
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Efficient Construction of Elliptic Curves over

Optimal Extension Field

Author(s) Futa, Yuichi; Miyaji, Atsuko

Citation 情報処理学会論文誌, 41(8): 2092-2101

Issue Date 2000-08

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4384

Rights

社団法人　情報処理学会, Yuichi Futa／Atsuko

Miyaji, 情報処理学会論文誌, 41(8), 2000, 2092-

2101.　ここに掲載した著作物の利用に関する注意: 本

著作物の著作権は（社）情報処理学会に帰属します。

本著作物は著作権者である情報処理学会の許可のもと

に掲載するものです。ご利用に当たっては「著作権法

」ならびに「情報処理学会倫理綱領」に従うことをお

願いいたします。 Notice for the use of this

material: The copyright of this material is

retained by the Information Processing Society of

Japan (IPSJ). This material is published on this

web site with the agreement of the author (s) and

the IPSJ. Please be complied with Copyright Law

of Japan and the Code of Ethics of the IPSJ if

any users wish to reproduce, make derivative

work, distribute or make available to the public

any part or whole thereof. All Rights Reserved,

Copyright (C) Information Processing Society of

Japan.

Description

Vol. 41 No. 8 IPSJ Journal Aug. 2000

Regular Paper

Efficient Construction of Elliptic Curves over Optimal Extension Field

Yuichi Futa† and Atsuko Miyaji††

Recently, Bailey and Paar proposed the Optimal Extension Field (OEF) which is defined
over a base field with a computer’s word size. Since the arithmetic in an OEF is relatively
faster than that in F 2n , elliptic curves over an OEF would be more attractive when applied
to a smart card, a personal computer, etc. However the definition of an OEF is rather strict
since it is based on a general condition sufficient for fast arithmetic. In this paper, we extend
the definition of an OEF such that it includes more extension fields with efficient arithmetic.
Furthermore we construct elliptic curves over an OEF including our extended OEF efficiently
by applying the SEA algorithm. Our implementation can count order of elliptic curves over
155-bit extended OEF and 160-bit OEF in 10.1 and 11.6 seconds on average on PentiumII
400MHz (Linux-2.2.5), respectively.

1. Introduction

Koblitz15) and Miller20) proposed a method
by which public key cryptosystems can be con-
structed on a group of points of an ellip-
tic curve over a finite field instead of a fi-
nite field. If elliptic curve cryptosystems sat-
isfy MOV-conditions13),19) and avoid p-divisible
elliptic curves over F pr

26),29),31), then the
only known attacks that are possible are the
Pollard ρ-method24) and the Pohlig-Hellman
method23). Hence with current knowledge,
we can construct elliptic curve cryptosystems
over a smaller definition field than the discrete-
logarithm-problem (DLP)-based cryptosystems
like the ElGamal cryptosystems7) or the DSA8)

and RSA cryptosystems25). Elliptic curve cryp-
tosystems with a 160-bit key are thus be-
lieved to have the same security as both the
ElGamal cryptosystems and RSA with a 1,024-
bit key. This is why elliptic curve cryptosys-
tems have been discussed in ISO/IEC CD
14888-3, ISO/IEC DIS 11770-3, ANSI ASC
X.9, X.9.62, and IEEE P136313).

All known attacks can be avoided only by
choosing elliptic curves with appropriate or-
der10),19),23),26),29),31). Therefore, order count-
ing of elliptic curves is the main important fac-
tor for elliptic curve cryptosystems. Schoof pro-
posed an order counting algorithm which runs
in time polynomial27). Although it is not so
efficient, Elkies and Atkin improve Schoof’s al-
gorithm in time O(log6 p), which is collectively

† Matsushita Electric Industrial Co., Ltd.
†† Japan Advanced Institute of Science and Technol-

ogy

called the SEA algorithm. Some results using
the SEA algorithm are reported by Couveigne
and Morain in the case of F p, and Lercier in
the case of F 2n .

Recently, Bailey and Paar proposed the Op-
timal Extension Field (OEF) which is defined
over a base field with a computer’s word size.
Since the arithmetic in an OEF is relatively
faster than that in F 2n , elliptic curves over an
OEF would be more attractive when applied to
a smart card, a personal computer, etc. How-
ever the definition of an OEF is rather strict
since it is based on a general condition suffi-
cient for fast arithmetic. In fact some extension
fields with fast arithmetic are excluded from an
OEF.

As for construction methods of elliptic curves,
there are three typical methods: the lift-
ing method30), Complex Multiplication (CM)
method1) and the order counting method. The
lifting method constructs elliptic curves over
E/F pn by lifting elliptic curves E/F p, there-
fore it can be implemented fast, and exponen-
tiation can also be implemented fast by using
the Frobenius map. However, in the case of
an OEF, a rather large degree n is necessary
since #E(F pn) is divisible by #E(F p), which
increases the amount of computation for elliptic
curve exponentiation. On the other hand, the
CM method is also not suitable for construction
of elliptic curves over an OEF since the defi-
nition field F pn is fixed. Therefore the order
counting method is the most suitable for con-
structing elliptic curves over an OEF, because
the method is aimed at searching elliptic curves
over a fixed field, and does not need the larger
extension degree. However it has not been re-

2092

Vol. 41 No. 8 Efficient Construction of Elliptic Curves over Optimal Extension Field 2093

ported to construct elliptic curves over an OEF.
In this paper, we extend the definition of an

OEF in such a way that it includes more exten-
sion fields with fast arithmetic. We also pro-
pose an inversion algorithm suitable for our ex-
tended OEF and implement arithmetic in our
extended OEF. Furthermore, we apply the SEA
algorithm to elliptic curves over an OEF includ-
ing our extended OEF. We discuss efficiency
of an OEF in SEA and estimate the amount
of computation for the most dominant step of
the SEA algorithm over OEFs. We also im-
plement the SEA algorithm over OEFs (Pen-
tiumII 400 MHz, Linux-2.2.5 and Alpha21164A
600 MHz, Linux-2.2.1). The average running
times for order counting of an elliptic curve over
a 155-bit extended OEF and 160-bit OEF are
10.1 and 11.6 seconds on PentiumII 400 MHz
(Linux-2.2.5), respectively.

