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PAPER

Secure Elliptic Curve Exponentiation against RPA, ZRA, DPA, and
SPA∗∗∗

Hideyo MAMIYA†∗, Nonmember, Atsuko MIYAJI†a), Member, and Hiroaki MORIMOTO†∗∗, Nonmember

SUMMARY In the execution on a smart card, side channel attacks
such as the simple power analysis (SPA) and the differential power anal-
ysis (DPA) have become serious threat. Side channel attacks monitor the
side channel information such as power consumption and even exploit the
leakage information related to power consumption to reveal bits of a secret
key d although d is hidden inside a smart card. Almost public key cryp-
tosystems including RSA, DLP-based cryptosystems, and elliptic curve
cryptosystems execute an exponentiation algorithm with a secret-key ex-
ponent, and they thus suffer from both SPA and DPA. In the case of elliptic
curve cryptosystems, DPA is improved to the refined power analysis (RPA),
which exploits a special point with a zero value and reveals a secret key.
RPA is further generalized to zero-value register attack (ZRA). Both RPA
and ZRA utilize a special feature of elliptic curves that happens to have
a special point or a register used in addition and doubling formulae with
a zero value and that the power consumption of 0 is distinguishable from
that of a non-zero element. To make the matters worse, some previous effi-
cient countermeasures to DPA are neither resistant to RPA nor ZRA. This
paper focuses on elegant countermeasures of elliptic curve exponentiations
against RPA, ZRA, DPA and SPA. Our novel countermeasure is easily gen-
eralized to be more efficient algorithm with a pre-computed table.
key words: elliptic curve exponentiation, ZPA, RPA, DPA, SPA

1. Introduction

1.1 Elliptic Curve Cryptosystems

Koblitz [20] and Miller [26] proposed a method by which
public key cryptosystems can be constructed on the group
of points of an elliptic curve over a finite field. If ellip-
tic curve cryptosystems satisfy both MOV-conditions [25]
and FR-conditions [9], and avoid p-divisible elliptic curves
over Fpr [2], [35], [36], then the only known attacks are
the Pollard ρ−method [32] and the Pohlig-Hellman method
[31]. Hence with current knowledge, we can construct ellip-
tic curve cryptosystems over a smaller definition field than
the discrete-logarithm-problem (DLP)-based cryptosystems
like the ElGamal cryptosystems [11] or the DSA [10] and
RSA cryptosystems [33]. Elliptic curve cryptosystems with
a 160-bit key are thus believed to have the same security as
both the ElGamal cryptosystems and RSA with a 1,024-bit
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key. This is why elliptic curve cryptosystems have been at-
tractive in smart card applications, whose memory storage
and CPU power are very limited. Elliptic curve cryptosys-
tems execute an exponentiation algorithm of dP for a se-
cret key d and a publicly known P as a cryptographic prim-
itive. Thus, the efficiency of elliptic curve cryptosystems on
a smart card depends on the implementation of exponentia-
tion.

1.2 Overview of RPA and ZRA

Side channel attacks, first introduced in [21], [22], monitor
power consumption and even exploit the leakage informa-
tion related to power consumption to reveal bits of a se-
cret key d although d is hidden inside a smart card. There
are two types of power analysis, the simple power analysis
(SPA) and the differential power analysis (DPA). SPA makes
use of such an instruction performed during an exponenti-
ation algorithm that depends on the data being processed.
DPA uses correlation between power consumption and spe-
cific key-dependent bits. The address-bit DPA (ADPA) [14],
which is one of DPA, uses the leaked information from the
address bus and can be applied on such algorithms that fix
the address bus during execution. It is a serious issue that
the implementation should be resistant to SPA and DPA,
and many countermeasures have been proposed in [4], [5],
[15], [19], [22], [27], [28], [30]. We may note here that al-
most public key cryptosystems including RSA and DLP-
based cryptosystems also execute an exponentiation algo-
rithm with a secret-key exponent, and, thus, they also suffer
from both SPA and DPA in the same way as elliptic curve
cryptosystems. However, in the case of elliptic curve cryp-
tosystems, DPA is further specialized to the refined power
analysis (RPA) by [12], which exploits a special point with
a zero value and reveals a secret key. An elliptic curve hap-
pens to have a special point (0, y) or (x, 0), which can be
controlled by an adversary because the order of basepoint is
usually known. RPA utilizes such a feature that the power
consumption of 0 is distinguishable from that of an non-zero
element. Although elliptic curve cryptosystems are vulner-
able to RPA, RPA are not applied to RSA or DLP-based
cryptosystems because they don’t have such a special zero
element. Furthermore, RPA is generalized to zero-value reg-
ister attack (ZRA) by [3]. ZRA utilizes a special feature
of elliptic curves that addition and doubling formulae need
a lot of each different operations stored in auxiliary regis-
ters, one of which happens to become 0. Not all elliptic
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curves are vulnerable against RPA or ZRA, but some curves
in [34] are vulnerable against theses attacks. To make the
matters worse, some previous efficient countermeasures of
the randomized-projective-coordinate method (RPC) [8] or
the randomized-curve method (RC) [19] are neither resistant
to RPA nor ZRA.

