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Using Prior Knowledge in Rule Induction 
 

Abstract: One of the most expressive and human readable representations for 

learned knowledge is a set of if-then rules. Rule learning algorithms aim at finding a set 

of rules that best fits the training data according to some predefined criteria. Many of 

them use only data as the unique input, in other words they are purely inductive, or 

data-driven. There are also attempts to combine prior knowledge, in terms of domain 

theory, with inductive learning algorithms to take advantages of both inductive and 

analytical learning approaches. 

 

In this thesis we describe a new approach to using prior knowledge in rule induction. 

The concept “prior knowledge” in this work is extended to a broader sense: it includes 

domain knowledge; prior rule set that has existed as result of previous learning process; 

and user’s constraints. The objective of induction is also changed from finding a new 

hypothesis in hypotheses space, to finding a better hypothesis based on the existing one, 

and the data. To illustrate the effectiveness, the proposed approach is applied to improve 

the classification performance of the rule-based classifiers learned by two rule learning 

systems LUPC and See5. Experiment results show that the approach is effective in 

terms of improving the classification accuracy of rule-based classifiers. 

 

Keywords: data mining, rule induction, prior knowledge, rule-based classifier, 

classification. 
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Chapter 1 

Introduction 
 

1. Research Context 
 

Learning a set of rules from data is a problem that has attracted considerable interest 

because a rule provides a concise statement of potential useful information that is easily 

understood by end users [14]. Rule induction algorithms aim at finding a set of rules 

that satisfy some predefined criteria. Sequential covering algorithms like AQ [13], CN2 

[4][5], search for a set of rules that covers all training samples. Simultaneous covering 

algorithms like ID3, C4.5 [21][22], extract rules from a decision tree built by dividing 

samples until some conditions are satisfied. In all of these covering algorithms, learning 

process will stop when all training samples are covered, or all of them satisfy some 

predefined conditions like belonging to the same class; so that only a small set of rules 

are discovered. Another common point of covering algorithms is that the training 

samples become fewer and fewer after rules are learned, or attributes are selected to 

build a decision tree. This causes a problem called fragmentation: the learned rules are 

locally important but globally insignificant [16][10]. There are also attempts to 

integrating domain knowledge into induction process to obtain the benefits from both 

purely inductive and analytical learning, the learning methods that use prior knowledge 

to derive general hypothesis deductively. One of the approaches is to use prior 

knowledge, in terms of domain theory, to augment search operators. The FOCL 

algorithm [17] uses the domain theory to increase the number of candidate 

specializations considered at each step of the search for a single Horn clause. Candidate 

hypotheses are then evaluated based on their performance over the training data. In this 

way, FOCL combines the greedy, general-to-specific inductive search strategy with the 

rule-chaining, analytical reasoning of analytical methods. 
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2. Research Objective 
 

In this work we propose a new approach to use prior knowledge in rule induction. 

The concept “prior knowledge” is extended to a broader sense; it includes domain 

knowledge, prior rule set that has existed as the result of previous learning processes, 

and user’s constraints. The objective of learning is also changed from finding a new 

hypothesis in the hypotheses space, to finding a better hypothesis based on the existing 

one, and data. The reason why we extend concept “prior knowledge” is that data mining 

is an iterative process, it comprises many steps repeated in multiple iterations [19]. But 

most rule induction algorithms are one-run process; they will produce the same result in 

any runs because they use the same search heuristic, the same search strategy on the 

same data. If we are given more resources like computational power, time, or users do 

not satisfy with the result of learning, they have no way to go further. Rule learning 

systems will throw away previous results, start the learning again with the old data, and 

produce the same thing. In the proposed approach, we use the learned rule set as an 

input factor to find new rules that are potentially useful. The newly learned rules, 

together with prior rules, are used to build a better rule set. By this way prior rule set, or 

prior knowledge, is reused, and enriched incrementally. 

 

3. Research Content 
 

Our approach consists of two main steps. In the first step prior knowledge, or prior 

rule set, is used to generate a set of simple rules called rule seeds. The role of these rule 

seeds is to direct the search for new rules that are different from those in the prior rule 

set. The second step is to specialize these simple, low confidence rule seeds to achieve 

more accurate rules. The newly learned rules are then used to improve the prior rule set 

to get a better set of rules. Because no example is removed from training data, the 

fragmentation is avoided; the newly learned rules are globally significant. 
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To illustrate the effectiveness, we have conducted two experiments. In the first 

experiment we apply the proposed approach to improve the classification accuracy of 

rule-based classifiers produced by LUPC, a sequential covering rule induction algorithm. 

Experiment result on 26 datasets downloaded from the UCI machine learning repository 

[15] shows that the proposed approach is effective: it can improve LUPC’s classifiers 

on 7 out of 26 domains. In the second experiment, we apply the proposed approach to 

improve rule-based classifiers produced by the See5 system. Experiment on 9 datasets 

shows that the proposed approach effectively improves 3 of 9 classifiers: classification 

errors are reduced significantly while the size of classifiers is not changed. 

 

4. Document Structure 
 

The rest of this document is organized as follow. In chapter 2 we describe some 

representative rule induction algorithms: the ID3, CN2, and FOCL algorithms. Chapter 

3 is for the main work of this thesis: the proposed approach to using prior knowledge in 

rule induction. Experiments for illustrating the effectiveness of the proposed approach 

in improving the classification performance of a prior rule-based classifier are described 

in chapter 4. In chapter 5 we would like to address some conclusions, and the future 

works will be described in chapter 6. 
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Chapter 2 

Rule Induction Algorithms 
 

1. Introduction 
 

In many cases it is useful to learn the target function represented as a set of if-then 

rules that jointly define the function. A rule set in the form of “IF conditions THEN 

conclusion” is one of the most expressive and human readable representations for 

learned hypothesis [14]. In this chapter we will discuss about the three most famous rule 

induction algorithms: ID3, CN2, and FOCL. ID3 [14] is a representative for the 

simultaneous covering algorithms; it first learns a decision tree and then translates the 

tree into an equivalent set of rules, one rule for each leaf of the tree. CN2 [4][5] belongs 

to the family of sequential covering algorithms; it learns rules set based on the strategy 

of learning one rule, removing the data it covers, then iterating this process. FOCL [17], 

an extension of the purely inductive FOIL [20], learns a set of first order Horn clauses 

to cover the observed training examples. The difference between FOCL and FOIL is 

that FOCL uses domain theory to increase the number of candidates specializations 

considered at each step of the search. 

 

2. The ID3 Algorithm 
 

ID3 is a decision-tree learning algorithm that employs a top-down, greedy search 

through the space of possible decision tree. The central choice in the ID3 algorithm is 

selecting which attribute to test at each node in the tree. In the figure below, attribute A 

that best* classifies Examples in the ID3 algorithm is selected based on a statistical 

property called information gain, that measures how well a given attribute separates the 

training examples according to their target classification. ID3 uses this information gain 

measure to select among the candidate attributes at each step while growing the tree.  
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In ID3, information gain of an attribute A relative to a collection of examples S is 

defined as 
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Table1: The ID3 learning algorithm 

ID3(Examples, Target_attribute, Attributes) 
Input: Examples are the training examples. Target-attribute is the attribute 

whose value is to be predicted by the tree. Attributes is a list of other 
attributes that may be tested by the learned decision tree. 

