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PAPER Special Section on Discrete Mathematics and Its Applications

Statistical Analysis of χ2-Attacks∗∗

Norihisa ISOGAI†a), Nonmember, Atsuko MIYAJI†∗b), Regular Member,
and Masao NONAKA††c), Nonmember

SUMMARY The χ2-attack was originally proposed by
Knudsen and Meier. This attack is one of the most effective
attacks for RC6. The χ2-attack can be used for both distin-
guishing attacks and for key recovery attacks. Although, up to
the present, theoretical analysis of χ2-attacks, especially the re-
lation between a distinguishing attack and a key recovery attack,
has not been discussed, the security against key recovery attacks
has been often discussed by the results of distinguishing attacks.
In this paper, we investigate the theoretical relation between the
distinguishing attack and the key recovery attack, and prove one
theorem to evaluate the exact security against the key recovery
attacks by using the results of the distinguishing attack. Fur-
thermore we propose two key recovery attacks against RC5-64
and implement them. Our best key recovery attack can analyze
RC5-64 with 16 rounds by using 2125.23 plaintexts with a success
probability of 30%. This result works faster than exhaustive key
search. As far as the authors know, this is the best result of
known plaintext attacks to RC5-64. We also apply our theory on
our key recovery attacks and demonstrate the validity.
key words: block cipher, statistical analysis, RC5, χ2-attacks

1. Introduction

The χ2-attack [10] was originally proposed by Knud-
sen and Meier as a chosen plaintext attack to RC6
[15]. They focused on the correlations between input
(plaintext) bits and output (ciphertext) bits, measured
by the χ2-test: the specific rotation in RC6 is consid-
ered to cause the correlations between the correspond-
ing two 10-bit integer values. The χ2-attack can be
used for both distinguishing attacks and for key recov-
ery attacks. Distinguishing attacks have only to handle
plaintexts in such a way that the χ2-value of a part of
ciphertexts becomes significantly a higher value. On
the other hand, key recovery attacks have to rule out
all wrong keys, and single out exactly a correct key
by using the χ2-value. Therefore, key recovery attacks
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often require more work and memory than distinguish-
ing attacks. In [10], their key recovery attack was esti-
mated by using only the results of the distinguishing at-
tack. Note that their key recovery attack on RC6 with
any round was not implemented because it required
too much memory even in the case of small number of
rounds. In [16], a key recovery attack on RC5-32 [14]
by using a χ2-attack was proposed. RC5-w/r/b means
that two w-bit-word plaintexts are encrypted with r
rounds by b-byte keys. A χ2-attack to RC5-32 was
further improved [13]. Their attack can analyze RC5-
32 with 10 rounds by a known plaintext attack with
negligible memory. They also pointed out the signifi-
cant difference between the distinguishing attack and
the key recovery attack. For the distinguishing attack,
the high χ2-value is necessary and sufficient condition.
On the other hand, the high χ2-value is not sufficient
for the key recovery attack. In fact, the high χ2-value
algorithm cannot recover a correct key with high prob-
ability [16], but the rather low χ2-value algorithm can
recover a correct key with high probability [13]. This
reasons that the security against the key recovery at-
tack cannot be estimated directly from that against the
distinguishing attack. However, up to the present, any
theoretical difference between the distinguishing attack
and the key recovery attack has not been discussed.

In this paper, we investigate the theoretical rela-
tion between the distinguishing attack and the key re-
covery attack, and prove one theorem to evaluate the
exact security against the key recovery attack by using
the results of the distinguishing attack. We also pro-
pose two key recovery algorithms against RC5-64. By
using these key recovery attacks, we also demonstrate
our theory. As we will see in Sects. 3 and 4, the imple-
mented results of the key recovery attacks are almost
the same as the results evaluated under our theorem by
using the results of the distinguishing attack.

Table 1 presents our experimental results of the
key recovery attack to RC5-64. Our known plaintext
attack, Algorithm 3, can be mounted on RC5-64 with
16 rounds with negligible memory. Our attack can an-
alyze RC5-64 more efficiently than the previous best
attack [2]. In concluding, we should note that RC5-64
with 16 rounds is not secure against the known plain-
text attack.

