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PAPER Special Section on Cryptography and Information Security

Evaluation of the Security of RC6 against the χ2-Attack∗∗

Atsuko MIYAJI†∗a), Member and Yuuki TAKANO†b), Nonmember

SUMMARY Knudsen and Meier applied the χ2-attack to RC6. The
χ2-attack recovers a key by using high correlations measured by χ2-value.
Up to the present, the success probability of any χ2-attack has not been
evaluated theoretically without using experimental results. In this paper,
we discuss the success probability of χ2-attack and give the theorem that
evaluates the success probability without using any experimental result, for
the first time. We make sure the accuracy of our theorem by demonstrating
it on both 4-round RC6 without post-whitening and 4-round RC6-8. We
also evaluate the security of RC6 theoretically and show that a variant of
the χ2-attack is faster than an exhaustive key search for the 192-bit-key
and 256-bit-key RC6 with up to 16 rounds. As a result, we succeed in
answering such an open question that a variant of the χ2-attack can be used
to attack RC6 with 16 or more rounds.
key words: block cipher, RC6, χ2-attacks

1. Introduction

The χ2-attack makes use of correlations between input
(plaintext) and output (ciphertext) measured by the χ2-test,
which was originally proposed by Vaudenay as an attack on
the Data Encryption Standard (DES) [14], and Handschuh
et al. applied that to SEAL [4]. To find correlations mea-
sured by the χ2-test, we have to handle plaintexts in such
a way that the χ2-value of part of ciphertexts becomes sig-
nificantly a high value. The distinguishing search finds the
the condition for the good correlation and computes the nec-
essary number of plaintexts for the χ2-value with a certain
level under the condition. The χ2-attack rules out all wrong
keys, and single out exactly a correct key by using the dis-
tinguishing search. Therefore, the χ2-attack requires more
work and memory than the distinguishing search.

RC6 is a fully parameterized family of a block cipher
[12]. This paper focuses on the 128-bit RC 6 with keys of
128, 192, and 256 bits, whose spec was required to the can-
didates of AES. In [3], [8], a χ2-attack was applied to RC6.
They use the fact that a specific rotation in RC6 causes cor-
relations between input and output, and estimated the secu-
rity of RC6 against χ2-attack only from results of the dis-
tinguishing search [8]. That is, they just focus on only the
χ2-value, strictly speaking, which is given as the average of
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Table 1 Attacks on RC6.

Attack Target RC6 Rounds #Texts

Linear Attack [1] RC6 16 2119

Multiple Linear Attack [15] 192-bit-key RC6 141 2119.68

χ2 Attack [8] 128-bit-key RC6 12 294

192-bit-key RC6 14 2108

256-bit-key RC6 15 2119

χ2 Attack [11] 128-bit key RC6W2 17 2123.9

χ2 Attack [5] 128-bit key RC6P3 16 2117.84

Our result 192-bit-key RC6 16 2127.20

256-bit-key RC6 16 2127.20

1: A weak key of 18-round RC6 with 256-bit key can be recovered by
2126.936 plaintexts with the probability of about 1/290.
2: RC6W means RC6 without pre- or post-whitening.
3: RC6P means RC6 without post-whitening.

χ2-value measured over part of set of plaintexts. χ2-attacks
to a simplified variant of RC6 such as RC6 without pre- or
post-whitening or RC6 without only post-whitening are fur-
ther improved in [11] or [5], respectively. The variance as
well as the average of χ2-value is taken into account to re-
cover a key in their attack. Thus, their χ2-attack can recover
a correct key in the high probability with a rather lower χ2-
value than [8]. They also pointed out that the χ2-attack does
not necessarily succeed even if the distinguishing search re-
sults in the high χ2-value. This indicates that the security
against the χ2-attack cannot be estimated directly from the
results of the distinguishing search. Table 1 summarizes the
previous attacks on RC6.

