
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Using Prior Knowledge in Rule Induction

Author(s) Nguyen, Dung Duc

Citation

Issue Date 2003-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/439

Rights

Description Supervisor:Ho Tu Bao, 知識科学研究科, 修士

修 士 論 文

Using Prior Knowledge in Rule Induction

指導教官 Ho Bao Tu 教授

北陸先端科学技術大学院大学

知識科学研究科知識システム基礎学専攻

150029 知識 Nguyen Dung Duc

審査委員： Ho Bao Tu 教授（主査）

石崎雅人 助教授

佐藤賢二 助教授

林 幸雄助 助教授

2003 年２月

Copyright Ⓒ 2003 by Nguyen Dung Duc

Acknowledgements

I would like to express my deep gratitude to my supervisor, Prof. Ho Tu Bao, for

providing me with kindly helps, supervision and motivation throughout the course of

this work. His insight and breadth of knowledge have been invaluable to my training as

a researcher. Without his care, supervision and friendship I would not be able to

complete this work. I am also grateful to Dr. Nguyen Trong Dung for his comments and

suggestions during the work.

My thank also goes to members of the Knowledge Creation Laboratory, especially

to Mr. Saito Akinori, Ms. Kawasaki Saori, for providing their helps, a friendly and

enjoyable environment while studying here; Mr. Nghiem Anh Tuan for his valuable

discussions and comments.

I would like to express my appreciation to the Ministry of Education, Culture,

Sports, Science, and Technology of Japan for providing me the scholarship for pursuing

the master course at JAIST, and for the financial support for attending several

conferences.

Finally, I am indebted to my parents for their forever affection, patience, and

constant encouragement.

 1

Using Prior Knowledge in Rule Induction

Abstract: One of the most expressive and human readable representations for

learned knowledge is a set of if-then rules. Rule learning algorithms aim at finding a set

of rules that best fits the training data according to some predefined criteria. Many of

them use only data as the unique input, in other words they are purely inductive, or

data-driven. There are also attempts to combine prior knowledge, in terms of domain

theory, with inductive learning algorithms to take advantages of both inductive and

analytical learning approaches.

In this thesis we describe a new approach to using prior knowledge in rule induction.

The concept “prior knowledge” in this work is extended to a broader sense: it includes

domain knowledge; prior rule set that has existed as result of previous learning process;

and user’s constraints. The objective of induction is also changed from finding a new

hypothesis in hypotheses space, to finding a better hypothesis based on the existing one,

and the data. To illustrate the effectiveness, the proposed approach is applied to improve

the classification performance of the rule-based classifiers learned by two rule learning

systems LUPC and See5. Experiment results show that the approach is effective in

terms of improving the classification accuracy of rule-based classifiers.

Keywords: data mining, rule induction, prior knowledge, rule-based classifier,

classification.

 2

Table of Contents

Chapter 1: Introduction... 6

1. Research Context.. 6

2. Research Objective ... 7

3. Research Content.. 7

4. Document Structure.. 8

Chapter 2: Rule Induction Algorithms... 9

1. Introduction .. 9

2. The ID3 Algorithm.. 9

3. The CN2 Algorithm... 13

4. The FOCL Algorithm.. 16

Chapter 3: Using Prior Knowledge in Rule Induction.. 20

1. Motivation... 20

2. The Learning Problem.. 21

3. General Framework ... 23
3.1 Seed generator .. 23
3.2 Rule specialization... 27

Chapter 4: Improving a Rule-based Classifier .. 31

1. Problem Statement.. 31

2. Updating a Rule-based Classifier .. 32
2.1 Prior knowledge ... 32
2.2 The Seed-Generator procedure .. 35
2.3 Updating prior rule sets .. 37

3. Experiments .. 38
3.1 Datasets .. 38
3.2 Methodology... 38
3.3 Results .. 40

Chapter 5: Conclusions.. 44

Chapter 6: Future Works .. 45

References ... 47

List of Contributions .. 50

 3

List of Figures

Figure 1: Hypothesis space search in FOCL.. 19
Figure 2: A general framework for utilizing prior knowledge in rule induction. .. 23
Figure 3: Visualization of the concept “death within 90 days” 26
Figure 4: Covering algorithms may loss many globally significant rules 36

 4

List of Tables

Table1: The ID3 learning algorithm... 10
Table 2: The sequential covering algorithm for learning a set of rules................... 13
Table 3: One implementation for Learn-One-Rule, a general-to-specific used by

the CN2 .. 15
Table 4: The Cup learning task ... 16
Table 5: The Specialization procedure ... 27
Table 6: Comparison of the Sequential-Covering and the Specialization procedures

.. 28
Table 7: The subroutine for learning one rule conducted by Specialization 29
Table 8: The seed generator procedure used in improving a rule-based classifier. 35
Table 9: Comparison between classification performance of LUPC and LUPC+ . 39
Table 10: Comparison of six classifiers on classification error rate (%) 40
Table 11: Comparison of six classifiers on classification error rate (%) 41
Table 12: Comparison between classification performance of See5 and See5+ rule

sets .. 42
Table 13: Differences between See5 and See5+ classifiers on the annealing domain.

.. 43

 5

Chapter 1

Introduction

1. Research Context

Learning a set of rules from data is a problem that has attracted considerable interest

because a rule provides a concise statement of potential useful information that is easily

understood by end users [14]. Rule induction algorithms aim at finding a set of rules

that satisfy some predefined criteria. Sequential covering algorithms like AQ [13], CN2

[4][5], search for a set of rules that covers all training samples. Simultaneous covering

algorithms like ID3, C4.5 [21][22], extract rules from a decision tree built by dividing

samples until some conditions are satisfied. In all of these covering algorithms, learning

process will stop when all training samples are covered, or all of them satisfy some

predefined conditions like belonging to the same class; so that only a small set of rules

are discovered. Another common point of covering algorithms is that the training

samples become fewer and fewer after rules are learned, or attributes are selected to

build a decision tree. This causes a problem called fragmentation: the learned rules are

locally important but globally insignificant [16][10]. There are also attempts to

integrating domain knowledge into induction process to obtain the benefits from both

purely inductive and analytical learning, the learning methods that use prior knowledge

to derive general hypothesis deductively. One of the approaches is to use prior

knowledge, in terms of domain theory, to augment search operators. The FOCL

algorithm [17] uses the domain theory to increase the number of candidate

specializations considered at each step of the search for a single Horn clause. Candidate

hypotheses are then evaluated based on their performance over the training data. In this

way, FOCL combines the greedy, general-to-specific inductive search strategy with the

rule-chaining, analytical reasoning of analytical methods.

 6

2. Research Objective

In this work we propose a new approach to use prior knowledge in rule induction.

The concept “prior knowledge” is extended to a broader sense; it includes domain

knowledge, prior rule set that has existed as the result of previous learning processes,

and user’s constraints. The objective of learning is also changed from finding a new

hypothesis in the hypotheses space, to finding a better hypothesis based on the existing

one, and data. The reason why we extend concept “prior knowledge” is that data mining

is an iterative process, it comprises many steps repeated in multiple iterations [19]. But

most rule induction algorithms are one-run process; they will produce the same result in

any runs because they use the same search heuristic, the same search strategy on the

same data. If we are given more resources like computational power, time, or users do

not satisfy with the result of learning, they have no way to go further. Rule learning

systems will throw away previous results, start the learning again with the old data, and

produce the same thing. In the proposed approach, we use the learned rule set as an

input factor to find new rules that are potentially useful. The newly learned rules,

together with prior rules, are used to build a better rule set. By this way prior rule set, or

prior knowledge, is reused, and enriched incrementally.

3. Research Content

Our approach consists of two main steps. In the first step prior knowledge, or prior

rule set, is used to generate a set of simple rules called rule seeds. The role of these rule

seeds is to direct the search for new rules that are different from those in the prior rule

set. The second step is to specialize these simple, low confidence rule seeds to achieve

more accurate rules. The newly learned rules are then used to improve the prior rule set

to get a better set of rules. Because no example is removed from training data, the

fragmentation is avoided; the newly learned rules are globally significant.

 7

To illustrate the effectiveness, we have conducted two experiments. In the first

experiment we apply the proposed approach to improve the classification accuracy of

rule-based classifiers produced by LUPC, a sequential covering rule induction algorithm.

Experiment result on 26 datasets downloaded from the UCI machine learning repository

[15] shows that the proposed approach is effective: it can improve LUPC’s classifiers

on 7 out of 26 domains. In the second experiment, we apply the proposed approach to

improve rule-based classifiers produced by the See5 system. Experiment on 9 datasets

shows that the proposed approach effectively improves 3 of 9 classifiers: classification

errors are reduced significantly while the size of classifiers is not changed.

4. Document Structure

The rest of this document is organized as follow. In chapter 2 we describe some

representative rule induction algorithms: the ID3, CN2, and FOCL algorithms. Chapter

3 is for the main work of this thesis: the proposed approach to using prior knowledge in

rule induction. Experiments for illustrating the effectiveness of the proposed approach

in improving the classification performance of a prior rule-based classifier are described

in chapter 4. In chapter 5 we would like to address some conclusions, and the future

works will be described in chapter 6.