This paper is organized as follows. Section 2 sum-
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Table 1 Attack on RC5-64 (Implemented).

2 rounds 3 rounds 4 rounds
#texts #keys #texts #keys #texts #keys

Linear attack [2] 217 39/100 225 28/50 234 9/10
219 96/100 227 47/50

Algorithm 3 [This paper] 216 71/100 224 54/100 233 76/100
217 99/100 225 93/100 234 98/100

marizes the notation, RC5-64 algorithm, the χ2-test,
and statistical facts used in this paper. Section 3 pro-
poses the chosen plaintext attack and the known plain-
text attack, Algorithms 2 and 3, against RC5-64, and
demonstrates our statistical method by using the re-
sults of the distinguishing attack. The experimental
results of our key recovery attacks are described in
Sect. 4. Section 5 investigates the difference between
Algorithms 2 and 3 from the statistical point of view.
Conclusion is given in Sect. 6.

2. Preliminary

2.1 Notation

+ (+): addition (addition mod 264);
−: subtraction;
∗: multiplication;
⊕: bit-wise exclusive OR;

r (h): number of full(half) rounds (h = 2r);
a ≪ b: cyclic rotation of a to the left by b-bit;
a ≫ b: cyclic rotation of a to the right by b-bit;

(Li, Ri): input of the i-th half-round, (L0, R0),
(Lh+1, Rh+1) is a plaintext, a ciphertext af-
ter h half-rounds encryption, respectively;

Si: i-th subkey (Sh+1 is a subkey of the h-th
half-round);

lsbn(X): least significant n-bit of X;
Xi: i-th bit of X.

We denote the least significant bit (lsb) to the 1st bit,
and the most significant bit (msb) as the 64-th bit for
any 64-bit element.

2.2 Block Cipher RC5-64

Here, we introduce the encryption algorithm of RC5-
64: a plaintext (L0, R0) is added with (S0, S1) and
set to (L1, R1). (L1, R1) is encrypted to (Lh+1, Rh+1)
by h half-rounds iterations of a main loop, which is
called one half-round. Two consecutive half-rounds cor-
respond to one round of RC5.

Algorithm 1 (RC5-64 Encryption Algorithm):
1. L1 = L0+S0; R1 = R0+S1;
2. for i = 1 to h do:

Li+1 = Ri; Ri+1 = ((Li ⊕Ri) ≪ Ri)+Si+1).

2.3 χ2-Test

We make use of the χ2-tests for distinguishing a non-
random distribution from random distribution [8], [10],
[11]. Let X = X0, ..., Xn−1 be sets of {a0,..., am−1},
and Naj

(X) be the number of X which takes on the
value aj . The χ2-statistic of X which estimates the
difference between X and the uniform distribution is
defined as follows:

χ2(X) =
m

n

m−1∑
i=0

(
Nai

(X)− n

m

)2

.

2.4 Statistical Facts

Here, we summarize statistical facts and the notation.

Theorem 1 (Distribution of the Means [4]): Let µ
and σ2 be the mean and the variance of a population,
respectively. Then the mean and the variance of the
distribution of the mean of a random sample with the
size n drawn from the population are µ, and σ2/n, re-
spectively.

Theorem 2 (Central Limit Theorem [4]): Choose a
random sample from a population, if the sample size n
is large, the sampling distribution of the mean is closely
approximated by the normal distribution, regardless of
the population.

Theorem 3 (Law of large numbers [4]): The lar-ger
the sample size, the more probable it is that the sample
mean comes arbitrarily close to the population mean.

The probability density function of the normal dis-
tribution with the mean x0 and the variance σ2 is de-
scribed by the following equation,

P (x) =
1√
2πσ2

exp
[
− (x− x0)2

2σ2

]
.