Theoretical analysis on χ2-attack has been done by
[10], [16]. In [16], the average of χ2-value used in the distin-
guishing search of [8] is theoretically computed, by which
the necessary number of plaintexts for the χ2-value with a
certain level can be estimated theoretically in each round.
However, this is not enough to evaluate the success prob-
ability of χ2-attack itself since there is the significant dif-
ference between the distinguishing search and the χ2-attack
as mentioned above. On the other hand, theoretical dif-
ference between a distinguishing search and a χ2-attack on
RC6 without post-whitening [5] has been discussed in [10].
They make use of the idea of the theoretical and experi-
mental complexity analysis on the linear cryptanalysis [6],
[13] to fit it in the theoretical and experimental complex-
ity analysis on the χ2-attack. They also present the theorem
to compute the success probability of χ2-attacks by using
the results of distinguishing search, and, thus, they can suc-
ceed to estimate the security against χ2-attack on RC6 with
rather less work and memory. However, their estimation re-

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers
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quires experimental results of distinguishing search. Up to
the present, the success probability of a χ2-attack has not
been evaluated theoretically without any assumption of ex-
perimental results.

In this paper, we investigate the success probability of
a χ2-attack, for the first time, and give the theorem that eval-
uates the success probability without any experimental re-
sult. First, we deal with a χ2-attack on RC6 without post-
whitening [5] and give the theorem that evaluates the suc-
cess probability theoretically. We make sure the accuracy of
our theorem by comparing our approximation with the ex-
perimental results [5]. With our theory, we also confirm that
16-round 128-bit-key RC6 without post-whitening can be
broken, which reflects the experimental approximation [5].
Then, we improve the χ2-attack to work on RC6 itself. The
primitive extension to RC6 are shown in [5], but it does not
seem to work. We give the theorem that evaluates the suc-
cess probability of the χ2-attack on RC6 theoretically. We
also demonstrate our theorem on 4-round RC6-8 and make
sure the accuracy by comparing our approximation with the
experimental results. With our theory, we confirm that 16-
round 192-bit-key and 256-bit key RC6 can be broken. As
a result, we can answer the open question of [8], that is,
whether χ2-attack can be used to attack RC6 with 16 or more
rounds.

This paper is organized as follows. Section 2 summa-
rizes the notation, RC6 algorithms, the χ2-test, and statisti-
cal facts used in this paper. Section 3 reviews the χ2-attack
against RC6 without post-whitening and the theoretical re-
lation between a distinguishing search and a χ2-attack. Sec-
tion 4 presents the theorem of success probability of χ2-
attacks on RC6 without post-whitening and investigates the
accuracy by comparing the approximations of success prob-
ability to 4-round RC6 without post-whitening with imple-
mented results. Section 5 improves the χ2-attack on RC6
without post-whitening to that on RC6 and presents the the-
orem of the success probability of the χ2-attack on RC6. We
investigate the accuracy by demonstrating the key recovery
algorithm on RC6-8. We also discuss the applicable round
of χ2-attack. A conclusion is given in Sect. 6.

2. Preliminary

We summarize the χ2-test, statistical facts, and RC6 algo-
rithm [12], used in this paper.

2.1 Statistical Facts

We make use of the χ2-statistic [9] to distinguish a distri-
bution with an unknown probability distribution p from an
expected distribution with a probability distribution π. Let
X = X0, ..., Xn−1 be a sequence of ∀Xi ∈ {a0, · · · , am−1} with
unknown probability distribution p, and Naj (X) be the num-
ber of X which takes on the value aj. The χ2-statistic of
X which estimates the distance between the observed dis-
tribution and the expected distribution π = (π1, · · · , πm) is
defined:

χ2 =

m−1∑
i=0

(N(ai) − nπi)2

nπi
. (1)

After computing the χ2-statistic of X, we decide which hy-
pothesis holds.⎧⎪⎪⎨⎪⎪⎩H0 : p = π (null hypothesis)

H1 : p � π (alternate hypothesis)
(2)

The following Theorems 1 and 2 on χ2-statistic are
known.

