. Flatten structure of single evolution scenario.

Addtion Addtion

Removal

Addtion Addtion

Removal

V1 V2

V3

V4 V5

V6

Addtion

V1

Unrealized business-
processes

responsibilities

PRUs

Figure 5-20. 2D structure of multiple development process.

However, when the process has different scenarios mixed in, this structure becomes

a little complex. This can be observed from Figure 5-20. The complexity of the mix of

multi-type evolution scenarios come from that the generated abstractions by Jess include

the retract of invalid instantiated responsibilities and the re-instantiation of responsibilities.

However, after a closed observation of this diagram, we know that it is actually another

flatten structure, which is shown in Figure 5-21. When we see the version control of mixed

evolution scenarios in a development process, we can again easily roll back a program to

any previous version.

 78

Addtion Addtion Removal Addtion Addtion Removal

V1 V2 V3 V4 V5 V6

Addtion

V1

Unrealized business-
processes

responsibilities

PRUs

Figure 5-21. Flatten structure of mixed evolution scenarios

5.5 Summary

This chapter described the implementation the purposing approach. This implementation

automates the construction/evolution of a program. We briefly described the features the

implementation provides. We then described the structure of the implementation. It is

constituted of three major components. Each component exhibits one part of its features.

Graphical modeling component provides a graphical environment for modeling realization-

development knowledge and business processes. Jess code transformation component

provides the automatic transformation from the PRUs and business processes to Jess facts.

Evolution automation component (EAC) contains Jess rules for selecting and instantiating

PRUs. The input of PRUs and business processes to this implementation creates the output

of all partial programs that realizes the given business processes. By this way, a program

can always be kept to update to satisfy the most current business processes.

 79

Chapter 6 Case Study

This chapter describes the evaluation of RSD. RSD is evaluated by a case study with the

development of three software systems: a business-process management system (called

Business-MS), a medical supporting system (called Medical-SS), and shopping-mall-on-

web system (called Shopping-WS). These three systems verify the business-process

evolution and realization-development knowledge evolution. Besides, the technology

evolution is verified by using two different implementation technologies to create two

variations from the same set of business-process responsibilities. Based on the assumption

of this research work that PRUs can be reused to construct/evolve a program, we measure

reusability of PRUs. In Section 6.1, we describe the basic information of the three systems.

In Section 6.2, the evaluation process and the results are described. In Section 6.3, we

discuss the results.

6.1 Case study overview

In this section, we describe the basic information of the three software systems.

6.1.1 Business-MS

Business-MS provides three major functional areas, sales (営業), procurement (購買), and

inventory (在庫). It provides web-based UI that users can input and view business data on a

web browser. The conceptual diagram of Business-MS is illustrated in Figures 6-1, 6-2, and

6-3. Business-MS is developed basing on a real-world system, which is created for a

Taiwanese oil-sealed manufacture by the author. Business-MS itself has evolved to two

variations, which are developed by using different implementation technologies but the

same set of requirements. The first variation is a JavaServer Pages (JSP) with JavaBeans

implementation. The second variation is a JBoss Seam implementation.

 80

Figure 6-1. Conceptual flow of Business-MS for Sales document processing

 81

Figure 6-2. Conceptual flow of Business-MS for procurement document processing

 82

Figure 6-3. Conceptual flow of Business-MS for inventory document processing

For Business-MS, we have created several documents. We list each document and

the overview of their contents in Table 6-1. In order to maintain the layout of each

document, they are not included in this dissertation, but providing as separate volumes.

Table 6-1. Document list of Business-MS. All of these three volumes are provided as

companion documents.

Document Overview

Vision and
scope

It is used to communicate the high-level
vision with the stakeholders of Business-
MS. It also confines the scope of features
that will be appeared in Business-MS

Use cases It contains all of the use case descriptions of
BMS.

Design book It describes the design process of Business-
MS. It is especially created for the second

 83

Document Overview
version of Business-MS. It also describes
some examples of detailed design in UML
diagrams.

6.1.2 Medical-SS

Medical-SS is also a web-based business supporting application. Medical-SS is developed

basing on a research project [6]. In this research project, Lori A. C. et al. use a process-

modeling language, called Little-JIL, for describing the collaboration among different

actors that are involving in the blood-transfusion process. Based on this research project,

we create an imaginary project for processing information is generated in the process.

Medical-SS also provides web-based UI that users can input and view medical data on a

web browser. The conceptual diagram of Medical-SS is illustrated in Figure 6-4. Similar to

Business-MS, Medical-SS has evolved to two variations, which are developed by using two

different implementation technologies but the same set of requirements. The first variation

is a JavaServer Pages (JSP) with JavaBeans implementation. The second variation is a

JBoss Seam implementation.

 84

Figure 6-4. Conceptual flow of Medical-SS.

6.1.3 Shopping-WS

Shopping-WS is a web-based shopping mall for people to open customizable on-line stores.

Each shop opens on Shopping-WS is impendent from other shops, however, they have

same features provided by Shopping-WS. Shopping-WS helps shop owners manage their

item catalog, orders, and customer records. Identical to two other systems, it provides web-

based UI that users can input and view business data on a web browser. The conceptual

diagram of Shopping-WS is illustrated in Figure 6-5. Shopping-WS is also considered to be

deployed commercially in future. Different from the previous two systems, Shopping-WS

has one only implementation by using JBoss Seam.

 85

Shop Onwer

Shop

Market owner

Owner account

createcreate

Item Catalog

Customer

browseupdate

Order

createupdatecreate

Figure 6-5. Conceptual flow of Shopping-WS.

6.2 Evaluation

The application process of RSD is as follows. For all three systems, we input business-

process responsibilities into Jess. Jess infers the partial programs from the three categories

of PRUs. This business-process evolution has been illustrated in Figure 5-16 and Figure

5-17 before. When an unrealized responsibility, which may belong to any of three worlds:

business processes, user requirements, and software design, cannot be realized by any

current PRU, we create a new PRU for this unrealized responsibility. When one part of the

design or implementation of the target system does not generate satisfactory results, we

remove the PRU that this part and create a new PRU. This development knowledge

evolution has been illustrated in Figure 5-18. We realized the business processes

sequentially. That is, S-1 is realized first, and then S-2, and so forth. When creating PRUs,

we always create a base PUR first because it provides a most-general-case for reusing. A

variation PRU is created only when its base cannot generate satisfactory results. When

knowledge is evolved, that is, an existing PRU is removed or a new PRU is added,

RSDTools automatically apply the new set of PRUs to any business-processes that has been

realized.

 86

 The purpose of this research work is to improve software evolution by managing the

complex relationships between abstractions of different stages. To this end, we proposed

and implemented software-evolution automation for high-level abstractions realization in a

program. The proposing approach reuses humans’ knowledge stored as PRUs for

constructing/evolving a program. Therefore, by measuring the quantity of the case study

that is related to reusability of development artifacts, we can understand the effectiveness of

it. We list the number of required PRUs, i.e. PRUs that are necessary to construct a

program for realizing responsibilities of one business process, and new PRUs, i.e. PRUs

that are newly created in that business process of each system from Tables 6-2 to 5-6 A

high reused ratio represent that there more PRUs reused than PRUs created for realizing a

business process.