3. Proposed χ2-Attacks on RC5-64

This section presents two attacks, Algorithms 2 and
3, by applying the correlation attack on RC5-32 [13].
We also investigate the security of RC5-64 from the
statistical point of view.
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3.1 Attacks

Our proposed two algorithms recover the least sig-
nificant five bits of Sh+1, which can be applied to
any consecutive bits of Sh+1. In our algorithms, set
(x, y) = (lsb6(Lh+1), lsb6(Rh+1)), and s = lsb5(Sh+1),
where x corresponds to the rotation amount in the h-th
half-round. Each algorithm is as follows:

Algorithm 2 (Proposed chosen plaintext attack):
1. Choose a plaintext (L0, R0) with lsb6(R0)

=0, and encrypt it.
2. For each s(s = 0, 1, · · · , 25 − 1), set S6

h+1=0,
and decrypt y by 1 half-round. Note that,
y decrypted with the rotation amount x
in the h-th half-round by 1 half-round is
set to z, then we exactly know it.

3. For each value s, x, and z, we update
each array by incrementing count[s][x][z].

4. For each s and x, compute χ2[s][x].
5. Compute the average ave[s] for {χ2[s][x]}x

of each s, and output s with the highest
ave[s] as lsb5(Sh+1).

Algorithm 3 (Proposed known plaintext attack):
1. Given known plaintexts (L0, R0), set

l = lsb6(R0), and encrypt them.
2. For each l, compute χ2[l][s][x] according to

Steps 2-4 in Algorithm 2.
3. Compute the average ave[s] of {χ2[l][s][x]}l,x

for each s, and output s with the highest
ave[s] as lsb5(Sh+1).

Here, we discuss the distributions of χ2-values in Algo-
rithms 2 and 3 from the statistical point of view. In
Algorithm 2, we classify χ2[s][x] into 26 types by the
h-th half-round rotation x. On the other hand, in Algo-
rithm 3, we classify χ2[l][s][x] into 212 types by the 1st
and h-th half-round rotations l and x. Using the facts
in Theorem 1, the more number of classification is done,
the smaller the variance becomes. We also note that the
numbers of available plaintexts in Algorithms 2 and 3
are 2122 and 2128, respectively. In consecutive sections,
we will see how these differences in the number of clas-
sification and that of available plaintexts influence the
applicability against RC5-64.

3.2 Notation

We give the following notation.
(1) e and SUC: recovered-key bit size and success prob-
ability of a key recovery attack, respectively. There are
one correct key and 2e − 1 wrong keys.
(2) Xc and Xw: distributions of χ2-values of a key re-
covery attack by using a correct key and a wrong key,
respectively.
(3) Cm and Cv: mean and variance of distribution of

mean of χ2-values of a key recovery attack with a cor-
rect key, respectively.
(4) Pc(x): (1/

√
2πCv) exp

[
−(x− Cm)2/(2Cv)

]
(prob-

ability density function of distribution of χ2-values with
a correct key).
(5) Wm and Wv: mean and variance of distribution of
χ2-values in a key recovery attack with a wrong key,
respectively.
(6) Pw(x): (1/

√
2πWv) exp

[
−(x−Wm)2/(2Wv)

]
(pro-

bability density function of distribution of χ2-values
with a wrong key).
(7) Em[h,n] and Ev[h,n]: mean and variance of dis-
tribution of χ2-values on lsb6(Rh+1) of RC5-64 with
lsb6(R0) = 0 by using 2n plaintexts, respectively.
(8) Cm1[h,n] (Cm2[h,n]) and Cv1[h,n] (Cv2[h,n]): mean
and variance of distribution of χ2-values recovered with
a correct key in lsb6(Rh+1) by using 2n plaintexts in Al-
gorithm 2 (Algorithm 3), respectively.
(9) Wm1[h,n] (Wm2[h,n]) and Wv1[h,n] (Wv2[h,n]): mean
and variance of distribution of χ2-values recovered with
a wrong key in lsb6(Rh+1) by using 2n plaintexts in Al-
gorithm 2 (Algortihm 3), respectively.

3.3 Statistical Analysis of χ2-Attacks

We show one theorem on the success probability of the
key recovery attack. First, we put forward three hy-
potheses and prove three lemmas on the distributions
of χ2-values of the key recovery attacks. Note that the
key recovery attacks compute the χ2-value on a part by
using all candidates and outputs a key with the highest
χ2-value as a correct key.

Hypothesis 1: For i = 1, 2, · · · , 2e − 1, let Xw(i) be
the distribution of χ2-values on the part recovered with
the i-th wrong key. Then we assume that the distribu-
tions Xw(1), Xw(2), · · · , Xw(2e−1) are independent and
approximately equal.