Theorem 1 ([17]): When H0 is true, χ2 statistic given by
Eq. (1) follows χ2 distribution whose freedom is m − 1 ap-
proximately. In addition, the expected mean or variance is
calculated by EH0 (χ2) = m − 1 or VH0 (χ2) = 2(m − 1), re-
spectively.

Theorem 2 ([17]): When H1 is true, χ2 statistic given by
Eq. (1) follows non-central χ2 distribution whose freedom
is m − 1 approximately. In addition, the mean or variance is
computed by EH1 (χ2) = m − 1 + nθ or VH1 (χ2) = 2(m − 1) +
4nθ, respectively, where nθ so called non-central parameter
is nθ = n

∑m−1
i=0

(πi−P(ai))2

πi
, where P(ai) is the probability of

occurrence of ai.

In our case of which distinguishes a non-uniformly ran-
dom distribution from uniformly random distribution [7]–
[9], the probability π is equal to 1

m and, thus, Eq. (1) is sim-
ply described as follows.

χ2 =
m
n

m−1∑
i=0

(
ni − n

m

)2
. (3)

Table 2 presents threshold for a 63 degrees of freedom. For
example, (level, χ2

63) = (0.95, 82.53) in Table 2 means that
the value of the χ2-statistic exceeds 82.53 in the probability
of 5% if the observation X is uniform.

Let us describe other statistical facts together with the
notation.

Theorem 3 (Central Limit Theorem [2]): Choose a ran-
dom sample from a population which mean or variance is
µ or σ2, respectively. If the sample size n is large, then
the sampling distribution of the mean is closely approxi-
mated by the normal distribution, regardless of the popu-
lation, where the mean or variance is given by µ or σ2/n,
respectively.

We also follow commonly used notation: the probabil-
ity density and the cumulative distribution functions of the
standard normal distribution are denoted by φ(x) and Φ(x);
the probability of distribution X in the range X ≤ I is de-
noted by Pr(X ≤ I); and N is used for the normal distribu-
tions. The probability density function of the normal dis-
tribution with the mean µ and the variance σ2, N(µ, σ2), is

Table 2 χ2-distributions with a 63 degree of freedom.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
χ2

63 62.33 65.20 68.37 72.20 77.75 82.53 92.01
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given by the following equation,

φ(µ,σ2)(x) =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
.

2.2 Block Cipher RC6

Before showing the encryption algorithm of RC6, we give
some notation.

{0, 1}k : k-bit data
lsbn(X) : least significant n-bit of X;

msbn(X) : most significant n-bit of X;
⊕ : bit-wise exclusive OR;

a≪ b : cyclic rotation of a to the left by b-bit;
S i : i-th subkey

(S 2i and S 2i+1 are subkeys of the i-th
round);

r : number of rounds;
(Ai, Bi,Ci,Di) : input of the i-th round ;

(A0, B0,C0,D0) : plaintext;
(Ar+2, Br+2,Cr+2,Dr+2) : ciphertext after r-round encryption;

f (x) : x × (2x + 1);
F(x) : f (x) (mod 232)≪ 5;

x||y : concatenated value of x and y.
The detailed algorithm of RC6 is given:

Algorithm 1 (RC6 Encryption Algorithm):
1. A1 = A0; B1 = B0 + S 0; C1 = C0; D1 = D0 + S 1;

2. for i = 1 to r do:
t = F(Bi); u = F(Di); Ai+1 = Bi;

Bi+1 = ((Ci ⊕ u)≪ t) + S 2i+1; Ci+1 = Di;

Di+1 = ((Ai ⊕ t)≪ u) + S 2i;

3. Ar+2 = Ar+1 + S 2r+2; Br+2 = Br+1;

Cr+2 = Cr+1 + S 2r+3; Dr+2 = Dr+1.

