JAIST Repository

https://dspace.jaist.ac.jp/

Softwar e

Obfuscation on a

Theoreti c:

Title _
l'ts | mpl ementation
OGI SO, Toshio; SAKABE, Yupuke; SOSHI
Author(s)
MI YAJI , Atsuko
| EI CE TRANSACTI ONS on Funfdamental s
Citation El ectronics, Communicatiops and Comj
Sciences, E86-A(1): 176-1B6
Issue Date 2003-01
Type Journal Article
Text version publ i sher
URL http://hdl.handle.net/ 101019/ 4427
Copyright (C)2003 1 EI CE. Toshi o OGI !
SAKABE, Masakazu SOSHI, Afsuko MI YA,
TRANSACTI ONS on Fundamentpls of EI et
Rights Communications and Computpepr Science:
2003, 176-186.
http:// www. i eice.org/jpn/trans_onl i
O0O0O8RB0O0930O
Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

176

IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.1 JANUARY 2003

| PAPER Special Section on Cryptography and Information Security

Software Obfuscation on a Theoretical Basis and Its

Implementation

Toshio OGISO'*?), Yusuke SAKABE', Masakazu SOSHI', Nonmembers,

SUMMARY Software obfuscation is a promising approach
to protect intellectual property rights and secret information of
software in untrusted environments. Unfortunately previous soft-
ware obfuscation techniques share a major drawback that they
do not have a theoretical basis and thus it is unclear how effective
they are. Therefore we propose new software obfuscation tech-
niques in this paper. The techniques are based on the difficulty of
interprocedural analysis of software programs. The essence of our
obfuscation techniques is a new complexity problem to precisely
determine the address a function pointer points to in the presence
of arrays of function pointers. We show that the problem is NP-
hard and the fact provides a theoretical basis for our obfuscation
techniques. Furthermore, we have already implemented a proto-
type tool that obfuscates C programs according to our proposed
techniques and in this paper we describe the implementation and
discuss the experiments results.

key words: tamper-resistant software, obfuscation, static anal-
ysis, computational complexity

1. Introduction

The way of software distribution has been changing
with the rapid spread of computer networks such as the
Internet. Namely, although almost all of conventional
software distribution was in binary code form, now it is
becoming more common to circulate software in source
code form. Notable examples of such a way of soft-
ware distribution are via perl scripts, Java applets, and
JavaScripts. Especially in mobile agent systems, which
are paid much attention to as computing environments
in the next generation, software programs called mobile
agents move around over networks and they also stim-
ulate a trend of software distribution in source code
form because the distribution in such a form facilitates
the execution of mobile agents on platforms of different
architectures.

In such situations, malicious users can analyze soft-
ware programs distributed over a network and extract
secret information and/or proprietary algorithms from
them. Unfortunately encryption is hardly competent
to solve the problem since encrypted programs must be

Manuscript received March 23, 2002.
Manuscript revised July 7, 2002.
Final manuscript received September 20, 2002.
fThe authors are with Japan Advanced Institute of Sci-
ence and Technology, Ishikawa-ken, 923-1292 Japan.
*Presently, with Ministry of Land, Infrastructure and
Transport.
a) E-mail: t-ogiso@jaist.ac.jp

and Atsuko MIYAJI', Regular Member

eventually decrypted into executable forms and then
adversaries can intercept them in hostile environments.

Consequently realization of software with tamper-
resistance, which means the difficulty to read and mod-
ify the software in an unauthorized manner, becomes
increasingly important. Although tamper-resistant
software can be realized with the help of hardware,
much attention is now being focused on software ob-
fuscation, which transforms a program into a tamper-
resistant form. Thus software obfuscation has been vig-
orously studied so far [3], [4], [7], [8],[10], [12], [16]. Un-
fortunately previous software obfuscation techniques
share a major drawback that they do not have a the-
oretical basis and thus it is unclear how effective they
are.

In order to mitigate such a situation, Wang et al.
proposed a software obfuscation technique based on the
fact that aliases in a program drastically reduce the pre-
cision of static analysis of the program [16]. However,
their approach is limited to the intraprocedural analysis
[1]. Since a program consists of many procedures** in
general, whether or not it is obfuscated, we must con-
duct interprocedural analysis [1] in order to understand
it more accurately. Moreover, interprocedural analysis
usually involves intraprocedural analysis and most of
software obfuscation techniques that obstruct interpro-
cedural analysis also obstruct intraprocedural analysis.
Consequently, it is desirable that an obfuscation tech-
nique is capable of obstructing interprocedural analysis.
Obfuscation that hinders interprocedural analysis has
another advantage. That is, since interprocedural anal-
ysis is essentially difficult to accomplish [6], [9], even a
little application of such an obfuscation technique to a
program can be quite effective.