Lemma 1: If the number of χ2-values is enough large,
then the distribution of the mean of χ2-values is approx-
imately normally distributed.

Proof : This follows easily from Theorem 2. ✷

Lemma 2: Let n ≥ 12 and h ≥ 4. In Algo-
rithm 2 (Algorithm 3), the mean of χ2-values re-
covered with a correct key by using 2n plaintexts,
Cm1[h,n] (Cm2[h,n]), is estimated by the mean of χ2-
values on lsb6(Rh−1) by using 2n−6 (2n−12) plaintexts,
Em[h−2,n−6] (Em[h−2,n−12]), as follows,

Cm1[h,n]=Em[h−2,n−6](Cm2[h,n]=Em[h−2,n−12]).

Proof : If we use a correct key in Algorithms 2
and 3, the correct six-bit-data decrypted by 1 half-
round can be exactly obtained, which is the same as
that decrypted by one more half-round. As a result,
lsb6(Rh+1) can be decrypted by 1 round (2 half-rounds)
as long as we use a correct key. Since lsb6(R0) and the
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rotation amount in the final half-round are uniformly
distributed, the χ2-values in Algorithms 2 and 3 are es-
timated to be computed by using 2n−6 and 2n−12 plain-
texts, respectively. Thus, by using Theorem 1, we get
Cm1[h,n] = Em[h−2,n−6] and Cm2[h,n] = Em[h−2,n−12].

✷

Lemma 3: Let n ≥ 12 and h ≥ 4. In Algo-
rithm 2 (Algorithm 3), the variance of χ2-values re-
covered with a correct key by using 2n plaintexts,
Cv1[h,n] (Cv2[h,n]), is estimated by the variance of χ2-
values on lsb6(Rh−1) by using 2n−6 (2n−12) plaintexts,
Ev[h−2,n−6] (Ev[h−2,n−12]), as follows,

Cv1[h,n]=
Ev[h−2,n−6]

26

(
Cv2[h,n]=

Ev[h−2,n−12]

212

)
.

Proof : In Algorithm 2, we compute the χ2-values ev-
ery 26 lsb6(Lh+1) and compute the mean for a key.
In Algorithm 3, we compute the χ2-values every 212

(lsb6(R0), lsb6(Lh+1)) and compute the mean for a
key. Therefore, by using Theorem 1 and Theorem
3, we get Cv1[h,n] = Ev[h−2,n−6]/26 and Cv2[h,n] =
Ev[h−2,n−12]/212 in Algorithms 2 and 3, respectively.

✷

Hypothesis 2: Let n ≥ 12 and h ≥ 4. We as-
sume that the mean of χ2-values with a wrong key
by using 2n plaintexts, Wm1[h,n] (Wm2[h,n]), is approx-
imately equal to that of χ2-values on lsb6(Rh+1) by
using 2n−6 (2n−12) plaintexts, Em[h,n−6] (Em[h,n−12])
in Algorithm 2 (Algorithm 3), as follows,

Wm1[h,n] = Em[h,n−6] (Wm2[h,n] = Em[h,n−12]).

Hypothesis 3: Let n ≥ 12 and h ≥ 4. The vari-
ance of χ2-values with a wrong key by using 2n plain-
texts, Wv1[h,n] (Wv2[h,n]), is approximately equal to
that of χ2-values on lsb6(Rh+1) by using 2n−6 (2n−12)
plaintexts, Ev[h,n−6] (Ev[h,n−12]) in Algorithm 2 (Algo-
rithm 3), as follows,

Wv1[h,n] =
Ev[h,n−6]

26

(
Wv2[h,n] =

Ev[h,n−12]

212

)
.

Using the above preparations, the success probability
of the key recovery attack is introduced as follows.

Theorem 4: The success probability SUC of e-bit
key recovery can be evaluated by using Pc(x) and Pw(x)
as follows,

SUC =
∫ ∞

−∞
Pc(x) ∗

(∫ x

−∞
Pw(u)du

)2e−1

dx.

Proof : The e-bit key can be recovered correctly if and
only if the χ2-value of a correct key is higher than that
of all 2e − 1 wrong keys. Thus the conclusion follows.