Steps 1 and 3 of Algorithm 1 are called pre-whitening and
post-whitening, respectively. RC6 is specified as RC6-
w/r/b, which means that four w-bit-word plaintexts are en-
crypted with r rounds by b-byte keys. In this paper, we sim-
ply write RC6 if we deal with RC6 of 32-bit-word plaintexts.
We also call RC6 without post-whitening to, simply, RC6P.

Hereafter, we discuss the success probability of a χ2-
attack against RC6, RC6P, or RC6-8, which means the prob-
ability of recovering a correct key in the attack.

2.3 A Transition Matrix

A transition matrix describes input-output transition, which
was introduced in [14] and applied to RC6-8 and RC6-32
in [16]. In [16], the transition matrix can compute the ex-
pected χ2-values on lsb5(Ar+2)||lsb5(Cr+2) when plaintexts
with lsb5(A0) = lsb5(C0) = 0 are chosen, which is de-
noted by TM in this paper. So TM also gives the prob-
ability of occurrence of lsb5(Ar+2)||lsb5(Cr+2). We apply
TM to compute the expected χ2-values and the variance on
lsb3(Ar+2)||lsb3(Cr+2) when plaintexts with a fixed value of
lsb5(B0) = lsb5(D0) are chosen.

3. χ2 Attack on RC6P

In this section, we review χ2-attack on RC6P [5], called At-
tack 1 in this paper, and then the success probability [10]

based on the experimental results of the distinguishing
search.

Intuitively, Attack 1 fixes some bits out of lsbn(B0)||
lsbn(D0), computes the characteristic value based on the χ2-
value of lsb3(Ar)||lsb3(Cr) and recovers lsb2(S 2r)||lsb2(S 2r+1)
of r-round RC6P. Let us set:
(yb, yd) = (lsb3(Br+1), lsb3(Dr+1)),
(xc, xa) = (lsb5(F(Ar+1)), lsb5(F(Cr+1))),
(sa, sc) = (lsb2(S 2r), lsb2(S 2r+1)) and s = sa||sc, where xa

(resp. xc) is the rotation amounts on Ar (resp. Cr) in the r-th
round.

Attack 1 ([5]):
1. Choose a plaintext (A0, B0,C0,D0) with

(lsb5(B0), lsb5(D0)) = (0, 0) and encrypt it.
2. For each (sa, sc), decrypt yd ||yb with a key

0||sa, 0||sc by 1 round to za||zc, which are de-

noted by a 6-bit integer z = za||zc.

3. For each s, xa, xc, and z, update each
array by incrementing count[s][xa][xc][z].

4. For each s, xa, and xc, compute χ
2[s][xa][xc].

5. Compute the average ave[s] of {χ2[s][xa]
·[xc]}xa,xc

for each s and output s with the highest
ave[s] as lsb2(S 2r)||lsb2(S 2r+1).

We may note that Attack 1 can be easily generalized
to recover an e-bit key for an even e. In such a case, z is
an (e + 2)-bit number, on which χ2-value is computed. The
success probability of Attack 1 is derived theoretically from
Theorem 4.

Theorem 4 ([5]): Let n ≥ 10 and r ≥ 4. The success prob-
ability Ps of Attack 1 on r-round RC6P with 2n plaintexts
can be evaluated by using the distribution of χ2-values as
follows,

Ps =
∫ ∞

−∞
fc[r,n](x) ·

(∫ x

−∞
fw[r,n](u)du

)2e−1

dx, (4)

where fc[r,n](x) or fw[r,n] is a probability density function of
distribution of χ2-values on a correct or wrong key in At-
tack 1, given by

fc[r,n](x) = φ(µd[r−1,n−10],σ
2
d[r−1,n−10]/2

10)(x) (5)

or

fw[r,n](x) = φ(µd[r+1,n−10],σ
2
d[r+1,n−10]/2

10)(x), (6)

respectively, and µd[r,n](σ2
d[r,n]) is mean (variance) of dis-

tribution of χ2-values on lsb3(Ar+1)||lsb3(Cr+1) of r-round
RC6P with lsb5(B0)||lsb5(D0) = 0 by using 2n plaintexts.