Output: a decision tree that correctly classifies the given Examples 
 
• Create the Root node for the tree 
• If all Examples are positive, Return the single-node tree Root, with label = + 
• If all Examples are negative, Return the single-node tree Root, with label = - 
• If Attributes is empty, Return the single-node tree Root, with label = most 

common value of Target_attribute in Examples 
• Otherwise Begin 

• A ← the attribute from Attributes that best* classifies Examples  
• The decision attribute for Root ← A 
• For each possible value, vi, of A 

• Add a new tree brand below Root, corresponding to the test A = vi 
• Let Examplesvi be the subset of Examples that have value vi for A 
• If Examplesvi is empty 

• Then below this new branch add a leaf node with label = most 
common value of Target_attribute in Examples 

• Else below this new branch add the subtree  
ID3(Examplesvi, Target_attribute, Attributes – {A}) 

• End 
• Return Root 
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An alternative measure for selecting attributes is the gain ratio that has been used 

successfully in the C4.5 [21], the successor of ID3. Gain ratio is used to avoid the 

problem when information gain favors attributes with many values over those with few 

values. The gain ratio is defined as  
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),(),(
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Where split information is used to penalize attributes that have too many values. 

 

∑
=

−=
c

i

ii

S
S

S
S

ASmationSplitInfor
1

2log),(  

  

The next step to obtain a set of rules is to translate the tree into an equivalent set of 

rules. Every path from the root of an un-pruned tree to a leaf gives one initial rule. The 

left-hand side of the rule contains all the conditions established by the path, and the 

right-hand side specifies the class at the leaf. Each rules is then simplified by removing 

conditions that do not seem helpful for discriminating the nominated class from other 

classes, using a pessimistic estimate of accuracy of the rule [21]. This process leads to a 

production rule classifier that is usually about as accurate as a pruned tree, but more 

easily understood by people. 

 

The following are some properties of the ID3 algorithms: 

• ID3 is a purely inductive or data-driven algorithm; it searches for a decision tree 

that best fits the training data without any domain knowledge. 

• ID3 is the classification-oriented learning algorithm; the central choice of the 

algorithm is to select the attribute that is the most useful for classifying 

examples [14]. Because the approximate inductive bias of ID3 is the shorter 

trees are preferred over larger tree then the rule set produced by ID3 is very 

simple and less significant (although all of them ensure a high classification 

accuracy) 
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• Incremental induction is one of the desirable additions of ID3 and C4.5 [21]. 

The algorithm proceeds directly from training cases to classifier. There is no role 

in the scheme of things for a previous or partially completed classifier. There are 

two situations in which the inability to make use of an existing classifier is 

unsatisfactory. The first one is the availability of new data after a classifier has 

been constructed, a common practical application of machine learning where the 

continual collection of data is the norm. There are two alternatives: ignore the 

new data or discard the previous classifier, add the new data to the training, and 

build a new classifier. The second of the concerns is that the greedy algorithms 

used in C4.5 (the successor of ID3) require a fixed amount of time to run; they 

cannot exploit more, and will produce nothing in less [21]. 
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3. The CN2 Algorithm 
 

Another way to learn a set of rules is to learn rules directly from data. In this section 

we will describe CN2 [11][12], a typical rule-learning algorithm belonging to the family 

of sequential covering algorithms.  

 

Table 2: The sequential covering algorithm for learning a set of rules 

Sequential-Covering(Target_attribute, Atrributes, Examples, Threshold) 
• Learned_rules ← {} 
• Rule ← Learn-One-Rule(Target_attribute, Atrributes, Threshold) 
• while Performance(Rule, Examples) > Threshold, do 

• Learned_rules ← Learned_rules + Rule  
• Examples ← Examples – {examples correctly classified by Rule} 
• Rule ← Learn-One-Rule(Target_attribute, Atrributes, Threshold) 

• Learned_rules ← sort Learned_rules accord to Performance over Examples 
• return Learned_rules 

 

 

 

Table 2 describes the general scheme of sequential covering algorithms for learning 

a disjunctive set of rules. Imagine we have a subroutine Learn-One-Rule that accepts a 

set of positive and negative training examples as input, and then outputs a single rule 

that cover many of the positive examples and few of negative examples. The procedure 

Sequential-Covering invokes Learn-One-Rule on all the available training examples, 

removes any positive examples covered by the rule it learns, then invokes it again to 

learn the second rule based on the remaining training examples. This procedure can be 

iterated as many times as desired to learn a disjunctive set of rules that together cover 

any desired fraction of the positive examples. This is called sequential covering 

algorithm because it sequentially learns a set of rules that together cover the full set of 

positive examples [14]. 

 

This sequential covering algorithm is one of the most widespread approaches to 

learn disjunctive sets of rules [14]. It reduces the problem of learning a disjunctive set 
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of rules to a sequence of simpler problems, each requiring that a single conjunctive rule 

be learned. Because it performs a greedy search, formulating a sequence of rules 

without backtracking, it is not guaranteed to find the smallest or best set of rules that 

cover the training examples. 

 

One effective approach to implementing Learn-One-Rule is to perform a general-

to-specific search through the space of possible rules. To reduce the risk that a sub-

optimal choice will be made at any step of greedy search, CN2 conducts a beam search 

in which the algorithm maintains a list of k best candidates at each step, rather than a 

single best candidate. On each search step, descendants (specializations) are generated 

for each of these k best candidates, and the resulting set is again reduced to the k most 

promising members. Beam search keeps track of the most promising alternatives to the 

current top-rated hypothesis, so that all of their successors can be considered at each 

search step. This general-to-specific beam search is described in table 3. 

 

The following are some properties of the CN2 algorithms: 

• Like ID3, CN2 is a purely inductive or data-driven algorithm; it performs a 

greedy search for a set of rules that cover all training examples without using 

domain knowledge. The greedy search is not guaranteed to find the smallest or 

best set of rules [14]. 

• The common point of covering algorithms is that their heuristics are not based 

on the whole original training examples, except during the learning for the first 

rule. Training examples becomes fewer and fewer after iterations because the 

positive examples covered by the rule are removed from training data set. The 

rule that is output by the algorithm is the rule encountered during the search 

whose Performance is the greatest, but this measure is based on the remaining 

examples and this may lead to locally optimal result [10][26]. 
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Table 3: One implementation for Learn-One-Rule, a general-to-specific 

used by the CN2 

Learn-One-Rule(Target_attribute, Atrributes, Examples, k) 
Returns a single rule that covers some of the Examples. Conducts a 
general_to_specific greedy search for the best rule, guided by the 
Performance metric. 

• Initialize Best_hypothesis to the most general hypothesis φ 
• Initialize Candidate_hypotheses to the set {Best_hypothesis} 
• While Candidate_hypotheses is not empty, do 

1. Generate the next more specific candidate_hypotheses 
• All_constraints ← the set of all constraints of the form (a = v), 

where a is a member of Attributes, and v is a value of a that 
occurs in the current set of Examples 

• New_candidate_hypotheses ←  
for each h in Candidate_hypotheses 

for each c in All_constraints 
• Create a specialization of h by adding the constraint c  

• Remove from New_candidate_hypotheses any hypothesis that are 
duplicates, inconsistent, or not maximally specific 

2. Update Best_hypothesis 
• For all h in New_candidate_hypotheses, do 

• If (    Performance(h, Examples, Target_attributte)) 
> Performance(Best_hypothesis, Examples, 
Target_attributte) 

Then Best_hypothesis ← h 
3. Update Candidate_hypotheses  

• Candidate_hypotheses ← the k best members of 
New_candidate_hypotheses, according to the Performance 
measure. 

• Return a rule of the form  
“IF Best_hypothesis THEN prediction” 
where prediction is the most frequent value of the Target_attribute among 
those Examples that match Best_hypothesis. 
 

Performance(h, Examples, Target_attribute) 
• h_examples ← the subset of Examples that match h 
• return -Entropy(h_examples), where entropy is with respect to 

Target_attribute 
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4. The FOCL Algorithm 
 

FOCL is an extension of the purely inductive FOIL algorithm, an algorithm for 

learning first-order rules, or Horn clauses. FOIL [20] extends the sequential covering 

algorithm of CN2 [4] to handle the case of learning first-order rules. To learn each rule, 

FOIL performs a general-to-specific search, at each step adding a single new literal to 

the rule preconditions. The new literal may refer to variables already mentioned in the 

rule precondition or post-conditions, and may introduce new variables as well. 