This paper is organized as follows. Section 2
summarizes the known results of OEFs, ellip-
tic curves and the SEA algorithm. Section 3
describes how the definition of an OEF is ex-
tended. Section 4 presents a new inversion al-
gorithm suitable for our extended OEF. Sec-
tion 5 presents implementation results of arith-
metic in our extended OEF and compares the
original OEF with our extended OEF. Section 6
describes the SEA algorithm over OEFs. Sec-
tion 7 presents implementation results of the
SEA algorithm over OEFs.

2. Known Results

2.1 Optimal Extension Field
In this section, we present a summary of the

Optimal Extension Field (OEF)2). OEF is an
extension field F q (q = pn) that satisfies the
following conditions:
OEF 1 |p| is at most a computer’s word size,
where |p| is the size of p.
OEF 2 p = 2m± c, where c is smaller than half
of computer’s word size.
OEF 3 The generator polynomial is a binomial
G(x) = xn − ω.

The arithmetic in OEF is usually done by
polynomial basis, where F pn is identified by
F p[α]/G(α). OEF 1 makes arithmetic in the
extension field F q efficient since arithmetic of
F p is done more efficiently. OEF 2 and OEF 3
reduce the computation time for modular re-
ductions in F p and in F q, respectively. The
computation time for the inversion in OEF F p3

is 1I and 12M, where I(M) is the computa-
tion time for an inversion (a multiplication) in

F p
14).

2.2 Elliptic Curves
Here we set an elliptic curve E/F q(q = pn,

p ≥ 5),
E : y2 = x3 + ax + b (a, b ∈ F q), (1)

where 4a3+27b2 �= 030). The F q-rational points
are denoted by E(F q),

E(F q) = {(x, y) ∈ F q × F q|
y2 = x3 + ax + b} ∪ {O}. (2)

The j-invariant j of E is given by j = 1728 ·
4a3/(4a3 + 27b2).

Definition 1
(qth-power Frobenius map 30)) The qth-

power Frobenius map φq is defined

φq : E(F q) � (x, y) �→ (xq, yq) ∈ E(F q),
(3)

where F q is an algebraic closure of F q.
As for the number of rational points, the fol-
lowing Hasse’s theorem holds.

Theorem 1 (Hasse 30)) Let E be an el-
liptic curve over F q. Then, #E(F q) satisfies
|t = q + 1−#E(F q)| ≤ 2

√
q, (4)

where t is the trace of φq.
From Eq. (4), counting #E(F q) is equivalent
to computing the trace t. The Frobenius map
satisfies the following characteristic equation,

φ2
q − tφq + q = 0. (5)

Here we denote a subgroup of l-torsion points
by E[l]. The division polynomial fl(X), which
is used in computing multiplication by l of a
point on the elliptic curve E, is also important
for the SEA algorithm. Here we define the di-
vision polynomial.
Division polynomial 27)

f2n(X) = fn(fn+2f
2
n−1 − fn−2f

2
n+1)/2

f2n+1(X) ={
fn+2f

3
n−f(X)2f3

n+1fn−1 (n : odd)
f(X)2fn+2f

3
n−f3

n+1fn−1 (n : even)
f−1(X) = −1, f0(X) = 0, f1(X) = 1,
f2(X) = 2,
f3(X) = 3X4 + 6aX2 + 12bX − a2,

f4(X) = 4(X6 + 5aX4 + 20bX3 − 5a2X2

− 4abX − 8b2 − a3), (6)
where f(X) = X3 + aX + b.

The condition of P ∈ E[l] is simply repre-
sented by using the division polynomial,

E[l] � P = (x, y)⇔ fl(x) = 0. (7)
2.3 Schoof’s Algorithm
In this section, we summarize Schoof’s algo-

2094 IPSJ Journal Aug. 2000

rithm briefly27). From Eq. (5), any l-torsion
point P (l: prime) satisfies the following equa-
tion,

(φ2
q + q)P = tφqP, (8)

for 0 ≤ ∃t ≤ l − 1. This means that we
can compute t (mod l) by restricting (5) to
E[l]. Therefore, we first compute t mod l for∏

l≥2 l > 4
√

q, next combine these values by
the Chinese Remainder Theorem, and finally
determine the exact value of t.

In order to compute (8), Schoof’s algorithm
uses the division polynomial (6). Therefore,
the computation time of finding t mod l is
O(l5 log2 q) for each l. In total, the computa-
tion time of Schoof’s algorithm is O(log8 q).

2.4 SEA Algorithm
Here we summarize an improvement of

Schoof’s algorithm by Elkies and Atkin. Elkies
uses a factor of fl(X) in order to find t mod l
when the eigenvalue of φq is in Z/lZ9). Com-
pared with the degree of fl(X), (l2 − 1)/2,
the degree of a factor is bounded to at most
(l − 1)/2. Therefore the computation time
of finding t mod l is O(l3 log2 q) for each l.
Atkin improves by restricting t mod l in sev-
eral values28). The computation time is also
O(l3 log2 q) for each l. Furthermore Cou-
veigne and Morain introduce the isogeny cycle
method6).