1.3 Our Contributions

This paper focuses on countermeasures against both RPA
and ZRA, which are also resistant to both SPA and DPA. Our
countermeasure makes use of a random-initial-point method
(RIP): choose a random point R, compute dP + R, subtract
R, and get dP. By using a random initial point at each ex-
ecution of exponentiation, any point or any register used in
addition formulae changes at each execution. Thus, it is re-
sistant to DPA, RPA, and ZRA because an attacker cannot
control a point P itself as he needs. In order to be secure
against SPA, we have to compute dP + R in such a way that
it does not have any branch instruction dependent on the
data being processed. The simple way would be to compute
dP + R from LSB in the add-and-double-always algorithm
[16], which is called LRIP in this paper: change an initial
value O to R in the binary algorithm from LSB for the bi-
nary representation of d = (dn−1, · · · , d0)2,

dP+R=R+d0P+d12P+d22(2P)+ · · · +dn−12(2n−2)P,

which is combined with the add-and-double-always algo-
rithm. However, the computation of dP + R from MSB (see
Algorithm 1) is not straightforward: if we change an initial
value O to R in the binary algorithm from MSB, then it com-
putes 2n−1R + dP, and we thus have to subtract 2n−1R to get
dP. It needs more work than LRIP.

Our remarkable idea lies in the computation algorithm
of dP + R that uses the binary algorithm from MSB and
not LSB and is resistant to SPA. The binary algorithm from
MSB has an advantage over that from LSB in that it is more
easily generalized to a sophisticated algorithm with a pre-
computed table like the window algorithm [24] or the ex-
tended binary algorithm [38]. In this paper, we first show
the basic SPA-resistant algorithm of dP+R that uses the bi-
nary representation from MSB. This is called BRIP in this
paper. Next we apply the extended binary algorithm [38]
and present more efficient SPA-resistant algorithm of dP+R
with a pre-computed table. This is called EBRIP in this pa-
per. EBRIP is a rather flexible algorithm that can reduce the
total computation amount by increasing the size of a pre-
computed table. BRIP can get dP in the computation of
approximately 24.0 M in each bit, where M shows the com-
putation amount of 1 modular multiplication on the defini-
tion field. EBRIP can get dP in the computation of approx-
imately 12.9 M in each bit with using a pre-computed table
of 16 points.

Let us compare our algorithms with other countermea-
sures to SPA, DPA, RPA. A countermeasure to RPA [37] is
not a universal countermeasure, gives each different method

to each type of elliptic curves, and do not consider ZRA-
resistance. The exponent-splitting algorithm (ES) in [4], [5]
is the universal countermeasure, which splits an exponent
and computes dP = rP + (d − r)P = �d/r�rP + (d mod r)P
by using a random number r. ES computes dP by the same
cost as the add-and-double-always algorithm with an extra
point for computation but would require another challenging
work to be faster algorithm with some pre-computed-table
technique. Compared with ES, the computation amount of
BRIP is the same as that of ES, where ES has the 1 extra
point to BRIP for computation. The computation amount
of EBRIP can be reduced to only 54% of that of ES, where
EBRIP has the 1 extra point to ES for computation. An-
other universal countermeasure is a randomized window al-
gorithm [28], which starts with the window algorithm se-
cure against SPA and enhances the security to DPA by RPC.
Therefore, it requires at least 2 random points (or RPC to at
least 3 points) for each computation in the least window size
of w = 2, and thus the performance is rather worse than our
EBRIP. Compared with our BRIP, the randomized window
algorithm can not work without at least 4 additional points
for computation.

1.4 Organization

This paper is organized as follows. Section 2 summa-
rizes some facts of elliptic curves such as coordinate sys-
tems and reviews power analysis of SPA, DPA, RPA, and
ZRA together with some known countermeasures. Section 3
presents our new countermeasures, BRIP and EBRIP. Sec-
tion 4 compares our strategy with the previous RPA-, ZRA-,
and SPA-resistant countermeasure. Appendix presents algo-
rithms that strengthen our algorithms against ADPA.

2. Preliminary

This section summarizes some facts of elliptic curves such
as coordinate systems and reviews power analysis of SPA,
DPA, RPA, and ZRA together with some known counter-
measures.