4. Success Probability of χ2-Attack on RC6P

This section gives the theorem to compute the success prob-
ability of Attack 1 without any experimental result of distin-
guishing search.
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4.1 Theoretical Mean and Variance of χ2-values

To compute the success probability of Attack 1 without any
experimental results of distinguishing search, we have to
compute the mean and variance, µd[r,n] and σ2

d[r,n], theoreti-
cally, that is, we have to compute θr. In our case, θr is given
as

θr = 26
∑(

P(lsb3(Ar+1)||lsb3(Cr+1)) − 2n

26

)2

, (7)

where the summation is over lsb3(Ar+1)||lsb3(Cr+1) ∈ {0, 1}6
and P(lsb3(Ar+1)|| lsb3(Cr+1)) is the probability of occur-
rence of lsb3(Ar+1)||lsb3(Cr+1). θr can be given by comput-
ing P(lsb3(Ar+1)||lsb3(Cr+1)) and, thus, derived theoretically
by TM in Sect. 2, which follows the discussion below.

Attack 1 is based on a distinguishing search that
chooses lsb5(B0) = lsb5(D0) = 0 and computes the χ2-
value on lsb3(Ar+1)||lsb3(Cr+1), which are outputs of r-round
RC6P. Therefore, we can apply TM to our distinguishing
search by assuming that (A1, B1,C1,D1) is a plaintext since
A1 = B0,C1 = D0, and both B1 and D1 are random number.
On the other hand, we compute the χ2-value on (e + 2)-bit
lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1) in e-bit-key-recovery Attack 1,
whose probability of occurrence is derived by using TM from
the following Lemma 1.

Lemma 1: The probability of occurrence of lsbe/2+1(Ar+1)||
lsbe/2+1(Cr+1), denoted by P(lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1)),
is computed from the probability of occurrence of
lsb5(Ar+1)||lsb5(Cr+1) as follows

P(lsbe/2+1(Ar+1)||lsbe/2+1(Cr+1))
=

∑2β−1
i=0

∑2β−1
j=0 P(i||lsbe/2+1(Ar+1)|| j||lsbe/2+1(Cr+1)),

where β = 5 − (e/2 + 1) and e is an even integer from 2 to
10.

Proof 1: Lemma 1 holds because

lsb5(Ar+1)||lsb5(Cr+1) = msbβ(lsb5(Ar+1))||lsbe/2+1(Ar+1)

||msbβ(lsb5(Cr+1))||lsbe/2+1(Cr+1).

We show theoretical and experimental results of mean and
variance of χ2-values of 3- or 5-round RC6P in Table 3, re-
spectively. Experiments are done by using 100 keys × 100
sets of texts. We see that both mean and variance of χ2-value
can be computed theoretically.

Table 3 χ2-values of 3- or 5-round RC6P.

3 rounds 5 rounds
#texts Theoretical Experimental #texts Theoretical Experimental

mean variance mean variance mean variance mean variance

28 63.20 126.82 63.18 126.50 224 63.20 126.80 63.30 125.72
29 63.41 127.64 63.27 126.78 225 63.40 127.60 63.43 128.48
210 63.82 129.29 63.79 125.02 226 63.80 129.19 63.72 128.94
211 64.64 132.57 64.33 130.48 227 64.60 132.34 64.50 132.11
212 66.29 139.14 65.92 139.85 228 66.19 138.78 66.16 141.22

4.2 Success Probability of Attack 1 on RC6P

By using the theoretical mean and variance in Sect. 4.1, the
success probability of Attack 1 is proved as follows.