All such improvements are incorporated to-
gether in the SEA algorithm. The total com-
putation time is O(log6 q). The dominant steps
of the SEA algorithm are as follows.
Polynomial exponentiation Xq 　　　　

Elkies’ algorithm first factorizes the mod-
ular equation Φl(X) over F q to judge
whether the eigenvalue of φq is in Z/lZ or
not, which is done quickly21),28). Then, it
is needed to compute the polynomial expo-
nentiation Xq mod Φl(X). Furthermore,
Xq mod gl(X) must also be determined,
where gl(X) is a factor of fl(X).

Elliptic curve exponentiation 　　　　　
Atkin’s algorithm finds candidates of t
(mod l), but not the exact value of t
(mod l). Therefore, in the final stage the
exact value of t (mod

∏
l) must be deter-

mined from the candidates. It is deter-
mined only through elliptic curve exponen-
tiations, which is called the match and sort
algorithm16).

The polynomial exponentiation is the main
dominant step in the SEA algorithm.

3. Extended OEF

In this section, we investigate how an OEF
can be extended. In a sense the definition of
an OEF is rather strict since arithmetic in an
OEF is the most efficient as we have seen in Sec-
tion 2.1. For example, a field F p5 (p = 231− 1)
does not satisfy the conditions required to be
an OEF since a binomial generator polynomial
does not exist. Obviously a field F p5 can offer
the most efficient arithmetic in a 32-bit CPU of
roughly 160-bit fields. Therefore it is meaning-
ful to extend the definition of an OEF when the
increase in cost for an arithmetic is negligible.

3.1 OEF Conditions
We compare the arithmetic under two con-

ditions OEF 2 and OEF 3. The computation
amount of arithmetic in an OEF is mainly de-
termined by OEF 2. So we leave the condition
OEF 2 unchanged, and extend the definition of
an OEF as follows:
EXOEF 3 The generator polynomial is a bino-
mial or a trinomial G(x) = xn − αx− β.
The following efficient fields become available
under the definition of an extended OEF:
1. In the case of F p5 (p = 231 − 1), a binomial
generator does not exist, but a trinomial gener-
ator G(x) = x5 − x− 8 does.
2. In the case of F p3 (p = 264 − 59, 264 − 83),
F p5 (p = 232 − 17, 232 − 99), F p7 (p = 232 −
5, 232− 65) etc., a binomial generator does not
exist, but a trinomial generator does.
3. In the case of F pn ((p, n) = (28−5, 23), (28−
15, 29)), which is suitable for a smart card with
8-bit CPU, a binomial generator does not exist.

Presently, there has not been any report on
an attack on elliptic curve cryptosystems that
depend on the form of the defined field, but
that depend on the number of rational points
of elliptic curves 19),26),29). Hence, an elliptic
curve over an extended OEF would be as secure
as one over the original OEF, and would be
more efficient to implement.

3.2 A Trinomial Generator
In this section, we compare the arithmetic in

an OEF with a binomial generator to that in an
extended OEF with a trinomial generator. Ob-
viously the amount of computation necessary
for addition and subtraction in an OEF is the
same in spite of a generator. So multiplication
and inversion in an OEF are essential in order
to compare the efficiency of the generators. We
discuss the computation time of multiplication
in OEFs by showing examples of x5 − 11 and

Vol. 41 No. 8 Efficient Construction of Elliptic Curves over Optimal Extension Field 2095

x5−x−8, each of which is a generator of about
160-bit field in a 32-bit base field.

For elements
∑4

i=0 xix
i,
∑4

i=0 yix
i in the def-

inition field, multiplication is represented as fol-
lows.

4∑
i=0

xix
i ×

4∑
i=0

yix
i =

8∑
i=0

zix
i

(
=

4∑
i=0

zix
i +

3∑
i=0

zix
5xi

)
. (9)

Hereafter we discuss each modular reduction of∑8
i=0 zix

i to x5−11 and x5−x−8. The compu-
tation time for modular reduction is estimated
as follows:
(1) x5 − 11

4 multiplications by 11 and 4 additions
in the base field2),

(2) x5 − x− 8
4 multiplications by 8 and 2× 4 = 8 ad-
ditions in the base field.

In view of the number of necessary multipli-
cations and additions, Case 1 is more efficient
than Case 2. However one multiplication by 11
requires 2 shifts and 2 additions in a base field
and one multiplication by 8 requires only 1 shift
since

r × 11 = r × 23 + r × 2 + r, (10)
r × 8 = r × 23. (11)

If we consider that, necessary computations of
modular reductions are the following:
(1) x5 − 11

8 shifts and 12 additions in the base field,
(2) x5 − x− 8

4 shifts and 8 additions in the base field.
As we have seen above, the computation time of
modular reductions depends on the total ham-
ming weight of the coefficients. Therefore if a
trinomial generator with less hamming weight
of coefficients can be chosen, then multiplica-
tion in an extended OEF with a trinomial gen-
erator is faster than that of a trinomial gener-
ator. In the next section, we discuss the inver-
sions in extended OEFs with a trinomial gen-
erator.

4. Inversion in OEF

As of date, inversion algorithms suitable for
OEFs with a binomial generator have been pro-
posed3),14). However these algorithms are not
suitable for extended OEFs with a trinomial
generator. In this section, we propose an inver-
sion algorithm suitable for extended OEF with

a trinomial generator after summarizing known
inversion algorithms.