2.1 Elliptic Curve

Let Fp be a finite field, where p > 3 is a prime. The Weier-
strass form of an elliptic curve over Fp is described as

E/Fp : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 � 0).

The set of all points P = (x, y) satisfying E, together with
the point of infinity O, is denoted by E(Fp), which forms an
abelian group. Let P1 = (x1, y1) and P2 = (x2, y2) be two
points on E(Fp) and P3 = P1 + P2 = (x3, y3) be the sum.
Then the addition formulae in affine coordinate are given as
follows [7].

• Addition formulae in affine coordinate (P1 � ±P2)

x3 = λ
2 − x1 − x2, y3 = λ(x1 − x3) − y1,
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where λ = (y2 − y1)/(x2 − x1).
• Doubling formulae in affine coordinate (P1 = P2)

x3 = λ
2 − 2x1, y3 = λ(x1 − x3) − y1,

where λ = (3x2
1 + a)/(2y1).

Let us denote the computation time of an addition (resp. a
doubling) in the affine coordinate by t(A+A) (resp. t(2A))
and represent multiplication (resp. inverse, resp. squaring)
in Fp by M (resp. I, resp. S ). Then we see that t(A +A) =
I + 2M + S and t(2A) = I + 2M + 2S . Both addition
and doubling formulae need one inversion over Fp, which
is much more expensive than multiplication over Fp. There-
fore, we transform affine coordinate(x, y) into other coor-
dinates, where the inversion is free. We give the addition
and doubling formulae with Jacobian coordinate, which are
widely used.

In the Jacobian coordinates [7], we set x = X/Z2 and
y = Y/Z3, giving the equation

EJ : Y2 = X3 + aXZ4 + bZ6.

Then, two points (X, Y, Z) and (r2X, r3Y, rZ) for some r ∈
F
∗
p are recognized as the same point. The point at infinity

is represented with (1, 1, 0). Let P1 = (X1, Y1, Z1), P2 =

(X2, Y2, Z2), and P3 = P1 + P2 = (X3, Y3, Z3). The doubling
and addition formulae can be represented as follows.

• Addition formulae in Jacobian coordinate (P1 � ±P2)

X3 = −H3 − 2U1H2 + R2,
Y3 = −S 1H3 + R(U1H2 − X3),
Z3 = Z1Z2H,

where U1 = X1Z2
2 , U2 = X2Z2

1 , S 1 = Y1Z3
2 , S 2 = Y2Z3

1 ,
H = U2 − U1, and R = S 2 − S 1.

• Doubling formulae in Jacobian coordinate (P1 = P2)

X3 = T, Y3 = −8Y4
1 + M(S − T ), Z3 = 2Y1Z1,

where S = 4X1Y2
1 , M = 3X2

1 + aZ4
1 , and T = −2S + M2.

The computation times in the Jacobian coordinate are t(J +
J) = 12M + 4S and t(2J) = 4M + 6S , where J means
Jacobian coordinates.

Elliptic curve cryptosystems requires the elliptic curve
exponentiation of dP = P+P+ · · ·+P, where P ∈ E(Fp) and
d is an n-bit integer. The simple method to compute dP is
a so-called binary algorithm. Algorithm 1 shows the binary
algorithm to compute dP from MSB, where the binary rep-
resentation of d is d = (dn−1, · · · , d0). Average computing
complexity of Algorithm 1 is nD + n/2A, where A and D
denotes the computation amount of addition and doubling,
respectively. When we compute dP from LSB, we have to
keep another point 2iP instead of T1 = P but can apply
the iterated doubling formulae in Jacobian coordinate [13],
which computes 2kP for k ≥ 1 by 4kM+(4k+2)S . However,
the binary algorithm from LSB is not easily generalized to a
sophisticated method with a pre-computed table.

Algorithm 1 (Binary algorithm (MSB)):
Input: d, P

Output: dP
1. T [0] = O, T [1] = P.
2. for i = n − 2 to 0

T [0] = 2T [0]
if di = 1 then T [0] = T [0] + T [1]

3. output T [0].

2.2 Power Analysis

There are two types of power analysis, the simple power
analysis (SPA) and the differential power analysis (DPA),
which are described in [21], [22]. In the case of elliptic
curve and also hyper elliptic curve, DPA is further improved
to use a special point with a zero value, which is called the
Refined Power Analysis (RPA) [12]. RPA is generalized to
the Zero-value Register Attack (ZRA) [3]. In this paper,
DPA, RPA, and ZRA are called DPA variants generically.