Theorem 5: The success probability of e-bit-key-recovery
Attack 1 of r-round RC6P is given as follows,

Psrc6p,e(n) =
∫ ∞

−∞
φ((k−1)+mθr−1,(2(k−1)+4mθr−1)/210)(x)

·
(∫ x

−∞
φ((k−1)+mθr+1,(2(k−1)+4mθr+1)/210)(u)du

)2e−1

dx, (8)

where 2n is the number of texts; m = 2n−10; k = 2e+2; mθr
is r-round non-central parameter; and e is an even integer
from 2 to 10.

Proof 2: Ps in Theorem 4 is derived by mean µd[r,n] and
variance σ2

d[r,n] of distribution of χ2-values, which are com-
puted by non-central parameter from Theorem 2. On the
other hand, θr is computed by using Lemma 1. Thus we get
Psrc6p,e(n).

Table 4 shows the success probability of Attack 1. Ac-
cording to Table 4, the theoretical estimation gives the upper
bound of results. It seems rather rough upper bound. We
will discuss the reason in Sect. 5.

4.3 Applicable Rounds of RC6P

By computing θr of each round r, we derive the number of
texts to recover a correct key with the probability of more
than 95% by Attack 1. We approximate Eq. (8) to reduce
the computation amount to get (8) for an even large e.

Theorem 6: The sufficient condition for Psrc6p,e(n) ≥ 0.95
is given as

P̃src6p,e(n) ≥ 1 − 1
20(2e − 1)

, (9)

where

Table 4 Theoretical and experimental success probabilities of 4-round
RC6P (e = 4).

# texts 218 219 220 221 222

Theoretical 0.16 0.31 0.70 0.99 1.00
Experimental 0.10 0.17 0.34 0.75 1.00
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P̃src6p,e(n) =
∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x)

·
∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx;

m = 2n−10; k = 2e+2; mθr is r-round non-central parameter;
and e is an even integer from 2 to 10.

Proof 3: We show that n satisfied with Eq. (9) is sufficient
for Psrc6p,e(n) ≥ 0.95. First, we introduce the following
monotonically increasing function for e ≥ 1,

F(e) =

(
1 − 1

20(2e − 1)

)2e−1

,

which satisfies F(e) ≥ 0.95 for e ≥ 1. On the other hand,
Eq. (8) satisfies

Psrc6,e (n) =
∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x)

·
(∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du

)2e−1

dx

≥
(∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x)

·
∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx

)2e−1

since φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x) or
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(x) is a probability density func-
tion of distribution of χ2-values on a correct or wrong key,
respectively. Thus, if m = 2n−10 satisfies(∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x)

·
∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx

)2e−1

≥ F(e),

then Psrc6p,e(n) ≥ 0.95. Therefore, if n satisfies

P̃src6p,e(n) =
∫ ∞

−∞
φ(k−1+mθr−1,(2(k−1)+4mθr−1)/210)(x)

·
∫ x

−∞
φ(k−1+mθr+1,(2(k−1)+4mθr+1)/210)(u)du dx

≥ 1 − 1
20(2e − 1)

,

then Psrc6p,e(n) ≥ 0.95.

Here we set e = 4. Table 5 shows theoretical and exper-
imental number of texts necessary for Psrc6p,e(n) ≥ 0.95 in
each r round. From Table 5, Attack 1 is faster than exhaus-
tive search for 128-bit-key RC6P with up to 16 rounds. It
corresponds with the previous experimental result [5]. Our
theorem estimates the number of texts necessary for recov-
ering r-round RC6P with the success probability of more
than 95% to

log2(#texts) = 8.01r − 11.63. (10)

Table 5 Theoretical and estimated #texts for Psrc6p,4(n) ≥ 0.95 or Ps ≥
0.95.

Theoretical (Th.6) Estimated (Th.4)
round # texts time‡ # texts time‡

4 220.69 224.69 †221.60 †225.60

6 236.73 239.67 237.64 241.64

8 252.76 256.76 253.68 257.68

10 268.79 272.79 269.72 273.72

12 284.81 288.81 285.76 289.76

14 2100.82 2104.82 2101.80 2105.80

16 2116.83 2119.77 2117.84 2121.84

18 2132.85 2136.85 2133.88 2137.88

† : experimental result [5]
‡ : the number of incrementing a counter count.

