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Regular Paper

A Second-price Sealed-bid Auction with Public Verifiability

Kazumasa Omote† and Atsuko Miyaji†

A second-price sealed-bid auction is that where a bidder who offers the highest price gets a
good in the second highest price. This style of auction solves the problems of both an English
auction and a first-price sealed-bid auction. An electronic first-price sealed-bid auction cannot
directly be applied to a second-price sealed-bid auction which keeps the highest bid secret. We
propose the verifiable discriminant function of the p0-th root. Our auction scheme satisfies
public verifiability of auction results, and also does not have a single entity who knows the
highest bid value even after an auction. Furthermore the bidding cost of our scheme is lower
than that of the previous one.

1. Introduction

1.1 Background
A sealed-bid auction is that each bidder se-

cretly submits a bid to auction manager (AM)
only once for an auction. Compared with En-
glish auction, a winner is decided more effi-
ciently. In a first-price sealed-bid auction, a bid-
der who offers the highest price gets a good in
the highest price. However, a bidder does not
have the dominant strategy (optimal strategy)
in this auction type, so a winning bid may be
much higher or much lower. There are many
studies on an electronic first-price sealed-bid
auction 2),4),7)∼9),11)∼17). On the other hand, in
a second-price sealed-bid auction, a bidder who
offers the highest price gets a good in the sec-
ond highest price. This style of auction has the
incentive compatibility. The dominant strategy
for each bidder is to place a bid honestly her/his
own true value 18). So it works the competition
principle as well as English auction and a win-
ning bid reflects a market price better than a
first-price sealed-bid auction. In our scheme,
we electronically realize a second-price sealed-
bid auction.
An electronic second-price sealed-bid auction

should satisfy the following properties:
(a) Secrecy of the highest bid: The scheme

should not disclose the exact value of the
highest bid. Furthermore, nobody can
know the information about the highest bid
except that it is placed higher than the sec-
ond highest bid value. This property is de-
sired for secrecy of winner’s bid.

(b) Anonymity of the second highest bid:

† Japan Advanced Institute of Science and Technol-
ogy

Nobody can identify a bidder who places
the second highest bid (Bsec). This prop-
erty is desired because the second highest
bid is opened.

(c) Public verifiability: Anyone can verify
the correctness of an auction.

(d) Secrecy of loosing bids: The scheme
should keep loosing bids secret. This prop-
erty is desired in order to keep loser’s pri-
vacy for the auction managers.

(e) Robustness: Any malicious bid can be de-
tected and removed justly by authorities.

(f) Non-cancelability: A winner cannot
deny that she/he submitted the highest bid
after the winner decision procedure.

It is easy to apply a second-price sealed-bid
auction to a first-price sealed-bid auction. But
a first-price sealed-bid auction cannot directly
be applied to a second-price sealed-bid auction
which keeps the highest bid secret with public
verifiability. This is why we need new tech-
niques for a second-price sealed-bid auction.

1.2 Related Works
We discuss several studies 1),6),12) as a second-

price sealed-bid auction. These schemes set the
bidding points discretely. Reference 12) real-
izes some kinds of sealed-bid auctions using two
auction managers AM1 and AM2, which applies
the oblivious transfer. But this scheme requires
the cut-and-choose technique in order to satisfy
public verifiability. Kikuchi 6) also proposed the
(M+1)st-price sealed-bid auction using the ver-
ifiable secret sharing technique, where the bid-
ding point is represented by the degree of a
polynomial shared by the number of AMs m.
In his scheme, there exist some drawbacks: (1)
this scheme has a undesirable condition that
m is larger than the number of bidding points,
so it is difficult to set many bidding points;
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(2) anyone can anonymously disturb an auction
by submitting an invalid bid. These problems
are solved in our scheme. Abe and Suzuki 1)
proposed the (M+1)st-price sealed-bid auction
using homomorphic encryption and mix and
match technique 5). Their scheme realizes pub-
lic verifiability of a winner and the winning bid.
However, each bidder must compute K+1 zero-
knowledge proofs in bidding, where K is the
number of bidding points.