 8

Chapter 2

Rule Induction Algorithms

1. Introduction

In many cases it is useful to learn the target function represented as a set of if-then

rules that jointly define the function. A rule set in the form of “IF conditions THEN

conclusion” is one of the most expressive and human readable representations for

learned hypothesis [14]. In this chapter we will discuss about the three most famous rule

induction algorithms: ID3, CN2, and FOCL. ID3 [14] is a representative for the

simultaneous covering algorithms; it first learns a decision tree and then translates the

tree into an equivalent set of rules, one rule for each leaf of the tree. CN2 [4][5] belongs

to the family of sequential covering algorithms; it learns rules set based on the strategy

of learning one rule, removing the data it covers, then iterating this process. FOCL [17],

an extension of the purely inductive FOIL [20], learns a set of first order Horn clauses

to cover the observed training examples. The difference between FOCL and FOIL is

that FOCL uses domain theory to increase the number of candidates specializations

considered at each step of the search.

2. The ID3 Algorithm

ID3 is a decision-tree learning algorithm that employs a top-down, greedy search

through the space of possible decision tree. The central choice in the ID3 algorithm is

selecting which attribute to test at each node in the tree. In the figure below, attribute A

that best* classifies Examples in the ID3 algorithm is selected based on a statistical

property called information gain, that measures how well a given attribute separates the

training examples according to their target classification. ID3 uses this information gain

measure to select among the candidate attributes at each step while growing the tree.

 9

In ID3, information gain of an attribute A relative to a collection of examples S is

defined as

∑
∈

−=
)(

)()(),(
AValuesv

v
v SEntropy

S
S

SEntropyASGain

Where Values(A) is the set of all possible values for attribute A, Sv is the subset of S

for which attribute A has value v. Entropy(S) is the entropy of S, that characterizes the

(im)purity of an arbitrary collection of examples. If the target attribute can take on c

different values, then the entropy of S relative to this c-wise classification is defined as

∑
=

−=
c

i
ii ppSEntropy

1
2log)(

Table1: The ID3 learning algorithm

ID3(Examples, Target_attribute, Attributes)
Input: Examples are the training examples. Target-attribute is the attribute

whose value is to be predicted by the tree. Attributes is a list of other
attributes that may be tested by the learned decision tree.

Output: a decision tree that correctly classifies the given Examples

• Create the Root node for the tree
• If all Examples are positive, Return the single-node tree Root, with label = +
• If all Examples are negative, Return the single-node tree Root, with label = -
• If Attributes is empty, Return the single-node tree Root, with label = most

common value of Target_attribute in Examples
• Otherwise Begin

• A ← the attribute from Attributes that best* classifies Examples
• The decision attribute for Root ← A
• For each possible value, vi, of A

• Add a new tree brand below Root, corresponding to the test A = vi
• Let Examplesvi be the subset of Examples that have value vi for A
• If Examplesvi is empty

• Then below this new branch add a leaf node with label = most
common value of Target_attribute in Examples

• Else below this new branch add the subtree
ID3(Examplesvi, Target_attribute, Attributes – {A})

• End
• Return Root

 10

An alternative measure for selecting attributes is the gain ratio that has been used

successfully in the C4.5 [21], the successor of ID3. Gain ratio is used to avoid the

problem when information gain favors attributes with many values over those with few

values. The gain ratio is defined as

),(
),(),(

ASmationSplitInfor
ASGainASGainRatio =

Where split information is used to penalize attributes that have too many values.

∑
=

−=
c

i

ii

S
S

S
S

ASmationSplitInfor
1

2log),(

The next step to obtain a set of rules is to translate the tree into an equivalent set of

rules. Every path from the root of an un-pruned tree to a leaf gives one initial rule. The

left-hand side of the rule contains all the conditions established by the path, and the

right-hand side specifies the class at the leaf. Each rules is then simplified by removing

conditions that do not seem helpful for discriminating the nominated class from other

classes, using a pessimistic estimate of accuracy of the rule [21]. This process leads to a

production rule classifier that is usually about as accurate as a pruned tree, but more

easily understood by people.

The following are some properties of the ID3 algorithms:

• ID3 is a purely inductive or data-driven algorithm; it searches for a decision tree

that best fits the training data without any domain knowledge.

• ID3 is the classification-oriented learning algorithm; the central choice of the

algorithm is to select the attribute that is the most useful for classifying

examples [14]. Because the approximate inductive bias of ID3 is the shorter

trees are preferred over larger tree then the rule set produced by ID3 is very

simple and less significant (although all of them ensure a high classification

accuracy)

 11

• Incremental induction is one of the desirable additions of ID3 and C4.5 [21].

The algorithm proceeds directly from training cases to classifier. There is no role

in the scheme of things for a previous or partially completed classifier. There are

two situations in which the inability to make use of an existing classifier is

unsatisfactory. The first one is the availability of new data after a classifier has

been constructed, a common practical application of machine learning where the

continual collection of data is the norm. There are two alternatives: ignore the

new data or discard the previous classifier, add the new data to the training, and

build a new classifier. The second of the concerns is that the greedy algorithms

used in C4.5 (the successor of ID3) require a fixed amount of time to run; they

cannot exploit more, and will produce nothing in less [21].

 12

3. The CN2 Algorithm

Another way to learn a set of rules is to learn rules directly from data. In this section

we will describe CN2 [11][12], a typical rule-learning algorithm belonging to the family

of sequential covering algorithms.

Table 2: The sequential covering algorithm for learning a set of rules

Sequential-Covering(Target_attribute, Atrributes, Examples, Threshold)
• Learned_rules ← {}
• Rule ← Learn-One-Rule(Target_attribute, Atrributes, Threshold)
• while Performance(Rule, Examples) > Threshold, do

• Learned_rules ← Learned_rules + Rule
• Examples ← Examples – {examples correctly classified by Rule}
• Rule ← Learn-One-Rule(Target_attribute, Atrributes, Threshold)

• Learned_rules ← sort Learned_rules accord to Performance over Examples
• return Learned_rules

Table 2 describes the general scheme of sequential covering algorithms for learning

a disjunctive set of rules. Imagine we have a subroutine Learn-One-Rule that accepts a

set of positive and negative training examples as input, and then outputs a single rule

that cover many of the positive examples and few of negative examples. The procedure

Sequential-Covering invokes Learn-One-Rule on all the available training examples,

removes any positive examples covered by the rule it learns, then invokes it again to

learn the second rule based on the remaining training examples. This procedure can be

iterated as many times as desired to learn a disjunctive set of rules that together cover

any desired fraction of the positive examples. This is called sequential covering

algorithm because it sequentially learns a set of rules that together cover the full set of

positive examples [14].

This sequential covering algorithm is one of the most widespread approaches to

learn disjunctive sets of rules [14]. It reduces the problem of learning a disjunctive set

 13

of rules to a sequence of simpler problems, each requiring that a single conjunctive rule

be learned. Because it performs a greedy search, formulating a sequence of rules

without backtracking, it is not guaranteed to find the smallest or best set of rules that

cover the training examples.

One effective approach to implementing Learn-One-Rule is to perform a general-

to-specific search through the space of possible rules. To reduce the risk that a sub-

optimal choice will be made at any step of greedy search, CN2 conducts a beam search

in which the algorithm maintains a list of k best candidates at each step, rather than a

single best candidate. On each search step, descendants (specializations) are generated

for each of these k best candidates, and the resulting set is again reduced to the k most

promising members. Beam search keeps track of the most promising alternatives to the

current top-rated hypothesis, so that all of their successors can be considered at each

search step. This general-to-specific beam search is described in table 3.

The following are some properties of the CN2 algorithms:

• Like ID3, CN2 is a purely inductive or data-driven algorithm; it performs a

greedy search for a set of rules that cover all training examples without using

domain knowledge. The greedy search is not guaranteed to find the smallest or

best set of rules [14].

• The common point of covering algorithms is that their heuristics are not based

on the whole original training examples, except during the learning for the first

rule. Training examples becomes fewer and fewer after iterations because the

positive examples covered by the rule are removed from training data set. The

rule that is output by the algorithm is the rule encountered during the search

whose Performance is the greatest, but this measure is based on the remaining

examples and this may lead to locally optimal result [10][26].

 14

Table 3: One implementation for Learn-One-Rule, a general-to-specific

used by the CN2

Learn-One-Rule(Target_attribute, Atrributes, Examples, k)
Returns a single rule that covers some of the Examples. Conducts a
general_to_specific greedy search for the best rule, guided by the
Performance metric.

• Initialize Best_hypothesis to the most general hypothesis φ
• Initialize Candidate_hypotheses to the set {Best_hypothesis}
• While Candidate_hypotheses is not empty, do

1. Generate the next more specific candidate_hypotheses
• All_constraints ← the set of all constraints of the form (a = v),

where a is a member of Attributes, and v is a value of a that
occurs in the current set of Examples

• New_candidate_hypotheses ←
for each h in Candidate_hypotheses

for each c in All_constraints
• Create a specialization of h by adding the constraint c

• Remove from New_candidate_hypotheses any hypothesis that are
duplicates, inconsistent, or not maximally specific

2. Update Best_hypothesis
• For all h in New_candidate_hypotheses, do

• If (Performance(h, Examples, Target_attributte))
> Performance(Best_hypothesis, Examples,
Target_attributte)

Then Best_hypothesis ← h
3. Update Candidate_hypotheses

• Candidate_hypotheses ← the k best members of
New_candidate_hypotheses, according to the Performance
measure.