Table 6 Theoretical and experimental success probability of 4-round
RC6P-8 by using Attack 1.

# texts Theoretical Experimental

212 0.742 0.228
213 1.000 0.481
214 1.000 0.888
215 1.000 1.000

On the other hand, it is estimated in [5] heuristically as

log2(#texts) = 8.02r − 10.48. (11)

We see that both estimations are pretty close each other.

4.4 Success Probability of Attack 1 on RC6P-8

We also demonstrate our theorem on 4-round RC6P-8
whose word size is 8-bit. Table 6 shows the theoretical and
experimental results of Attack 1 on RC6P-8. In the same
way as 4-round RC6P, we see that theoretical estimation
gives the upper bound of experimental results.

5. χ2 Attack against RC6

This section improves Attack 1 to a key recovery attack
against RC6, Attack 2, and then gives the theorem that com-
putes the success probability. We also implement Attack 2
on 4-round RC6-8 and demonstrate the accuracy of the the-
orem. Furthermore we also discuss the difference between
Theorem 5 and 7 in view of accuracy.

5.1 Key Recovery Attack and Theoretical Success Proba-
bility

The primitive extension of Attack 1 to a key recovery at-
tack on RC6 is to decrypt ya||yd for each key candidate of
s, S 2r+2 and S 2r+3, which is shown in [5]. Apparently it is
rather straightforward since it means that it decrypts each ci-
phertext by each 268 key. So we improve Attack 1 such that
it does not have to decrypt each ciphertext. Before showing
the algorithm, let us use the following notation:
U = {u ∈ {0, 1}32|msb5(u × (2u + 1)) = 0},
(ua, uc) ∈ U ×U, ta = Ar+2 − ua, tc = Cr+2 − ua,
v = lsb5(B0)||lsb5D0, z = lsb3(Br+2)||lsb3(Dr+2).
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Attack 2:
1. Choose a plaintext (A0, B0, C0, D0) and
encrypt it to (Ar+2, Br+2, Cr+2, Dr+2).

2. For each (ua, uc), compute both ta and tc and
update each array by incrementing

count[ta][tc][v][z].
3. For each ta, tc and v, compute the χ2-value

χ2[ta][tc][v].
4. Compute the average ave[ta][tc] of {χ2[ta][tc][v]}v
for each ta, tc and output ta, tc with
the highest ave[ta][tc] as S 2r+2, S 2r+3.

Attack 2 computes the χ2-value on 6-bit z, which fol-
lows the idea of Attack 1. Compared with [8], in which the
χ2-value is computed on 10-bit data, Attack 2 seems to re-
cover a correct key more efficiently.

We may note that Attack 2 calculates the χ2-value on
z = lsb3(Br+2)|| lsb3(Dr+2) by using such plaintexts that
make the final-round-rotation 0 for each key candidate. For
a correct key, this is exactly equivalent to compute the χ2-
value on lsb3(Ar)||lsb3(Cr), which is output of (r − 1)-round
RC6P because the addition keeps the χ2-value. Thus, we
succeed to skip the post-whitening and get that the prob-
ability density function of distribution of χ2-value with a
correct key in r-round RC6 is equal to fc[r,n] defined in
Theorem 4. On the other hand, in the case of wrong
keys, this is exactly equivalent to compute the χ2-value
on lsb3(Ar+2)|| lsb3(Cr+2), which is output of (r + 1)-round
RC6P. Thus, we get that the probability density function of
distribution of χ2-value with a wrong key in r-round RC6 is
equal to fw[r,n] defined in Theorem 4. From the above dis-
cussion, we’ve proved the following theorem.