1.3 Our Result
Our second-price sealed-bid auction scheme

uses two kinds of auction managers (AM1 and
AM2). AM1 treats the bidder registration.
AM2 manages the bidding phase in an auction.
Only the cooperation of both AM1 and AM2
can decide a winning bid, together with a win-
ner. In the bidding phase, each bid can be ver-
ified by AM1 and AM2. In the opening phase,
anyone can verify the auction process and the
results (a winning bid and a winner) by the
techniques of the discriminant function of the
p0-th root, the verifiable w-th power mix, the
verifiable ElGamal decryption, and the verifi-
able decryption mix. Our scheme satisfies the
above properties. Nobody can know the infor-
mation about the highest bid except that it is
placed higher than the second highest bid value,
but anybody can publicly verify the auction re-
sults. There is no single entity who knows the
highest bid value, a bidder Bsec, and loosing bid
values by himself. Furthermore, each bidder
does not have to compute the zero-knowledge
proofs unlike 1). So the computational cost of
bidder is lower.
The remaining of this paper is organized as

follows. Section 2 discusses the effect of a
second-price sealed-bid auction from the view-
points of economics. Section 3 reviews the pre-
vious scheme 1) and describes its drawbacks.
Section 4 describes our protocol in detail. Sec-
tion 5 investigates the features of our scheme.

2. Advantages of a Second-price Sealed-
bid Auction

2.1 Economic Viewpoints
A second-price sealed-bid auction have been

proposed by W. Vickrey, who won the Nobel
Economics Prize in 1961 18). A second-price
sealed-bid auction is that each bidder secretly
submits a bid to Auctioneer only once, and a
bidder who offers the highest price gets a good
in the second highest price. Here we explain
why a second-price sealed-bid auction is so out-

standing by the following example. Three bid-
ders {B1,B2,B3} participate the car, BMW,
auction and their true values for it, which
means the maximum value that each bidder can
spend, are as follows:
• B1’s true value : $66,000;
• B2’s true value : $64,400;
• B3’s true value : $60,900.

If a bidder can buy BMW cheaper than her/his
true value, she/he will make a profit. If she/he
buys BMW higher than her/his true value,
her/his purchase will end in failure. So the true
value means the boundary between losses and
gains for each bidder.
Suppose that they participate in a first-price

sealed-bid auction under the above situation.
Then each bidder will never place her/his true
value since she/he wants to buy BMW as cheap
as possible. In this case, it is often happened
for each bidder to tap other bids in order to
estimate exactly her/his bid since they can buy
it as cheap as possible. If a winning bid is much
higher than the second highest price, a winner
may want to cancel it. Even if a winner bought
a good, she/he will not agree with it.
However, suppose that they participate in a

second-price sealed-bid auction. Then each bid-
der will place her/his true value since she/he
cannot reduce her/his cost for BMW by her/his
bid. Generally, it is said that a bidder has the
dominant strategy in a second-price sealed-bid
auction.
Dominant strategy: The dominant strat-

egy (optimal strategy) means that the best
way for a player exists even if the other
players take any strategy.

So it is useless for each bidder to estimate other
bids. A winner’s bid is decided by other bids.
A winner’s bid value is not a winning bid value
but a datum line to decide a winner. So any
bidder will place her/his true value in a second-
price sealed-bid auction, which has the follow-
ing property of incentive compatibility.
Incentive compatibility: The incentive com-

patibility means that the dominant strat-
egy for each bidder is to place a bid hon-
estly her/his own true value 18).

Each bidder can place a bid through mutual
agreement. As a result, a bidder will not want
to cancel her/his bid. Therefore a second-price
sealed-bid auction is superior to a first-price
sealed-bid auction from the view points of eco-
nomics.
Next we compare a second-price sealed-bid
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auction with an English auction. A winning
bid value in a second-price sealed-bid auction
becomes the second highest true value ($64,400)
as mentioned above. On the other hand, in an
English auction, each bidder places a bid many
times until their true value. As a result, B1 gets
BMW in $64,400+∆ (∆ � 0) since B2 does not
place a bid in more than $64,400. Therefore a
winning bid in a second-price sealed-bid auction
is almost the same value as one in an English
auction. This means that a second-price sealed-
bid auction works the competition principle as
well as an English auction.