2.2.1 Simple Power Analysis

SPA makes use of such an instruction performed during
an exponentiation algorithm that depends on the data be-
ing processed. Apparently, Algorithm 1 has a branch in-
struction conditioned by a secret exponent d, and thus it re-
veals the secret d. In order to be resistant against SPA, any
branch instruction of exponentiation algorithm should be
eliminated. There are mainly two types of countermeasures:
the fixed procedure method [8] and the indistinguishable
method [4]. The fixed procedure method deletes any branch
instruction conditioned by a secret exponent d like add-and-
double-always algorithm [8] and Montgomery-ladder algo-
rithm [29]. Add-and-double-always algorithm is described
in Algorithm 2. The indistinguishable method conceals all
branch instructions of exponentiation algorithm by using in-
distinguishable addition and doubling operations, in which
dummy operations are inserted.

Algorithm 2 (Add-and-double-always algorithm):
Input: d, P
Output: dP
1. T [0] = P and T [2] = P.
2. for i = n − 2 to 0

T [0] = 2T [0]. T [1] = T [0] + T [2].
if di = 0 then T [0] = T [0].
else T [0] = T [1].

3. output T [0].

2.2.2 Differential Power Analysis

DPA uses correlation between power consumption and spe-
cific key-dependent bits. Algorithm 2 reveals dn−2 by com-
puting the correlation between power consumption and any
specific bit of the binary representation of 4P. In order
to be resistant against DPA, power consumption should be
changed at each new execution of the exponentiation. There
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are mainly 3 types of countermeasures, the randomized-
projective-coordinate method (RPC) [8], the randomized
curve method (RC) [19], and the exponent splitting (ES) [4],
[5]. RPC uses the Jacobian or Projective coordinate to ran-
domize a point P = (x, y) into (r2x, r3y, r) or (rx, ry, r) for
a random number r ∈ F∗p, respectively. RC maps an elliptic
curve into an isomorphic elliptic curve by using an isomor-
phism map of (x, y) to (c2x, c3y) for c ∈ F∗p. ES splits an
exponent and computes dP = rP + (d − r)P for a random
integer r.

2.2.3 Refined Power Analysis and Zero-Value Point At-
tack

DPA is specialized to reveal a secret key d by using a spe-
cial elliptic-curve point with a zero value, which is defined
as (x, 0) or (0, y). These special points of (x, 0) and (0, y)
can not be randomized by RPC or RC since they still have
a zero value such as (r2x, 0, r) (resp. (rx, 0, r)) and (0, r3y, r)
(resp. (0, ry, r)) in Jacobian (resp. Projective) coordinate af-
ter conversion. A countermeasure to RPA are proposed in
[37], but this is not a universal countermeasure, gives each
different method to each type of elliptic curves.

RPA is generalized to ZRA by [3], which makes use of
any zero-value register in addition formulae. The addition
and doubling formulae have a lot of each different opera-
tions stored in auxiliary registers, one of which may become
zero. ZRA uses the difference in any zero value register of
addition and doubling, which is not randomized by RPC or
RC.

ES can resist both RPA and ZRA because an attacker
cannot handle an elliptic curve point in such a way that any
special point with zero value can appear during an execution
of exponentiation algorithm.

3. Efficient Countermeasures against SPA and DPA
Variants

In this section, we propose a new countermeasure against
SPA and all DPA variants.

3.1 Our Basic Countermeasure

Here we show our Basic SPA-resistant algorithm with RIP,
called BRIP, and then discuss the security and efficiency.

3.1.1 BRIP

Our algorithm uses a random initial point (RIP) R, computes
dP + R, and subtracts R to get dP. In order to be secure
against SPA, we have to compute dP + R in such a way that
it does not have any branch instruction dependent on the data
being processed. Our remarkable idea lies in a sophisticated
combination to compute dP+R from MSB by the same com-
plexity as Algorithm 2: first let 1 represent 1 = (111 · · · 11)2

and apply the extended binary algorithm [23] to compute

(1 11 · · · 11︸���︷︷���︸
n

)2R + (dn−1dn−1 · · · d1d0︸���������������︷︷���������������︸
n

)2P.

Algorithm 3 shows our idea in detail. We get dP by com-
puting dP + R and subtracting R. BRIP makes all variables
T [0], T [1], and T [2] dependent on a random point R, and
thus let all variables of each addition and doubling differ at
each execution.

Algorithm 3 (BRIP):
Input: d, P
Output: dP
1. T [2] =randompoint()
2. T [0] = −T [2], T [1] = P − T [2]
3. for i = n − 1 to 0

T [2] = 2T [2]
T [2] = T [2] + T [di]

4. output T [2] + T [0]

3.1.2 Security and Efficiency

We discuss the security, the computation amount, and the
memory amount. BRIP lets the power-consumption pattern
be fixed regardless of the bit pattern of a secret key d, and
thus it is resistant to SPA.