 

Table 4: The Cup learning task 

Domain theory: 
Cup ← Stable, Liftable, OpenVessel 

Stable ← BottomIsFlat 
Liftable ← Graspable, Light 

Graspable ← HasHandle 
OpenVessel ← HasConcavity, ConcavityPointsUp 

 
Training examples:  
 

 Cups Non-Cups 

BottomIsFlat 
√ √ √ √ √ √ √   √ 

CancavityPointsUp √ √ √ √ √  √ √   
Expensive √  √    √  √  
Fragile √ √   √ √  √  √ 
HandleOnTop     √  √    
HandleOnSide √   √     √  
HasConcavity √ √ √ √ √  √ √ √ √ 
HasHandle √   √ √  √  √  
Light √ √ √ √ √ √ √  √  
MadeOfCeramic √    √  √ √   
MadeOfPaper    √     √  
MadeOfStyrofoam  √ √   √    √  

 

Both FOIL and FOCL learn a set of first-order Horn clauses to cover the observed 

examples. Both systems employ a sequential covering algorithm that learn single Horn 

clause, removes the positive examples covered by this new Horn clause, and then 
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iterates this procedure over the remaining training examples. In both systems, each new 

Horn clause is created by performing a general-to-specific search beginning with the 

most possible Horn clause [14](i.e., a clause containing no preconditions). Several 

candidate specializations of the current clause are then generated, and the 

specializations with the greatest information gain related to the training examples is 

chosen. This process is iterated, generating further candidate specializations and 

selecting the best, until a Horn clause with satisfactory performance is obtained. 

 

The difference between FOIL and FOCL lies in the way in which candidate 

specializations are generated during the general-to-specific search for a single Horn 

clause. FOIL generates each candidate specialization by adding a single new literal to 

the clause precondition. FOCL uses this same method for producing candidate 

specializations, but also generates additional specializations based on the domain theory. 

 

To illustrate the operation of FOCL we use the simple learning problem summaries 

in table 4. Here each instance describes a physical object in terms of material from 

which it is made, whether it is light, etc. The task is to learn the target concept Cup 

defined over such physical objects. Table below describes a set of training examples and 

domain theory for the Cup target concept. Notice the domain theory defines a Cup as an 

object that is Stable, Liftable, and OpenVessel. The domain theory also defines each of 

theses three attributes in terms of more primitive attributes, terminating in the primitives, 

operational attributes that describe the instances. Note that the domain theory is not 

perfectly consistent with the training examples. 

 

There are two kinds of literal that appear in the domain theory and hypothesis 

representation. We will say a literal is operational if it is allowed to be used in 

describing an output hypothesis. For example, in the Cup examples, we allow output 

hypotheses to refer only 12 attributes that describe the training examples. Literals based 

on these 12 attributes are thus considered operational. In contrast, literals that occur 

only as intermediate features in the domain theory, but not as primitive attributes of the 

instances, are considered non-operational. An example of a non-operational attribute in 

this case is the attribute Stable. 
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At each point in its general-to-specific search, FOCL expands its current hypothesis 

h using the following two operators: 

1. For each operational literal that is not part of h, create a specialization of h by 

adding this single literal to the preconditions. This is also the method used by 

FOIL to generate candidate successors. The solid arrows in figure 1 denote this 

type of specialization. 

2. Create an operational, logically sufficient condition for the target concept 

according to the domain theory. Add this set of literals to the current 

preconditions of h. Finally; prune the preconditions of h by removing any literals 

that are unnecessary according to the training data. The dash arrow in figure 1 

denotes this type of specialization. 

 

The following are properties of the FOCL algorithm: 

• FOCL uses domain theory to increase number of candidate specializations 

considered at each step of the search for a single Horn clause. If the domain 

theory is correct, the training data will bear out the superiority of this candidate 

over the others and it will be selected. If the domain theory is incorrect, the 

empirical evaluation of all the candidates should direct the search down an 

alternative path. In other words, the domain theory is used in the fashion that 

biased the learner, but leaves final search choices to be made based on 

performance over training data [14]. 

• FOCL combines the greedy, general-to-specific inductive search strategy with 

the rule-chaining, analytical reasoning of analytical methods. It has been shown 

that FOCL generalizes more accurately than purely inductive FOIL algorithm in 

a number of application domains in which imperfect domain theory available 

[14].  
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Figure 1: Hypothesis space search in FOCL. To learn a single rule, FOCL searches 
from general to increasingly specific hypotheses. Two kinds of operators generate 
specializations of the current hypothesis. One kind adds single literal (solid line in 
the figure). A second kind of operator specializes the rule by adding a set of literals 
that constitute logically sufficient conditions for the target concept, according to 
the domain theory (dash line in the figure). FOCL selects among all these 
candidate specializations, based on their performance over the data. There for, 
imperfect domain theories will impact the hypothesis only if the evidence supports 
the theory [14]. 
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Chapter 3 

Using Prior Knowledge in  

Rule Induction 
 

1. Motivation 
 

In previous chapters we have described three most well known algorithms that learn 

a set of rules from data. The ID3 and CN2 are two most famous algorithms 

representative for the simultaneous and sequential covering families. Their common 

point is that they are purely inductive or data-driven algorithms. They search in 

hypothesis space (rule sets) to find out one set of rules that coverers all training samples 

without prior knowledge. Different from ID3 and CN2, the FOCL algorithm uses 

domain theory to increase number of candidate specializations considered at each step 

of the search for a single Horn clause. This difference helps FOCL to generalize more 

accurately than purely inductive FOIL algorithm in a number of domains in which 

imperfect domain theory available [14]. More over, those above algorithms proceed 

directly from training samples to hypothesis; there is no role in the scheme of things for 

a previous or partially completed hypothesis [21]. One of the desirable additions of ID3, 

as well as of greedy algorithms, is incremental induction. Suppose that more 

computation time available after a classifier has been generated, the greedy algorithms 

require a fixed amount of time to run; they cannot exploit more, and will produce 

nothing in less [21]. An ideal algorithm would produce some classifier quickly, then use 

additional time available to it to improve the classifier [21]. 

 

In this chapter we describe a new approach to using prior knowledge in rule 

induction. Different from the purely inductive approaches or the approaches that use 

domain theory to effectively learn a new hypothesis in FOCL, our approach uses prior 

knowledge that includes existing rule set, domain theory, and user’s constraints, to build 
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a new hypothesis, or rule set, based on the prior one. The improvement is done by 

searching for new rules and using them to replace prior rules, or to extern the prior rule 

set to achieve a better rule set. In the learning context, if the existing hypothesis is a 

rule-based classifier, the approach aims at building a better rule-based classifier that 

does classification more accurately. If the hypothesis is a set of rules that are already 

known by the user, the extension aims at finding new and potential useful rules that are 

different from existing rules. In this framework, the knowledge is re-used, enriched, and 

extended after learning iterations. 

 

The rest of this chapter is organized as follow. In section 2 we will summary the 

learning problem in which prior hypothesis knowledge is used as an input factor. The 

concept prior knowledge will be discussed in more detailed in this section. Section 3 is 

for describing the general framework for learning new rules. Two main components of 

the framework are described. 

 

2. The Learning Problem 
 

To summary the learning problem is stated as follow: 

Given: 

• A set of training examples D 

• A domain theory B, and user’s constraint C 

• An existing hypothesis (a set of rules) R 

• A space of hypotheses H 

Determine: 

• A hypothesis R+ that fits training examples D better. 