 87

Table 6-2. Numbers of required and new PRUs for each business processes for the JSP system of Business-MS

Table 6-3. Numbers of required and new PRUs for each business processes for the JSP system of Medical-SS

 88

Business process
Number of
Business

Processes

Required
business-
processes

PRUss

New
business-
processes

PRUss

Reused ratio
of business-
processes

PRUss

Required
user-

requirements
PRUss

New
user-

requirements
PRUss

Reused ratio
of user-

requirements
PRUss

Required
software-

design PRUss
New software-
design PRUss

Reused ratio
of software-

design PRUss

Create BT order 4 4 0 100% 5 1 80% 10 0 100%
Modify BT Order 5 5 0 100% 7 0 100% 11 0 100%
Cancel BT order 5 5 0 100% 6 0 100% 11 0 100%
Create blood pickup document
from BT order 4 4 0 100% 5 0 100% 10 0 100%

Sign BT order consensus 5 5 1 80% 6 1 83% 10 1 90%
Update testing results 5 5 0 100% 4 0 100% 11 0 100%
Log in 3 3 0 100% 4 0 100% 6 0 100%

 89

Table 6-4. Numbers of required and new PRUs for each business processes for the JBoss Seam system of Shopping-WS

 90

Table 6-5. Numbers of required and new PRUs for each business processes for the JBoss Seam system of Business-MS

 91

Table 6-6. Numbers of required and new PRUs for each business processes for the JBoss Seam system of Medical-SS

Business process
Number of
Business

Processes

Required
business-
processes

PRUss

New
business-
processes

PRUss

Reused ratio
of business-
processes

PRUss

Required
user-

requirements
PRUss

New
user-

requirements
PRUss

Reused ratio
of user-

requirements
PRUss

Required
software-

design PRUss
New software-
design PRUss

Reused ratio
of software-

design PRUss

Create BT order 4 4 0 100% 5 0 100% 9 0 100%
Modify BT Order 5 5 0 100% 7 0 100% 9 0 100%
Cancel BT order 5 5 0 100% 6 0 100% 9 0 100%
Create blood pickup document
from BT order 4 4 0 100% 5 0 100% 9 0 100%

Sign BT order consensus 5 5 0 100% 6 0 100% 10 0 100%
Update testing results 5 5 0 100% 4 0 100% 7 0 100%
Log in 3 3 0 100% 4 0 100% 5 0 100%

 92

6.3 Discussion

We list what we observed from the evaluation in this section.

To maximize reusability, it is important to firstly implement those architecturally

significant business processes. It is because that these business processes can reveal more

responsibilities, therefore more PRUs, for reusing in other business processes. For all three

systems (including the variations), we always implemented the architecturally significant

business processes first. They generated most PRUs that can be reused for other business

processes. It can be observed from Figures 6-6 to 6-11. These figures are drawn from Table

6-2 to 6-6. They showed that when there is a business process that has different business

task than others, there are always more new PRUs created. For example, the JSP system of

BPMS and the Seam system of WMS have the lowest reusable ratio than other business

processes. More specifically, in Figure 6-7 and Figure 6-11, the reused ratios of the first

two or three business processes are lower than other business processes.

 93

0

1

2

3

4

5

6

7

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9
S-1

0
S-1

1
S-1

2
S-1

3
S-1

4
S-1

5
S-1

6
S-1

7
S-1

8
S-1

9
S-2

0
S-2

1
S-2

2

Required and new business-processes PRUs

P
R

U
s

Business process ID

Required business-processes PRUs
New business-processes PRUs

0

1

2

3

4

5

6

7

8

9

10

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9
S-1

0
S-1

1
S-1

2
S-1

3
S-1

4
S-1

5
S-1

6
S-1

7
S-1

8
S-1

9
S-2

0
S-2

1
S-2

2

Required and new user-requirements PRUs

P
R

U
s

Business process ID

Required user-requirements PRUs
New user-requirements PRUs

0

2

4

6

8

10

12

14

16

18

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9
S-1

0
S-1

1
S-1

2
S-1

3
S-1

4
S-1

5
S-1

6
S-1

7
S-1

8
S-1

9
S-2

0
S-2

1
S-2

2

Required and new software-design PRUs

P
R

U
s

Business process ID

Required software-design PRUs
New software-design PRUs

Figure 6-6. Required and new PRUs of the JSP system of Business-MS.

 94

0

0.25

0.50

0.75

1.00

S
-1

S
-2

S
-3

S
-4

S
-5

S
-6

S
-7

S
-8

S
-9

S
-1

0

S
-1

1

S
-1

2

S
-1

3

S
-1

4

S
-1

5

S
-1

6

S
-1

7

S
-1

8

S
-1

9

S
-2

0

S
-2

1

S
-2

2

Reused ratio of PRUs

R
eu

sa
b

le
 R

at
io

Business process ID

Reused ratio of business-processes PRUs
Reused ratio of user-requirements PRUs
Reused ratio of software-design PRUs

Figure 6-7. Reused ratios of the JSP system of Business-MS.

 95

0

1

2

3

4

5

S-1 S-2 S-3 S-4 S-5 S-6 S-7

Required and new business-processes PRUs

P
R

U
s

Business process ID

Required business-processes PRUs
New business-processes PRUs

0

1

2

3

4

5

6

7

S-1 S-2 S-3 S-4 S-5 S-6 S-7

Required and new user-requirements PRUs

P
R

U
s

Business process ID

Required user-requirements PRUs
New user-requirements PRUs

0

2

4

6

8

10

12

S-1 S-2 S-3 S-4 S-5 S-6 S-7

Required and new software-design PRUs

P
R

U
s

Business process ID

Required software-design PRUs
New software-design PRUs

Figure 6-8. Required and new PRUs of the JSP system of Medical-SS.

 96

0

0.25

0.50

0.75

1.00

S-1 S-2 S-3 S-4 S-5 S-6 S-7

Reused percentage of PRUs

R
eu

sa
b

le
 R

at
io

Business process ID

Reused ratio of business-processes PRUs
Reused ratio of user-requirements PRUs
Reused ratio of software-design PRUs

Figure 6-9. Reused ratios of the JSP system of Medical-MS.