BRIP makes use of a random initial point at each ex-
ecution and let all variables T [0], T [1], and T [2] be depen-
dent on the random point. Thus, an attacker cannot control
a point in such a way that it outputs a special point with a
zero-value coordinate or zero-value register. Therefore, if
R is chosen randomly by some ways, BRIP can be resistant
to DPA, RPA, and ZRA. The performance of BRIP depends
on the algorithm of generating a random initial point R. The
simplest way is to generate the x-coordinate randomly and
compute the corresponding y-coordinate if exists. It should
require much work. The cheaper way is to keep one point
R0 and convert R0 into a randomized point R by RPC [16].
In order to enhance the security of BRIP against ADPA, Al-
gorithm 3 has only to be coded in such a way that it random-
izes the address bus as well as the data itself, which will be
shown in Appendix.

The computation amount required for Algorithm 3 is
nD + nA, which is the same as Algorithm 2. The number of
variables necessary for computation is only 3.

3.2 Our Generalized Countermeasure

Our basic countermeasure BRIP can be generalized to a
faster algorithm with a pre-computed table since BRIP
makes use of the binary representation from MSB. We may
note that the binary representation from LSB can not be
easily generalized to a faster algorithm with a flexible pre-
computed table. In the following, we will summarize the
exponentiation algorithm with a precomputed table and de-
scribe two algorithms based on the extended-binary and the
window algorithms, which are called EBRIP and WBRIP,
respectively. EBRIP is more efficient than WBRIP although
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extended-binary algorithm usually does not work on a single
exponentiation as efficiently as the window algorithm.

3.2.1 SPA-Resistant Exponentiation Algorithm with a Pre-
Computed Table

As for algorithms of using a pre-computed table, there are
mainly two algorithms: the window algorithm [24] and the
extended binary (simultaneous exponentiation) algorithm
[23], [38]. The extended binary algorithm is originally used
to compute two exponentiations aP + bQ, which is ap-
plied to compute one exponentiation as follows [38]. Let
d =
∑n−1

i=0 di2i and n be even.

1. Divide d into two components of d = b ‖ a, where
b = (dn−1 · · · d n

2
)2 and a = (d n

2−1 · · · d0)2.
2. Compute Q = 2

n
2 P.

3. Set a pre-computed table {P,Q, P + Q}.
4. Compute aP + bQ in the extended binary algorithm by

using the pre-computed table.

The detailed algorithm is shown in Algorithm 4.

Algorithm 4 (2-division extended-binary algorithm):
Input: d, P
Output: dP
1. Set d = b ‖ a,

b = (b n
2−1 · · · b0)2 = (dn−1 · · · d n

2
)2, and

a = (a n
2−1 · · · a0)2 = (d n

2−1 · · · d0)2.

2. T [0, 1] = P, T [1, 0] = 2
n
2 P,

T [1, 1] = T [0, 1] + T [1, 0], and T [2] = O.
3. for i = n

2 − 1 to 0
T [2] = 2T [2].
if (bi, ai) � (0, 0) then T [2] = T [2] + T [bi, ai].

4. output T [2].

Going back to the countermeasure using a pre-
computed table, it is necessary for both the extended binary
and window algorithms to make power-consumption pattern
same in order to be resistant to SPA. In the case of the win-
dow algorithm, some SPA-resistant algorithms are proposed
in [27], [28], [30]: [27], [30] do not aim at being resistant to
DPA and its variants; and [28], called a randomized win-
dow method, is resistant to RPA and ZRA by using at least
2 random points in a pre-computed table at each computa-
tion, but thus the performance is rather worse than our algo-
rithm. Note that [28] is not resistant to ADPA. In the case of
the extended binary algorithm, up to the present, any SPA-
resistant algorithm has not been proposed because it usually
gives lower performance than the window algorithm.

3.2.2 Our Extended-Binary-Based Algorithm with RIP

Let us show our extended-binary-based algorithm with RIP,
which is called EBRIP for short.

1. Choose a random point R.
2. Let the number of divisions be t.

3. Adjust n to be the least common multiple n′ of t and n
by setting 0 to MSB of d (n′ < n + t), where

d′ = 0 · · · 0 dn−1 · · · d0.

4. Divide d′ into t components ( n′
t = k) of d′ = αt−1 ‖

· · · ‖ α1 ‖ α0 and represent 1 in (k + 1) bits, those are,

αt−1 = 0 · · · d(t−1)k
...

α1 = d2k−1 · · · dk

α0 = dk−1 · · · d0

1 = 1 1 · · · 1

5. Compute Pi = 2kiP for i = 1 to t − 1. (Set P0 = P).
6. Compute a pre-computed table Tt = {Σt−1

i=0aiPi −R (ai ∈
{0, 1})}, which consists of 2t points.