4.1 Known Methods of Inversions in
OEFs

Inversion in OEFs can be implemented effi-
ciently. For example, a method of inversion that
uses Cramer’s formula has been proposed14).
Their method is useful when an extension field
has a small extension degree like 2 or 3. How-
ever, if the extension degree is larger than 3,
it is rather complicated and is not useful since
computation of a cofactor determinant is diffi-
cult. Other known methods are as follows.
(1) Extended Euclidean method
(2) Gaussian elimination method
(3) Bailey’s and Paar’s method (BP)3)
(1), (2) are familiar algorithms4). On the other
hand, (3) has been proposed by Bailey and
Paar, recently. This method computes an in-
version in a base field F p by using an exponen-
tiation. This method is especially efficient for
an OEF with a binomial generator. Here we de-
scribe Algorithm (3) when applied to an OEF
with a binomial generator.

In the binomial case, p-exponentiation of
x(α) =

∑n
i=0(xiα

i) is

x(α)p =
n∑

i=0

(xi(ω(p−1)/n)iαi). (12)

If we compute (ω(p−1)/n)i in advance and keep
those results, the amount of computation nec-
essary for (3) is

((log2(n− 1))(n2+ n− 1) + n2+ 2n− 1)M
+ I, (13)

where M and I denote the computation
amount for multiplication and inversion on a
base field F p, respectively. However in the
trinomial case, p-exponentiation of x(α) =∑n

i=0(xiα
i) is as follows:

x(α)p =
n∑

i=0

(xih(α)i), (14)

where h(α) = αp in F pn . In the case of an
extended OEF with a trinomial generator, the
amount of computation is estimated as follows:

((log2(n− 1))(2n2 − n) + 2n2)M
+ I. (15)

4.2 Inversion Algorithm Suitable for a
Trinomial Generator

In this section, we propose an efficient inver-
sion method for an extended OEF with a trino-
mial generator. This method reduces the term

2096 IPSJ Journal Aug. 2000

nI in the equation for determining the amount
of computation to I in the Gaussian elimina-
tion method.

Hereafter, we explain our method through an
example where F p5 = F p(α), p = 231 − 1, and
α is a root of x5 − x − 8 = 0. Here, we set an
inverse of x = x0 + x1α + · · ·+ x4α

4 ∈ F p5 to
be y = y0 + y1α + · · ·+ y4α

4. Then y satisfies,

x0 8x4 8x3 8x2 8x1

x1 x0 + x4 x3 + 8x4 x2 + 8x3 x1 + 8x2

x2 x1 x0 + x4 x3 + 8x4 x2 + 8x3

x3 x2 x1 x0 + x4 x3 + 8x4

x4 x3 x2 x1 x0 + x4

·

y0

y1

y2

y3

y4

 =

1

0

0

0

0

 . (16)

We need the following steps to compute the
inverse y.
(1) Let mij and cj be (i, j) element of ma-
trix and the i-th element of the vector of right
side in Eq. (16) respectively, where (i, j) de-
notes the i-th row and the j-th column. Then,
transform the matrix in Eq. (16) to a triangle
matrix. In the elimination step of the 1-st col-
umn, compute the following:
(a) Compute

∏
k �=i mk1 (1 ≤ i ≤ 5) and∏

mk1 as follows:
(i) s1 ← m11m21, s2 ← s1m31, t1 ←

s2m41 (=
∏

k �=5 mk1).
(ii) t2 ← s2m51(=

∏
k �=4 mk1).

(iii) s5 ← m41m51, t3 ← s1s5 (=∏
k �=3 mk1).

(iv) s4 ← s5m31, t4 := m11s4 (=∏
k �=2 mk1).

(v) t5 ← m21s4 (=
∏

k �=1 mk1).
(vi) t0 ← t1m51 (=

∏
mk1).

(b) mij ←
∏

k �=i mk1 ·mij −
∏

k �=1 mk1 ·m1j

ci ←
∏

k �=i mk1 · ci−
∏

k �=1 mk1 · c1 (1 ≤
i ≤ 5, 2 ≤ j ≤ 5).

(c) m11 ←
∏

mk1 and mi1 ← 0 (2 ≤ i ≤ 5).
In the elimination steps of other columns, re-
peat the computations in the same way and
Eq. (16) is transformed to

m11 m12 m13 m14 m15

0 m22 m23 m24 m25

0 0 m33 m34 m35

0 0 0 m44 m45

0 0 0 0 m55

y0

y1

y2

y3

y4

=

c1

c2

c3

c4

c5

 . (17)

(2) Compute F p-inverses of diagonal ele-
ments of matrix in Eq. (17) as follows:
(a) Compute

∏
k �=i mkk (1 ≤ i ≤ 5) and∏

mkk in the same way as Step (1)(a).
(b) u← 1/(

∏
mkk).

(c) 1/m11 = u
∏

k �=1 mkk, 1/m22 =
u
∏

k �=2 mkk, 1/m33 = u
∏

k �=3 mkk,
1/m44 = u

∏
k �=4 mkk, 1/m55 =

u
∏

k �=5 mkk.
(3) Compute each components of the inverse
y from y4 to y0 in Eq. (17).