 97

0

1

2

3

4

5

6

7

8

S
-1

S
-2

S
-3

S
-4

S
-5

S
-6

S
-7

S
-8

S
-9

S
-1

0

S
-1

1

S
-1

2

S
-1

3

S
-1

4

S
-1

5

Required and new business-processes PRUs

P
R

U
s

Business process ID

Required business-processes PRUs
New business-processes PRUs

0

2

4

6

8

10

12

14

16

S
-1

S
-2

S
-3

S
-4

S
-5

S
-6

S
-7

S
-8

S
-9

S
-1

0

S
-1

1

S
-1

2

S
-1

3

S
-1

4

S
-1

5

Required and new user-requirements PRUs

P
R

U
s

Business process ID

Required user-requirements PRUs
New user-requirements PRUs

0

5

10

15

20

25

30

35

40

S
-1

S
-2

S
-3

S
-4

S
-5

S
-6

S
-7

S
-8

S
-9

S
-1

0

S
-1

1

S
-1

2

S
-1

3

S
-1

4

S
-1

5

Required and new user-requirements PRUs

P
R

U
s

Business process ID

Required software-design PRUs
New software-design PRUs

Figure 6-10. Required and new PRUs of the JBoss Seam system of Shopping-WS.

 98

0

0.25

0.50

0.75

1.00

S
-1

S
-2

S
-3

S
-4

S
-5

S
-6

S
-7

S
-8

S
-9

S
-1

0

S
-1

1

S
-1

2

S
-1

3

S
-1

4

S
-1

5

Reused percentage of PRUs

R
eu

sa
b

le
 R

at
io

Business process ID

Reused ratio of business-processes PRUs
Reused ratio of user-requirements PRUs
Reused ratio of software-design PRUs

Figure 6-11. Reused ratios of the JBoss Seam system of Business-MS.

0

0.5

1.0

S
-1

S
-2

S
-3

S
-4

S
-5

S
-6

S
-7

S
-8

S
-9

S
-1

0
S

-1
1

S
-1

2
S

-1
3

S
-1

4
S

-1
5

S
-1

6
S

-1
7

S
-1

8
S

-1
9

S
-2

0
S

-2
1

S
-2

2

Reused ratio of software-design PRUs

R
eu

sa
b

le
 r

at
io

Business process ID

Seam system of MSS
Seam system of BPMS

Figure 6-12. Reused ratios of the JBoss Seam systems of both Business-MS and

Medical-SS.

 99

By observing Tables 6-2 to 6-6, we know that both business-processes and user-

requirements PRUs can be reused for developing systems implemented on different

technologies. It is because responsibility abstracts away the implementation-technology

differences. More specifically, responsibilities only define what should be accomplished by

different types of entities. They did not specify how they should be accomplished. How

they are accomplished can be lately decided by those software-design PRUs. These PRUs

have partial programs implemented on different technologies.

Although it cannot be directly observed how rule engine simplifies the work of

knowledge application, it is true that for those business processes with high reusable ratios

they are almost fully-automated. Rule engine automatically infers the implementation of the

given business-processes responsibilities.

All in all, the evaluating results show that PRUs are an effective tool for developing

business systems. Responsibility simply represents the abstractions of different worlds.

PRUs capture the realization development knowledge. There is no necessary to create

“traditional” modeling diagrams, such as UML class diagrams or UML sequential diagrams.

The results also show that PRUs are also an effective tool for reducing the repetition in the

development process. Once a PRU is created for one part of a system, it can be reused for

developing other parts of the same system or even a different system.

6.4 Summary

This chapter described the case study that evaluated the effectiveness of the proposing

approach. In this research work, we made a claim that by using RSD in the three evolution

scenarios, the development of a business software system can be dynamically satisfied by

the collection of realization-development knowledge. In the case study, RSDTools, which is

the implementation based on the proposing approach, is used for the development of the

three software systems in the case study. The evaluation results showed that PRU is not

only capable of constructing a program, but also be capable of evolving a program by

reducing the repetition in realization development.

 100

Chapter 7 Summary and Future Work

The purpose of this research work is to automate software evolution by managing the

complex relationships between abstractions of different stages. To this end, we proposed

and implemented software-evolution automation for high-level abstractions realization in a

program. In this research work, we used a case study of three software systems to verify the

claim we made, i.e. by using the purposing approach, the development of a business system

can be dynamically satisfied by using the collection of realization-development knowledge

under the three evolution scenarios. The evaluation results showed that developers can

freely modified new development knowledge to realize any unrealized business

responsibility without invalidating current realization under the three evolution scenarios

mentioned above.

 The evaluation results also showed that the combination of the three fundamental

theories proposing in this research work can be effectively used to fill the gap in software

development, i.e. the necessary to eliminate the repetition of creating similar realization

relations between high-level and low-level abstraction many times. These three

fundamental theories are

 To eliminate the gap between different types of abstractions, we proposed

responsibility modeling, a modeling approach based on a single-type paradigm,

responsibilities.

 To simplify the evolution of a program, we proposed capturing the connections of

the high-level abstraction realization and implementation artifacts as reusable and

composable knowledge by the paradigm of responsibility.

 To automate the reusing and composing of knowledge, we proposed using rule

engine for encoding the realization-development knowledge.

The construction steps of the proposing approach are

 101

1. To design the basic framework.

2. To implement the tool for supporting the automated construction/evolution of

a program.

3. To develop a case study with three systems

7.1 To design the basic framework

To help developers to capture realization-development knowledge they acquire in the

development process, a modeling language for capturing the realization-development

knowledge is created. It also includes the definition of four connected worlds, where each

world belongs to a distinct context that is important to the constructing of a program for the

business domain. A set of graphical notations for visually modeled knowledge is also

created. Finally, it defines the idea of using many small pieces of realization-development

knowledge for constructing/evolving a program.

 In Chapter 3, we described this modeling language. The modeling language

provides the modeling constructs for capturing responsibility that should be performed by

entities and for capturing various types of relationships among entities, which include

collaboration, realization, and constraints. This modeling language is supplemented with a

set of graphical notations for visually modeling. One important idea of RSD is the

modularization of humans’ knowledge about realization-development between different

worlds (i.e. different stages of software development process). We create a construct, called

parameterized realization unit (PRU for short) for this purpose. We explained that the

development process when using RSD can be separated into two activates: the domain

modeling and the application modeling. In the domain modeling, developers create reusable

PRUs. In the application modeling, developers reuse PRUs for constructing/evolving a

program.

 In Chapter 4, we detailed the usage of PRUs in program construction/evolution. We

showed that when a program is constructed by only using PRUs, it contains all the

necessary information for managing the complex relationships among abstractions of

 102

different worlds. Therefore, it is also easier to be evolved than by using other traditional

approaches. This chapter also described what a parameterized PRU is. A parameterized

PRU has one or more properties set to no value when it is created, and is instantiated when

it is used. It is used to create customizable realization relationship. It simplifies the

construction/evolution of a program.

7.2 To implement the tool for supporting the automated

construction/evolution of a program

The implementation of the purposing approach is a tool for automating program

construction/evolution. Based on the third theory, RSDTools is implemented on a rule

engine for reasoning a program that realizes the given business processes. Two types of

knowledge are encoded in this rule-based engine. The first type is PURs, which represent

the realization development knowledge. The second type is the matching scheme for

selecting and instantiating a PRU. By the combination of these two, this tool achieves the

research goal of realization-evolution automation.