2.2 Bidder Privacy
As for privacy of bidder, it is desired that

the correspondence of each bidder to each bid
is not revealed for auction manager(s) (AM).
In a first-price sealed-bid auction, the corre-
spondence of a winner to her/his bid is revealed
for AM. On the other hand, in a second-price
sealed-bid auction, the correspondence of win-
ner to her/his bid is not revealed for AM since
a winning bid is different from the bid that a
winner placed. Therefore a second-price sealed-
bid auction protects the privacy of bidder better
than a first-price sealed-bid auction.

3. Previous Scheme

Here we summarize a previous scheme 1)

which uses homomorphic encryption and mix
and match technique.

3.1 Protocol
There are bidders B1, . . . ,BI , auction man-

ager AM, and the trusted authority TA. The
TA generates a secret key and a public key of
ElGamal cryptosystem that each bidder uses in
the bidding phase. The AM sets the bidding
points {1, . . . ,K}. When a bidder places a bid,
she/he generates a bid vector which conceals
the bid value by ElGamal encryption E. A
bidder must send either E(1) or E(r) as the
element of bid vector. The TA can know any
bidder’s bid value by decrypting the element. In
order to conceal the bid values for the TA, this
scheme may share the secret key among plural
authorities by using a secret sharing technique.
In the opening phase, this scheme uses the

following homomorphic property for each bid-
ding point:

I−b︷ ︸︸ ︷
E(1) · · ·E(1)

b︷ ︸︸ ︷
E(r) · · ·E(r) = E(rb),

where E is an ElGamal encryption and r is
public number. Suppose that I is the num-

ber of bidders and b is the bidding number in
the bidding point k. The mix and much tech-
nique can publicly show whether D∗(E(rλ)) ∈
{1, r, r2, . . . , rI} or not, where D∗ is the ver-
ifiable ElGamal decryption. If D∗(E(rλ)) is
rb, b bidders place a bid in the bidding point
k. The AM finds the highest bidding point so
that D∗(E(rλ)) might be rM+1, where M is
the number of winners. It becomes the second
highest bid (a winning bid value).

3.2 Drawbacks
Since a bidder must send either E(1) or E(r)

as the element of bid vector, each bidder must
compute K+1 zero-knowledge proofs that each
element in bid vector is whether E(1) or E(r).
So the computational cost for a bidder gets
rather large.

4. Our Scheme

4.1 Goals
Our main goals are to realize the following

three requirements in an electronic second-price
sealed-bid auction, where Bsec is a bidder who
places the second highest bid:
( 1 ) The highest bid value are not disclosed

for any entity;
( 2 ) Anonymity of Bsec is satisfied for any en-

tity;
( 3 ) Anyone can publicly verify the auction

process and results.
The first goal is desired even after winner’s deci-
sion in order to satisfy a privacy of winner. Our
scheme does not disclose the highest bid value
as well as the partial range that the highest bid
is placed for any entity including both auction
managers (AM1 and AM2). The second goal
is important because Bsec’s bid is revealed as a
winning bid. Our scheme realizes anonymity of
Bsec without an anonymous channel. The cor-
respondence of each bid to each bidder is also
kept secret unless both AM1 and AM2 collude.
The third goal ((c) Public verifiability) is im-
portant because our scheme secretly computes
the auction results.
Furthermore, in our scheme, each bidder does

not have to compute the zero-knowledge proofs
unlike 1). To reduce the computational cost of
bidder is one of our goals.

4.2 Authorities
Our scheme uses two kinds of auction man-

agers (AM1 and AM2) in order to eliminate a
strong single authority. The role of each auc-
tion managers is as follows:
• AM1:



2408 IPSJ Journal Aug. 2002

– treats the bidder registration;
– publicly computes the winning bid, de-

cides a winner, and show the validity of
the results;

– manages AM1’s bulletin board system
(BBS) which publishes a list of public
keys and shows the validity of the re-
sults.