✷

Theorem 4 introduces the following two factors for high
success probability.

• (Factor 1) Maximize the average of χ2-values

computed by a correct key;
• (Factor 2) Minimize the variances (the error) of
each distribution of χ2-values computed by each
key.

The previous researches of χ2-attacks have focused on
only Factor 1. If there is no difference between the mean
of χ2-values recovered with a correct key and that of χ2-
values recovered with a wrong key, we cannot single out
a correct key. As a result, we need the small variance to
rule out all wrong keys. A correct key can be selected
well by using the rather low χ2-value as long as the
variance is small. We will demonstrate our theorem by
using Algorithms 2 and 3 in Sect. 3.5.

3.4 The Distribution of χ2-Values on the Ciphertext

To evaluate the success probability, we conduct the fol-
lowing experiments on 4–8 half-rounds and get the dis-
tribution of χ2-values on lsb6(Rh+1). Note that the
following tests use 100 kinds of plaintexts and 100 keys
and thus conduct 10000 trials in total.

Distinguishing Test: The χ2-test on lsb6(Rh+1) with
lsb6(R0) = 0.

By using the experimental results in Table 2, we com-
pute the slope, that is, how many plaintexts are re-
quired to obtain the same χ2-value. We set the χ2-
value to 82.53 (level = 0.95). By using the least squares
method on the results of 4–7 half-rounds, the slope is
computed to 4.11.

3.5 Theoretical Results on Proposed Attacks

We evaluate the security of RC5-64 with 6–8 half-
rounds against Algorithms 2 and 3 from the following
points of view: One is the estimation of the cost nec-
essary to implement Algorithms 2 and 3. We estimate
these algorithms by the number of plaintexts and the
work amount. The other is the real cost necessary to
obtain the estimation. The results are shown in Table 3.

First we investigate the estimation. By using the
slope in Sect. 3.4, the numbers of plaintexts required
for recovering a key in h half-rounds with a success
probability of 90%, log2(#texts), are estimated to

log2(#texts) = 4.11h− 1.77 (Algorithm 2) and
log2(#texts) = 4.11h+ 1.23 (Algorithm 3).

By substituting the numbers of available plaintexts,
2122 and 2128, Algorithms 2 and 3 can analyze RC5-64
with 30 half-rounds by using 2121.53 and 2124.53 plain-
texts with a success probability of 90%, respectively.
Let us discuss the amount of work. We set one unit of
work as one encryption. For each plaintext both Algo-
rithms encrypt a plaintext, and decrypt a ciphertext by
1 half-round with each candidate key. Therefore, we set
the amount of work to #texts × (1 + 1/h × 25). Thus
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Table 2 The mean and the variance of χ2-values on lsb6(Rh+1) in 4–8 half-rounds (in
10000 trials).

Mean (Variance)

#texts 4 half-rounds 5 half-rounds 6 half-rounds 7 half-rounds 8 half-rounds

212 63.41 (125.83) – 63.02 (126.76) – –
213 63.40 (130.56) – 62.91 (125.31) – –
214 64.03 (132.04) – 62.96 (125.09) – –
215 64.80 (139.10) – 62.91 (123.37) – –
216 66.63 (149.53) 63.20 (127.04) 62.97 (125.71) 63.01 (123.83) –
217 70.02 (178.01) 63.51 (125.86) 62.83 (124.80) 63.17 (123.71) –
218 – 64.08 (128.57) – 63.00 (121.85) –
219 – 65.33 (131.83) – 62.85 (122.15) –
220 – 67.68 (143.03) 63.09 (124.31) 63.07 (124.79) 62.84 (123.69)
221 – 71.99 (157.10) 63.41 (126.33) 63.12 (127.31) 62.99 (123.79)
222 – 80.79 (192.96) 63.68 (125.68) 63.26 (125.09) 63.01 (122.39)
223 – – 64.39 (130.16) – 63.18 (124.95)
224 – – 66.11 (135.60) – 63.06 (122.94)
225 – – 69.22 (152.86) – 63.05 (124.57)
226 – – 75.43 (174.06) – 63.23 (124.58)

218.1 80.70 (186.60) – – – –
218.2 82.85 (190.63) – – – –
222.1 – 82.12 (195.22) – – –
222.2 – 83.42 (205.32) – – –
226.5 – – 82.39 (183.09) – –
226.6 – – 83.45 (190.06) – –
230.3 – – – 81.80 (188.68) –
230.4 – – – 83.28 (199.99) –

Table 3 Theoretical results of our key recovery algorithms.