In Chapter 5, we described the features this implementation provides, the structure it

is constructed, and the internal work of the implementation for automating the three

evolution scenarios. The implementation is constituted of three components. Graphical

modeling component provides a graphical environment for modeling realization-

development knowledge and business processes. Jess code transformation component

provides the automatic transformation from the PRUs and business processes to Jess facts.

Evolution automation component (EAC) contains Jess rules for selecting and instantiating

PRUs. The input of PRUs and business processes to this implementation creates the output

of a program that realizes the given business processes. By this way, a program always

satisfies the most updated business processes.

 103

7.3 To develop a case study with three systems

In this research work, we made a claim that by using RSD, in the three evolution scenarios,

the development of a business software system can be dynamically satisfied by the

collection of realization-development knowledge. That is, by using RSD, developers can

freely modify new development knowledge to realize any unrealized business responsibility

without invalidating current realization under the scope of the proposing approach.

Therefore, the verification of this claim becomes the evaluation of the effectiveness of RSD.

 In Chapter 6, we described the basic information of the three systems. In the case

study, the three systems are all web-based systems but for different purposes. Business-MS

is a business-process management system. Medical-SS is a medical supporting system

Shopping-WS is shopping-mall-on-web system. We used diagrams to show the conceptual

workflow of them. The three systems verified this claim in the business-process evolution

and the realization-development knowledge evolution. Besides, the technology evolution is

verified by using two different implementation technologies, i.e. JSP and JBoss Seam, to

create two variations from the same set of business-process responsibilities.

In the evaluation, we measured reusability of RSD by counting the number of

required PRUs and newly created PRUs in each business process of each software system.

We also calculated the reused ratios, which are the proportion of the newly created PRUs in

each business process. The results showed a program can be constructed by reusing

realization-development knowledge. From the high reused ratios in the results, we know

that PRU is not only capable of constructing a program, but also be capable of evolving a

program by reducing the repetition in realization development.

7.4 Contribution

The proposing approach shows its significance by the following points:

 A single-type paradigm is capable for software modeling, although software

development is multi-context in nature. This research work showed that responsibility,

 104

which is already a proven concept in software object design, can be used to bridge the

gap between different worlds (i.e. different stages in software development process).

This provides support for the first fundamental theory of the proposing approach.

 A program can be constructed by using the modularization of realization-development

knowledge. The using of PRUs as the units in software development is capable for

both constructing/evolving a program. PRUs also reduce the repetition in abstraction-

realization development. This provides support for the second fundamental theory of

the proposing approach.

 Rule-based engine can effectively infer humans’ knowledge for software development.

With a few of pre-loaded rules by our implementation, rule-based engine automatically

infer partial programs for realizing given business processes. A program can always be

kept to update to satisfy the ever-changing environment under the scope of this

research. This provides support for the third fundamental theory of the proposing

approach.

The combination of these points is a development approach for automating program

evolution for the business domain.

7.5 Future Work

This research work provides a new way for modeling complex relationships among

abstractions and for constructing/evolving a program. However, the scope of this work is

limited. We only show its applicability in the business domain. We also only showed its

applicability for modeling functional requirements, design, and implementation. We need

to consider the modeling of non-functional requirements by responsibility modeling.

Besides, since responsibility is a common and easy-to-comprehend concept, it is expected

to apply and expand responsibility modeling to model humans’ social behavior and system

interactions, for example, the using of PRUs for the regulation-compliance implementation.

It is also expected to apply the basic concepts of RSD to other domains, such as embedded

system. As we did in this research work, the relationships among a hardware system and its

 105

components, the users of this hardware system, the software system of this hardware

system are all possible to be modeled as responsibilities.

 This current research work mainly focused on high-level modeling. Therefore, one

missing puzzle is about partial program integration. We only showed the selection of partial

programs for realizing given business-processes responsibilities. Therefore, another

direction is to directly use responsibility in software implementation. More specifically, we

can use responsibility to model finer-grained programming constructs, such as looping,

conditional statements etc. These responsibilities can be considered as the higher-level

representation of the basic programming constructs. This higher-level representation

provides a neutral media for different programming languages. By this neutral media,

developers have no necessary to learn the semantic details or syntactical differences of

programming languages, but only by reusing these responsibilities to compose a program

that can satisfy responsibilities of other worlds. This highly integrated development

paradigm should provide a better platform for software evolution.

 Another possible extension of this research work is the combination of ontology.

Ontology is the tool for representing domain-specific knowledge which can be used in

artificial intelligence. Its purpose is to share understanding of concepts that are important to

some domains [64]. This purpose shows the validity to move our PRU definition (the

metamodel described in Chapter 3) to an ontology-based definition. The direction of this

approach can be the combination of the modeling of each world (business, system, design,

and construction) where the combination will be the result of the collection of PRUs. The

benefit of this approach is that each world is defined by using a modeling language that is

suitable to one specific domain. However, it may also defeat our purpose to use one-single

paradigm for modeling development knowledge.

 106

References

[1] M. Lehman and J. C. Fernandez-Ramil, Software Evolution, “Software Evolution and

Feedback: Theory and Practice”, Wiley, 2006

[2] COM: Component Object Model Technologies, Microsoft.

http://www.microsoft.com/com/default.mspx

[3] Enterprise JavaBeans Technology, Sun Microsystems. http://java.sun.com/products/ejb/

[4] R. Wirfs-Brock and A. McKean, “Object-Oriented Design: A Responsibility-Driven

Approach”, OOPSLA 1989.

[5] R. Wirfs-Brock and A. McKean, Object Design : Roles, Responsibilities, and Collabs,

Addison-Wesley, Boston, 2003.

[6] Lori A. C. et al. “Process Programming to Support Medical Safety: A Case Study on

Blood Transfusion”, Proceedings of the Software Process Workshop 2005.

[7] JavaServer Pages Technology, Sun Microsystems. http://java.sun.com/products/jsp/

[8] JavaBeans, Sun Microsystems. http://java.sun.com/products/javabeans/

[9] Hans Bergsten, JavaServer Pages, Third Edition, Sebastopol, Calif. : O’Reilly, c2004.

[10] JBoss Seam, Red Hat Middleware, LLC., http://www.jboss.com/products/seam

[11] Michael Juntao Yuan (Author), Thomas Heute (Author), JBoss(R) Seam: Simplicity

and Power Beyond Java(TM) EE, Prentice Hall PTR; 1 edition (April 26, 2007)

[12] M. Lehman and J. C. Fernandez-Ramil, Software Evolution and Software Evolution

Processes, Annals of Software Engineering, Volume 14, Numbers 1-4 / December,

2002

[13] M.M. Lehman, the Programming Process, IBM Research Report RC2722, 1969,

IBM Research Center, NY.

[14] M.M. Lehman, Program Life Cycle and Laws of Software Evolution, Proc. IEEE

Spec Iss. On Software Eng., Vol 68, no 9, Sept. 1980, pp. 1060-1076.