Theorem 7: The success probability of Attack 2 on r-
round RC6 is given theoretically as

Psrc6(n) =
∫ ∞

−∞
φ(26−1+mθr−1,(2(26−1)+4mθr−1)/210)(x)

·
(∫ x

−∞
φ(26−1+mθr+1,(2(26−1)+4mθr+1)/210)(u)du

)264−1

dx,

(12)

where 2n is the number of texts, m = 2n−20 and mθr is r-
round non-central parameter.

We approximate Eq. (12) to reduce the computation
amount to get (12) in the same way as Theorem 5. Theo-
rem 8 eliminates the computation of exponentiation 264 − 1
on an integral part in (12) and, thus, enables effective com-
putation of n with Psrc6(n) ≥ 0.95.

Theorem 8: The sufficient condition for Psrc6(n) ≥ 0.95 is

P̃src6(n) ≥ 1 − 1
20(264 − 1)

,

where

Table 7 #texts necessary for Psrc6(n) ≥ 0.95 (From Th.8).

r 4 6 8 10 12 14 16 18

# texts 231.06 247.10 263.13 279.15 295.17 2111.19 2127.20 2143.21

time complexity† 285.06 2101.10 2117.13 2133.15 2149.17 2165.19 2181.20 2197.21

†: the number of incrementing a counter count.

Table 8 Theoretical and experimental success probability of 4-round
RC6-8 (Alg. 2).

# texts 217 218 219 220

Theoretical 0.00 0.05 0.73 1.00
Experimental 0.00 0.04 0.76 1.00

P̃src6(n) =
∫ ∞

−∞
φ(26−1+mθr−1,(2(26−1)+4mθr−1)/210)(x)

·
∫ x

−∞
φ(26−1+mθr+1,(2(26−1)+4mθr+1)/210)(u)du dx,

m = 2n−20 and mθr is r-round non-central parameter.

Table 7 shows the necessary number of texts and time
complexity which make success probability of Attack 2 on
RC6 95% or more. The necessary number of texts is com-
puted by Theorem 8. Time complexity is estimated by the
number of incrementing a counter count, which is the dom-
inant step of Attack 2. The number of available texts is
bounded by 2128 in Attack 2 and that the time complexity
is #texts×227×2 since Attack 2 recovers both post-whitening
keys at once. In [8], they estimated heuristically that 192-
bit-key or 256-bit-key RC6 are broken up to 14 or 15 rounds
by their key recovery algorithm, respectively. We’ve now
proved theoretically that 192-bit-key and 256-bit-key RC6
can be broken up to 16 rounds. Attack 2 works on an 128-
bit-key RC6 with up to 8 rounds. Thus, our results can an-
swer the open question of [8], that is whether or not the χ2

attack works on RC6 with 16 rounds or more.

5.2 Success Probability of Attack 2 on RC6-8

We also demonstrate Theorem 7 on 4-round RC6-8. Ta-
ble 8 shows the theoretical and experimental results. We see
that theoretical estimation gives a pretty good approxima-
tion compared with Table 6. Let us discussion the reason.
In Attack 1, we assume that the χ2-values of wrong keys
in r-round RC6P equals that in (r + 1)-round RC6P to es-
timate Psrc6p,e(n). However, this is exactly upper bound of
χ2-values of wrong keys. In the case of Attack 2, the χ2-
values of wrong keys in r-round RC6 are equal to that in
(r+1)-round RC6P. Thus, we see that theoretical estimation
of Theorem 7 is much better than that of Theorem 5.

6. Concluding Remarks

In this paper, we have improved the χ2-attack on RC6P to
the χ2-attack on RC6 and proved the theorems that evaluate
the success probability in the χ2-attacks on RC6P and RC6.
The derived formulae can be computed efficiently and pro-
vide a theoretical analysis of the success probability in the
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χ2-attack. We have also demonstrated that our theorems can
well estimate success probability in the χ2-attacks against
4-round RC6P, RC6P-8, and RC6-8. Furthermore we have
shown theoretically that our χ2-attack is applicable to 192-
bit-key and 256-bit-key RC6 with up to 16 rounds.
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