7. Compute α0P0 + · · · + αt−1Pt−1 + 1R in the way of the
extended binary algorithm. (See Algorithm 4.)

Algorithm 5 shows the case of t = 2 and an even n for sim-
plicity.

Algorithm 5 (EBRIP (2 divisions)):
Input: d, P
Output: dP
1. T [2] =randompoint().
1. Set d = b ‖ a,

b = (b n
2−1 · · · b0)2 = (dn−1 · · · d n

2
)2, and

a = (a n
2−1 · · · a0)2 = (d n

2−1 · · · d0)2.

2. T [0, 0] = −R, T [0, 1] = P − R,
T [1, 0] = 2

n
2 P − R, and T [1, 1] = 2

n
2 P + P − R.

3. for i = n
2 − 1 to 0

T [2] = 2T [2].
T [2] = T [2] + T [bi, ai].

4. Output T [2] + T [0, 0].

Let us discuss the resistance, computation amount, and
memory amount. As for SPA, the power-consumption pat-
tern is not changed for any initial point R and any secret key
d thanks to the representation of 1, and EBRIP is thus secure
against SPA. Moreover, under the assumption that an initial
point R is completely random, EBRIP is secure against DPA,
RPA, and ZRA, as we mentioned in Sect. 3.1. In order to
enhance the security of EBRIP against ADPA, Algorithm 5
has only to be coded in such a way that it randomizes the
address bus as well as the data itself, which will be shown
in Appendix.

As for the computation amount, EBRIP consists of
these parts: compute base points P1, · · · , Pt−1, a pre-
computed table Tt, and the main routine. The computa-
tion amount for base points, Tt, or main routine is (t−1)n′

t D,
2tA, or n′

t D + n′
t A, respectively. Thus, the total computation

amount is n′D + n′
t A + 2tA. On the other hand, the num-

ber of points in Tt is 2t, which includes a random point R.
EBRIP needs one more point of variable to execute. Thus,
the necessary memory is 2t + 1 in total.

One remarkable point of EBRIP is that the length of
representation of 1 is not fixed to n but adjusted to 	 n

t 
+ 1(<
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n). As a result, EBRIP realizes more efficient computation
than the next window-based algorithm.

Remark: The Jacobian coordinate gives the most efficient
computation of EBRIP as we will see in Sect. 4. In the use
of the Jacobian coordinate, the stage of computation for base
points can employ the technique of m-repeated elliptic curve
doublings in Sect. 2, which reduces the computation amount
for the stage.

3.2.3 Our Window-Based Algorithm with RIP

Our window-based algorithm with RIP is summarized as
follow, which is is called WBRIP for short.

1. Choose a random point R.
2. Set the width of window to be w.
3. Adjust n′ to be the least common multiple of w and n

by setting 0 to MSB (n ≤ n′ < n + w) of d, where

d′ = 0 · · · 0 dn−1 · · · d0.

4. Compute R′ = −(2w − 1)R.
5. Set a pre-computed table Tw = {R′, P+R′, 2P+R′, 3P+

R′, · · · , (2w−2)P+R′, (2w−1)P+R′}, where the number
of points in Tw is 2w.

6. Compute (0 · · · 0 dn−1 · · · d0︸���������������︷︷���������������︸
n′

)2P + (1 11 · · · 11︸���︷︷���︸
n′

)2R in the

way of window algorithm by using Tw.

Let us discuss the security, the computation amount,
and the memory amount. Power-consumption pattern is not
changed for any random R and any secret key d in the same
way as EBRIP and BRIP. This is why WBRIP is resistant to
SPA. This means that WBRIP is secure against SPA without
any additional modification on the window algorithm seen
in [27], [30]. Furthermore, under the assumption that an ini-
tial point R is completely random, our algorithm is resistant
to DPA, RPA, and ZRA.

Next we investigate the computation amount of
WBRIP. WBRIP consists of three parts: compute an inter-
mediate point R′, a pre-computed table Tw, and main rou-
tine. The computation amount of R′, a pre-computed table
Tw, or main routine is wD + A, (2w − 1)A, or n′

w
A + n′D,

respectively. Therefore, the total computation amount is
n′D + n′

w
A + 2wA + wD, where n′ < n + w. It is not as

efficient as EBRIP since the length of representation of 1 is
fixed to n′ + 1. If we reduce the length of representation of
1 to n such as (1 1 · · · 1︸︷︷︸

n−1

)2, then Tw requires other points and

thus the size of Tw becomes larger. Regarding as the mem-
ory amount of WBRIP, the number of points in Tw is 2w,
which includes a random point R. Additional one variable is
necessary for computation. Thus, the necessary memory is
2w + 1 points in total.