 107

[15] M.M. Lehman, Program Evolution and its Imact on Software Engineering, Proc.

ICSE 1976.

[16] M.M. Lehman and J.F. Ramil, An Approach to a Theory of Software Evolutution

[17] C.K.S. Chong Hok Yuen, Phenomenology of Program Maintenance and Evolution,

PhD thesis, Imperail College, 1981.

[18] C.F. Kemerer and S.Slaughter, An Empirical Approach to Studying Software

Evolution, IEEE Trans. Soft. Eng. Vol 25,no. 4, July/August 1998, pp. 493-509.

[19] A. Antón and C. Potts, Functional Paleontology: System Evolution as the User Sees

It, Proc. ICSE 2001.

[20] V. Nanda and N.H. Madhavji, the Impact of Environmental Evolution on

Requirements Changes, Proc ICSE 2002

[21] A. Capiluppi, M. Morisio and J.F. Ramil, the Evolution of Source Folder Structure

in Activiely Evolved Open Source systems, Metrics 2004 Symposium

[22] W. F. Opdyke, Refactoring Object-Oriented Framework, Thesis, University of

Illinois at Urbana-Champaign, 1992

[23] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley

Professional,1999.

[24] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions on

Software Engineering, 30(2):126-162, February 2004

[25] R. Van Der Straeten, V. Jonckers, and T. Mens. Supporting model refactorings

through behaviourinheritance consistencies. In Proc. Int'l Conf. UML 2004, volume

3273 of Lecture Notes in Computer Science, pages 305-319. Springer-Verlag, October

2004

[26] J. Zhang, Y. Lin, and J. Gray. Generic and domain-specific model refactoring using

a model transformation engine. In Model-driven Software Development - Research and

Practice in Software Engineering. Springer Verlag, 2005.

 108

[27] T. D’Hondt, K. De Volder, K. Mens, and R.Wuyts. Co-evolution of object-oriented

design and implementation. In Proc. Int’l Symp. Software Architectures and

Component Technology. Kluwer Academic Publishers, January 2000.

[28] R.Wuyts. A LogicMeta-Programming Approach to Support the Co-Evolution of

Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brussel,

January 2001.

[29] M. M. Lehman, D. E. Perry, and J. F. Ramil. On evidence supporting the feast

hypothesis and the laws of software evolution. In Proc. Int’l Symp. Software Metrics.

IEEE Computer Society Press, 1998.

[30] L. Williams and A. Cockburn. Agile software development: It’s about feedback and

change. IEEE Computer, 36(6):39-43, June 2003.

[31] M. Lehman and J. C. Fernandez-Ramil, Software Evolution, “Software Evolution

and Feedback: Theory and Practice”, Wiley, 2006

[32] V.T. Rajlich, Software evolution: a road map, In the proceeding of ICSM 2001.

[33] J. Greenfield and K. Short, Software factories: assembling applications with

patterns, models, frameworks, and tools, Wiley, New York, 2004.

[34] S. Sendall and W. Kozaczynski, “Model Transformation: the heart and soul of

model-driven software development”, IEEE Software, Vol. 20, #5, September 2003.

[35] B. Selic, "The pragmatics of model-driven development" IEEE Software, Vol. 20,

#5, September 2003

[36] OMG, MDA guide version 1.0.1, http://www.omg.org/cgi-bin/doc?omg/03-06-01,

2003

[37] S. Sendall and W. Kozaczynski, “Model Transformation: the heart and soul of

model-driven software development”, IEEE Software, Vol. 20, #5, September 2003.

[38] OMG. Unified Modeling Language (UML) version 1.5. http://www.omg.org/cgi-

bin/doc?formal/03-03-01, 2003.

 109

[39] OMG. XML Metadata Interchange (XMI) version 2.0, http://www.omg.org/cgi-

bin/doc?formal/2003-05-02, 2003.

[40] J. Arlow and I. Neustadt,Enterprise Patterns and MDA: Building Better Software

with Archetype Patterns and UML. Addison-Wesley Professional (December 22, 2003)

[41] Wegmann O. Preiss, “MDA in Enterprise Architecture? The Living System

Theory to the Rescue...”, EDOC 2003.

[42] D. J. Velleman, How to Prove It: A Structured Approach 2ed., Cambridge

University Press, 2006.

[43] C. F. Schaefer and C. Ussery, VHDL: Hardware Description and Design, Springer,

1989

[44] S. Clarke, W. Harrison, H. Ossher, P. Tarr, Subject-Oriented Design: Towards

Improved Alignment of Requirements, Design, and Code, OOPSLA 1999.

[45] D. Batory, J.N.Sarvela, A. Rauschmayer, Scaling Step-Wise Refinement, IEEE

Transactions on Software Engineering, Volume: 30 (6), 2004.

[46] J. Liu, D. Batory, and C. Lengauer, "Feature Oriented Refactoring of Legacy

Applications”, ICSE 2006.

[47] E Yourdon, LL Constantine, Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design, Prentice-Hall, Inc

[48] J. Alves-Foss, D. Conte de Leon, and P. Oman, “Experiments in the Use of XML

to Enhance Traceability Between Object-Oriented Design Specifications and Source

Code”, Proceedings of the 35th Annual Hawaii International Conference on System

Sciences.

[49] K.M. Anderson, S.A. Sherba, and W.V. Lepthien, “Towards Large-Scale

Information Integration”, ICSE 2002.

[50] OMG. Object Constraint Language 2.0 (OCL), http://www.omg.org/cgi-

bin/apps/doc?formal/06-05-01.pdf

[51] Klaus Pohl, Software product Line engineering

 110

[52] Ming-Jen Huang and Takuya Katayama, Using Responsibility Modeling and Rule-

Based Approach for Product-Line Evolution, SPLC 2007, Doctoral symposium, Kyoto,

2007

[53] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional. 1995.

[54] Jess, Sandia National Laboratories, Jess. http://herzberg.ca.sandia.gov/jess/

[55] The Eclipse Foundation, Eclipse, Modeling Framework Project (EMF),

http://www.eclipse.org/modeling/emf/

[56] F. Budinsky, D. Steinberg, E. Merks , R. Ellersick, and T. J. Grose, Eclipse

Modeling Framework, Addison-Wesley Professional, 2003.

[57] The Eclipse Foundation, The Eclipse Graphical Editing Framework,

http://www.eclipse.org/gef/

[58] The Eclipse Foundation, The Eclipse Graphical Modeling Framework (GMF),

http://www.eclipse.org/modeling/gmf/

[59] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing,

Wiley 2003

[60] J. Greenfield, K. Short, S. Cook, S. Kent, Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, Wiley, 2004.

[61] C. Burrows, G. George, and S. Dart, Configuration Management, Ovum Ltd., 1996.

[62] S. Dart, “Concepts in Configuration Management Systems,” Proceedings of the

Third International Workshop on Software Configuration Management, ACM

SIGSOFT, 1991, pp. pages 1–18.