Steps (1)(a) and (b) take (3n − 5)M and
n2M. All of Step (1) take (

∑n
k=2(n2 + 3n −

5) − n)M = (1
6n(n + 1)(2n + 1) − 1 + 3

2n(n +
1)−3−5(n−1)−n)M. Steps (2) and (3) take
(4n−5)M+I and 1

2n(n+1)M. Therefore, the
inverse is computed in time:(

1
3
n3 +

5
2
n2 +

1
6
n− 4

)
M+ I. (18)

4.3 Comparison between Known Meth-
ods and Our Method

In this section, we compare our method with
known methods. The computation time for an
OEF over a binomial and a trinomial is esti-
mated as follows.
(1) Extended Euclidean method (a binomial

and a trinomial)
(2n2 + n− 4)M+ nI (19)

(2) Bailey’s and Paar’s method (a binomial)

((log2(n− 1))(n2 + n− 1) (20)
+ n2 + 2n− 1)M+ I (21)

(3) Bailey’s and Paar’s method (a trinomial)

((log2(n− 1))(2n2 − n) (22)
+ 2n2)M+ I (23)

(4) Our proposed method (a binomial and a
trinomial)(

1
3
n3 +

5
2
n2 +

1
6
n− 4

)
M+ I (24)

Figure 1 shows the amount of computa-
tion required in inversion methods when n =
5, 7, 10. We conclude that our proposed
method is the most efficient in trinomial case
for 5 ≤ n ≤ 7 since I/M ranges roughly from
20 to 60 as seen in Table 2. As the extension de-
gree increases, the extended Euclidean method
becomes the most efficient.

Vol. 41 No. 8 Efficient Construction of Elliptic Curves over Optimal Extension Field 2097

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

Extended Euclidean

BP(binomial)

BP(trinomial)

proposed

I / M

Mcomp. time ()

(i) n = 5

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

Extended Euclidean

BP(binomial)

BP(trinomial)

proposed

I / M

Mcomp. time ()

(ii) n = 7

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40 45 50

Extended Euclidean

BP(binomial)

BP(trinomial)

proposed

I / M

Mcomp. time ()

(iii) n = 10

Fig. 1 Comparison of inversion methods.

5. Implementation of Arithmetic in
OEF

5.1 Timing of Arithmetic in Extension
Fields

Table 1 shows the OEF’s parameters which
we discuss in this paper. The platforms are a
PentiumII 400 MHz (Linux-2.2.5) for OEF32,
EXOEF31, OEF31 and an Alpha21164A
600 MHz (Linux-2.2.1) for OEF64, OEF61,
EXOEF61. We use inline assembly codes in C
programs for 32, 64-bit addition, subtraction,
multiplication and shift.

Table 2 shows the running times for arith-

Table 1 OEF’s parameters.

Size p Generator
(bits) polynomial

EXOEF31-155 155 231 − 1 x5 − x − 8
OEF31-155 155 231 − 1057 x5 − 2
OEF31-186 186 231 − 1 x6 − 5
OEF31-217 217 231 − 1 x7 − 3

OEF32-160 160 232 − 5 x5 − 2
OEF32-192 192 232 − 387 x6 − 2
OEF32-224 224 232 − 1053 x7 − 2

OEF61-183-1 183 261 − 1 x3 − 5
EXOEF61-183 183 261 − 1 x3 − x − 4
OEF61-183-2 183 261 − 1 x3 − 37
OEF64-192 192 264 − 189 x3 − 2

Table 2 Running times for arithmetics in F p (µsec).

p Add. Mul. Inv.

EXOEF31 231 − 1 0.031 0.056 3.039
OEF31 231 − 1057 0.031 0.094 3.682
OEF32 232 − 5 0.026 0.091 3.807

OEF61 261 − 1 0.047 0.077 4.984
(EXOEF61)
OEF64 264 − 189 0.041 0.144 5.730

metics in the base field F p. We compute the in-
verse in the base field of OEF32, EXOEF31,
OEF31 by the extended Euclidean algorithm
and OEF64, OEF61, EXOEF61 by the ex-
tended binary algorithm. We see that the mul-
tiplication in EXOEF31 is 1.62 times faster
than that of OEF32 in Table 2.

The hamming weight of c (p = 231 − c) in
OEF31 is 3. When the hamming weight of
c (p = 231 − c) is more than 2, multiplying
by c using the multiplication instruction of the
CPU is faster than using shifts and additions of
the CPU on PentiumIIs. Therefore, we use the
multiplication instruction of the CPU for mul-
tiplications by c. We see that the multiplication
in EXOEF31 is 1.68 times faster than that in
OEF31 in Table 2.
[Comparison of time of inversions be-
tween our method and BP method]
Table 3 shows the time required for inver-
sions that use our method and the BP method,
and a comparison between the normal binomial
case and the best trinomial case. Our method
is more suitable than the BP method for
EXOEF31-155☆ . EXOEF31-155, the best
trinomial case, is more efficient than OEF31-
155, a normal binomial case. Therefore we see
☆ An improved method for the extended Euclidean
method was proposed in Ref. 22), but it is slower
than our method when 5 ≤ n ≤ 7 because the
method in Ref. 22) uses many branch instructions.

2098 IPSJ Journal Aug. 2000

Table 3 Running times for arithmetics in the
binomial case and the trinomial case (µsec).

Add. Mul. Inv.
EXOEF31-155 0.12 1.40 (proposed) 10.20

(BP) 11.36
OEF31-155 0.13 2.05 11.31
OEF61-183-1 0.09 0.81 6.32
EXOEF61-183 0.09 0.87 6.49
OEF61-183-2 0.09 0.90 6.36

Table 4 Running times for arithmetics in OEFs
(µsec).

Add. Mul. Sq. Inv.
EXOEF31-155 0.12 1.40 0.94 10.20
OEF31-186 0.13 1.88 1.31 13.69
OEF31-217 0.14 2.46 1.62 17.62
OEF32-160 0.12 2.18 1.32 11.56
OEF32-192 0.16 3.01 1.78 17.57
OEF32-224 0.17 4.63 2.53 23.67
OEF61-183 0.09 0.81 0.63 6.32
OEF64-192 0.14 1.27 0.63 7.64

that the parameter p takes a more important
role at the running time than the generator
polynomial. This means that a p that satis-
fies OEF conditions cannot be found, then it
would be better to search for another p that
will satisfy extended OEF conditions.