As a result, compared with EBRIP, WBRIP needs more
computation amount with the same memory amount.

Remark: The SPA-resistant-window algorithm [30] can be

applied to WBRIP instead of the ordinary window algo-
rithm. That is, convert d to SPA-resistant-window repre-
sentation d′ (n′ bits), and compute d′P + R′ in a way of
WBRIP. The SPA-resistant-window algorithm works in the
density of the non-zero bit 1

w
with the pre-computed ta-

ble T = {±P,±3P, · · · ,±(2w − 1)P}, which can be con-
structed by just having positive 2w−1 points. However, ap-
plying it to WBRIP, the pre-computed table becomes T ′w =
{R′ + P,R′ − P, · · · ,R′ + (2w − 1)P,R′ − (2w − 1)P}, which
requires us to have 2w points. Then the size of the pre-
computed table |T ′w| is the same as that of the pre-computed
table |Tw| in WBRIP. Therefore, it does not give any advan-
tage over WBRIP based on the ordinary window method but
rather gives an additional work of converting d to d′.

3.3 Further Discussion

An SPA in the chosen-message-attack scenario† was pro-
posed in [39]. An attacker sends a point P with order 2 in
Algorithm 2 and observes the power consumption. Then,
there are only two possible points of T [0] for each i, those
are O and P for di = 0 and 1, respectively. Thus, an attacker
can guess each di. The same discussion holds in the case
of BRIP and EBRIP. However, from the realistic point of
view, their attack cannot be applied on an ordinary elliptic
curve cryptosystems. Because a prime-order elliptic curve
is usually recommended and a basepoint with prime order is
usually allowed even if an elliptic curve is not prime order.
Furthermore, it can be easily avoided by checking 2P � O
before computing dP.

4. Comparison

From the point of view of computation and memory amount,
we compare our countermeasures BRIP and EBRIP with the
previous countermeasures to SPA, DPA, and RPA, those are
ES [5], randomized window algorithm [28], LRIP [16], and
randomized linearly-transformed coordinates (RLC) [16].
There exists another countermeasure [17] that is a combi-
nation of RIP and the Montgomery ladder. However, we
omit it from comparisons since it computes only the x-
coordinate of dP and requires an additional work to recover
y-coordinate of dP.

Table 1 shows the comparison in two types of compu-
tation amount: the computation amount in the case of 160-
bit definition field and the average computation amount in
each bit. The average computation amount is computed by
the computation amount over Fp

|Fp | , and, thus, it does not
depend on the size of definition field. Here, M, S , or RPC
represents the computation amount of modular multiplica-
tion, modular square, or RPC on the definition field, respec-
tively. We also assume that S = 0.8M as usual. The Ja-
cobian coordinate is used to compute the total number of
modular multiplications for all cases except RLC because it

†Their attack is applicable to only ElGamal decryption, a clas-
sical RSA signature, and RSA decryption.
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Table 1 Comparison of countermeasures.

memory amount computation amount† computation amount
(#points, #scalar) #D + #A #M + #S in each bit

ES [5] (4, 2) 160D+160A 2560M + 1600S (3840M) 16M + 10S (24.0M)
strengthened window [28] (5, 0) 161 D + 82A + 3RPC 1640M + 1297S (2678M) 10.3M + 8.1S (16.7M)
LRIP [16] (4, 0) 160D+160A 2560M + 1282S (3596M) 16M + 8S (22.4M)
RLC [16] (3, 0) 160D+160A 2720M + 1282S (3745M) 17M + 8S (23.4M)
BRIP (3, 0) 160D+160A 2560M + 1600S (3840M) 16M + 10S (24.0M)
EBRIP(t = 2) (5, 0) 160D+84A 1648M + 1138S (2558M) 10.3M + 7.1S (16.0M)
EBRIP(t = 3) (9, 0) 162D+62A 1392M + 1006S (2197M) 8.7M + 6.3S (13.7M)
EBRIP(t = 4) (17, 0) 160D+56A 1312M + 946S (2069M) 8.2M + 5.9S (12.9M)
EBRIP(t = 5) (33, 0) 160D+64A 1408M + 962S (2178M) 8.8M + 6.0S (13.6M)

† This shows the computation amount in the case of 160-bit definition field.

is the most efficient. RLC uses addition formulae slightly
modified from the Jacobian coordinate [16]. EBRIP, RLC
and LRIP can make use of the technique of m-repeated el-
liptic curve doublings in Sect. 2.