 

A new point of the proposed approach is the prior knowledge includes an existing 

hypothesis, or rule set R. This set of rules may be the result of previous learning process, 

or provided by domain experts. If this rule set exists, the objective of induction is to find 

new rules and improve it. If rule set R does not exist, the objective of induction is to 

search for a new hypothesis that best fits the training data according to predefined 
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criteria, the same objective as common rule learning algorithms. The reason why we do 

use a set of rules as an input factor for rule induction is that we expect to find out new 

rules to improve the existing rule set. If we do not keep the rules, the search will give us 

the same result as we already have. 

 

The second component of the prior knowledge is the domain knowledge B, exactly 

the same as described in the FOCL algorithm. Approximate prior knowledge, or domain 

theories, is available in many practical learning problems [14]. Purely inductive 

methods such as decision tree induction or neuron network fail to utilize such domain 

theories, and therefore perform poorly when data is scarce [14]. Purely analytical 

learning methods utilize domain theories, but produce incorrect hypotheses when given 

imperfect prior knowledge. Methods that blend inductive and analytical learning can 

gain benefits of both approaches: reduce complexity and the ability to overrule incorrect 

prior knowledge. 

 

The last component of the prior knowledge is a set of user’s constraints C. Users use 

constraints to narrow the search, for example, for patterns they are interested in; this 

plays a crucial role for the successful of many learning tasks. In data mining, 

discovering new and interesting patterns is still a hard problem [19]. Knowledge 

discovery in databases (KDD) is defined as “the nontrivial process of identifying valid, 

novel, potential useful, and ultimately understandable patterns in data” [6]. In many 

cases, it is possible to define measures of certainty (for example, estimated prediction 

accuracy on new data) or utility (for example, gain, perhaps in dollars saved because of 

better predictions or speedup in respond time of a system)). But the notions like novelty 

is much more subjective [18]. No one but the user can identify which pattern is new and 

interesting. The ways we use these constraints is quite different from the works that use 

constraints to rank the discovered rules [2][9][25] or to filter out not interesting ones 

[23][24]. In our approach the constraints are used during the search, not in the post-

processing step. In section 3.1 we will introduce an illustrative example of how user’s 

constraints could be integrated in discovering such kind of patterns. 
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3. General Framework 
 

Figure 2 shows the general framework for using prior knowledge in rule induction. 

 

 
 

Figure 2: A general framework for utilizing prior knowledge in rule induction. 
 

There are two important components in this framework. First, the seed generator 

takes prior knowledge as input and outputs a set of rule seeds. Second, the rule 

specialization process specializes the seeds to achieve accurate rules. These two 

components are described in more detail in the next sections.  

 

3.1 Seed generator 
 

The seed generator is the most important component in the framework. It is a 

procedure that takes prior knowledge as input, outputs a set of simple rules that will 

guide the search in the specialization process. Suppose that s is a rule seed produced by 

the seed generator, s has to satisfy two conditions: 
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i) Rules specialized from s are different from existing rules in R. 

ii) Rules specialized from s are potentially useful. 

 

The first condition is to ensure that newly learned rules are new with respect to 

existing rule set R. The concept “new” is a relative concept because it is based on at 

least two objects belonging to the same category, and of course, is very complicated. In 

this context we simplify it as follow: a rule r’ in the form of “IF conditions THEN 

conclusion” where conditions is a conjunctive of conditions and conclusion is a target 

concept; rule r’ is called new with respect to a rule set R if for every rule r of R, one of 

the two following conditions is satisfied: 

 

i) conclusion(r’) # conclusion(r) 

ii) conditions(r’) ∉ conditions(r) 

 

According to this simplification a rule is said new if it refers to a different concept; 

or its conclusion consists of a new factor, or a new condition. 

 

Note that the seed generator is application-oriented procedure. If the application is 

to build a rule-based classifier, the generator should generate the seeds that rules 

specialized from them could improve the accuracy of a classifier. If the application is to 

discover interesting patterns, the seeds will direct the search to rules that makes people 

surprised, for example. Building the generator will be described in more detailed in the 

next section and in chapter 4 when the proposed approach is used in improve a rule 

based classifier. 

 

To illustrate how the seed generator works, lets take an example on a real 

application. The stomach cancer data collected at the National Cancer Center in Tokyo 

in 30 years from 1962 to 1991 contains data of 7,520 patients. Each patient is described 

by 83 attributes about personal information, symptoms, pre-operative and post-operative 

complication, etc. The knowledge doctors want to know is the symptoms related to the 

death or alive of patients within 90 days, after 90 days, after 5 years of operation, or to 
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be alive. After doing necessary pre-processing step we have used rule induction systems, 

including See5 [22] from RuleQuest, and our system called LUPC [8] to discover rules 

for above concepts. The result is See5 discover one rule for the concept “the patient die 

within 90 days” and LUPC discover 7 rules, with minimum accuracy 90% and cover at 

least 5 samples. We introduce this result to the doctor and ask them about their 

comments. Unfortunately they said that all of them are believable, but not new. Five of 

seven rules have the symptoms “level 3 of liver metastasis” in the condition part of the 

rules for concept “death within 90 days”, this is not new. One question raised to us is 

what should we do next? If we run the See5 or LUPC again we will get the same result 

because See5 and LUPC discover a rule set on the same data set, using the same search 

strategy with the same stop condition that the rule sets cover all samples. Our solution is 

first, we consider again the preprocessing step because if this step is not done well, there 

will be no interesting pattern hiding in the data; we will find no gold from rock. The 

second direction is to continue the search, but for new rules that different from existing 

ones that are obvious to the doctors. We visualize these five rules (in figure 3) and 

discovered that symptom “level 3 of liver metastasis” relates only to concept “death 

within 90 days”. It means that there is no relation between symptom “level 3 of liver 

metastasis” and concept “alive” or “death after 5 years”. Our question is there any such 

kind of relation? And these relations are potentially interest? And the problem now is 

turned out to proposed framework:  

 

Given: 

• A data set: the Stomach Cancer data 

• A set of existing rules: the rule sets discovered by See5 and LUPC  

 

Determine: 
• New and interesting rules 
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Figure 3: Visualization of the concept “death within 90 days” 
 

The objective of the application, finding interesting patterns about relationship 

among symptoms and the death or alive of patients after operation, is not changed, but 

the objective of learning is changed from searching for a rule set covering all samples, 

to searching for new and potential interesting rules that different from existing ones (in 

fact, LUPC discovered 1130 rules for all classes). In this situation, the seed generator 

generates two seeds: 

 

Seed #1: IF Liver_metastasis = 3 THEN alive 

Seed #2: IF Liver_metastasis = 3 THEN death > 5 years 

 

These two seeds will guide the search for rules of the two concepts “alive” and 

“death after five years”, and the result is that the following rule is discovered:  

 

IF type = B1 ^ Liver_metastasis = 3 ^ Number of complications = 1 

THEN alive 
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From this example, we can see that rule seeds are generated from prior knowledge 

and in this case prior knowledge is rule sets learned by See5 and LUPC, and from use’s 

constraint about relation between symptom “level 3 of liver metastasis” and the two 

concepts. This constraint comes from the interaction between user and data mining 

system while exploring discovered knowledge. The rule seeds are generated to direct 

the search in a narrower space that closer to user’s interest. 