• AM2:
– manages the bidding phase;
– verifies a bid information;
– publicly multiplies each element in all

bid vectors;
– manages AM2’s BBS which publishes

the computing process of bids.
4.3 Notations
Notations are defined as follows:
I : the number of bidders;
i : the index of bidders;
Bi : a bidder i (i = 1, . . . , I);
Bsec : a bidder who places the second

highest bid;
Vi : a bid vector of bidder i;
p0, p1 : small primes but greater in bit

size than number of bidders, I
(e.g., 100 bit);

p, q, p′, q′ : large primes (p = 2p0p′ + 1,
q = 2p1q′+1) which are secret
except for the AM1;

n : n = pq;
g : g ∈R Zn whose order is

ord(g) = 2p0p′p1q′ and has
neither p0-th nor p1-th root;

k : the index of bidding points
(k = 1, . . . ,K);

t
(0)
i,k , t

(1)
i,k : Bi’s secret random numbers

generated by the AM1;
xi : Bi’s private key;
yi : Bi’s public key (yi = gxi %n);
s, w : AM2’s private keys (w is rela-

tively prime to p0: gcd(w, p0)
= 1);

Y : AM2’s public key (Y = gs

mod n) that has neither p0-th
nor p1-th root;

sigkey() : a signature by key;
Ey() : ElGamal encryption with pub-

lic key g and y = gx such as
Ey(m) = (G = gr,M = myr);

D∗() : verifiable ElGamal decryption
M() : the discriminant function of

the p0-th root, where M(y) is

1 or 0 whether y has the p0-
th root in Zn or not, which
can be computed only by the
AM1.

4.4 Building Blocks
The ElGamal public-key cryptosystem over

Zn is as secure as the Diffie-Hellman scheme
described in 10). In this scheme, we summarize
some proofs of knowledge 3) and their applica-
tions over Zn.

Proof of knowledge
We present three kinds of signatures based on

a proof of knowledge.
• SPK[(α) : y1 = gα

1 ∧ y2 = gα
2 ](m): the

proof of the equality of two discrete loga-
rithms.

• SPK[(α, β) : y1 = gα
1 ∨ y2 = gβ

2 ](m): the
proof of the knowledge of one out of two
discrete logarithms.

• SPK[(α, β) : (y1 = gα
1 ∧ y3 = gα

3 ) ∨ (y2 =
gβ
2 ∧ y3 = gβ

3 )](m): the proof of the knowl-
edge of one out of two discrete logarithms,
which is equal to another discrete logarithm
of y3 to the base g3. This SPK is given by
combining above two SPKs.

The verifiable p0-th root
Lemma 1 For n = pq (p = 2p′p0 + 1, q =

2q′ + 1, p′, q′, p0 : different primes > 2), z ∈
Zn has the p0-th root if and only if z2p′q′

=
1 (mod n).
Proof. If z has the p0-th root, there exists
x such that z = xp0 . Therefore, z2p′q′

=
x2p′p0q′

= 1 (mod n). Conversely, we can set
z = xr (r ∈ Zn) that order of x is 2p′p0q′.
If z2p′q′

= 1 (mod n), then z2p′q′
= x2p′q′r =

1 (mod n). So r = r′p0 is necessary (∃r′ ∈
Zn). Therefore, z = xr = xr′p0 (mod n), see,
z has the p0-th root.
M(z) can be computed by only the knowledge

of p′ and q′. Therefore an authority who knows
order of g can publicly prove that z has the
p0-th root by showing

SPK[(α) : zα = 1∧(gp0)α = 1∧gα = r](m),
for a random number r �= 1. Also, such an
authority can publicly prove that z does not
have the p0-th root by showing

SPK[(α) : zα = r ∧ (gp0)α = 1](m),
for random numbers r �= 1. The above two
SPKs mean that α is 2p′q′. Checking whether
z has the p0-th root or not satisfies public ver-
ifiability.