• Return a rule of the form
“IF Best_hypothesis THEN prediction”
where prediction is the most frequent value of the Target_attribute among
those Examples that match Best_hypothesis.

Performance(h, Examples, Target_attribute)
• h_examples ← the subset of Examples that match h
• return -Entropy(h_examples), where entropy is with respect to

Target_attribute

 15

4. The FOCL Algorithm

FOCL is an extension of the purely inductive FOIL algorithm, an algorithm for

learning first-order rules, or Horn clauses. FOIL [20] extends the sequential covering

algorithm of CN2 [4] to handle the case of learning first-order rules. To learn each rule,

FOIL performs a general-to-specific search, at each step adding a single new literal to

the rule preconditions. The new literal may refer to variables already mentioned in the

rule precondition or post-conditions, and may introduce new variables as well.

Table 4: The Cup learning task

Domain theory:
Cup ← Stable, Liftable, OpenVessel

Stable ← BottomIsFlat
Liftable ← Graspable, Light

Graspable ← HasHandle
OpenVessel ← HasConcavity, ConcavityPointsUp

Training examples:

 Cups Non-Cups

BottomIsFlat
√ √ √ √ √ √ √ √

CancavityPointsUp √ √ √ √ √ √ √
Expensive √ √ √ √
Fragile √ √ √ √ √ √
HandleOnTop √ √
HandleOnSide √ √ √
HasConcavity √ √ √ √ √ √ √ √ √
HasHandle √ √ √ √ √
Light √ √ √ √ √ √ √ √
MadeOfCeramic √ √ √ √
MadeOfPaper √ √
MadeOfStyrofoam √ √ √ √

Both FOIL and FOCL learn a set of first-order Horn clauses to cover the observed

examples. Both systems employ a sequential covering algorithm that learn single Horn

clause, removes the positive examples covered by this new Horn clause, and then

 16

iterates this procedure over the remaining training examples. In both systems, each new

Horn clause is created by performing a general-to-specific search beginning with the

most possible Horn clause [14](i.e., a clause containing no preconditions). Several

candidate specializations of the current clause are then generated, and the

specializations with the greatest information gain related to the training examples is

chosen. This process is iterated, generating further candidate specializations and

selecting the best, until a Horn clause with satisfactory performance is obtained.

The difference between FOIL and FOCL lies in the way in which candidate

specializations are generated during the general-to-specific search for a single Horn

clause. FOIL generates each candidate specialization by adding a single new literal to

the clause precondition. FOCL uses this same method for producing candidate

specializations, but also generates additional specializations based on the domain theory.

To illustrate the operation of FOCL we use the simple learning problem summaries

in table 4. Here each instance describes a physical object in terms of material from

which it is made, whether it is light, etc. The task is to learn the target concept Cup

defined over such physical objects. Table below describes a set of training examples and

domain theory for the Cup target concept. Notice the domain theory defines a Cup as an

object that is Stable, Liftable, and OpenVessel. The domain theory also defines each of

theses three attributes in terms of more primitive attributes, terminating in the primitives,

operational attributes that describe the instances. Note that the domain theory is not

perfectly consistent with the training examples.

There are two kinds of literal that appear in the domain theory and hypothesis

representation. We will say a literal is operational if it is allowed to be used in

describing an output hypothesis. For example, in the Cup examples, we allow output

hypotheses to refer only 12 attributes that describe the training examples. Literals based

on these 12 attributes are thus considered operational. In contrast, literals that occur

only as intermediate features in the domain theory, but not as primitive attributes of the

instances, are considered non-operational. An example of a non-operational attribute in

this case is the attribute Stable.

 17

At each point in its general-to-specific search, FOCL expands its current hypothesis

h using the following two operators:

1. For each operational literal that is not part of h, create a specialization of h by

adding this single literal to the preconditions. This is also the method used by

FOIL to generate candidate successors. The solid arrows in figure 1 denote this

type of specialization.

2. Create an operational, logically sufficient condition for the target concept

according to the domain theory. Add this set of literals to the current

preconditions of h. Finally; prune the preconditions of h by removing any literals

that are unnecessary according to the training data. The dash arrow in figure 1

denotes this type of specialization.

The following are properties of the FOCL algorithm:

• FOCL uses domain theory to increase number of candidate specializations

considered at each step of the search for a single Horn clause. If the domain

theory is correct, the training data will bear out the superiority of this candidate

over the others and it will be selected. If the domain theory is incorrect, the

empirical evaluation of all the candidates should direct the search down an

alternative path. In other words, the domain theory is used in the fashion that

biased the learner, but leaves final search choices to be made based on

performance over training data [14].

• FOCL combines the greedy, general-to-specific inductive search strategy with

the rule-chaining, analytical reasoning of analytical methods. It has been shown

that FOCL generalizes more accurately than purely inductive FOIL algorithm in

a number of application domains in which imperfect domain theory available

[14].

 18

Figure 1: Hypothesis space search in FOCL. To learn a single rule, FOCL searches
from general to increasingly specific hypotheses. Two kinds of operators generate
specializations of the current hypothesis. One kind adds single literal (solid line in
the figure). A second kind of operator specializes the rule by adding a set of literals
that constitute logically sufficient conditions for the target concept, according to
the domain theory (dash line in the figure). FOCL selects among all these
candidate specializations, based on their performance over the data. There for,
imperfect domain theories will impact the hypothesis only if the evidence supports
the theory [14].

 19

Chapter 3

Using Prior Knowledge in

Rule Induction

1. Motivation

In previous chapters we have described three most well known algorithms that learn

a set of rules from data. The ID3 and CN2 are two most famous algorithms

representative for the simultaneous and sequential covering families. Their common

point is that they are purely inductive or data-driven algorithms. They search in

hypothesis space (rule sets) to find out one set of rules that coverers all training samples

without prior knowledge. Different from ID3 and CN2, the FOCL algorithm uses

domain theory to increase number of candidate specializations considered at each step

of the search for a single Horn clause. This difference helps FOCL to generalize more

accurately than purely inductive FOIL algorithm in a number of domains in which

imperfect domain theory available [14]. More over, those above algorithms proceed

directly from training samples to hypothesis; there is no role in the scheme of things for

a previous or partially completed hypothesis [21]. One of the desirable additions of ID3,

as well as of greedy algorithms, is incremental induction. Suppose that more

computation time available after a classifier has been generated, the greedy algorithms

require a fixed amount of time to run; they cannot exploit more, and will produce

nothing in less [21]. An ideal algorithm would produce some classifier quickly, then use

additional time available to it to improve the classifier [21].

In this chapter we describe a new approach to using prior knowledge in rule

induction. Different from the purely inductive approaches or the approaches that use

domain theory to effectively learn a new hypothesis in FOCL, our approach uses prior

knowledge that includes existing rule set, domain theory, and user’s constraints, to build

 20

a new hypothesis, or rule set, based on the prior one. The improvement is done by

searching for new rules and using them to replace prior rules, or to extern the prior rule

set to achieve a better rule set. In the learning context, if the existing hypothesis is a

rule-based classifier, the approach aims at building a better rule-based classifier that

does classification more accurately. If the hypothesis is a set of rules that are already

known by the user, the extension aims at finding new and potential useful rules that are

different from existing rules. In this framework, the knowledge is re-used, enriched, and

extended after learning iterations.

The rest of this chapter is organized as follow. In section 2 we will summary the

learning problem in which prior hypothesis knowledge is used as an input factor. The

concept prior knowledge will be discussed in more detailed in this section. Section 3 is

for describing the general framework for learning new rules. Two main components of

the framework are described.

2. The Learning Problem

To summary the learning problem is stated as follow:

Given:

• A set of training examples D

• A domain theory B, and user’s constraint C

• An existing hypothesis (a set of rules) R

• A space of hypotheses H

Determine:

• A hypothesis R+ that fits training examples D better.

A new point of the proposed approach is the prior knowledge includes an existing

hypothesis, or rule set R. This set of rules may be the result of previous learning process,

or provided by domain experts. If this rule set exists, the objective of induction is to find

new rules and improve it. If rule set R does not exist, the objective of induction is to

search for a new hypothesis that best fits the training data according to predefined

 21

criteria, the same objective as common rule learning algorithms. The reason why we do

use a set of rules as an input factor for rule induction is that we expect to find out new

rules to improve the existing rule set. If we do not keep the rules, the search will give us

the same result as we already have.

The second component of the prior knowledge is the domain knowledge B, exactly

the same as described in the FOCL algorithm. Approximate prior knowledge, or domain

theories, is available in many practical learning problems [14]. Purely inductive

methods such as decision tree induction or neuron network fail to utilize such domain

theories, and therefore perform poorly when data is scarce [14]. Purely analytical

learning methods utilize domain theories, but produce incorrect hypotheses when given

imperfect prior knowledge. Methods that blend inductive and analytical learning can

gain benefits of both approaches: reduce complexity and the ability to overrule incorrect

prior knowledge.