6 half-rounds: Mean (Variance)

Algorithm 2 Algorithm 3

#texts correct wrong SUC #texts correct wrong SUC

218 63.41 (1.97) 63.02 (1.98) 0.053 224 63.41 (0.03) 63.02 (0.03) 0.559
219 63.40 (2.04) 62.91 (1.96) 0.065 225 63.40 (0.03) 62.91 (0.03) 0.742
220 64.03 (2.06) 62.96 (1.95) 0.128 226 64.03 (0.03) 62.96 (0.03) 0.999
221 64.80 (2.17) 62.91 (1.93) 0.277 227 64.80 (0.03) 62.91 (0.03) 1.000
222 66.63 (2.34) 62.97 (1.96) 0.683 228 66.63 (0.04) 62.97 (0.03) 1.000
223 70.02 (2.78) 62.83 (1.95) 0.991 229 70.02 (0.04) 62.83 (0.03) 1.000

7 half-rounds: Mean (Variance)

Algorithm 2 Algorithm 3

#texts correct wrong SUC #texts correct wrong SUC

222 63.20 (1.98) 63.01 (1.93) 0.042 228 63.20 (0.03) 63.01 (0.03) 0.198
223 63.51 (1.96) 63.17 (1.93) 0.052 229 63.51 (0.03) 63.17 (0.03) 0.470
224 64.08 (2.00) 63.00 (1.90) 0.132 230 64.08 (0.03) 63.00 (0.03) 0.999
225 65.33 (2.06) 62.95 (1.91) 0.412 231 65.33 (0.03) 62.95 (0.03) 1.000
226 67.58 (2.23) 63.07 (1.94) 0.840 232 67.68 (0.04) 63.07 (0.03) 1.000
227 71.99 (2.45) 63.12 (1.98) 0.999 233 71.99 (0.04) 63.12 (0.03) 1.000
228 80.79 (3.01) 63.26 (1.95) 1.000 234 80.79 (0.05) 63.26 (0.03) 1.000

8 half-rounds: Mean (Variance)

Algorithm 2 Algorithm 3

#texts correct wrong SUC #texts correct wrong SUC

226 63.09 (1.93) 62.84 (1.93) 0.045 232 63.09 (0.03) 62.84 (0.03) 0.293
227 63.41 (1.97) 62.99 (1.93) 0.058 233 63.41 (0.03) 62.99 (0.03) 0.631
228 64.68 (1.96) 63.01 (1.91) 0.080 234 64.68 (0.03) 63.01 (0.03) 0.944
229 64.39 (2.03) 63.18 (1.95) 0.146 235 64.39 (0.03) 63.18 (0.03) 1.000
230 66.11 (2.12) 63.06 (1.92) 0.552 236 66.11 (0.03) 63.06 (0.03) 1.000
231 69.22 (2.39) 63.05 (1.95) 0.973 237 69.22 (0.04) 63.05 (0.03) 1.000
232 75.43 (2.72) 63.23 (1.95) 1.000 238 75.43 (0.04) 63.23 (0.03) 1.000
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Table 4 Implemented results of our proposed key recovery algorithms (in 100 trials).

5 half-rounds 6 half-rounds 7 half-rounds 8 half-rounds

#texts #keys #texts #keys #texts #keys #texts #keys

216 13 220 15 224 14 228 9
Algorithm 2 217 39 221 36 225 23 230 53

218 81 222 62 227 81 231 89
219 99 223 92 228 100 232 100

219 12 223 22 227 21 231 23
Algorithm 3 220 31 224 54 228 40 232 43

221 89 225 93 229 78 233 76
222 99 226 99 230 99 234 98

Table 5 Implemented results: #plaintexts required for recovering a key with the success
probability of 90%, 50%, or 30% (in 100 trials).