Verifiable w-th power mix
A pair of (c, C = cw) is published, where w is



Vol. 43 No. 8 A Second-price Sealed-bid Auction 2409

secret. Let (a, b) and (A,B) be input and out-
put of the verifiable w-th power mix, respec-
tively, where A = aw and B = bw (A �= B).
We hide the correspondence of an input to the
output, but can show the validity of secret mix
by proving the equality of three discrete loga-
rithms of A,B and C. The proof is given by
showing

SPK[(α) : (A = aα ∧B = bα ∧ C = cα)
∨(A = bα ∧B = aα ∧ C = cα)](m).

Verifiable ElGamal decryption
We can prove that m =M/Gs is the decryp-

tion of EY (m) = (G,M) without revealing s by
showing

SPK[(α) :M/m = Gα ∧ Y = gα](m).
Verifiable decryption mix
Let (EY (a), EY (b)) and (a, b) be input and

output of the verifiable decryption mix, respec-
tively, where EY (a) = (Ga,Ma) and EY (b) =
(Gb,Mb). We hide the correspondence of an in-
put to the output, but can show the validity of
secret mix. The proof is given by showing

SPK[(α) : (Ma/a = Ga
α ∧Mb/b = Gb

α

∧Y = gα) ∨ (Ma/b = Ga
α

∧Mb/a = Gb
α ∧ Y = gα)](m).

4.5 Procedure
[Initialization:]
The AM1 selects g, p0, p1, p′, q′, p and q, com-

putes a product n = pq, and then publishes
(g, p0, p1, n) but keeps (p′, q′, p, q) secret. The
AM1 also sets the number K of bidding points
for a good. The AM2 computes Y = gs (mod
n) and publishes Y . Note that s is AM2’s secret
and that both gcd(s, p0) = 1 and gcd(s, p1) = 1
hold. The AM1 checks that Y has neither the
p0-th nor p1-th root and that order of Y is
2p0p′p1q′.

[Bidder registration:]
When Alice (Bi) participates an auction, she

sends her public key yi with the signature
sigxi

(yi) to the AM1 as a bidder registration.
After the AM1 receives her values, he publishes
her public key yi.

[Auction preparation:]
The AM1 chooses her values t(0)i,1 , . . . , t

(0)
i,K , t

(1)
i,1 ,

. . . t
(1)
i,K ∈ Zn, all of which have the p0-th root,

and then secretly sends {t(0)i,k ·gp0} and {t(1)i,k ·gp1}
to Bi. The AM1 shuffles two values in every
bidding point:(

H(t(0)i,1 · gp0),H(t(1)i,1 · gp1)
)
,

. . . ,
(
H(t(0)i,K · gp0),H(t(1)i,K · gp1)

)
,

for i = 1, . . . , I, and places them into AM1’s
public database. By checking AM1’s public
database, Bi can confirm whether her values
t
(0)
i,1 ·gp0 , . . . , t

(0)
i,K ·gp0 , t

(1)
i,1 ·gp1 , . . . , t

(1)
i,K ·gp1 are

exactly registered. We assume that: nobody
except the AM1 knows the correspondence of a
bidder to her/his two values; anybody can re-
fer to the data in his public database; but that
only the AM1 can alter them.

[Bidding:]
When Alice places a bid at a bidding point

ki ∈ {1, . . . ,K}, she generates her bid vector
Vi as follows:

Vi = [EY (vi,K), . . . , EY (vi,1)] ,
where

vi,k =

{
t
(1)
i,k · gp1 (mod n) (k = ki),
t
(0)
i,k · gp0 (mod n) (k �= ki).

She sends Vi to the AM2. Note that
she also sends her reverse bid vector V′

i =[
EY (v′i,K), . . . , EY (v′i,1)

]
, see, if vi,k = t

(0)
i,k ·gp0 ,

then v′i,k = t
(1)
i,k · gp1 .