The last component of the prior knowledge is a set of user’s constraints C. Users use

constraints to narrow the search, for example, for patterns they are interested in; this

plays a crucial role for the successful of many learning tasks. In data mining,

discovering new and interesting patterns is still a hard problem [19]. Knowledge

discovery in databases (KDD) is defined as “the nontrivial process of identifying valid,

novel, potential useful, and ultimately understandable patterns in data” [6]. In many

cases, it is possible to define measures of certainty (for example, estimated prediction

accuracy on new data) or utility (for example, gain, perhaps in dollars saved because of

better predictions or speedup in respond time of a system)). But the notions like novelty

is much more subjective [18]. No one but the user can identify which pattern is new and

interesting. The ways we use these constraints is quite different from the works that use

constraints to rank the discovered rules [2][9][25] or to filter out not interesting ones

[23][24]. In our approach the constraints are used during the search, not in the post-

processing step. In section 3.1 we will introduce an illustrative example of how user’s

constraints could be integrated in discovering such kind of patterns.

 22

3. General Framework

Figure 2 shows the general framework for using prior knowledge in rule induction.

Figure 2: A general framework for utilizing prior knowledge in rule induction.

There are two important components in this framework. First, the seed generator

takes prior knowledge as input and outputs a set of rule seeds. Second, the rule

specialization process specializes the seeds to achieve accurate rules. These two

components are described in more detail in the next sections.

3.1 Seed generator

The seed generator is the most important component in the framework. It is a

procedure that takes prior knowledge as input, outputs a set of simple rules that will

guide the search in the specialization process. Suppose that s is a rule seed produced by

the seed generator, s has to satisfy two conditions:

 23

i) Rules specialized from s are different from existing rules in R.

ii) Rules specialized from s are potentially useful.

The first condition is to ensure that newly learned rules are new with respect to

existing rule set R. The concept “new” is a relative concept because it is based on at

least two objects belonging to the same category, and of course, is very complicated. In

this context we simplify it as follow: a rule r’ in the form of “IF conditions THEN

conclusion” where conditions is a conjunctive of conditions and conclusion is a target

concept; rule r’ is called new with respect to a rule set R if for every rule r of R, one of

the two following conditions is satisfied:

i) conclusion(r’) # conclusion(r)

ii) conditions(r’) ∉ conditions(r)

According to this simplification a rule is said new if it refers to a different concept;

or its conclusion consists of a new factor, or a new condition.

Note that the seed generator is application-oriented procedure. If the application is

to build a rule-based classifier, the generator should generate the seeds that rules

specialized from them could improve the accuracy of a classifier. If the application is to

discover interesting patterns, the seeds will direct the search to rules that makes people

surprised, for example. Building the generator will be described in more detailed in the

next section and in chapter 4 when the proposed approach is used in improve a rule

based classifier.

To illustrate how the seed generator works, lets take an example on a real

application. The stomach cancer data collected at the National Cancer Center in Tokyo

in 30 years from 1962 to 1991 contains data of 7,520 patients. Each patient is described

by 83 attributes about personal information, symptoms, pre-operative and post-operative

complication, etc. The knowledge doctors want to know is the symptoms related to the

death or alive of patients within 90 days, after 90 days, after 5 years of operation, or to

 24

be alive. After doing necessary pre-processing step we have used rule induction systems,

including See5 [22] from RuleQuest, and our system called LUPC [8] to discover rules

for above concepts. The result is See5 discover one rule for the concept “the patient die

within 90 days” and LUPC discover 7 rules, with minimum accuracy 90% and cover at

least 5 samples. We introduce this result to the doctor and ask them about their

comments. Unfortunately they said that all of them are believable, but not new. Five of

seven rules have the symptoms “level 3 of liver metastasis” in the condition part of the

rules for concept “death within 90 days”, this is not new. One question raised to us is

what should we do next? If we run the See5 or LUPC again we will get the same result

because See5 and LUPC discover a rule set on the same data set, using the same search

strategy with the same stop condition that the rule sets cover all samples. Our solution is

first, we consider again the preprocessing step because if this step is not done well, there

will be no interesting pattern hiding in the data; we will find no gold from rock. The

second direction is to continue the search, but for new rules that different from existing

ones that are obvious to the doctors. We visualize these five rules (in figure 3) and

discovered that symptom “level 3 of liver metastasis” relates only to concept “death

within 90 days”. It means that there is no relation between symptom “level 3 of liver

metastasis” and concept “alive” or “death after 5 years”. Our question is there any such

kind of relation? And these relations are potentially interest? And the problem now is

turned out to proposed framework:

Given:

• A data set: the Stomach Cancer data

• A set of existing rules: the rule sets discovered by See5 and LUPC

Determine:
• New and interesting rules

 25

Figure 3: Visualization of the concept “death within 90 days”

The objective of the application, finding interesting patterns about relationship

among symptoms and the death or alive of patients after operation, is not changed, but

the objective of learning is changed from searching for a rule set covering all samples,

to searching for new and potential interesting rules that different from existing ones (in

fact, LUPC discovered 1130 rules for all classes). In this situation, the seed generator

generates two seeds:

Seed #1: IF Liver_metastasis = 3 THEN alive

Seed #2: IF Liver_metastasis = 3 THEN death > 5 years

These two seeds will guide the search for rules of the two concepts “alive” and

“death after five years”, and the result is that the following rule is discovered:

IF type = B1 ^ Liver_metastasis = 3 ^ Number of complications = 1

THEN alive

 26

From this example, we can see that rule seeds are generated from prior knowledge

and in this case prior knowledge is rule sets learned by See5 and LUPC, and from use’s

constraint about relation between symptom “level 3 of liver metastasis” and the two

concepts. This constraint comes from the interaction between user and data mining

system while exploring discovered knowledge. The rule seeds are generated to direct

the search in a narrower space that closer to user’s interest.

Table 5: The Specialization procedure

Specialization(RuleSeeds, Examples, Threshold)
• Learned_rules ← {}
• For all Seed in RuleSeeds

• Rule ← Learn-One-Rule(Seed, Atrributes, Threshold)
• If Performance(Rule, Examples) > Threshold, do

o Learned_rules ← Learned_rules + Rule
• return Learned_rules

3.2 Rule specialization

The task of the rule specialization process is to specialize the rule seeds to achieve

more accurate rules. The procedure to do this task is described in table 5. In comparing

with sequential covering algorithms the role and scheme of the Specialization and

Sequential-Covering procedure (described in [14]) are similar: they conduct a

subroutine called Learn-One-Rule to learn rules from data. But there are three crucial

differences as follow:

(1) The inputs of the two procedures are different. Procedure Sequential-Covering

takes only training samples (of course there are also attributes list and

parameters) as input factor. This is because sequential covering algorithms are

purely inductive; they do not use any prior knowledge in learning. Procedure

Specialization takes two inputs: training samples and a set of rule seeds. In

comparing with analytical learning methods or inductive-analytical learning like

FOCL, the set of rule seeds may be consider as domain knowledge and the

 27

Specialization procedure could be seen as in context of the analytical learning

approach. The difference is the rule seeds or the prior knowledge is generated

from not only domain theory, but also from prior rule set.

(2) The stopping conditions are different. Covering algorithms stop learning process

when learned rules cover all training samples; even for the analytical-inductive

rule induction algorithms like FOCL also stop when all training samples are

covered, or when no sample remains. In procedure Specialization the main loop

will finish when all rule seeds are specialized, it doesn’t matter if the training

samples are covered or not because the learning has not to satisfy the

completeness condition that all training samples are covered.

(3) After one rule is learned the sequential covering algorithms remove all training

samples that covered by this rule. This causes the number of training samples

becomes fewer and fewer after iterations; and the rule’s performance estimated

by function Performance becomes more and more locally; except for the first

rule. The procedure Specialization does not remove any training samples, so

that rule’s performance is globally significant because it is based on the whole

training samples.

Table 6: Comparison of the Sequential-Covering and the Specialization procedures

 Sequential-Covering Specialization

Input + Training samples

+ Attributes list

+ Training samples

+ Attribute list

+ Rule seeds

Output A set of rules A set of rules

Stopping condition + All training samples

are covered

+ All rule seeds are

specialized

Heuristics Based on

remaining samples

Based on

all samples

 28

Table 7: The subroutine for learning one rule conducted by Specialization

Learn-One-Rule(Seed, Atrributes, Examples, k)

Returns a single rule that covers some of the Examples. Conducts a

general_to_specific greedy search for the best rule, guided by the

Performance metric.