Table 4 shows the running times for arith-
metics in OEFs. We compute the inverse in
OEF64-192, OEF61-183 by Cramer’s for-
mula, in EXOEF31-155 by our method, and
in the other fields by the BP method.

5.2 Further Discussion
Here we roughly estimate the running time of

an elliptic curve exponentiation of an extended
OEF on a smart card with an 8-bit CPU. We
consider an elliptic curve E over F pn that sat-
isfies the following conditions:
(1) p = 28 − 5, q = p23

(2) a generator polynomial x23 − 27x− 22

(3) E : y2 = x3 − 3x + 85
(4) #E(F p) = 231× (176-bit prime)
Then an exponentiation of the elliptic curve
E is about 3 times faster than that of ellip-
tic curves over a general 160-bit prime field on
an 8-bit CPU. Therefore, OEFs and extended
OEFs are efficient on an 8-bit CPU.

6. Construction Method of Elliptic
Curve over OEF

6.1 SEA suitable for OEF
There are three typical construction meth-

ods for elliptic curves with appropriate order:
the lifting method30), Complex Multiplication
(CM) method1) and the order counting method.

In the case of elliptic curves over OEFs, the
order counting method is the most suitable
since it does not place any restriction on elliptic
curves. On the other hand in the lifting method
order of elliptic curves should be rather larger,
and in the CM method it is difficult to find an
elliptic in practical time.

6.2 OEF Suitable for SEA
OEFs are also suitable for SEA algorithms

under the following situation:
1. Arithmetic: The arithmetic in OEFs

is faster than that in F 2n .
2. Polynomial exponentiation Xq: As

we described in Section 2.4, the polynomial
exponentiation Xq is the dominant step in
the SEA algorithm. Here, we estimate the
computation time for Xq.
SEA algorithm requires the computation of
Xq mod Φl(X), where the degree of Φl(X)
is equal to l + 1. The computation of Xq

requires the following steps.
Polynomial Exponentiation 　　　
[Xp mod Φl(X)]

It takes 3
2 |p|P on the average, where P

denotes the computation time of poly-
nomial multiplication in F q[X]/Φl(X).

Polynomial Multiplication 　　　　
[X2p, X3p, · · · , X lp]

X2p, X3p, ·, X lp is computed in such
a way that X2p = Xp · Xp, X3p =
X2p · Xp, · · · , X lp = X(l−1)p · Xp,
where Xp has already been computed
in Step 1. Therefore, the total amount
of computation required is (l − 1)P.

Polynomial Transformation 　　　
[(Xp)p = Xp2

, (Xp2
)p = Xp3

, · · · , (Xpn−1
)p

= Xpn

]
A polynomial g(X) over F p satis-
fies g(X)p = g(Xp). Therefore,
we can determine g(Xp) by replac-
ing X, X2, · · · , X l of g(X) to
Xp, X2p, · · · , X lp. The amount
of computation for g(Xq) is approxi-
mately P, as the computation requires
l(l + 1) F p-multiplications. Therefore,
the total amount of computation re-
quired is (n− 1)P.

In total, the polynomial exponentiation
Xq mod Φl(X) takes (3

2 |p| + l + n − 2)P,
where |q| = n|p|. For instance, we con-
sider the amount of computation necessary
when l = 5. When n = 5, i.e., |p| = 32,
3
2 |p|+l+n−2 = 56 and when n = 1, i.e., F q

Vol. 41 No. 8 Efficient Construction of Elliptic Curves over Optimal Extension Field 2099

is a prime field, 3
2 |p|+l+n−2 = 242. Hence,

we conclude that the number of necessary
polynomial multiplications for polynomial
exponentiation in an OEF is smaller than
that in a prime field. Moreover, the polyno-
mial multiplication in an OEF is faster than
that in a prime field, because the arithmetic
in an OEF is faster. Therefore, the polyno-
mial exponentiation Xq mod Φl(X) in an
OEF is faster than that in a prime field.
Elkies’ algorithm requires the polynomial
exponentiation Xq mod gl(X) to find the
eigenvalue for φq. It is also necessary
to compute the polynomial exponentiation
Y q−1 = f(X)(q−1)/2 mod gl(X). It is com-
puted in the following way:
Step 1. Compute the polynomial expo-
nentiation f(X)(p−1)/2 mod gl(X).
Step 2. For i = 2, 3, · · · , n, compute
f(X)((p

2−1)/2, f(X)((p
3−1)/2, · · · ,

f(X)(p
n−1)/2 = f(X)(q−1)/2, using the fol-

lowing equation,

f(X)(p
i−1)/2

= (f(X)(p
i−1−1)/2)pf(X)(p−1)/2,

(25)
where we also use the computation results
of Xp, X2p, X3p, · · ·.

3. Inversion: The match and sort al-
gorithm searches the exact point for t
(mod

∏
l). When using projective or Ja-

cobian coordinates, inversions are required
for every comparison primitive, and when
using affine coordinates, inversions are re-
quired for every addition or doubling prim-
itive. Therefore, in both cases, inversions
are required frequently. Since the inver-
sions in OEFs are faster than those in prime
fields, the match and sort algorithm over
an OEF is more efficient than that over a
prime field.

7. Implementation of Construction of
Elliptic Curves

In this section, we present implementation re-
sults.

7.1 The SEA Algorithm over OEF
Let MO, SO, IO be the amount of com-

putation necessary for multiplication, squaring
and inversion over an OEF, respectively. The
addition and doubling of elliptic curves take
2MO + SO + IO and 2MO + 2SO + IO in
affine coordinates. In Jacobian coordinates5),

Table 5 Running times for the SEA algorithms over
OEFs (sec).