[Checking a bid vector:]
The validity of Vi is checked as follows: (1)

The AM2 decrypts {EY (vi,k), EY (v′i,k)} by us-
ing the verifiable decryption mix; (2) The AM2
computes both H(vi,k) and H(v′i,k) and checks
whether or not both values exist in AM1’s pub-
lic database; (3) The AM2 computes

Γ1i =
1
gp1

D∗
(

K∏
k=1

EY (vi,k)

)
,

and

Γ2i =
1

gKp1

K∏
k=1

vi,kv
′
i,k (i = 1, . . . , I)

by using the verifiable decryption D∗; (4) The
AM1 publicly shows that both Γ1i and Γ2i have
the p0-th root. Thanks to this confirmation,
any malicious bid vector can be detected by the
cooperation of AM1 and AM2. Note that the
AM2 does not know whether vi,k and v′i,k have
the p0-th root or not.

[Opening a winning bid:]
First, a winning bid is decided, then a winner

is decided by the cooperation of both AM1 and
AM2.

Step 1 The AM2 publicly computes the fol-
lowing values for Bi:
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EY (zi,K), EY (zi,K−1), . . . , EY (zi,1)
= EY (vi,K), EY (vi,Kvi,K−1),

. . . , EY

(
K∏

k=1

vi,k

)
.

for i = 1, . . . , I, and then puts them in
AM2’s BBS.

Step 2 The AM2 publicly computes the fol-
lowing two kinds of values by multiplying
EY (zi,k) of all bidders for a bidding point
k,

EY (Zk) =
I∏

i=1

EY (zi,k)

=

(
gR,

(
I∏

i=1

zi,k

)
· Y R

)
= (Gk,Mk),

EY (Z ′
k) =

(
gR,

1
gp1

(
I∏

i=1

zi,k

)
· Y R

)
= (Gk,M

′
k) k ∈ {1, . . . ,K},

where R is the sum of all bidder’s random
numbers in ElGamal encryption.

Step 3 The AM2 mixes (EY (Zk), EY (Z ′
k))

into ((EY (Zk))w, (EY (Z ′
k))

w) using w rela-
tively prime to p0 and the technique of the
verifiable w-th power mix, and then pub-
lishes the following values:

(EY (Zk))w = EY (Zk
w) = (Gk

w,Mk
w),

(EY (Z ′
k))

w = EY (Z ′
k

w) = (Gk
w,M ′

k
w).

The AM1 can publicly show that w is rel-
atively prime to p0 by using the verifiable
p0-th root technique in 4.4.

Step 4 The AM2 decrypts EY (Zk
w) and

EY (Z ′
k

w) into Xk = Zk
w and Yk = Z ′

k
w

using the technique of the verifiable decryp-
tion, and publishes (Xk,Yk).

Step 5 The AM1 computes M(Xk)
and M(Yk), and publishes a tuple of
(Xk,Yk,M(Xk), M(Yk)). A winning bid
value is given by the highest bidding point
with both M(Xk) = 0 and M(Yk) = 0.

Since the values {t(0)i,k , t
(1)
i,k} have the p0-th

root, g has neither p0-th nor p1-th root, and
gcd(w, p0) = 1 holds, the following three cases
are occurred for the values of M(Xk) and
M(Yk) in Fig. 1:
( 1 ) If no bidder places a bid equal to or

higher than the bidding point k, then
(M(Xk), M(Yk)) = (1, 0).

B
id

di
ng

 P
oi

nt
s

8     1    1    1    1    1        (1,0)
7     1    1    1    0    1        (0,1)
6     1    1    1    0    1        (0,1)
5     1    0    1    0    1        (0,0)
4     0    0    1    0    1        (0,0)
3     0    0    0    0    0        (0,0)
2     0    0    0    0    0        (0,0)
1     0    0    0    0    0        (0,0)

B1   B2   B3   B4   B5
Bidder

(M(Xk), M(Yk))

1 : if z has the p0-th root
0 : otherwise

Fig. 1 Opening example.

( 2 ) If only one bidder places a bid equal to
or higher than the bidding point k, then
(M(Xk), M(Yk)) = (0, 1).

( 3 ) If more than two bidders place a bid
equal to or higher than the bidding point
k, then (M(Xk), M(Yk)) = (0, 0).