[63] Y. Lin, J. Zhang, and J. Gray. Model Comparison: A Key Challenge for

Transformation Testing and Version Control in Model Driven Software Development.

In Proc. OOPSLA/GPCE Workshop, 2004.

 111

[64] Y.Kalfoglou., Exploring Ontologies, The Handbook of Software Engineering and

Knowledge Engineering, vol.1: Fundamentals, pp.: 863-887, Scientific Publishing, first

volume published on January 2002.

 112

Publications

[1] Ming-Jen Huang and Takuya Katayama. Steering Model-Driven Development of

Enterprise Information System through Responsibilities. Proc. WSMDEIS 2005 (Miami

Beach, U.S.A, May 24-25, 2005). INSTICC Press, Portugal, 2005, 165-170.

[2] Ming-Jen Huang and Takuya Katayama. Steering Model-Driven Evolution by

Responsibilities. Proc. IWPSE 2005.

[3] Ming-Jen Huang and Takuya Katayama, Using Responsibility Modeling and Rule-

Based Approach for Product-Line Evolution, SPLC 2007, Doctoral symposium, Kyoto,

2007.

 113

Appendix A: Use Cases

The development of the case study is started by using use cases to capture business

processes of the three software systems. Business-MS, Medical-SS, and Shopping-WS have

22, 6, and 15 business processes respectively. In this appendix, we list the use cases of them.

A.1 Business-MS

Actor ID Business process

Customers S-1 Create order

Customers S-2 Modify order

Customers S-3 Cancel order

Customers S-4 Request catalog

Customers S-5 Review orders

Sales person S-6 Create quotation

Sales person S-7 Modify quotation

Sales person S-8 Create sales order from quotation

Sales person S-9 Create invoice from sales order

Sales person S-10 Create return document form sales order

Sales person S-11 Manage customer accounts

Sales person S-12 Manage product catalog

Procurement staff S-13 Create purchase order

Procurement staff S-14 Modify purchase order

Procurement staff S-15 Cancel purchase order

Procurement staff S-16 Create invoice/shippment receipt

Procurement staff S-17 Manage suppliers

Inventory staff S-18 Create inventory item

 114

Actor ID Business process

Inventory staff S-19 Adjust stocking quantity of inventory items

Inventory staff S-20 Transfer inventory items

Inventory staff S-21 Create shipping document from sales order

System users S-22 Log in

A.2 Medical-SS

Actor ID Business process

Physician S-1 Create BT order

Nurse S-2 Modify BT Order

Nurse S-3 Cancel BT order

Nurse S-4 Create blood pickup document from BT order

Patient S-5 Sign BT order consensus

Lab staff S-6 Update testing results

System users S-7 Log in

A.3 Shopping-WS

Actor ID Business process

Shop owner S-1 Create shop

Shop owner S-2 Modify shop

Shop owner S-3 Create sales order

Shop owner S-4 Modify sales order

Shop owner S-5 Create invoice from sales order

Shop owner S-6 Create return document form sales order

 115

Actor ID Business process

Shop owner S-7 Manage customer accounts

Shop owner S-8 Create product item

Shop owner S-9 Manage product item

Shop owner S-10 Adjust stocking quantity of product items

Shop owner S-11 Create shipping document from sales order

Customer S-12 Create purchase order

Customer S-13 Modify purchase order

Customer S-14 Cancel purchase order

System users S-15 Log in

 116

Appendix B: Example output results
of Jess

This appendix lists the output results of the example shown in 5.3. In the list, f-n is the

identification given by Je Jess. The first list of f-0 to f-16 is the initial contents before

realizing the business-process responsibilities in Figure 5-11. The second list of f-0 to f-18

is the contents that they are realized. One single PRU defined in Figure 5-12 is selected by

the rules in Figure 5-13. This rule adds a new user-requirements responsibility to represent

the responsibility that is instantiated for this realization. It can be noticed that f-8 in the first

list is not shown in the second list. That is, f-8 is missing in the second list. This is because

this responsibility has been realized therefore is removed by the rule shown in Figure 5-14.

We also implemented a rule to notify which responsibility has no PRU for realization. It

outputs a notification (i.e. No PRU found to realize <Fact-18>) as shown in this

example which was formatted in bold and italic style.

Jess, the Rule Engine for the Java Platform
Copyright (C) 2006 Sandia Corporation
Jess Version 7.0p1 12/21/2006

f-0 (MAIN::initial-fact)
f-1 (MAIN::actor (id 0) (project BPMS) (name SalesPerson) (collection-
name SalesPeople) (propertyTypes Department) (propertyNames String))
f-2 (MAIN::actor (id 1) (project BPMS) (name Customer) (collection-name
SalesPeople) (propertyTypes Credit) (propertyNames Money))
f-3 (MAIN::document (id 0) (project BPMS) (name SalesOrder)
(collection-name SalesOrders) (propertyTypes) (propertyNames))
f-4 (MAIN::document (id 1) (project BPMS) (name ItemCatalog)
(collection-name SalesOrders) (propertyTypes) (propertyNames))
f-5 (MAIN::document (id 2) (project BPMS) (name Item) (collection-name
Items) (propertyTypes) (propertyNames))
f-6 (MAIN::document (id 3) (project BPMS) (name ShoppingCart)
(collection-name Items) (propertyTypes) (propertyNames))
f-7 (MAIN::process (id 0) (project BPMS) (name CreateSalesOrder))
f-8 (MAIN::responsibility (id 0) (project BPMS) (name nil) (from-pru
nil) (world BusinessProcesses) (process 0) (task List) (holder
SalesPerson) (receiver nil) (document ItemCatalog) (target-counter -1))
f-9 (MAIN::responsibility (id 1) (project BPMS) (name nil) (from-pru