#half-rounds 5 6 7 8

Algorithm 2 #texts (90%) 218.4 223.0 227.5 231.4

#texts (50%) 217.4 221.6 226.0 230.0

#texts (90%) 221.1 224.9 229.5 233.5

Algorithm 3 #texts (50%) 220.3 223.9 228.5 232.4

#texts (30%) 219.9 223.3 227.3 231.6

the amounts of work necessary to attack RC5-64 with
30 half-rounds in Algorithms 2 and 3 are 2122.58 and
2125.58, respectively.

Next we investigate the real cost necessary for the
above estimation. By using Lemma 2 and Hypothesis 2,
the numbers of plaintexts required for conjecturing the
results of the key recovery attacks in h half-rounds with
a success probability of 90%, log2(#texts), are esti-
mated to

log2(#texts) = 4.11h− 7.77 (Algorithm 2) and
log2(#texts) = 4.11h− 10.77 (Algorithm 3).

Therefore, our theory can estimate the security of RC5-
64 with 30 half-rounds against Algorithms 2 (Algo-
rithm 3) by using 2115.53 (2112.53) plaintexts with a suc-
cess probability of 90%. Let us discuss the amount of
work. We set one unit of work as one encryption in the
same way as the above case. In our estimation, we need
one h half-rounds encryption every text and trial, and
thus we set the amount of work to #texts × #trials.
The above equation indicates that the amount of work
also depends on the number of trials. In our distin-
guishing algorithms, we set #trials to 104 to obtain
more precise results. However, in fact, 103 trails are
enough to compute the theoretical results. Here, we
estimate the amount of work by setting #trials to 103.
Thus the amounts of work necessary to obtain the above
estimation in Algorithms 2 and 3 are 2125.50 and 2122.50,
respectively.

4. Comparison of Experimental Results and
Theoretical Results

This section shows the experimental results of RC5-
64 against Algorithms 2 and 3 and compares it to the

estimation by Theorem 4.

4.1 Experimental Results of Algorithms 2 and 3

In our experiments, all plaintexts are generated by us-
ing M-sequence. For example, Algorithms 2 and 3 use
122-bit and 128-bit random numbers generated by M-
sequence, whose primitive polynomials of M-sequence
are x122 + x108 + x8 + x+1 and x128 + x7 + x2 + x+1,
respectively. The platform is IBM RS/6000 SP (PPC
604e/332MHz× 256) with memory of 32GB.

Table 4 shows the experimental results among 100
trials for RC5-64 with 5–8 half-rounds. More detailed
experimental results are shown in Table 5. In Algo-
rithm 2, the number of plaintexts required for recover-
ing a key in RC5-64 with h half-rounds with a success
probability of 90% or 50%, log2(#texts), is estimated
to

log2(#texts) = 4.35h− 3.20 (90%) or
log2(#texts) = 4.22h− 3.68 (50%),

respectively by using the least squares method.
In Algorithm 3, the number of plaintexts required

for recovering a key in RC5-64 with h half-rounds with a
success probability of 90%, 50%, or 30%, log2(#texts),
is estimated to

log2(#texts) = 4.18h+ 0.08 (90%),
log2(#texts) = 4.09h− 0.31 (50%), or
log2(#texts) = 3.91h+ 0.11 (30%),

respectively by using the least squares method. By us-
ing above linear equations, we estimate the required
numbers of plaintexts for the higher round of RC5-64
shown in Table 6.
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Table 6 #plaintexts required for recovering a key with the success probability of 90%,
50%, or 30% (from implemented results).

#half-rounds

linear equation 4 6 8 28 29 30 31 32

Algorithm 2 4.35h − 3.20 (90%) 14.20 22.90 31.60 118.60 - - - -
4.22h − 3.68 (50%) 13.20 21.64 30.08 114.48 118.70 - - -

4.18h+ 0.08 (90%) 16.80 25.16 33.52 117.12 121.30 125.48 - -
Algorithm 3 4.09h − 0.31 (50%) 16.05 24.23 32.41 114.21 118.30 122.39 - -

3.91h+ 0.11 (30%) 15.75 23.57 31.39 109.59 113.50 117.41 121.32 125.23

Table 7 Comparison of the implemented results and the theoretical results with the
success probability of 90%.