Note that we cannot distinguish between case 1
and case 2 because the AM2 uses the technique
of the verifiable w-th power mix for Xk and Yk.
Public verifiability of a winning bid: The

AM1 may rig a winning bid because only
the AM1 computes M(Xk) and M(Yk). In
order to avoid rigging, the AM1 shows the
following SPK:

SPK[(α) : Xα
k = r1 ∧ Yα

k = r2
∧Xα

k+1 = r3 ∧ Yα
k+1 = 1](m)

for given random numbers r1, r2 and
r3 (r1, r2, r3 �= 1). This SPK means that
only Yk+1 has the p0-th root.

Furthermore, the cost of opening bids is
O(logK) by adopting the technique introduced
in 4), 6): (1) For a set of bidding points
{1, . . . ,K}, set k1 = 1, k2 = K and k′ =
�k1+k2

2 �; (2) If k′ = k1 or k′ = k2, then out-
put k2 as the second highest bid value; (3) If
M(Xk′) = 0 and M(Yk′) = 0, then set k1 = k′

and k′ = �k2+k′
2 �, and go to (2). Otherwise set

k2 = k′ and k′ = �k1+k′
2 �, and go to (2).

[Winner decision:]
After a winning bid value k (the second high-

est bid) is decided, the AM2 decrypts all the
values vi,k+1 (i = 1, . . . , I) using the technique
of the verifiable decryption. Anyone can con-
firm whether or not these values vi,k+1 (i =
1, . . . , I) exist in AM1’s BBS.
Public verifiability of a winner: In order

to decide a winner Bj , the AM1 shows the
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following SPK:
SPK[(α) : (gp0)α = 1 ∧ (vj,k+1)

α = r1](m)
for given random number r1 (r1 �= 1). This
SPK means that vj,k+1 does not have the
p0-th root. A winner Bj ’s bid is never re-
vealed. If no bidder places a bidding point
k + 1, more than two winners place a bid
at the bidding point k. This means that a
winning bid is also k. The AM1 shows the
following SPK:

SPK[(α) : gα = r2 ∧ (v1,k+1)α = 1
∧ · · · ∧ (vI,k+1)α = 1](m)

for given random number r2 (r2 �= 1). This
SPK means that all values vi,k+1 (i =
1, . . . , I) have the p0-th root. Note that g
does not have the p0-th root.

5. Consideration

5.1 Features
We discuss the following properties in our

protocol.
(a) Secrecy of the highest bid: Our scheme

keeps the highest bid secret unless both the
AMs collude. Nobody can know the infor-
mation about the highest bid except that
it is placed higher than the second highest
bid value. Each element vi,k (zi,k) has in-
formation about whether it has the p0-th
root or not. So only AM1 who knows the
products of n realizes the bid values from
the values vi,k (zi,k). However, such a bid
value is encrypted by ElGamal encryption
of AM2, and the values vi,k (zi,k) them-
selves are never revealed in the auction pro-
cedure. Therefore, AM1 cannot know bid
values as long as the ElGamal encryption
is secure. Also, AM2 cannot realize bid
values because she/he does not know the
products of n, even if AM2 knows the val-
ues vi,k (zi,k). By applying the verifiable
w-th power mix to step 3 of the opening
phase, the highest bid value can be hidden.
Since the AM1 can publicly show that w is
relatively prime to p0, the highest bid value
remains correct.

(b) Anonymity of the second highest bid:
Unless both of the AMs collude, nobody
can identify the bidder Bsec even if an
anonymous channel is not used. Since all
bid vectors are multiplied together before
the opening phase, the bidder Bsec is never
disclosed. If all bid values are disclosed in
the bidding phase, the bidder Bsec is eas-
ily decided. As described in (a), each bid

value is protected by both hardness of the
discriminant of the p0-th root and the El-
Gamal encryption. So the identity of Bsec

can be protected without using an anony-
mous channel.

(c) Public verifiability: Anyone can publicly
verify the correctness of an auction. An
auction uses some tools based on the proof
of knowledge in order to satisfy public ver-
ifiability. As long as the proofs of knowl-
edge are secure, an auction process can be
collect. In checking a bid vector, any ma-
licious bid is removed. So a winning bid
is decided using only valid bid vectors. By
using the technique of verifiable p0-th root
in Step 5 of the opening phase, we can pub-
licly show that a winning bid is valid as well
as a winner in an auction.