 117

nil) (world nil) (process 0) (task Select) (holder Customer) (receiver
nil) (document Item) (target-counter -1))
f-10 (MAIN::responsibility (id 2) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Hold) (holder SalesPerson) (receiver
nil) (document ShoppingCart) (target-counter -1))
f-11 (MAIN::responsibility (id 3) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Checkout) (holder Customer) (receiver
nil) (document ShoppingCart) (target-counter -1))
f-12 (MAIN::responsibility (id 4) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Create) (holder SalesPerson) (receiver
nil) (document SalesOrder) (target-counter -1))
f-13 (MAIN::pru (id 0) (world BusinessProcesses) (name pru-0) (source
0) (target-count 1))
f-14 (MAIN::collaboration (pru 0) (sequence 1) (target 1))
f-15 (MAIN::responsibility (id 0) (project nil) (name nil) (from-pru
nil) (world BusinessProcesses) (process nil) (task List) (holder nil)
(receiver nil) (document nil) (target-counter nil))
f-16 (MAIN::responsibility (id 1) (project nil) (name nil) (from-pru
nil) (world UserRequirements) (process nil) (task List) (holder nil)
(receiver nil) (document nil) (target-counter nil))
For a total of 17 facts in module MAIN.
FIRE 1 MAIN::set-target-counter-to-the-unrealized-responsibility f-8, f-
13, f-15, f-14, f-16
<== Activation: MAIN::set-target-counter-to-the-unrealized-
responsibility : f-8, f-13, f-8, f-14, f-16
<== Activation: MAIN::no-pru--for-unrealized-responsibility : f-8
 <=> f-8 (MAIN::responsibility (id 0) (project BPMS) (name nil) (from-pru
nil) (world BusinessProcesses) (process 0) (task List) (holder
SalesPerson) (receiver nil) (document ItemCatalog) (target-counter 1))
 ==> f-17 (MAIN::done-target (source 0) (done))
==> Activation: MAIN::realize-unrealized-responsibility : f-15, f-13, f-
15, f-14, f-16, f-17
==> Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-8,
f-14, f-16, f-17
==> Activation: MAIN::realize-unrealized-responsibility : f-15, f-13, f-
15, f-14, f-16, f-17
==> Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-
15, f-14, f-16, f-17
FIRE 2 MAIN::realize-unrealized-responsibility f-8, f-13, f-8, f-14, f-16,
f-17
 ==> f-18 (MAIN::responsibility (id 101) (project nil) (name nil) (from-
pru 0) (world UserRequirements) (process nil) (task List) (holder nil)
(receiver nil) (document nil) (target-counter -1))
==> Activation: MAIN::no-pru--for-unrealized-responsibility : f-18
<== Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-
15, f-14, f-16, f-17
 <=> f-8 (MAIN::responsibility (id 0) (project BPMS) (name nil) (from-pru
nil) (world BusinessProcesses) (process 0) (task List) (holder
SalesPerson) (receiver nil) (document ItemCatalog) (target-counter 0))
==> Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-
15, f-14, f-16, f-17
==> Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-8,
f-14, f-16, f-17

 118

==> Activation: MAIN::retract-satisfied-responsibility : f-8
<== Activation: MAIN::realize-unrealized-responsibility : f-15, f-13, f-
15, f-14, f-16, f-17
<== Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-8,
f-14, f-16, f-17
<== Activation: MAIN::realize-unrealized-responsibility : f-15, f-13, f-
15, f-14, f-16, f-17
<== Activation: MAIN::realize-unrealized-responsibility : f-8, f-13, f-
15, f-14, f-16, f-17
 <=> f-17 (MAIN::done-target (source 0) (done 1))
FIRE 3 MAIN::retract-satisfied-responsibility f-8
 <== f-8 (MAIN::responsibility (id 0) (project BPMS) (name nil) (from-pru
nil) (world BusinessProcesses) (process 0) (task List) (holder
SalesPerson) (receiver nil) (document ItemCatalog) (target-counter 0))
FIRE 4 MAIN::no-pru--for-unrealized-responsibility f-18
No PRU found to realize <Fact-18>
FIRE 5 MAIN::no-pru--for-unrealized-responsibility f-12
No PRU found to realize <Fact-12>
FIRE 6 MAIN::no-pru--for-unrealized-responsibility f-11
No PRU found to realize <Fact-11>
FIRE 7 MAIN::no-pru--for-unrealized-responsibility f-10
No PRU found to realize <Fact-10>
FIRE 8 MAIN::no-pru--for-unrealized-responsibility f-9
No PRU found to realize <Fact-9>
 <== Focus MAIN
f-0 (MAIN::initial-fact)
f-1 (MAIN::actor (id 0) (project BPMS) (name SalesPerson) (collection-
name SalesPeople) (propertyTypes Department) (propertyNames String))
f-2 (MAIN::actor (id 1) (project BPMS) (name Customer) (collection-name
SalesPeople) (propertyTypes Credit) (propertyNames Money))
f-3 (MAIN::document (id 0) (project BPMS) (name SalesOrder)
(collection-name SalesOrders) (propertyTypes) (propertyNames))
f-4 (MAIN::document (id 1) (project BPMS) (name ItemCatalog)
(collection-name SalesOrders) (propertyTypes) (propertyNames))
f-5 (MAIN::document (id 2) (project BPMS) (name Item) (collection-name
Items) (propertyTypes) (propertyNames))
f-6 (MAIN::document (id 3) (project BPMS) (name ShoppingCart)
(collection-name Items) (propertyTypes) (propertyNames))
f-7 (MAIN::process (id 0) (project BPMS) (name CreateSalesOrder))
f-9 (MAIN::responsibility (id 1) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Select) (holder Customer) (receiver
nil) (document Item) (target-counter -1))
f-10 (MAIN::responsibility (id 2) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Hold) (holder SalesPerson) (receiver
nil) (document ShoppingCart) (target-counter -1))
f-11 (MAIN::responsibility (id 3) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Checkout) (holder Customer) (receiver
nil) (document ShoppingCart) (target-counter -1))
f-12 (MAIN::responsibility (id 4) (project BPMS) (name nil) (from-pru
nil) (world nil) (process 0) (task Create) (holder SalesPerson) (receiver
nil) (document SalesOrder) (target-counter -1))
f-13 (MAIN::pru (id 0) (world BusinessProcesses) (name pru-0) (source
0) (target-count 1))

 119

f-14 (MAIN::collaboration (pru 0) (sequence 1) (target 1))
f-15 (MAIN::responsibility (id 0) (project nil) (name nil) (from-pru
nil) (world BusinessProcesses) (process nil) (task List) (holder nil)
(receiver nil) (document nil) (target-counter nil))
f-16 (MAIN::responsibility (id 1) (project nil) (name nil) (from-pru
nil) (world UserRequirements) (process nil) (task List) (holder nil)
(receiver nil) (document nil) (target-counter nil))
f-17 (MAIN::done-target (source 0) (done 1))
f-18 (MAIN::responsibility (id 101) (project nil) (name nil) (from-pru
0) (world UserRequirements) (process nil) (task List) (holder nil)
(receiver nil) (document nil) (target-counter -1))
For a total of 18 facts in module MAIN.

