JAIST Repository

https://dspace.jaist.ac.jp/

Title gobodoooooooboobobouooooo

Author(s) oo, O

Citation

Issue Date 2008-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10109/ 4321
Rights

Description Supervisor: oooo, ooooooo o0

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



A Research of Software Development Environment
with Source Code Compreheision Support.

Satoshi Niikura (110123)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 7, 2008

Keywords: Comprehension Support, Source Code, Filtering,
Development Environment.

1 Introduction

Inprovement in software functions makes the amount of codes larger and
the structure more complex. Sometimes we use a open source for devel-
opment, or employ norvices who are not familier with the code. In those
cases, we have to need read codes written by others. It is difficult that un-
derstanding the structures of source codes. In the worst case, developers
have to read the whole of source codes.

Code comprehension is one of the method for helping those developers.
We define code comprehension supports as functions that extract and show
some parts of codes which should be modified as Previous researchers pro-
vide some tools . Most of them cannot control the amount of information

We propose a comprehension tools for C language code, which consist of
several fine-grained operations called filters. Our tool can provide informa-
tion only developer requires. It is expected that developer decreasing the
cost of sotfware maintenance.

Copyright (© 2008 by Satoshi Niikura



2 Requirment for Source Code Comprehension Sup-
port

Information generally required by developers contains that of structures in
cases such as (1) declaration of variable type, (2) dependency relations We
employ an approach for composition of fine-grained filters.

3 Realization of Filters

A user can extract information by iterative application of (1) filter selection,
(2) filter composition. Nagai proposed a basic set of filters we extend as
following filters:

1. Extract executive part in several control structures
2. Extract a declaration part or executionpart in some semantic block
3. Extract ranges in which a specified variables occurs

4. Extract ranges which are result of tracing effectness of dependency in
assignment statements

5. Extract neibours of specified statement
6. Extract a definition / reference parts for a specified global variable
7. Extract a definition of variable and its type

A user can control the target of extraction by changing parameters which
represents line number or depth tracing dependency. Assume that an as-
signment z=x+y, z is a global valiable. In some case, a user wants know
range of effectness of its valiables, the system gives a filter In other case, a
user wants tracing dependency, the system gives a filter of extraction

The user can extract various kind of infomation by application of se-
quential composition, which mean make a filter output as another input,
and composition defined by logical AND/OR of the results given by each
filters.



4 Implements and Evaluation

We implement filters defined by section 3 as function on AST, which are
the result of syntax/semantic analysis of codes. Our tool consists of the
following three parts: anarisis, extraction, showing part. In anarisis part,
the tool gets a AST by using outside tools. In extraction part, the tool
gets subset of AST by using designed filter. And in the other, the tool
displays sub code corresponding AST.

Users can select operation in (1) setting a filter and its parameters, or (2)
running filter composition. In all operations, the tool keeps these results
as histories brecause of abailables after.

Because of checking effectivity in comprehension support, an experiment
have done by open source software. This is the reasons that it can find
part modified from old version into new by using release note. So, it is
confirmed whether the tool get required informations, by comparing the
range required modification where is extracted from older by the tool with
the range from newer. As the result, the tool has succeed in terms of being
able to extract modified part for another tool being not able, in which find
table of column which register pointer of special function.

5 Conclusion

Source code comprehension support tool has been developed which extract
information required by user with composition by primitive filters. In the
imprements, users can get required informations in less time, by control-
ing activity of filter with parameter and by extracting direct/AND/OR
composition repeatedry.

It finds the tool effective by experiment with open source software. How-
ever, users must try and error with various filters to select filter selection
and composition. There are problems, for example, providing pairs of filter
and its parameters in special cases.