(d) Secrecy of loosing bids: Our scheme
keeps loosing bids secret unless both of
AMs collude. This feature can be discussed
similar to (a).

(e) Robustness: Any malicious bid vector
can be detected by AM1 and AM2. Unless
a bidder uses the valid vi,k and v′i,k, any-
body notices that H(vi,k) or H(v′i,k) does
not exist in AM1’s database. Also, unless a
bidder generates the valid Vi, the AM1 no-
tices that Γ1i and Γ2i do not have the p0-th
root after the AM2 computes them. So no
bidder can disturb the auction system by
the malicious bid.

(f) Non-cancelability: A winner cannot
deny that she/he has submitted the highest
bid after the winner decision procedure as
long as both (c) and (e) are satisfied. Since
the AM1 publicly shows the SPK(s) for
the winner decision, a winner is certainly
identified.

(g) Two independent AM’s powers: Our
scheme is based on both RSA and ElGa-
mal cryptosystems. Only the AM1 knows
the prime factors of n, while only the AM2
knows the secret key of ElGamal encryp-
tion. Thanks to separation of two kinds of
the cryptosystems, neither AM1 nor AM2
knows the highest bid value, a bidder Bsec,
and loosing bid values.

5.2 Efficiency
We compare our scheme with the previous

scheme 1) from the viewpoints of the communi-
cational and computational costs in Table 1, 2
and 3. Here let the number of bidding points
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Table 1 The communicational costs.

A bidder (B) AM
Bidding Preparation Opening × Round #AM

[AS02] O(K) – O(1)× �logK� 2
Ours O(K) O(IK) O(1)× �logK� 2

Table 2 The computational costs (bidder).

#Enc #Proof
[AS02] K K + 1
Ours 2K –

Table 3 The computational costs (AM).

#Enc #Proof #Multiplication Bid check #Dec
[AS02] – – IK + I�logK� O(IK) 2�logK�+ I
Ours IK I(K + 1) 2(IK + I�logK�) O(I) 2�logK�+ 2I(K + 1)

and bidders be K and I, respectively.
Table 1 shows the communicational amount

of bidding and between the AMs. In both 1)
and our scheme, only �logK� rounds of com-
munication are required in the opening phase
because of binary search. In the auction prepa-
ration of our scheme, the AM1 must send K
ElGamal encryption data to each bidder.

Table 2 and 3 show the computational com-
plexity. In 1), each bidder requires the K + 1
proofs to avoid the malicious bidding. Such a
proof has the large computational amount be-
cause it needs both 2-out-of-2 mix and two ver-
ifiable decryptions. In our scheme, each bid-
der does not need to make such proofs, but the
AM2 generates K + 1 proofs for I bidders. In
1), the AM needs the bid checking of the cost
O(IK) in order to verify the proofs. In our
scheme, the AM2 needs the bid checking of the
cost only O(I) because it uses the sum of all
bid vectors. The AM1 needs IK ElGamal en-
cryptions for an auction preparation. As for the
number of decryption, our scheme requires 2IK
times in generating proofs, I times in the bid
checking, 2�logK� times in the opening phase,
and I times in the winner decision phase.
If 1) applies the secret sharing technique for

the sake of the TA distribution, both com-
municational and computational costs becomes
larger.

6. Conclusion

We have proposed an electronic second-price
sealed-bid auction which mainly satisfies (a) Se-
crecy of the highest bid, (b) Anonymity of the
second-price bid, (c) Public verifiability, and (g)
Two independent AM’s powers. In our scheme,
there is no single entity who knows the highest

bid value, a bidder Bsec, and loosing bid values.
Also, each bidder does not have to compute the
zero-knowledge proofs, but the AM computes
such proofs. So the computational cost of bid-
der is lower.
Our scheme may be expanded into the

(M+1)st-price sealed-bid auction scheme by
modifying our protocol, but we do not consider
it here.
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