Total Match & Sort Xq

EXOEF31-155 10.14 1.17 5.06
OEF31-186 28.92 3.03 15.70
OEF31-217 74.18 3.90 45.64
OEF32-160 11.60 1.75 5.48
OEF32-192 33.09 2.62 18.38
OEF32-224 88.21 7.46 48.89
OEF61-183 20.18 3.72 9.72
OEF64-192 28.53 5.24 15.19

pf160 32.68 3.93 20.79
pf192 95.16 9.36 65.03

they become 12MO + 4SO and 4MO + 6SO
respectively. According to Table 4, in OEF32-
160, SO = 0.61MO, IO = 5.30MO. Therefore,

2MO + SO + IO = 7.91MO (26)
2MO + 2SO + IO = 8.52MO (27)
12MO + 4SO = 14.44MO (28)
4MO + 6SO = 7.66MO (29)

The match and sort part of the SEA algo-
rithm requires to check whether two points are
the same or not for every computation of el-
liptic curve exponentiation. In Jacobian coor-
dinates, we need 4MO for checking. On the
other hand, affine coordinates do not require
additional computation. Hence, we use affine
coordinates for the match and sort part.

We select 100 curves randomly and count or-
der of these curves. Table 5 shows the average
running times of the SEA algorithm over OEFs.
We used the same computes as in Section 5.1
and we use the Karatsuba’s Method for polyno-
mial multiplication. pf160, pf192 in Table 5
are the computation results of the SEA algo-
rithm over the prime field11), whose platform is
the same as OEF32, EXOEF31, OEF31. In
the case of a prime field (i.e., q = p), the com-
putation time for polynomial multiplication Xq

takes up 64–68% of the total time of the SEA
algorithm over F p

18). We see that the ratio is
50–64% in Table 5☆. As a result, the total time
of the SEA algorithm is the fastest among all
types of finite fields.

7.2 Construction of Elliptic Curves
over OEF

We construct elliptic curves with prime order
by using the early abort method17),18). We con-
figured 100 random sequences and constructed
100 elliptic curves with prime order. Table 6
☆ In the case of F 2n , the ratio is very small18). How-
ever, the SEA algorithm over F 2n is slower than
that over OEF since arithmetic in F 2n is slower
than that in OEF.

2100 IPSJ Journal Aug. 2000

Table 6 Running times for constructing elliptic
curves.

Total time Number of searched
(seconds) elliptic curves

OEF32-160 247.8 258.4
OEF32-192 651.5 210.9

EXOEF31-155 192.0 179.3
OEF31-186 542.2 236.2

shows the average running times for construct-
ing elliptic curves with prime order.

8. Conclusion

We have extended the idea of OEFs in such
a way to include a trinomial generator in addi-
tion to a binomial generator. As a result, our
extended OEF includes another extension field
F p5 (p = 231−1) with fast arithmetic. We have
also proposed a new inversion algorithm in ex-
tended OEF suitable for a trinomial generator.
Our inversion algorithm has made arithmetic in
extended OEFs more efficient.

Furthermore, we estimated the amount of
computation necessary for the SEA algorithms
over OEFs. As a result, we have confirmed that
computation time decreases for the SEA algo-
rithm over an OEF compared to both of F p and
F 2n .

We have also been implemented the SEA al-
gorithm over OEF (PentiumII 400 MHz, Linux-
2.2.5 and Alpha21164A 600 MHz, Linux-2.2.1).
The average running times for order counting of
an elliptic curve over a 155-bit extended OEF
and 160-bit OEF are 10.1 and 11.6 seconds on
PentiumII 400 MHz (Linux-2.2.5), respectively.

Acknowledgments The authors are grate-
ful to Masao Kasahara, Ryuichi Sakai,
Masanobu Kaneko and Keiji Horiuchi for in-
valuable comments.

References

1) Atkin, A.O.L. and Morain, F.: Elliptic curves
and primality proving, Math. Computation,
Vol.61, pp.29–68 (1993).

2) Bailey, D.B. and Paar, C.: Optimal Exten-
sion Fields for Fast Arithmetic in Public-Key
Algorithms, Advances in Cryptology – Proc.
Crypto’98, Lecture Notes in Compute Science,
Vol.1462, pp.472–485, Springer-Verlag (1998).

3) Bailey, D.B. and Paar, C.: Inversion in Op-
timal Extension Fields, Conference on The
Mathematics of Public-Key Cryptography,
Jun. 12–17 (1999).

4) Cohen, H.: A Course in Computational Al-
gebraic Number Theory, Graduate Texts in

Math., Vol.138, Third corrected printing,
Springer-Verlag (1996).

5) Cohen, H., Miyaji, A. and Ono, T.: Efficient
elliptic curve exponentiation using mixed co-
ordinates, Advances in Cryptology – Proc. Asi-
acrypto’98, Lecture Notes in Computer Science
Vol.1514, pp.51–65, Springer-Verlag (1998).

6) Couveignes, J.M. and Morain, F.: Schoof’s al-
gorithm and isogeny cycles, Proc.ANTS-I, Lec-
ture Notes in Compute Science, Vol.877, pp.43–
58, Springer-Verlag (1994).

7) ElGamal, T.: A public key cryptosystem and a
signature scheme based on discrete logarithms,
IEEE Trans. Inf. Theory, IT-31, pp.469–472
(1985).

8) Proposed federal information processing stan-
dard for digital signature standard (DSS), Fed-
eral Register, Vol.56, No.169, pp.42980–42982
(1991).

9) Elkies, N.D.: Explicit isogenies, Preprint
(1991).