 

Table 5: The Specialization procedure 

Specialization(RuleSeeds, Examples, Threshold) 
• Learned_rules ← {} 
• For all Seed in RuleSeeds 

• Rule ← Learn-One-Rule(Seed, Atrributes, Threshold) 
• If Performance(Rule, Examples) > Threshold, do 

o Learned_rules ← Learned_rules + Rule 
• return Learned_rules 

 

 

3.2 Rule specialization 
 

The task of the rule specialization process is to specialize the rule seeds to achieve 

more accurate rules. The procedure to do this task is described in table 5. In comparing 

with sequential covering algorithms the role and scheme of the Specialization and 

Sequential-Covering procedure (described in [14]) are similar: they conduct a 

subroutine called Learn-One-Rule to learn rules from data. But there are three crucial 

differences as follow: 

 

(1) The inputs of the two procedures are different. Procedure Sequential-Covering 

takes only training samples (of course there are also attributes list and 

parameters) as input factor. This is because sequential covering algorithms are 

purely inductive; they do not use any prior knowledge in learning. Procedure 

Specialization takes two inputs: training samples and a set of rule seeds. In 

comparing with analytical learning methods or inductive-analytical learning like 

FOCL, the set of rule seeds may be consider as domain knowledge and the 
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Specialization procedure could be seen as in context of the analytical learning 

approach. The difference is the rule seeds or the prior knowledge is generated 

from not only domain theory, but also from prior rule set. 

 

(2) The stopping conditions are different. Covering algorithms stop learning process 

when learned rules cover all training samples; even for the analytical-inductive 

rule induction algorithms like FOCL also stop when all training samples are 

covered, or when no sample remains. In procedure Specialization the main loop 

will finish when all rule seeds are specialized, it doesn’t matter if the training 

samples are covered or not because the learning has not to satisfy the 

completeness condition that all training samples are covered. 

(3) After one rule is learned the sequential covering algorithms remove all training 

samples that covered by this rule. This causes the number of training samples 

becomes fewer and fewer after iterations; and the rule’s performance estimated 

by function Performance becomes more and more locally; except for the first 

rule. The procedure Specialization does not remove any training samples, so 

that rule’s performance is globally significant because it is based on the whole 

training samples.  

 

Table 6: Comparison of the Sequential-Covering and the Specialization procedures 

 Sequential-Covering Specialization 

Input + Training samples 

+ Attributes list 

 

+ Training samples 

+ Attribute list 

+ Rule seeds 

Output A set of rules A set of rules 

Stopping condition + All training samples 

are covered 

+ All rule seeds are 

specialized 

Heuristics Based on  

remaining samples 

Based on  

all samples 
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Table 7: The subroutine for learning one rule conducted by Specialization 

Learn-One-Rule(Seed, Atrributes, Examples, k) 

Returns a single rule that covers some of the Examples. Conducts a 

general_to_specific greedy search for the best rule, guided by the 

Performance metric. 

• Initialize Best_hypothesis to the rule Seed 

• Initialize Candidate_hypotheses to the set {Best_hypothesis} 

• While Candidate_hypotheses is not empty, do 

3. Generate the next more specific candidate_hypotheses 

4. Update Best_hypothesis 

5. Update Candidate_hypotheses  

• Return Best_hypothesis  

 

Performance(Rule, Examples) 

• return LaplaceAccurace(Rule, Examples) 

 

 

Both Sequential-Covering and Specialization procedure invoke subroutine Learn-

One-Rule to continually search for a new rule, but the difference is the sequential 

covering algorithms start the search for new rules from the most general hypothesis, or a 

null hypothesis. The Best_hypothesis of sequential covering algorithms is initialized 

with no conditions, so all the Candidate_hypotheses are specialized from an empty 

hypothesis. In the proposed approach, similar to the analytical learning approaches, the 

Best_hypothesis is a simple non-empty rule generated from prior knowledge. In 

searching for a new rule the Learn-One-Rule procedure conducts a beam search with 

rule’s Laplace expected accuracy estimate as search heuristic. The Laplace estimate is 

used to avoid selecting specific rules instead of entropy. This expected accuracy is given 

by the formula:  
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LaplaceAccuracy = (nc + 1)/(ntot + k) 
 

Where  

k is the number of classes in the domain 

nc is the number of examples in the predicted class c covered by the rule 

ntot is the total number of examples covered by rule 
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Chapter 4 

Improving a Rule-based Classifier 
 

1. Problem Statement 
 

Suppose that a rule-based classifier R is produced by some rule learning algorithms, 

LUPC or See5 in our experiments, our attempt is to apply the proposed approach to 

improve this classifier. In this context the prior knowledge consists only the existing 

hypothesis, or learned classifier R, no domain theory B, and no user’s constraint C. The 

learning problem could be stated as follow: 

 

Given: 

• A set of training examples D 

• A rule-based classifier R 

 

Determine: 

• A rule-based classifier R+ that does classify better than R 

 

It is clear that the learning task here is quite different from traditional learning task. 

The learning task of ID3, CN2, or FOCL is to search for a set of rules that do classify 

well, given a training data set with (FOCL) or without (ID3, CN2) domain knowledge. 

The task in this situation is to improve an existing rule set to achieve a new rule set that 

does classification better. Following sections describe in more detail how this work 

could be done. 
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2. Updating a Rule-based Classifier 
 

In this section we will describe how to improve an existing rule set, or an existing 

classifier, to achieve a better classifier. Especially about the prior knowledge used in our 

experiments, how to generate rule seeds to bias the search for potential useful rules, and 

how to use newly learned rules to update preceding classifier. 

 

From now we will use the following terms and definitions. We consider a set of 

variables x = {x1, x2, … xn}, n > 0 with domain X = {X1, X2, … Xn} called attributes and 

a single variable y with domain Y called class attribute or just class. A rule is in the form 

of “IF conditions THEN conclusion” where conditions is a conjunctive of attribute-

value pairs, and conclusion is one of the values of Y. For example given a rule r: 

 

“IF x1 = X1i and x2 = X2j THEN Yk” 
 

The conditions part is a conjunctive of two attribute-value pairs belonging to two 

attributes X1 and X2; the conclusion part is the value Yk belonging to class attribute Y. 

We say that this rule uses two attributes in the conclusions part. 

 

2.1 Prior knowledge 
 

In our experiments, prior knowledge, or rule set, is learned by one of the two rule 

induction algorithms: the LUPC or See5 algorithm. 

 

The LUPC [8], standing for Learning in Unbalanced Positive Class, is a rule 

induction algorithm that aims at learning for rare class in unbalanced datasets. It follows 

the general scheme of sequential covering algorithms with the following properties: 

 

• Search strategy: LUPC conducts a beam search for finding rules in rule 

space. Many learning algorithms like AQ (Michalski et al., 1986), CN2 

(Clack and Niblett, 1989), mFOIL (Dzeroski and Bratko, 1992), and BEXA 
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(Theron and Cloete, 1996) use this strategy to alleviate the myopic behavior 

of hill-climbing search. In addition to remembering the best rule found so far, 

beam search also keeps track of a fixed number of alternatives, the so-called 

beam. While hill-climbing search has to decide upon a single refinement at 

each step, beam search can defer some of the choices until later by keeping 

the b best rules in its beam. In general, beam search effectively maintains 

hill-climbing’s efficiency (reduced by a constant factor), but can yield better 

results because it explorer a larger portion of the hypothesis space. 

 

• Search heuristic: LUPC uses rule’s purity as its search heuristic. Search 

heuristic is the most influential bias in searching, which estimates the quality 

of rules found in the search space and ideally guides the search algorithms 

into the right regions of the hypothesis space. As the goal of the 

Learn_One_Rule is to find a rule that covers as many positive samples 

while covering as few negative samples as possible, most heuristics try to 

find a trade-off between the two conditions. The most commonly used 

search heuristics are accuracy, purity, entropy, Laplace estimate …Rule’s 

purity measure will attaint its optimal value when no negative samples are 

covered. The reason why LUPC use rule’s purity as search heuristic is LUPC 

focus in learning for rare classes in unbalanced datasets. In many 

applications rare class is important but very difficult to learn [8]. Purity is 

used as search heuristic in the GREEDY3 (Pagallo and Haussler, 1990), 

SWAP-1 (Weiss and Indurkhya, 1991). The purity of a rule is given by the 

following formula 

 

np
prPurity
+

=)(  

 

Where p is the number of positive samples covered by rule r, and n is the 

number of negative samples covered by r. 
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• Constraints: To overcome the disadvantage of the purity measure that does 

not aim at covering many positive samples, LUPC uses minimum accuracy 

and minimum cover of a rule as constraints in the search. In our experiments 

minimum accuracy is set to 90% and minimum cover is set to cover at least 

2 samples.  