• Initialize Best_hypothesis to the rule Seed

• Initialize Candidate_hypotheses to the set {Best_hypothesis}

• While Candidate_hypotheses is not empty, do

3. Generate the next more specific candidate_hypotheses

4. Update Best_hypothesis

5. Update Candidate_hypotheses

• Return Best_hypothesis

Performance(Rule, Examples)

• return LaplaceAccurace(Rule, Examples)

Both Sequential-Covering and Specialization procedure invoke subroutine Learn-

One-Rule to continually search for a new rule, but the difference is the sequential

covering algorithms start the search for new rules from the most general hypothesis, or a

null hypothesis. The Best_hypothesis of sequential covering algorithms is initialized

with no conditions, so all the Candidate_hypotheses are specialized from an empty

hypothesis. In the proposed approach, similar to the analytical learning approaches, the

Best_hypothesis is a simple non-empty rule generated from prior knowledge. In

searching for a new rule the Learn-One-Rule procedure conducts a beam search with

rule’s Laplace expected accuracy estimate as search heuristic. The Laplace estimate is

used to avoid selecting specific rules instead of entropy. This expected accuracy is given

by the formula:

 29

LaplaceAccuracy = (nc + 1)/(ntot + k)

Where

k is the number of classes in the domain

nc is the number of examples in the predicted class c covered by the rule

ntot is the total number of examples covered by rule

 30

Chapter 4

Improving a Rule-based Classifier

1. Problem Statement

Suppose that a rule-based classifier R is produced by some rule learning algorithms,

LUPC or See5 in our experiments, our attempt is to apply the proposed approach to

improve this classifier. In this context the prior knowledge consists only the existing

hypothesis, or learned classifier R, no domain theory B, and no user’s constraint C. The

learning problem could be stated as follow:

Given:

• A set of training examples D

• A rule-based classifier R

Determine:

• A rule-based classifier R+ that does classify better than R

It is clear that the learning task here is quite different from traditional learning task.

The learning task of ID3, CN2, or FOCL is to search for a set of rules that do classify

well, given a training data set with (FOCL) or without (ID3, CN2) domain knowledge.

The task in this situation is to improve an existing rule set to achieve a new rule set that

does classification better. Following sections describe in more detail how this work

could be done.

 31

2. Updating a Rule-based Classifier

In this section we will describe how to improve an existing rule set, or an existing

classifier, to achieve a better classifier. Especially about the prior knowledge used in our

experiments, how to generate rule seeds to bias the search for potential useful rules, and

how to use newly learned rules to update preceding classifier.

From now we will use the following terms and definitions. We consider a set of

variables x = {x1, x2, … xn}, n > 0 with domain X = {X1, X2, … Xn} called attributes and

a single variable y with domain Y called class attribute or just class. A rule is in the form

of “IF conditions THEN conclusion” where conditions is a conjunctive of attribute-

value pairs, and conclusion is one of the values of Y. For example given a rule r:

“IF x1 = X1i and x2 = X2j THEN Yk”

The conditions part is a conjunctive of two attribute-value pairs belonging to two

attributes X1 and X2; the conclusion part is the value Yk belonging to class attribute Y.

We say that this rule uses two attributes in the conclusions part.

2.1 Prior knowledge

In our experiments, prior knowledge, or rule set, is learned by one of the two rule

induction algorithms: the LUPC or See5 algorithm.

The LUPC [8], standing for Learning in Unbalanced Positive Class, is a rule

induction algorithm that aims at learning for rare class in unbalanced datasets. It follows

the general scheme of sequential covering algorithms with the following properties:

• Search strategy: LUPC conducts a beam search for finding rules in rule

space. Many learning algorithms like AQ (Michalski et al., 1986), CN2

(Clack and Niblett, 1989), mFOIL (Dzeroski and Bratko, 1992), and BEXA

 32

(Theron and Cloete, 1996) use this strategy to alleviate the myopic behavior

of hill-climbing search. In addition to remembering the best rule found so far,

beam search also keeps track of a fixed number of alternatives, the so-called

beam. While hill-climbing search has to decide upon a single refinement at

each step, beam search can defer some of the choices until later by keeping

the b best rules in its beam. In general, beam search effectively maintains

hill-climbing’s efficiency (reduced by a constant factor), but can yield better

results because it explorer a larger portion of the hypothesis space.

• Search heuristic: LUPC uses rule’s purity as its search heuristic. Search

heuristic is the most influential bias in searching, which estimates the quality

of rules found in the search space and ideally guides the search algorithms

into the right regions of the hypothesis space. As the goal of the

Learn_One_Rule is to find a rule that covers as many positive samples

while covering as few negative samples as possible, most heuristics try to

find a trade-off between the two conditions. The most commonly used

search heuristics are accuracy, purity, entropy, Laplace estimate …Rule’s

purity measure will attaint its optimal value when no negative samples are

covered. The reason why LUPC use rule’s purity as search heuristic is LUPC

focus in learning for rare classes in unbalanced datasets. In many

applications rare class is important but very difficult to learn [8]. Purity is

used as search heuristic in the GREEDY3 (Pagallo and Haussler, 1990),

SWAP-1 (Weiss and Indurkhya, 1991). The purity of a rule is given by the

following formula

np
prPurity
+

=)(

Where p is the number of positive samples covered by rule r, and n is the

number of negative samples covered by r.

 33

• Constraints: To overcome the disadvantage of the purity measure that does

not aim at covering many positive samples, LUPC uses minimum accuracy

and minimum cover of a rule as constraints in the search. In our experiments

minimum accuracy is set to 90% and minimum cover is set to cover at least

2 samples.

The See5 system [22] is the successor and the commercial version of the most well-

know algorithm C4.5[21]. See5 builds a decision tree first, and then extracts rules from

this tree.

Both LUPC and See5 use the same way of using learned rule set to do classification.

It may happen that several rules are applicable (that is, all their conditions are satisfied)

when classifying a new sample. If the applicable rules predict different classes, there is

an implicit conflict that could be resolved in two ways: we could believe the rule with

the highest confidence, or we could attempt to aggregate the rule’s prediction to reach

the verdict. Both See5 and LUPC adopt the late strategy: each applicable rule votes for

its predicted class with a voting weight equal to its confident value, the votes are totted

up, and the class with the highest total vote is chosen as the final decision. The

confidence of a rule is given by the below formula

2)(
1)()(

+
+

=
rCover

rverPositiveCorConfidence

When a test sample is not covered by any rule, it is assigned to a default class. The

default class is the class that has dominated distribution in the training data.

 34

2.2 The Seed-Generator procedure

The task of the seed generator is to generate rule seeds that will guide the search for

useful rules. In our experiments, we use attributes that have not been used by prior rule

set, to generate the seeds. Table 8 gives detail of the procedure.

Table 8: The seed generator procedure used in improving a rule-based classifier

Seeds_Generator(RuleSet, Attributes, TargetAttribute)

Takes an existing hypothesis, or a set of rules, as an input factor to produce a set

of rule seeds in the form of simple rules that will be used to guide the search for

new and useful rules in the next Specialization process

• Seeds ← {}

• For all attribute a in Attributes

• If a is not used in RuleSet

• For all values v of attribute a

• For all values c of TargetAttribute

• Seeds ← Seeds + {“IF a = v THEN c”}

• Return Seeds

In table 8, an attribute a is said not to be used by rule set R if there is no rule r of R

that consists a condition a = ai in the conditions part of rule r.

To improve the classification accuracy of a rule-based classifier learned by a

covering algorithm, the seed generator in our experiment is relatively simple: the

generator uses attributes that are not used by in prior rule set. The using of what other

algorithms do not use seem to be trivial because learning algorithms use their heuristics,

or their “spirits”, to select best attributes in searching for the best result. This means that

unused attributes seem to be not valuable, according to their heuristics. The reason why

we build a so simple seed generator is due to one important shortcoming of covering

algorithms: the fragmentation of training data [26][10]. Covering algorithms remove all

 35

covered samples (belonging to the positive class or in the whole training data) after one

rule is learned, this causes number of training samples becomes fewer and fewer after

iterations and leads to the generation of many locally important but globally

insignificant rules [10]. Our seed generator generates the seeds that will lead the search

to these globally significant rules.

Figure 4 illustrates the fragment problem of covering algorithms. Supposed that in

training data D there exist three patterns P1, P2, and P3 listed by the order of their

significant. Sequential covering algorithms discovered pattern P1 first, and then

removes the (positive) samples covered by P1. Due to this moving the pattern P2

becomes less significant than pattern P3 in the remaining data, and the search will result

pattern P3, instead of P2. After iterations the learned rules will become more and more

locally important and the chance of missing globally significant rules becomes bigger

and bigger. Our approach could avoid the fragmentation problem because no training

samples are removed and the search heuristic is based on the whole training data.

Figure 4: Covering algorithms may loss many globally significant rules

 36

2.3 Updating prior rule sets

After the seed generator generates a set of rule seeds, they are then specialized by

adding more conditions into the conditions part to achieve a necessary accuracy. The

specialization process is actually a search, not in the whole space of possible rules, but

the space is narrowed by the condition part of rule seeds. Result of this search is a set of

new rules that will be used to upgrade prior rule-based classifier.