10) Frey, G. and Rück, H.G.: A remark concern-
ing m-divisibility and the discrete logarithm in
the divisor class group of curves, Math. Com-
putation Vol.62, pp.865–874 (1991).

11) Futa, Y. and Miyaji, A.: Efficient construction
of prime order elliptic curves (in Japanese),
SCIS’99, pp.857–862 (1999).

12) Horiuchi, K., Futa, Y., Sakai, R. and
Kasahara, M.: Construction of Elliptic Curves
with Prime Order and Estimation of Its Com-
plexity (in Japanese), IEICE, Vol.J82-A, No.8,
pp.1269–1277 (1999).

13) IEEE P1363 Working Draft, June 16 (1998).
14) Kobayashi, T., Morita, H., Kobayashi, K.

and Hoshino, F.: Fast Elliptic Curve Algo-
rithm Combining Frobenius Map and Table
Reference to Adapt to Higher Characteristic,
Advances in Cryptology – Proc. Eurocrypt’99,
Lecture Notes in Computer Science, Vol.1592,
pp.176–189, Springer-Verlag (1999).

15) Koblitz, N.: Elliptic curve cryptosystems,
Math.Computation, Vol.48, pp.203–209 (1987).

16) Lercier, R.: Algorithmique des courbes el-
liptiques dans les corps finis, Thése, École
Polytechnique-LIX (1997).

17) Lercier, R.: Finding Good Random Elliptic
Curves for Cryptosystems Defined over F2n ,
Advances in Cryptology – Proc. Eurocrypt’97,
Lecture Notes in Computer Science, Vol.1233,
pp.379–392, Springer-Verlag (1997).

18) Lercier, R. and Morain, F.: Counting the
number of points on elliptic curve over finite
fields: Strategies and performances, Advances
in Cryptology – Proc. Eurocrypt’95, Lecture
Notes in Computer Science, Vol.921, pp.79–94,
Springer-Verlag (1995).

Vol. 41 No. 8 Efficient Construction of Elliptic Curves over Optimal Extension Field 2101

19) Menezes, A., Okamoto, T. and Vanstone, S.:
Reducing elliptic curve logarithms to loga-
rithms in a finite field, Proc. 22nd Annual
ACM Symposium on the Theory of Computing,
pp.80–89 (1991).

20) Miller, V.S.: Use of elliptic curves in cryp-
tography, Advances in Cryptology – Proc.
Crypto’85, Lecture Notes in Computer Science,
Vol.218, pp.417–426, Springer-Verlag (1986).

21) Morain, F.: Calcul du nombre de points sur
une courbe elliptique dans un corps fini: As-
pects algorithmiques, Journal de Théorie des
Nombres de Bordeux, Vol.7, pp.255–282 (1995).

22) Nagao, K.: Some idea on arithmetics of Jaco-
bian group of hyperelliptic curve (in Japanese),
Algebra and Computation ’99 (1999).

23) Pohlig, S.C. and Hellman, M.E.: An im-
proved algorithm for computing logarithms
over GF (p) and its cryptographic significance,
IEEE Trans.Inf.Theory, Vol.IT-24, pp.106–110
(1978).

24) Pollard, J.: Monte Carlo methods for in-
dex computation (mod p), Math. Computation,
Vol.32, pp.918–924 (1978).

25) Rivest, R., Shamir, A. and Adleman, L.:
A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM,
Vol.21, No.2, pp.120–126 (1978). IEEE Trans.
Inf. Theory, Vol.IT-24, pp.106–110 (1978).

26) Satoh, T. and Araki, K.: Fermat quotients and
the polynomial time discrete log algorithm for
anomalous elliptic curves, Commentarii Math.
Univ. St. Pauli., Vol.47, pp.81–92 (1998).

27) Schoof, R.: Elliptic Curves Over Finite Fields
and the Computation of Square Roots mod p,
Math.Computation, Vol.44, pp.483–494 (1985).

28) Schoof, R.: Counting points on elliptic curve
over finite fields, Journal de Théorie des Nom-
bres de Bordeux, Vol.7, pp.219–254 (1995).

29) Semaev, I.A.: Evaluation of discrete loga-
rithms in a group of p-torsion points of an el-
liptic curve in characteristic p, Math. Compu-
tation, vol.67, pp.353–356 (1998).

30) Silverman, J.H.: The Arithmetic of Elliptic
Curves, GTM, Vol.106, Springer-Verlag, New
York (1986).

31) Smart, N.P.: The discrete logarithm problem
on elliptic curves of trace one, J. Cryptology, to
appear.

(Received November 30, 1999)
(Accepted June 1, 2000)

Yuichi Futa was born in
Osaka, Japan, on September 21,
1973. He received the B.E. and
the M.E. degrees in electron-
ics and information science from
Kyoto Institute of Technology,
Kyoto, Japan in 1996 and 1998,

respectively. Since 1998, he has been with
Multimedia Development Center in Matsushita
Electric Industrial Co., Ltd. and engaged in
research and development for secure communi-
cation. His interests are in cryptography and
information security.

Atsuko Miyaji received the
B.Sc., the M.Sc., and Dr.Sci.
degrees in mathematics from
Osaka University, Osaka, Japan
in 1988, 1990, and 1997 respec-
tively. She joined Matsushita
Electric Industrial Co., Ltd.

from 1990 to 1998 and engaged in research
and development for secure communication.
She has been an associate professor at JAIST
(Japan Advanced Institute of Science and Tech-
nology) since 1998. Her research interests in-
clude the application of projective varieties the-
ory into cryptography and information security.
She is a member of the Institute of Electronics,
Information and Communication Engineers and
the Information Processing Society of Japan.