 

The See5 system [22] is the successor and the commercial version of the most well-

know algorithm C4.5[21]. See5 builds a decision tree first, and then extracts rules from 

this tree. 

 

Both LUPC and See5 use the same way of using learned rule set to do classification. 

It may happen that several rules are applicable (that is, all their conditions are satisfied) 

when classifying a new sample. If the applicable rules predict different classes, there is 

an implicit conflict that could be resolved in two ways: we could believe the rule with 

the highest confidence, or we could attempt to aggregate the rule’s prediction to reach 

the verdict. Both See5 and LUPC adopt the late strategy: each applicable rule votes for 

its predicted class with a voting weight equal to its confident value, the votes are totted 

up, and the class with the highest total vote is chosen as the final decision. The 

confidence of a rule is given by the below formula 

 

2)(
1)()(

+
+

=
rCover

rverPositiveCorConfidence  

 

When a test sample is not covered by any rule, it is assigned to a default class. The 

default class is the class that has dominated distribution in the training data. 
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2.2 The  Seed-Generator procedure 
 

The task of the seed generator is to generate rule seeds that will guide the search for 

useful rules. In our experiments, we use attributes that have not been used by prior rule 

set, to generate the seeds. Table 8 gives detail of the procedure. 

 

Table 8: The seed generator procedure used in improving a rule-based classifier  

Seeds_Generator(RuleSet, Attributes, TargetAttribute) 

Takes an existing hypothesis, or a set of rules, as an input factor to produce a set 

of rule seeds in the form of simple rules that will be used to guide the search for 

new and useful rules in the next Specialization process 

• Seeds ← {} 

• For all attribute a in Attributes 

• If a is not used in RuleSet 

• For all values v of attribute a 

• For all values c of TargetAttribute 

• Seeds ← Seeds + {“IF a = v THEN c”} 

• Return Seeds 

 

 

In table 8, an attribute a is said not to be used by rule set R if there is no rule r of R 

that consists a condition a = ai in the conditions part of rule r. 

 

To improve the classification accuracy of a rule-based classifier learned by a 

covering algorithm, the seed generator in our experiment is relatively simple: the 

generator uses attributes that are not used by in prior rule set. The using of what other 

algorithms do not use seem to be trivial because learning algorithms use their heuristics, 

or their “spirits”, to select best attributes in searching for the best result. This means that 

unused attributes seem to be not valuable, according to their heuristics. The reason why 

we build a so simple seed generator is due to one important shortcoming of covering 

algorithms: the fragmentation of training data [26][10]. Covering algorithms remove all 
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covered samples (belonging to the positive class or in the whole training data) after one 

rule is learned, this causes number of training samples becomes fewer and fewer after 

iterations and leads to the generation of many locally important but globally 

insignificant rules [10]. Our seed generator generates the seeds that will lead the search 

to these globally significant rules. 

 

Figure 4 illustrates the fragment problem of covering algorithms. Supposed that in 

training data D there exist three patterns P1, P2, and P3 listed by the order of their 

significant. Sequential covering algorithms discovered pattern P1 first, and then 

removes the (positive) samples covered by P1. Due to this moving the pattern P2 

becomes less significant than pattern P3 in the remaining data, and the search will result 

pattern P3, instead of P2. After iterations the learned rules will become more and more 

locally important and the chance of missing globally significant rules becomes bigger 

and bigger. Our approach could avoid the fragmentation problem because no training 

samples are removed and the search heuristic is based on the whole training data. 

 

 

 
 

Figure 4: Covering algorithms may loss many globally significant rules 
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2.3 Updating prior rule sets 
 

After the seed generator generates a set of rule seeds, they are then specialized by 

adding more conditions into the conditions part to achieve a necessary accuracy. The 

specialization process is actually a search, not in the whole space of possible rules, but 

the space is narrowed by the condition part of rule seeds. Result of this search is a set of 

new rules that will be used to upgrade prior rule-based classifier. 

 

The newly learned rules will be used to improve the prior rule set. Note that a 

classifier formed by many rules does not guarantee an accurate classification, so that not 

all of the rules are used to improve the prior rule set. In our experiment, a newly learned 

rule r’ is used to upgrade the prior rule set R to the new rule set R’ by two ways: 

i. r’ will be used to replace a rule r in R: 

R’ = R \ {r} ∪ r’, r ∈ R 

or 

ii. r’ will be added to R: 

R’ = R ∪ r’ 

If the replacement or extension helps to improve the classification accuracy on the 

training data D: 

ClassificationAccD(R’) > ClassificationAccD(R) 

 

To avoid the over fitting problem caused by too specific rules, the new rules are 

forced to satisfy a constraint on coverage ratio. In our experiment this constraint is 5% 

of the population of positive class. 
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3. Experiments 
 

This section describes the experiment of applying the proposed approach to improve 

classification accuracy of a rule-based classifier learned by a covering algorithm. The 

evaluation will be based on the classification accuracy on testing data. Sections below 

will describe the datasets, the prior rule-based classifier used in our experiments, and 

the results obtained from them. 

 

3.1 Datasets 
 

In the first experiment, we use 26 datasets downloaded from the UCI machine 

learning repository [15] described in table 9. Because the LUPC algorithm cannot run 

with numerical data, so all these datasets are discretized by the CBA system [11][12]. 

The first column of table 2 is for indexes of these 26 datasets; second column describes 

their name. Each data set is described by number of samples (column 3), number of 

attributes (column 4), and number of classes (column 5). 

 

In the second experiment, we use 9 other datasets also from the UCI. Each data set 

consists of two different parts used for learning and testing purposes. In table 3, 

columns from number 2 to number 6 describe name, number of training samples, 

number of testing samples, number of attributes, and number of classes of the 9 datasets. 

Like the first experiment, all these datasets are discretized by the CBA system. 

 

3.2 Methodology 
 

We have conducted the experiments by two ways. In the first experiment we use 

classifiers produced by LUPC with default constraints (90% of minimum accuracy and 

2 samples of minimum cover) as prior knowledge, and apply the proposed approach to 

improve them. The performances are evaluated based on running 10 times of 10-fold 

cross validation test, a common way of testing a learning algorithm. In the second 

experiment, we use the classifiers produced by the See5 system with default parameters, 

 38



denoted by See5 in table below. The performances are then compared with the upgrade 

version of See5, denoted by See5+, by applying the proposed method. 