The newly learned rules will be used to improve the prior rule set. Note that a

classifier formed by many rules does not guarantee an accurate classification, so that not

all of the rules are used to improve the prior rule set. In our experiment, a newly learned

rule r’ is used to upgrade the prior rule set R to the new rule set R’ by two ways:

i. r’ will be used to replace a rule r in R:

R’ = R \ {r} ∪ r’, r ∈ R

or

ii. r’ will be added to R:

R’ = R ∪ r’

If the replacement or extension helps to improve the classification accuracy on the

training data D:

ClassificationAccD(R’) > ClassificationAccD(R)

To avoid the over fitting problem caused by too specific rules, the new rules are

forced to satisfy a constraint on coverage ratio. In our experiment this constraint is 5%

of the population of positive class.

 37

3. Experiments

This section describes the experiment of applying the proposed approach to improve

classification accuracy of a rule-based classifier learned by a covering algorithm. The

evaluation will be based on the classification accuracy on testing data. Sections below

will describe the datasets, the prior rule-based classifier used in our experiments, and

the results obtained from them.

3.1 Datasets

In the first experiment, we use 26 datasets downloaded from the UCI machine

learning repository [15] described in table 9. Because the LUPC algorithm cannot run

with numerical data, so all these datasets are discretized by the CBA system [11][12].

The first column of table 2 is for indexes of these 26 datasets; second column describes

their name. Each data set is described by number of samples (column 3), number of

attributes (column 4), and number of classes (column 5).

In the second experiment, we use 9 other datasets also from the UCI. Each data set

consists of two different parts used for learning and testing purposes. In table 3,

columns from number 2 to number 6 describe name, number of training samples,

number of testing samples, number of attributes, and number of classes of the 9 datasets.

Like the first experiment, all these datasets are discretized by the CBA system.

3.2 Methodology

We have conducted the experiments by two ways. In the first experiment we use

classifiers produced by LUPC with default constraints (90% of minimum accuracy and

2 samples of minimum cover) as prior knowledge, and apply the proposed approach to

improve them. The performances are evaluated based on running 10 times of 10-fold

cross validation test, a common way of testing a learning algorithm. In the second

experiment, we use the classifiers produced by the See5 system with default parameters,

 38

denoted by See5 in table below. The performances are then compared with the upgrade

version of See5, denoted by See5+, by applying the proposed method.

Table 9: Comparison between classification performance of LUPC and LUPC+
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Index

Dataset

#Samples

#Attributes

#Classes

#LUPC
Rules

#LUPC+
Rules

LUPC
Error(%)

LUPC+
Error(%)

1 anneal 898 39 6 34.9 49.4 4.9 4.4

2 australian 690 15 2 89 89 13.8 13.8

3 auto 205 23 7 45.2 48.9 18.5 18.3

4 breast-w 699 10 2 19.8 19.8 4.7 4.7

5 cleve 303 12 2 45.2 45.2 17.6 17.6

6 crx 690 16 2 81.1 81.1 14.1 14.1

7 diabetes 768 7 2 84.6 84.6 23.1 23.1

8 german 1000 16 2 265.1 265.1 26.7 26.7

9 glass 214 8 7 34.6 34.6 25.9 25.9

10 heart 270 10 2 35.2 35.2 17 17

11 hepatitis 155 17 2 20.9 22.2 17.9 17.7

12 horse 368 19 2 72.5 72.9 16.2 16.2

13 hypo 3163 24 2 16.3 30 3.5 2.7

14 ionosphere 351 34 2 32.5 48 8.6 8.3

15 iris 150 5 3 6.1 7.1 6.4 6.5

16 led7 3200 8 10 168.2 168.2 26.9 26.9

17 labor 57 13 2 12.4 15.4 13.9 12.1

18 lymph 148 16 4 25.1 25.5 17.7 17.5

19 pima 768 7 2 84.9 84.9 23.2 23.2

20 sick 2800 27 2 27.2 37.5 4.6 4.6

21 sonar 208 22 2 34.3 34.3 16.4 16.4

22 tic-tac-toe 958 10 2 63.4 63.4 5.6 5.6

23 vehicle 846 19 4 238.5 238.5 28.9 28.9

24 waveform21 5000 20 3 1030.1 1030.1 16.3 16.3

25 wine 178 14 3 9.3 17.7 2.1 1.6

26 zoo 101 17 7 9.6 18.2 4.6 4.4

 Average 930.31 16.46 3.31 99.46 102.57 14.58 14.40

 39

3.3 Results

Column number 6 and 7 in table 9 show number of rules used by LUPC and LUPC+

classifiers, column 8 and 9 show error rate on testing data. Result from table 2 shows

that proposed approach could reduce error rate on 9 of 26 datasets. On the iris data set,

classification error is not improved, but becomes worse. This is due to the fact that the

classifier is upgraded by using training data. It may happen that a classifier run well on

Table 10: Comparison of six classifiers on classification error rate (%)
(1) (2) (3) (4) (5) (6) (7) (8)

Index Dataset LUPC LUPC+ See5Tree See5Rule CBA CBA (2)

1 anneal 4.9 4.4 8 7.4 3.6 2.1

2 australian 13.8 13.8 13.7 13.9 13.4 14.6

3 auto 18.5 18.3 18.5 20.7 27.2 19.9

4 breast-w 4.7 4.7 4.8 4.2 4.2 3.7

5 cleve 17.6 17.6 22.1 21.1 16.7 17.1

6 crx 14.1 14.1 13.2 13.1 14.1 14.6

7 diabetes 23.1 23.1 21.9 23.3 25.3 25.5

8 german 26.7 26.7 27.5 26.8 26.5 26.5

9 glass 25.9 25.9 24.8 25.6 27.4 26.1

10 heart 17 17 18.4 17.3 18.5 18.1

11 hepatitis 17.9 17.7 18.8 17.2 15.1 18.9

12 horse 16.2 16.2 15 15.1 18.7 17.6

13 hypo 3.5 2.7 0.8 0.8 1.7 1

14 ionosphere 8.6 8.3 10.4 8.7 8.2 7.7

15 iris 6.4 6.5 6.1 6.1 7.1 5.3

16 led7 26.9 26.9 26.6 26.6 27.8 28.1

17 labor 13.9 12.1 16.1 15.5 17 13.7

18 lymph 17.7 17.5 22.7 23.4 19.6 22.1

19 pima 23.2 23.2 22.3 23.6 27.6 27.1

20 sick 4.6 4.6 2.1 2.1 2.7 2.8

21 sonar 16.4 16.4 18.9 18.1 21.7 22.5

22 tic-tac-toe 5.6 5.6 14.2 3.4 0.1 0.4

23 vehicle 28.9 28.9 29 28.8 31.3 31

24 waveform21 16.3 16.3 24.9 22.2 20.6 20.3

25 wine 2.1 1.6 7.4 4.1 8.4 5

26 zoo 4.6 4.4 7.6 7.4 5.4 3.2

 Average 14.58 14.40 15.99 15.25 15.77 15.19

 40

training data but worse than when applying on testing data. Table 3 shows the relative

comparison on classification accuracy of six classifiers LUPC, LUPC+, See5 tree, See5

rule, CBA, and CBA2, the latest version of CBA. Experiment result shows that LUPC+

has a very competitive performance in comparing with the state-of-the-art rule mining

systems. Evaluated on 26 datasets by running 10 times of 10-fold cross validation tests,

LUPC+ wins 7, See5 tree wins 6, CBA2 wins 6 on total 26 datasets. In this experiment

the results of CBA and CBA2 are drawn from the author’s papers [11].

Table 11: Comparison of six classifiers on classification error rate (%)
(1) (2) (3) (4) (5) (6) (7) (8)

Index Dataset LUPC LUPC+ See5Tree See5Rule CBA CBA (2)

1 anneal 4.9 4.4 8 7.4 3.6 2.1

2 australian 13.8 13.8 13.7 13.9 13.4 14.6

3 auto 18.5 18.3 18.5 20.7 27.2 19.9

4 breast-w 4.7 4.7 4.8 4.2 4.2 3.7

5 cleve 17.6 17.6 22.1 21.1 16.7 17.1

6 crx 14.1 14.1 13.2 13.1 14.1 14.6

7 Diabetes 23.1 23.1 21.9 23.3 25.3 25.5

8 German 26.7 26.7 27.5 26.8 26.5 26.5

9 glass 25.9 25.9 24.8 25.6 27.4 26.1

10 heart 17 17 18.4 17.3 18.5 18.1

11 hepatitis 17.9 17.7 18.8 17.2 15.1 18.9

12 horse 16.2 16.2 15 15.1 18.7 17.6

13 hypo 3.5 2.7 0.8 0.8 1.7 1

14 ionosphere 8.6 8.3 10.4 8.7 8.2 7.7

15 iris 6.4 6.5 6.1 6.1 7.1 5.3

16 led7 26.9 26.9 26.6 26.6 27.8 28.1

17 labor 13.9 12.1 16.1 15.5 17 13.7

18 lymph 17.7 17.5 22.7 23.4 19.6 22.1

19 pima 23.2 23.2 22.3 23.6 27.6 27.1

20 sick 4.6 4.6 2.1 2.1 2.7 2.8

21 sonar 16.4 16.4 18.9 18.1 21.7 22.5

22 tic-tac-toe 5.6 5.6 14.2 3.4 0.1 0.4

23 vehicle 28.9 28.9 29 28.8 31.3 31

24 waveform21 16.3 16.3 24.9 22.2 20.6 20.3

25 wine 2.1 1.6 7.4 4.1 8.4 5

26 zoo 4.6 4.4 7.6 7.4 5.4 3.2

 Average 14.58 14.40 15.99 15.25 15.77 15.19

 41

In the second experiment, the result shows that the proposed approach can improve

the classification accuracy of the See5’s rules on 3 of 9 datasets. From table 12 we can

see that the size of classifiers is not changed; it means that some rules of the prior

classifier are replaced by the newly learned rules.