 120

Appendix C: Examples of PRU Data

C.1 PRUs for business-processes realization

World Task Target Holder Receiver
BusinessProcess RequestCreation
UserRequirements NavigateToCreation TargetSystem
BusinessProcess InformInput
UserRequirements ProvideInput TargetSystem
 ValidateInput TargetSystem
BusinessProcess InformData
UserRequirements DisplayData TargetSystem
BusinessProcess Process
UserRequirements Process TargetSystem
BusinessProcess CreateData
UserRequirements CreateData TargetSystem
 DisplayDataCreationResult TargetSystem
BusinessProcess Send
UserRequirements Send TargetSystem
BusinessProcess GetData
UserRequirements GetData TargetSystem
 DisplayDataGetResult TargetSystem
BusinessProcess RequestUpdate
UserRequirements NavigateToUpdate TargetSystem
BusinessProcess CheckDataStatus
UserRequirements CheckDataStatus TargetSystem
 DisplayDataCheckResult
BusinessProcess ModifyData
UserRequirements ModifyData TargetSystem
 DisplayDataModifyResult TargetSystem
BusinessProcess Ask
UserRequirements Query TargetSystem
 Browse TargetSystem
BusinessProcess Acknowledge

 121

World Task Target Holder Receiver
UserRequirements ProvideInput TargetSystem
 Validate TargetSystem
BusinessProcess Cancel
UserRequirements Cancel TargetSystem
 Display TargetSystem
BusinessProcess Provide
UserRequirements List TargetSystem
 ProvideBrowse TargetSystem
BusinessProcess Agree
UserRequirements Agree TargetSystem
 Mark TargetSystem
BusinessProcess Confirm
UserRequirements ProvideConfirm TargetSystem
 Mark TargetSystem
BusinessProcess Input InventoryStaff
UserRequirements Display TargetSystem
 ProvideInput TargetSystem
 ValidateInput TargetSystem

C.2 PRUs for user-requirements realization

World Task Target Holder Receiver
UserRequirements NavigateToCreation TargetSystem
SoftwareDesign NavigateTo PageController
UserRequirements ProvideInput TargetSystem
SoftwareDesign ProvideInput PageController
UserRequirements ValidateInput TargetSystem
SoftwareDesign ValidateInput PageController
UserRequirements DisplayData TargetSystem
SoftwareDesign DisplayData PageController
UserRequirements Process TargetSystem
SoftwareDesign Service BusinessDelegate
 Process BusinessService
UserRequirements CreateData TargetSystem

 122

World Task Target Holder Receiver
SoftwareDesign ServiceDataCreation BusinessDelegate
 CreateData BusinessService
 StoreData DataAccess
UserRequirements DisplayDataCreationResult TargetSystem
SoftwareDesign DisplayDataCreationResult PageController
UserRequirements Send
SoftwareDesign Service BusinessDelegate
 Send BusinessService
 Retrieve DataAccess
 MailServiceResult BusinessService
UserRequirements GetData TargetSystem
SoftwareDesign ServiceDataGet BusinessDelegate
 GetData BusinessService
 RetrieveData DataAccess
UserRequirements DisplayDataGetResult TargetSystem
SoftwareDesign DisplayDataGetResult PageController
UserRequirements ModifyData TargetSystem
SoftwareDesign ServiceDataModification BusinessDelegate
 ModifyData BusinessService
 UpdateData DataAccess
UserRequirements DisplayDataModificationResult TargetSystem
SoftwareDesign DisplayDataModificationResult PageController
UserRequirements NavigateToUpdate TargetSystem
SoftwareDesign NavigateTo PageController
UserRequirements CheckDataStatus TargetSystem
SoftwareDesign ServiceCheckDataStatus BusinessDelegate
 CheckDataStatus BusinessService
UserRequirements DisplayDataCheckResult TargetSystem
SoftwareDesign DisplayDataCheckResult PageController
UserRequirements Cancel TargetSystem
SoftwareDesign Service BusinessDelegate
 Cancel BusinessService
UserRequirements List TargetSystem
SoftwareDesign List PageController
 Service BusinessDelegate

 123

World Task Target Holder Receiver
 GetData BusinessService
UserRequirements Mark TargetSystem
SoftwareDesign Input PresentationLayer
 Mark BusinessLayer
 Display PresentationLayer

C.3 PRUs for software-design realization

World Task Target Holder Receiver
SoftwareDesign ServiceDataGet BusinessDelegate
ProgramConstruction GetData
 LookupService
SoftwareDesign GetData BusinessService
ProgramConstruction GetData
SoftwareDesign RetrieveData DataAccess
ProgramConstruction CreateDAO
 RetrieveData
 AccessRepository
SoftwareDesign DisplayDataGetResult PageController
ProgramConstruction DisplayDataGetResult JSPTag
SoftwareDesign NavigateTo PageController
ProgramConstruction Link JSPTag
SoftwareDesign ProvideInput PageController
ProgramConstruction ProvideInput JSPTag
SoftwareDesign ValidateInput PageController
ProgramConstruction ValidateInput JSPTag
SoftwareDesign DisplayData PageController
ProgramConstruction DisplayData JSPTag
SoftwareDesign Service BusinessDelegate
ProgramConstruction ExecuteService BusinessDelegate
 LookupService
SoftwareDesign Process BusinessService
ProgramConstruction Process
SoftwareDesign ServiceDataCreation BusinessDelegate

 124

World Task Target Holder Receiver
ProgramConstruction CreateData
 LookupService
SoftwareDesign CreateData BusinessService
ProgramConstruction CreateData
SoftwareDesign StoreData DataAccess
ProgramConstruction CreateDAO
 StoreData
 AccessRepository
SoftwareDesign DisplayDataCreationResult PageController
ProgramConstruction DisplayDataCreationResult JSPTag
SoftwareDesign Service BusinessDelegate
ProgramConstruction SendConfirm
 LookupService
SoftwareDesign Send BusinessService
ProgramConstruction GetDocument
SoftwareDesign SelectData DataAccess
ProgramConstruction CreateDAO
 SelectData
 AccessRepository
SoftwareDesign Send BusinessService
ProgramConstruction GenerateConfirm
 SendConfirm
SoftwareDesign ServiceDataList BusinessDelegate
ProgramConstruction ListData
 LookupService
SoftwareDesign ExecuteListData BusinessService
ProgramConstruction ExecuteListData
SoftwareDesign ListData DataAccess
ProgramConstruction CreateDAO
 RetrieveData
 AccessRepository
SoftwareDesign DisplayDataListResult PageController
ProgramConstruction DisplayDataListResult JSPTag
SoftwareDesign ServiceCheckDataStatus BusinessDelegate
ProgramConstruction CheckDataStatus BusinessDelegate

 125

World Task Target Holder Receiver
 LookupService ServiceLocator
SoftwareDesign ExecuteCheckDataStatus BusinessService
ProgramConstruction ExecuteCheckDataStatus BusinessService
SoftwareDesign DisplayDataCheckResult PageController
ProgramConstruction DisplayDataCheckResult JSPTag
SoftwareDesign ExecuteCancelService BusinessDelegate
ProgramConstruction ExecuteCancelService BusinessDelegate
 LOokupService ServiceLocator
SoftwareDesign ExecuteCancel BusinessService
ProgramConstruction CancelDocument BusinessService
SoftwareDesign List PageController
ProgramConstruction ListDocuments JSPTag
SoftwareDesign ExecuteGetCatalogService BusinessDelegate
ProgramConstruction GetCatalog BusinessDelegate
 LookupService ServiceLocator
SoftwareDesign Get BusinessService
ProgramConstruction GetDocument BusinessService
SoftwareDesign ExecuteMarkService BusinessDelegate
ProgramConstruction AgreePayment BusinessDelegate
 LookupService ServiceLocator
SoftwareDesign Mark BusinessService
ProgramConstruction MarkProperty BusinessService
SoftwareDesign
ProgramConstruction