 

Table 9: Comparison between classification performance of LUPC and LUPC+ 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Index 
  

Dataset 
  

#Samples 
  

#Attributes
  

#Classes
  

#LUPC
Rules 

#LUPC+
Rules 

LUPC 
Error(%) 

LUPC+  
Error(%) 

1 anneal 898 39 6 34.9 49.4 4.9 4.4 

2 australian 690 15 2 89 89 13.8 13.8 

3 auto 205 23 7 45.2 48.9 18.5 18.3 

4 breast-w 699 10 2 19.8 19.8 4.7 4.7 

5 cleve 303 12 2 45.2 45.2 17.6 17.6 

6 crx 690 16 2 81.1 81.1 14.1 14.1 

7 diabetes 768 7 2 84.6 84.6 23.1 23.1 

8 german 1000 16 2 265.1 265.1 26.7 26.7 

9 glass 214 8 7 34.6 34.6 25.9 25.9 

10 heart 270 10 2 35.2 35.2 17 17 

11 hepatitis 155 17 2 20.9 22.2 17.9 17.7 

12 horse 368 19 2 72.5 72.9 16.2 16.2 

13 hypo 3163 24 2 16.3 30 3.5 2.7 

14 ionosphere 351 34 2 32.5 48 8.6 8.3 

15 iris 150 5 3 6.1 7.1 6.4 6.5 

16 led7 3200 8 10 168.2 168.2 26.9 26.9 

17 labor 57 13 2 12.4 15.4 13.9 12.1 

18 lymph 148 16 4 25.1 25.5 17.7 17.5 

19 pima 768 7 2 84.9 84.9 23.2 23.2 

20 sick 2800 27 2 27.2 37.5 4.6 4.6 

21 sonar 208 22 2 34.3 34.3 16.4 16.4 

22 tic-tac-toe 958 10 2 63.4 63.4 5.6 5.6 

23 vehicle 846 19 4 238.5 238.5 28.9 28.9 

24 waveform21 5000 20 3 1030.1 1030.1 16.3 16.3 

25 wine 178 14 3 9.3 17.7 2.1 1.6 

26 zoo 101 17 7 9.6 18.2 4.6 4.4 

 Average 930.31  16.46 3.31 99.46 102.57 14.58  14.40 
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3.3 Results 
 

Column number 6 and 7 in table 9 show number of rules used by LUPC and LUPC+ 

classifiers, column 8 and 9 show error rate on testing data. Result from table 2 shows 

that proposed approach could reduce error rate on 9 of 26 datasets. On the iris data set, 

classification error is not improved, but becomes worse. This is due to the fact that the 

classifier is upgraded by using training data. It may happen that a classifier run well on 

 

Table 10: Comparison of six classifiers on classification error rate (%) 
(1) (2) (3) (4) (5) (6) (7) (8) 

Index Dataset LUPC LUPC+ See5Tree See5Rule CBA CBA (2) 

1 anneal 4.9 4.4 8 7.4 3.6 2.1 

2 australian 13.8 13.8 13.7 13.9 13.4 14.6 

3 auto 18.5 18.3 18.5 20.7 27.2 19.9 

4 breast-w 4.7 4.7 4.8 4.2 4.2 3.7 

5 cleve 17.6 17.6 22.1 21.1 16.7 17.1 

6 crx 14.1 14.1 13.2 13.1 14.1 14.6 

7 diabetes 23.1 23.1 21.9 23.3 25.3 25.5 

8 german 26.7 26.7 27.5 26.8 26.5 26.5 

9 glass 25.9 25.9 24.8 25.6 27.4 26.1 

10 heart 17 17 18.4 17.3 18.5 18.1 

11 hepatitis 17.9 17.7 18.8 17.2 15.1 18.9 

12 horse 16.2 16.2 15 15.1 18.7 17.6 

13 hypo 3.5 2.7 0.8 0.8 1.7 1 

14 ionosphere 8.6 8.3 10.4 8.7 8.2 7.7 

15 iris 6.4 6.5 6.1 6.1 7.1 5.3 

16 led7 26.9 26.9 26.6 26.6 27.8 28.1 

17 labor 13.9 12.1 16.1 15.5 17 13.7 

18 lymph 17.7 17.5 22.7 23.4 19.6 22.1 

19 pima 23.2 23.2 22.3 23.6 27.6 27.1 

20 sick 4.6 4.6 2.1 2.1 2.7 2.8 

21 sonar 16.4 16.4 18.9 18.1 21.7 22.5 

22 tic-tac-toe 5.6 5.6 14.2 3.4 0.1 0.4 

23 vehicle 28.9 28.9 29 28.8 31.3 31 

24 waveform21 16.3 16.3 24.9 22.2 20.6 20.3 

25 wine 2.1 1.6 7.4 4.1 8.4 5 

26 zoo 4.6 4.4 7.6 7.4 5.4 3.2 

 Average 14.58 14.40 15.99 15.25 15.77 15.19 

 40



training data but worse than when applying on testing data. Table 3 shows the relative 

comparison on classification accuracy of six classifiers LUPC, LUPC+, See5 tree, See5 

rule, CBA, and CBA2, the latest version of CBA. Experiment result shows that LUPC+ 

has a very competitive performance in comparing with the state-of-the-art rule mining 

systems. Evaluated on 26 datasets by running 10 times of 10-fold cross validation tests, 

LUPC+ wins 7, See5 tree wins 6, CBA2 wins 6 on total 26 datasets. In this experiment 

the results of CBA and CBA2 are drawn from the author’s papers [11].  

 

Table 11: Comparison of six classifiers on classification error rate (%) 
(1) (2) (3) (4) (5) (6) (7) (8) 

Index Dataset LUPC LUPC+ See5Tree See5Rule CBA CBA (2) 

1 anneal 4.9 4.4 8 7.4 3.6 2.1 

2 australian 13.8 13.8 13.7 13.9 13.4 14.6 

3 auto 18.5 18.3 18.5 20.7 27.2 19.9 

4 breast-w 4.7 4.7 4.8 4.2 4.2 3.7 

5 cleve 17.6 17.6 22.1 21.1 16.7 17.1 

6 crx 14.1 14.1 13.2 13.1 14.1 14.6 

7 Diabetes 23.1 23.1 21.9 23.3 25.3 25.5 

8 German 26.7 26.7 27.5 26.8 26.5 26.5 

9 glass 25.9 25.9 24.8 25.6 27.4 26.1 

10 heart 17 17 18.4 17.3 18.5 18.1 

11 hepatitis 17.9 17.7 18.8 17.2 15.1 18.9 

12 horse 16.2 16.2 15 15.1 18.7 17.6 

13 hypo 3.5 2.7 0.8 0.8 1.7 1 

14 ionosphere 8.6 8.3 10.4 8.7 8.2 7.7 

15 iris 6.4 6.5 6.1 6.1 7.1 5.3 

16 led7 26.9 26.9 26.6 26.6 27.8 28.1 

17 labor 13.9 12.1 16.1 15.5 17 13.7 

18 lymph 17.7 17.5 22.7 23.4 19.6 22.1 

19 pima 23.2 23.2 22.3 23.6 27.6 27.1 

20 sick 4.6 4.6 2.1 2.1 2.7 2.8 

21 sonar 16.4 16.4 18.9 18.1 21.7 22.5 

22 tic-tac-toe 5.6 5.6 14.2 3.4 0.1 0.4 

23 vehicle 28.9 28.9 29 28.8 31.3 31 

24 waveform21 16.3 16.3 24.9 22.2 20.6 20.3 

25 wine 2.1 1.6 7.4 4.1 8.4 5 

26 zoo 4.6 4.4 7.6 7.4 5.4 3.2 

 Average 14.58 14.40 15.99 15.25 15.77 15.19 
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In the second experiment, the result shows that the proposed approach can improve 

the classification accuracy of the See5’s rules on 3 of 9 datasets. From table 12 we can 

see that the size of classifiers is not changed; it means that some rules of the prior 

classifier are replaced by the newly learned rules.  