Table 12: Comparison between classification performance of See5 and See5+ rule sets

(1) (2) (3) (4) (5) (6) (7) (8) (9)

See5 See5+

Error Error
ID Dataset

Training

Testing

Attrs.

Classes Size TrainingTesting

New

Rules Size TrainingTesting

1 adult 32561 16281 14 2 112 65 21 0 - - -

2 annealing 798 100 39 6 25 30 4 17 25 12 2

3 audiology 200 26 70 24 22 20 5 3 22 20 5

4

image

segmentation 210 2100 16 7 16 9 190 15 16 8 187

5

labor

negotiations 40 17 13 2 2 5 4 0 - - -

6

letter image

recognition 1600 400 16 262062 1208 840 0 - - -

7 sick 2800 972 27 2 15 48 21 7 15 48 21

8 soybean-big 307 376 36 19 35 14 50 7 35 14 50

9

thyroid

disease 2800 972 27 5 10 18 12 20 10 17 7

Let’s examine a classifier to see how it is upgraded. In the annealing application the

See5 system found 25 rules to establish the classifier. The classifier classifies wrongly

30 samples on the training data and 4 samples when performing on the testing data. By

applying the proposed approach a set of 20 rules are newly discovered, and 5 of them

are used to replaces 5 others in the prior rule set. This replacement reduces the number

errors on training data from 30 samples to 12 samples, and on testing data from 4

samples to 2 samples. These 5 rules are listed in table 14.

 42

Table 13: Differences between See5 and See5+ classifiers on the annealing domain.
See5 See5+

Replaced rules:

Rule 5: (27/31)
 steel = R
 thick(continuous) = 0.7995-0.8005
 → class 2

Rule 6: (2/2)
 steel = V
 thick(continuous) = 1.5495-1.5995
 → class 2

Rule 11: (124/124)
 hardness(continuous) = 22.5-75
 → class 3

Rule 12: (188/190)
 thick(continuous) = 0.6005-0.7995
 → class 3

Rule 20: (190/215)
 formability = 2
 width(continuous) = - 1167.5
 → class 3

Evaluation on training data:

(a) (b) (c) (d) (e) (f) <-classified as
---- ---- ---- ---- ---- ----
5 2 1 0 0 0 (a): class 1
0 76 12 0 0 0 (b): class 2
0 9 597 0 0 2 (c): class 3
0 0 0 0 0 0 (d): class 4
0 0 2 0 58 0 (e): class 5
0 0 2 0 0 32 (f): class U

Evaluation on testing data:

(a) (b) (c) (d) (e) (f) <-classified as
---- ---- ---- ---- ---- ----
0 0 0 0 0 0 (a): class 1
0 9 2 0 0 0 (b): class 2
0 2 74 0 0 0 (c): class 3
0 0 0 0 0 0 (d): class 4
0 0 0 0 7 0 (e): class 5
0 0 0 0 0 6 (f): class U

Newly learned rules:

Rule 5: (249/249)
 condition = S
 surface-quality = E
 → class 3

Rule 6: (56/56)
 surface-quality = E
 bw/me = B
 → class 3

Rule 11: (33/33)
 hardness(continuous) = - 22.5
 bw/me = M
 → class 3

Rule 12: (167/167)
 condition = S
 thick(continuous) = 0.6005-0.7995
 → class 3

Rule 20: (69/69)
 steel = A
 bl = Y
 → class 3

Evaluation on training data:

(a) (b) (c) (d) (e) (f) <-classified as
---- ---- ---- ---- ---- ----
5 2 1 0 0 0 (a): class 1
0 80 8 0 0 0 (b): class 2
0 1 605 0 0 0 (c): class 3
0 0 0 0 0 0 (d): class 4
0 0 0 0 60 0 (e): class 5
0 0 2 0 0 32 (f): class U

Evaluation on testing data:

(a) (b) (c) (d) (e) (f) <-classified as
---- ---- ---- ---- ---- ----
0 0 0 0 0 0 (a): class 1
0 9 2 0 0 0 (b): class 2
0 0 76 0 0 0 (c): class 3
0 0 0 0 0 0 (d): class 4
0 0 0 0 7 0 (e): class 5
0 0 0 0 0 6 (f): class U

 43

 Chapter 5

Conclusions

In this work we propose an approach to using prior knowledge in rule induction.

The concept knowledge in our work includes not only domain knowledge, user’s

constraints, and the existing knowledge. The objective of learning is also changed from

searching for a new hypothesis fitting well training data, to improving a prior

hypothesis to achieve a better one. By this means knowledge is reused, enriched, and

extended after learning iterations.

The approach consists of two main components. The first component is the seed

generator that takes prior knowledge as an input factor and generates a set of rule seeds.

These seeds are used to narrow the search for new rules in the second component, the

rule specialization process. The task of the specialization is to search for new rules

starting from rule seeds in rule space. The newly learned rules are then used to update

the prior rule set.

To illustrate the effectiveness, the proposed approach is applied to improve rule-

based classifiers learned by two rule learning algorithms. In the first experiment we use

the results of LUPC, a homemade sequential covering rule induction algorithm, as prior

knowledge. Experiment on 26 datasets from the UCI machine learning repository shows

that the proposed approach reduces the error rate of LUPC on 10 of 26 domains.

Comparing with the state-of-the-art rule learning systems See5 and CBA, the proposed

approach helps LUPC to achieve a very competitive performance: LUPC+ wins 7, See5

tree wins 6, CBA2 wins 6 on total 26 datasets. In the second experiment, we use the rule

sets produced by the See5 system, a commercial product of the most famous learning

algorithm ID3 and C4.5. Achieving improvements on 3 of 9 datasets is the result of this

experiment.

 44

Chapter 6

Future Works

This research opens a number of research directions to go further in the future.

First, the seed generator used in the above experiments is quite simple. It uses only

attributes that are not referred to in the prior rule sets. Although the result of

experiments are interesting: with very simple techniques, the proposed approach can

improve effectively rule-based classifiers learned by state-of-the-art algorithms, but in

several cases when all attribute are used by prior rule set, the proposed approach can do

nothing. In such a case, the set of rule seeds is empty and no rule is discovered. More

over, with this way of building seed generator, learning process is iterated at most twice

because after applying the proposed approach all attributes are considered and the next

iterations will produce nothing more.

Second, the way of using newly learned rules is also need to be improved. A newly

learned rule is used when it effectively replaces a prior rule, or extends the prior rule set.

But in rule-based classifier, a new sample may be classified by the vote of several rules

when it is fired by more than one rule. This means that classification result depends on

the whole rule set, not on the individual. In our experiment the newly learned rules are

individually considered in improving the prior rule set. This problem needs to be

improved in the future.

The third direction concerns about the availability of new data after a classifier has

been constructed, a common occurrence in practical applications [21]. It may be that the

existing classifier deals correctly with all the new data, so we don’t have to do nothing.

If we are not so fortunate, there are two alternatives: ignoring the new data, or discard

the previous classifier, add the new data to the training set, and build a new classifier.

Neither of these alternatives is attractive if the classifier seems likely to benefit from

new data, yet the computational cost of developing a classifier from scratch is high [21].

 45

Adapting the new data by extending the prior rule set is an open direction of this

research.

The fourth direction concerns about the problem of discovering interesting rules,

one of the areas of slow progress in data mining [19]. One important criterion of an

interesting rule is the novelty, a subjective measure that cannot be drawn from data.

There are many works trying to deal with this problem like ranking discovered rules

according to some interestingness measure, or filter out what is not interesting. All of

these works are done in the post processing step rule sets are discovered from data.

They give users no way to participate into the mining process. The proposed approach

can help the user to do data mining incrementally, discover new rules that are different

from existing ones, and interactively narrow the search in rules space through the seed

generator while exploring the prior rule set.

 46

References

[1] R. Agrawal, T. Imielinski, A. Swami. Mining Associations between Sets of Items

in Massive Databases. Proc. of the ACM-SIGMOD 1993 Int'l Conference on

Management of Data, Washington D.C., pages 207-216, May 1993.

[2] R. J. Bayardo and R. Agrawal. Mining the Most Interesting Rules. In Proc. of the

5th Int. Conf. on Knowledge Discovery and Data Mining, pages 145--154, San

Diego, CA, USA, Aug. 1999.

[3] R. J. Bayardo Jr., R. Agrawal, and D. Gunopulos. Constraint-based rule mining

in large, dense databases. Data Mining and Knowledge Discovery, 4(2/3): pages

217-240, 2000.

[4] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):

pages 261--284, March 1989.

[5] P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements.