Algorithm 2 Algorithm 3

#texts work #half-rounds #texts work #half-rounds

Implemented results 2118.60 2119.70 28 2125.48 2126.53 30

Theoretical results Estimation 2121.53 2122.58 30 2124.53 2125.58 30
Real cost 2115.53 2125.50 30 2112.53 2122.50 30

We investigate the amount of work. In the same
way as Sect. 3.5, we set one unit of work as one encryp-
tion. By substituting the numbers of available plain-
texts, 2122 and 2128, Algorithms 2 and 3 can analyze
RC5-64 with 28 and 30 half-rounds by using 2118.60

and 2125.48 plaintexts with a success probability of 90%,
respectively. For each plaintext both Algorithms en-
crypt a plaintext, and decrypt a ciphertext by 1 half-
round with each candidate key. Therefore, we set the
amount of work to #texts × (1 + 1/h× 25). Thus the
amounts of work necessary to attack RC5-64 with 28
and 30 half-rounds in Algorithms 2 and 3 are 2119.70

and 2126.53, respectively. Additionally, by using 2125.23

plaintexts with a success probability of 30%, RC5-64
with 32 half-rounds can be analyzed faster than ex-
haustive key search.

4.2 Comparison

We compare the above implemented results with the
theoretical results in Sect. 3 from the points of view of
the cost, the number of plaintexts and the amount of
work. As for the implemented results, Table 7 shows
each cost necessary to recover a key of RC5-64 with the
success probability of 90% in Algorithms 2 and 3. These
are obtained by using implemented results in Table 6.
As for the theoretical results, Table 7 shows each cost
from the following two points of view: One is the esti-
mation of the cost necessary to implement the key re-
covery attack with the success probability of 90%. The
other is the real cost necessary to obtain the estimation.
Table 7 indicates that our theory can estimate the secu-
rity of key recovery attack well. We see that our theory
reduces the number of plaintexts necessary for estima-
tion. Furthermore, in Algorithm 3, we can reduce the
amount of work necessary to evaluate the security of
RC5-64 by using the proposed statistical method.

5. Further Discussion

In this section, we investigate the difference between
Algorithms 2 and 3 from the statistical point of view.
In our case, Algorithm 3 can recover a key better than
Algorithm 2. As for the mean of χ2-values, Algorithm 3
requires 26 times as many texts as Algorithm 2 to get
the same χ2-value. On the other hand, the variance of
Algorithm 3 is about 1/64 of that of Algorithm 2. This
reflects the statistical facts: Algorithm 2 measures the
χ2-value for each of lsb6(Lh+1). Algorithm 3 measures
the χ2-value for each lsb6(R0) and lsb6(Lh+1). By using
Lemma 3 and Hypothesis 3, the variance of Algorithm 3
is about 1/64 of that of Algorithm 2. As we noted
two factors in Sect. 3, the low variance is necessary to
single out a correct key. Furthermore, the numbers
of available plaintexts in Algorithms 2 and 3 are 2122

and 2128, respectively, and thus Algorithm 3 can use
26 times as many texts as Algorithm 2. As a result,
Algorithm 3 is more efficient than Algorithm 2. Note
that it is coincident with the results introduced by our
theorem in Sect. 3.

6. Conclusion

In this paper, we have proved a theory to evaluate the
security against the key recovery attacks by using the
results of the distinguishing attack. Here, we have also
proposed two key recovery algorithms against RC5-64.
Algorithm 3 can analyze RC5-64 with h half-rounds by
using 24.18h+0.08 and 23.91h+0.11 plaintexts with the suc-
cess probabilities of 90% and 30%, respectively. There-
fore, Algorithm 3 can analyze RC5-64 with 30 and 32
half-rounds by using 2125.48 and 2125.23 plaintexts, re-
spectively. By comparing the implemented results with
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the theoretical results by our theory, we have demon-
strated that our theory can estimate the security of
the key recovery attack by using only the results of
the distinguishing attack. Furthermore, our theory re-
duces surprisingly the number of plaintexts necessary
for evaluation. In fact, in the case of RC5-64 with 30
half-rounds in the success probability of 90%, the best
Algorithm 3 requires 2125.48 plaintexts, but our theory
uses only 2112.53 plaintexts.
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