BRIP can compute dP in the computation amount of
160D + 160A with 3 points. The computation amount in
each bit is 24.0M, which is the same as that of ES. EBRIP
with t = 2 can compute dP in the computation amount of
160D+84A with 5 points. The computation amount in each
bit is 16.0M, which is reduced to only 66% of ES. Com-
pared with [28], EBRIP with t = 2 is reduced to 96% while
using the same memory amount. EBRIP with t = 4 can ex-
ecute dP in the computation amount of 160D+ 56A with 17
points. In this case, the computation amount in each bit is
12.9M, which is reduced to only 54% of ES. Note that t = 4
is the fastest when the size of definition filed Fp is 160.

Remark: The algorithms of an exponentiation dP are gen-
erally classified into two cases: P is pre-determined or not.
This paper assumes that P is not pre-determined and given
in each execution, which occurs in a decryption. There-
fore, a pre-computed table cannot be computed beforehand
and is constructed at the same time as the execution of dP.
Generally, the more the size of a pre-computed table is,
the more the computation amount of construction of a pre-
computed table is. This is why the case of t = 4 gives the
least computation amount. In the case of an exponentia-
tion of a pre-determined point P, which occurs in the sig-
nature generation, we do not have to count the computation
amount of construction of a pre-computed table. As a result,
these two kinds of exponentiation algorithms are evaluated
in each different way, and, thus, both usually employ dif-
ferent algorithms. Some concrete algorithms of dP for a
pre-determined P, refer to [6].

5. Concluding Remarks

In this paper, we have presented countermeasures of BRIP,
EBRIP, and WBRIP that are resistant to RPA, ZRA, DPA,
and SPA. Our countermeasure BRIP can get dP in the com-
putation of approximately 24.0 M in each bit with the mem-
ory amount of 3 points. The memory size is the smallest
and it also can work the fastest among algorithms with the
memory amount of 3 points. EBRIP with t = 4 can get dP
in the computation of approximately 12.9 M in each bit with

the memory amount of 17 points, which is the fastest.
Our novel algorithms of BRIP and EBRIP can work in

24.0M, 16.0M, 13.7M, or 12.9M in each bit with the mem-
ory amount of 3, 5, 9, or 17 points, respectively. Therefore,
our results could offer the best algorithm to a wide range of
applications: some require the small memory storage at the
cost of time or some require the fast implementation at the
cost of memory.

Our countermeasure improves the addition-chain itself
and not use a specific feature of an elliptic curve such as a
coordinate system. Therefore, BRIP and EBRIP can also be
generalized to deal with hyper elliptic curve cryptosystem.
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Appendix: ADPA-Resistant BRIP and EBRIP

Algorithms 3 and 5 fix the address bus although they change
the data itself at each execution. In order to be resistant to
ADPA, both have only to be coded in such a way that they
randomize the address bus as well as the data itself. This
is generally realized by using the idea of [15]. In our case,
concrete algorithms are in [18]. However, their algorithms
require two additional variables to randomize the address
of variables and so are not suitable for BRIP and EBRIP.
Here we present another approach that strengthens BRIP
and EBRIP against ADPA. Our method changes not the ad-
dress of variables but the value itself of variables and thus
randomizes the address of variables storing a certain value.
As a result, compared with [18], our algorithm can enhance
the security with each one additional variable to the original
BRIP or EBRIP.

Algorithm 6 (ADPA-resistant BRIP):
Input: d, P
Output: dP
1. T [3] =randompoint()
2. r = 0
3. T [0] = −T [3], T [1] = P − T [3], T [2] = O
4. for i = n − 1 downto 0 {

T [3] = 2T [3]
T [2] = T [0]
T [0] = T [0 ⊕ r′]
T [1] = T [1 + r′]
r = r ⊕ r′
T [3] = T [3] + T [di ⊕ r] }

5. output T [2] + T [r]
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Here, r′ is a 1-bit random number of {0, 1}.
Algorithm 7 (ADPA-resistant EBRIP (2 divisions)):
Input: d, P
Output: dP
1. T [5] = randompoint()
2. r = 0
3. Set d = b||a
4. b = (b n

2−1 . . . b0) = (dn−1 . . . d n
2
) and

5. a = (a n
2−1 . . . a0) = (d n

2−1 . . . d0)
6. T [0] = −R, T [1] = P − R, T [2] = 2

n
2 P − R,

7. T [3] = 2
n
2 P + P − R, T [4] = O

9. for i = n
2 − 1 to 0 {

T [5] = 2T [5]
T [4] = T [0]
T [0] = T [0 + r′]
T [1] = T [1 + r′]
T [2] = T [2 + r′]
T [3] = T [3 + r′]
r = r + r′ (mod 4)
T [5] = T [5] + T [(biai)2 − r (mod 4)] }

10. Output T [5] + T [4 − r]

Here, r′ is a 1-bit random number of {0, 1}.
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