In Proceedings of the Fifth European Working Session on Learning, pages 151--

163. Springer, 1991.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to

knowledge discovery: An overview. In Advances in Knowledge Discovery and

Data Mining, pp. 1--34. AAAI Press, Menlo Park, CA, 1996.

[7] R.J. Hilderman and H.J. Hamilton. Knowledge discovery and interestingness

measures: A survey. Technical Report CS 99-04, Department of Computer

Science, University of Regina, October 1999.

[8] T.B. Ho and D.D. Nguyen. Chance Discovery and Learning Minority Classes.

Journal of New Generation Computing, Springer, Vol. 21, No. 2, pages 147-160,

February 2003.

[9] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and A.

Inkeri Verkamo. Finding interesting rules from large sets of discovered

association rules. In CIKM-94, 401 -- 407, November 1994.

[10] J. Li and L. Wong. Solving the Fragmentation Problem of Decision

Trees by Discovering Boundary Emerging Patterns. In proceedings of the 2002

 47

IEEE International Conference in Data Mining, pages 653-656. 9-12 December

2002, Maebashi City, Japan.

[11] Bing Liu, Yiming Ma, C-K Wong. Classification Using Association

Rules: Weaknesses and Enhancements. To appear in Vipin Kumar, et al, (eds),

Data mining for scientific applications, 2001.

[12] Bing Liu, Wynne Hsu, Yiming Ma. Integrating Classification and

Association Rule Mining. Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining (KDD-98, full paper), New York, USA,

1998.

[13] Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac.

The multipurpose incremental learning system AQ15 and its testing application

to three medical domains. In AAAI-86, 1041 -- 1045, 1986.

[14] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997. http://www-

2.cs.cmu.edu/~tom/mlbook.html.

[15] P. M. Murphy and D.W. Aha. UCI repository of Machine Learning

Databases. University of California, Department of Information and Computer

Science, Irvine CA, 1994.

[16] G. Pagallo and D. Haussler. Boolean feature discovery in empirical

learning. Machine Learning, 5:71-99, 1990.

[17] M. Pazzani, C. Brunk, and G. Silverstein. A knowledge-intensive

approach to learning relational concepts. Proceedings of the Eighth

International Workshop on Machine Learning (pp. 432-436). Evanston, IL-

Morgan Kaufmann, 1991.

[18] Gregory Piatetsky-Shapiro and Christopher J. Matheus. The

interestingness of deviations. In KDD-94, 25 -- 36, July 1994.

[19] Gregory Piatetsky-Shapiro. Knowledge Discovery in Databases: Ten

years after. SIGKDD Explorations 1(2): 59-61 (2000).

[20] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In

Pavel B. Brazdil, editor, Machine Learning: ECML-93, Vienna, Austria, 1993.

[21] J. R. Quinlan. C4.5: Programs for machine learning. San Mateo, CA:

Morgan Kaufmann, 1993.

 48

http://www-2.cs.cmu.edu/~tom/mlbook.html
http://www-2.cs.cmu.edu/~tom/mlbook.html
http://www.informatik.uni-trier.de/~ley/db/journals/sigkdd/sigkdd1.html

[22] J. R. Quinlan. C5.0: An Informal Tutorial. RuleQuest, 1998.

http://www.rulequest.com/see5-unix.html.

[23] Sigal Sahar. Interestingness via what is not interesting. In Fifth

International Conference on Knowledge Discovery and Data Mining (S.

Chaudhuri and D. Madigan, eds.), (San Diego, CA, USA), pp. 332-336, ACM

Press, 1999.

[24] Sigal Sahar. On Incorporating Subjective Interestingness Into the Mining

Process. Proc. of IEEE Int’l Conference on Data Mining, page 681-684.

Maebashi, Japan, 9-12 December 2002.

[25] A. Silberschatz and A. Tuzhilin. On subjective measures of

interestingness in knowledge discovery. Proceedings of the First International

Conference on Knowledge Discovery and Data Mining, pages 275-281, 1995.

[26] R. Vilalta, G. Blix, and L. A. Rendell. Global data analysis and the

fragmentation problem in decision tree induction. In 9th European Conference

on Machine Learning, pages 312--326. Lecture Notes in Artificial Intelligence,

Vol. XXX, Springer-Verlag, Heidelberg.

 49

http://www.rulequest.com/see5-unix.html

List of Contributions
1. Ho T.B., Nguyen, D.D. (2003). Chance Discovery and Learning Minority Classes,

Journal of New Generation Computing, Springer, Vol. 21, No. 2, February 2003,

147-160.

2. Ho, T.B., Nguyen, T.D., Nguyen, D.D., Kawasaki, S. (2001). Visualization Support

for User-Centered Model Selection in Knowledge Discovery and Data Mining,

International Journal of Artificial Intelligence Tools, World Scientific, Vol. 10, No.

4, 691-713.

3. Ho, T.B., Nguyen, T.D., Nguyen, D.D. (2002). A User-Centered Visual Approach to

Data Mining. The system D2MS, Intelligent Information Processing, M. Musen, B.

Neumann, R. Studer (Eds.), Kluwer Academic Publishers, 213-224.

4. Ho, T.B., Nguyen, T.D., Nguyen, D.D., Kawasaki, S. (2002). Visualization of Data

and Knowledge in the Knowledge Discovery Process, Active Mining: New

Directions of Data Mining, H. Motoda (Ed.), IOS Press, 229-238.

5. Ho, T.B., Nguyen, D.D., Nguyen, T.D., Kawasaki, S. (2002). Extracting Knowledge

from Hepatitis Data with Temporal Abstraction, IEEE Conference on Data Mining,

Workshop on Active Mining, Maebashi, December 9-12, 91-96.

6. Kawasaki, S., Saitou, A., Nguyen, D.D., Ho, T.B. (2002). Mining from Medical

Data: Case-Studies in Meningitis and Stomach Cancer Domains, KESS 2002, 6th

International Conference on Knowledge-based Intelligent Information &

Engineering Systems, Crema, September 16-18, 2002, 547-551.

7. Ho, T.B., Nguyen, D.D., Kawasaki, S. (2002). Learning Minority Classes in

Unbalanced Datasets, Third International Conference on Parallel and Distributed

Computing, Kanazawa, September 3-6, 196-203.

8. Ho, T.B., Nguyen, D.D., Kawasaki, S., Nguyen, T.D. (2002). Extracting Knowledge

from Hepatitis Data with Temporal Abstraction, ICML/PKDD 2002 Discovery

Challenge, 6th European Conference on Principles of Data Mining and Knowledge

Discovery PKDD 2000, Hensinki, 19-23 August.

9. Ho, T.B., Nguyen, T.D., Nguyen, D.D. (2002). Visualization Support for a User-

Centered KDD Process, ACM International Conference on Knowledge Discovery

and Data Mining KDD-02, Edmonton, 23-26 July, 519-524.

 50

10. Ho, T.B., Saito, A., Kawasaki, S., Nguyen, D.D., Nguyen, T.D. (2002). Failure and

Success Experience in Mining Stomach Cancer Data, International Workshop Data

Mining Lessons Learned, Inter. Conf. Machine Learning 2002, Sydney, 8-12 July,

40-47.

11. Kawasaki, S., Nguyen, D.D., Nguyen, T.D., Ho, T.B. (2002). Study of Hepatitis

Data by Visual Data Mining System D2MS, JSAI SIG-KBS-A201 Workshop Active

Data Mining, Pusan, 23-24 May, 43-48.

12. Nguyen, T.D., Ho, T.B., Nguyen, D.D. (2002). Data and Knowledge Visualization

in the Knowledge Discovery Process, 5th International Conference Recent

Advances in Visual Information Systems, Taiwan, 11-13 March, Lecture Note in

Computer Science 2314, Springer, 311-321.

13. Ho, T.B., Nguyen, D.D., Kawasaki, S. (2001). Mining Prediction Rules from

Minority Classes, 14th International Conference on Applications of Prolog

(INAP2001), International Workshop Rule-Based Data Mining RBDM 2001, Tokyo,

20-22 October, 254-264.

14. Ho, T.B., Kawasaki, S., Nguyen, D.D. (2001). Extracting Predictive Knowledge

from Meningitis Data by Integration of Rule Induction and Association Mining,

International Workshop Challenge in KDD, 22 May, Shimane, Japan, 25-32,

Lecture Notes in Artificial Intelligence 2253, Springer 2001, 508-515.

 51

	Chapter 1
	Introduction
	Research Context
	Research Objective
	Research Content
	Document Structure

	Chapter 2
	Rule Induction Algorithms
	Introduction
	The ID3 Algorithm
	The CN2 Algorithm
	The FOCL Algorithm

	Chapter 3
	Using Prior Knowledge in
	Rule Induction
	Motivation
	The Learning Problem
	General Framework
	Seed generator
	Rule specialization

	Chapter 4
	Improving a Rule-based Classifier
	Problem Statement
	Updating a Rule-based Classifier
	Prior knowledge
	The Seed-Generator procedure
	Updating prior rule sets

	Experiments
	Datasets
	Methodology
	Results
	
	
	
	ID

	Chapter 5
	Conclusions
	Chapter 6
	Future Works
	References
	List of Contributions

