
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

動的リコンフィギャラブルプロセッサにおける入出と

演算のオーバーラップを用いたループネストの高速化

に関する研究

Author(s) 荒木, 光一

Citation

Issue Date 2008-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/4295

Rights

Description Supervisor:井口　寧, 情報科学研究科, 修士



Faster Nested loops by Overlapping Input/Output
with Computation for Dynamically Reconfigurable

Processors

Koichi Araki (610004)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 7, 2008

Keywords: Dynamically Reconfigurable Processor, Dynamic Partial

Reconfiguraion, Data Input and Output, Context Reduction.

1 Introduction

Dynamic reconfigurable processors can generate different digital circuits

more than once and reconfigure in a single clock cycle. Our target device
is the Dynamically Reconfigurable Processor (DRP) developed by NEC

electronics. DRP is more suitable than Field Programmable Gate Array
(FPGA) for numerical processing such as stream processing. This is at-
tributed to the DRP processing element (PE) property of including local

ALU. DRP can store sixteen configuration data (called Contexts) locally.
If processing requires more contexts, it must download the extra cotexts

from host memory. The charactiristic of DRP is that it can run dynamic
partial reconfiguration. DRP contains more than one core, each called

Tile. DRP can run dynamic partial reconfiguration, since a Tile can be
dynamically reconfigured independent of other Tiles.

The reconfiguration feature of DRP, allow DRP to generate highly par-
allel circuits to deal with the statements within iterative processing much
faster than generic CPU. Since I/O bit rate of DRP is small, it is not pos-

sible to input a lot of data and output resulting data in a single clock cycle.

Copyright c© 2008 by Koichi Araki

1



As a result, the typical processing flow on DRP consists of three phases.
The first phase is to input the data required for computation possibly in

many clock cycles. The data input to DRP is stored in internal memory
modules distributed inside DRP (VMEM/HMEM). The second phase is to

compute from data stored in VMEM/HMEM, the resulting data is stored
back in VMEM/HMEM. Finally the last phase is to output resulting data
in many clock cycles. If the processing repuires a lot of input data or out-

put data, the execution time of the first phase or third phase occupies most
of the execution time.

For DRP input and output time reduction is an important theme. Our
work is concerned with this topic and also focuses on context reduction.

Since downloading more contexts from host memory occurs during exe-
cution and becomes a bottleneck. Thus for DRP it is very important to

reduce the number of required contexts.

2 Proposed Method

The goal of our work is to reduce input/output time and to reduce the

number of contexts required for processing. To achieve this, our work pro-
poses two contributions. First is to hide input/output time by overlapping
input/output with computation. The second is to reduce the contexts by

creating data-driven configurations.
To overlap input/output with computation, each Tile represents the cir-

cuits for dealing with the statements within the iterative instructions.
These circuits provide low level parallelism on DRP. While a Tile is run-

ning the computation or being reconfigured, other Tiles are running data
input or output. This can conceled the input clock cycles effectively which

reduce the overall number of cycles. DRP contexts can be produced by
partitioning Control Data Flow Graph (CDFG). If split into more than
one smaller CDFG, the operating frequency is increased, but so does the

number of data circuits (contexts). Unfortunately, this would have the
side effect of decreasing the operating frequency back again, since more

contexts downloading would occur.
In each cycle, according to the DRP input bit rate only limited input is

possible. Contexts are generated by splitting CDFG, based on the size of

2



data input. So that each context doesn’t exceed the permitted DRP input
rate. To reduce the overall number of clocks, operating frequency should

be decreased hence conceal the long data input/output durations. This
can effectively speedup DRP typical processing.

3 Evaluation

We measured the context reduction ratio, total execution time and the
number of reduced clock cycles. The enhancement was compared against

typical DRP flow processing as mentioned in Section 1. Generic CPU
(Pentium4 2.80GHz, Memory 1GB) was used for the evaluating execution

time. The compiler used is GNU gcc3.2.2 with optimization option -O3
added.

The first contribution have reduced the number of the clock cycles by

about 50% of typical DRP processing. Our second method have also
reduced the number of contexts up to 50% of typical DRP processing.

Typical DRP processing was already 150% faster than generic CPU. Our
combined system was found 230% faster than generic CPU, in other words,

153% faster than typical DRP processing.

4 Conclusion

Our work foucsed on reducing input/output time and reducing the number

of contexts required for processing. Our work included two contributions.
First concel input/output time by overlapping input/output with compu-

tation. The second reduced the contexts by creating data-driven configu-
rations. Experiments confirmed that our methods succeeded in achieving
our goals. The number of total clock cycles and contexts of typical DRP

processing was reduced by about 50% by our methods.

3