 
Table 12: Comparison between classification performance of See5 and See5+ rule sets 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

See5 See5+ 

Error Error 
ID Dataset 

# 
Training 

# 
Testing

# 
Attrs.

# 
Classes Size TrainingTesting

# 
New 

Rules Size TrainingTesting

1 adult 32561 16281 14 2 112 65 21 0 - - - 

2 annealing 798 100 39 6 25 30 4 17 25 12 2

3 audiology 200 26 70 24 22 20 5 3 22 20 5

4 

image 

segmentation 210 2100 16 7 16 9 190 15 16 8 187

5 

labor 

negotiations 40 17 13 2 2 5 4 0 - - - 

6 

letter image 

recognition 1600 400 16 262062 1208 840 0 - - - 

7 sick 2800 972 27 2 15 48 21 7 15 48 21

8 soybean-big 307 376 36 19 35 14 50 7 35 14 50

9 

thyroid 

disease 2800 972 27 5 10 18 12 20 10 17 7

 
 

Let’s examine a classifier to see how it is upgraded. In the annealing application the 

See5 system found 25 rules to establish the classifier. The classifier classifies wrongly 

30 samples on the training data and 4 samples when performing on the testing data. By 

applying the proposed approach a set of 20 rules are newly discovered, and 5 of them 

are used to replaces 5 others in the prior rule set. This replacement reduces the number 

errors on training data from 30 samples to 12 samples, and on testing data from 4 

samples to 2 samples. These 5 rules are listed in table 14. 
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Table 13: Differences between See5 and See5+ classifiers on the annealing domain. 
See5 See5+ 

 
Replaced rules: 
 
Rule 5: (27/31) 
            steel = R 
            thick(continuous) = 0.7995-0.8005 
            → class 2 
 
Rule 6: (2/2) 
            steel = V 
            thick(continuous) = 1.5495-1.5995 
            → class 2 
 
Rule 11: (124/124) 
            hardness(continuous) = 22.5-75 
            → class 3 
 
 
Rule 12: (188/190) 
            thick(continuous) = 0.6005-0.7995 
            → class 3 
 
 
Rule 20: (190/215) 
            formability = 2 
            width(continuous) = - 1167.5 
            → class 3 
 
Evaluation on training data: 
 
(a)   (b)    (c)    (d)   (e)   (f)    <-classified as 
----   ----   ----    ----   ----  ---- 
5      2      1      0      0     0       (a): class 1 
0      76    12    0      0     0       (b): class 2 
0      9      597  0      0     2       (c): class 3 
0      0      0      0      0     0       (d): class 4 
0      0      2      0      58   0       (e): class 5 
0      0      2      0      0     32     (f): class U 
 
 
Evaluation on testing data: 
 
(a)   (b)    (c)    (d)   (e)   (f)    <-classified as 
----   ----   ----    ----   ----  ---- 
0      0      0      0      0     0       (a): class 1 
0      9      2      0      0     0       (b): class 2 
0      2      74    0      0     0       (c): class 3 
0      0      0      0      0     0       (d): class 4 
0      0      0      0      7     0       (e): class 5 
0      0      0      0      0     6       (f): class U 

 
Newly learned rules: 
 
Rule 5: (249/249) 
            condition = S 
            surface-quality = E 
            → class 3 
 
Rule 6: (56/56) 
            surface-quality = E 
            bw/me = B 
            → class 3 
 
Rule 11: (33/33) 
            hardness(continuous) = - 22.5 
            bw/me = M 
            → class 3 
 
Rule 12: (167/167) 
            condition = S 
            thick(continuous) = 0.6005-0.7995 
            → class 3 
 
Rule 20: (69/69) 
            steel = A 
            bl = Y 
            → class 3 

 
Evaluation on training data: 
 
(a)   (b)    (c)    (d)   (e)   (f)    <-classified as 
----   ----   ----    ----   ----  ---- 
5      2      1      0      0     0       (a): class 1 
0      80    8      0      0     0       (b): class 2 
0      1      605  0      0     0       (c): class 3 
0      0      0      0      0     0       (d): class 4 
0      0      0      0      60   0       (e): class 5 
0      0      2      0      0     32     (f): class U 
 
 
Evaluation on testing data: 
 
(a)   (b)    (c)    (d)   (e)   (f)    <-classified as 
----   ----   ----    ----   ----  ---- 
0      0      0      0      0     0       (a): class 1 
0      9      2      0      0     0       (b): class 2 
0      0      76    0      0     0       (c): class 3 
0      0      0      0      0     0       (d): class 4 
0      0      0      0      7     0       (e): class 5 
0      0      0      0      0     6       (f): class U 
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 Chapter 5 

Conclusions 
 

In this work we propose an approach to using prior knowledge in rule induction. 

The concept knowledge in our work includes not only domain knowledge, user’s 

constraints, and the existing knowledge. The objective of learning is also changed from 

searching for a new hypothesis fitting well training data, to improving a prior 

hypothesis to achieve a better one. By this means knowledge is reused, enriched, and 

extended after learning iterations. 

 

The approach consists of two main components. The first component is the seed 

generator that takes prior knowledge as an input factor and generates a set of rule seeds. 

These seeds are used to narrow the search for new rules in the second component, the 

rule specialization process. The task of the specialization is to search for new rules 

starting from rule seeds in rule space. The newly learned rules are then used to update 

the prior rule set. 

 

To illustrate the effectiveness, the proposed approach is applied to improve rule-

based classifiers learned by two rule learning algorithms. In the first experiment we use 

the results of LUPC, a homemade sequential covering rule induction algorithm, as prior 

knowledge. Experiment on 26 datasets from the UCI machine learning repository shows 

that the proposed approach reduces the error rate of LUPC on 10 of 26 domains. 

Comparing with the state-of-the-art rule learning systems See5 and CBA, the proposed 

approach helps LUPC to achieve a very competitive performance: LUPC+ wins 7, See5 

tree wins 6, CBA2 wins 6 on total 26 datasets. In the second experiment, we use the rule 

sets produced by the See5 system, a commercial product of the most famous learning 

algorithm ID3 and C4.5. Achieving improvements on 3 of 9 datasets is the result of this 

experiment. 
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Chapter 6 

Future Works 
 

This research opens a number of research directions to go further in the future. 

 

First, the seed generator used in the above experiments is quite simple. It uses only 

attributes that are not referred to in the prior rule sets. Although the result of 

experiments are interesting: with very simple techniques, the proposed approach can 

improve effectively rule-based classifiers learned by state-of-the-art algorithms, but in 

several cases when all attribute are used by prior rule set, the proposed approach can do 

nothing. In such a case, the set of rule seeds is empty and no rule is discovered. More 

over, with this way of building seed generator, learning process is iterated at most twice 

because after applying the proposed approach all attributes are considered and the next 

iterations will produce nothing more. 

 

Second, the way of using newly learned rules is also need to be improved. A newly 

learned rule is used when it effectively replaces a prior rule, or extends the prior rule set. 

But in rule-based classifier, a new sample may be classified by the vote of several rules 

when it is fired by more than one rule. This means that classification result depends on 

the whole rule set, not on the individual. In our experiment the newly learned rules are 

individually considered in improving the prior rule set. This problem needs to be 

improved in the future. 

 

The third direction concerns about the availability of new data after a classifier has 

been constructed, a common occurrence in practical applications [21]. It may be that the 

existing classifier deals correctly with all the new data, so we don’t have to do nothing. 

If we are not so fortunate, there are two alternatives: ignoring the new data, or discard 

the previous classifier, add the new data to the training set, and build a new classifier. 

Neither of these alternatives is attractive if the classifier seems likely to benefit from 

new data, yet the computational cost of developing a classifier from scratch is high [21]. 
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Adapting the new data by extending the prior rule set is an open direction of this 

research. 

 

The fourth direction concerns about the problem of discovering interesting rules, 

one of the areas of slow progress in data mining [19]. One important criterion of an 

interesting rule is the novelty, a subjective measure that cannot be drawn from data. 

There are many works trying to deal with this problem like ranking discovered rules 

according to some interestingness measure, or filter out what is not interesting. All of 

these works are done in the post processing step rule sets are discovered from data. 

They give users no way to participate into the mining process. The proposed approach 

can help the user to do data mining incrementally, discover new rules that are different 

from existing ones, and interactively narrow the search in rules space through the seed 

generator while exploring the prior rule set. 
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