Therefore we propose new software obfuscation
techniques based on the difficulty of interprocedural
analysis. Furthermore, we also provide a theoretical
basis to the techniques. One outstanding feature of our
obfuscation techniques is the introduction of function
pointers [13], [18]***.

Function pointers are an indispensable tool for

**Throughout this paper we use the terms ‘procedure’
and ‘function’ interchangeably.

“**Function pointers are a mechanism which enables indi-
rect procedure invocations. Many of current programming
languages, such as C, support this feature.

OGISO et al.: SOFTWARE OBFUSCATION ON A THEORETICAL BASIS AND ITS IMPLEMENTATION

software obfuscation for the following two reasons:

1. The presence of function pointers significantly de-
feats static analysis, especially, interprocedural
analysis. This is because the presence of proce-
dure calls via function pointers makes it difficult
to determine the control flow at compile time [13],
[18]. As a result, most of conventional static anal-
ysis techniques cannot cope with function pointers
and often ignore them.

2. A theoretical basis can be provided for our obfus-
cation techniques because the essence of them is a
new complexity problem, which is, roughly speak-
ing, the one to precisely determine the address a
function pointer points to in the presence of arrays
of function pointers. The problem is shown to be
NP-hard in this paper. Note that although similar
kinds of problems (also known as alias problems)
have been considered and proved to be NP-hard
or even undecidable [9],[14],[15],[18] so far, the
complexity problem presented in this paper is ap-
propriately adapted for software obfuscation and
completely new.

In addition to use of function pointers, we propose
two new obfuscation techniques to impede interproce-
dural analysis in this paper. They increase the number
of unrealizable paths [9] of programs. Therefore, they
drastically reduce the precision of static analysis and
make the obfuscated programs significantly harder to
understand.

We have already implemented a prototype tool
that obfuscates C programs according to our proposed
techniques and in this paper we describe the implemen-
tation and discuss the experiments results. The experi-
mental results show that the precision of interprocedu-
ral analysis is greatly reduced and the call for graphs of
obfuscated programs are made much more complicated
than original ones. They imply the effectiveness of our
obfuscation approaches.

The rest of the paper is structured as follows. In
Sect. 2, we discuss tamper-resistant software and point
out some drawbacks in previous work. In order to solve
such problems, we propose new obfuscation techniques
and give a theoretical basis to them in Sect. 3. In Sect. 4
we present the implementation of our obfuscation tool
and show the experiments results. Finally we conclude
this paper in Sect. 5.

2. Tamper-Resistant Software

In this section we shall introduce the concept of tamper-
resistance and discuss various aspects of tamper-
resistant software.

First of all, in this paper tamper-resistance means
the difficulty to observe and modify an object in an ille-
gal way. Tamper-resistant software is the one that has
such a property and may be realized with the support

177

of hardware device.
2.1 Software Analysis

If an adversary is trying to gather or tamper secret
information in a program, first he must analyze it by
some means. The major and important approach of
software analysis is static analysis [1]. The objective of
static analysis is to extract useful information from a
program without running it. Generally speaking, static
analysis first builds the (control) flow graph of the pro-
gram and then examines the control flow or data flow
of the program through the graph.

Static analysis of programs can be further classi-
fied into two types: intraprocedural analysis and inter-
procedural analysis. Intraprocedural analysis investi-
gates semantic information within each procedure but
is not concerned with the inter-relationships between
procedures via procedure calls. On the other hand, in-
terprocedural analysis determines semantic information
of programs in consideration of legal call/return paths
of procedures, on which every procedure call returns
to the point where the procedure was actually called.
Such paths are called realizable paths. The paths that
are not realizable are called unrealizable paths.

Since a program is composed of many procedures
in general, more precise understanding of the program
needs to conduct interprocedural analysis. Unfortu-
nately, the existence of unrealizable paths makes it dif-
ficult to perform interprocedural analysis [6],[9]. We
will further discuss it in Sect. 3.2.2.

2.2 Realization of Tamper-Resistance

Major approaches to achieve software tamper-
resistance can be divided into the following three types

[4]:

1. remote execution,
2. tamper-resistance with a specialized hardware, or
3. obfuscation.

The first is tamper-resistance in remote execution.
That is, a part of a program to be protected is kept
in a secure trusted server and users execute the pro-
gram remotely. Obvious disadvantage of this approach
is performance degradation due to network communica-
tion and heavy load imposed on the server when many
users access to it during a short period.

The second approach provides tamper-resistance
of software by utilizing a specialized software (readers
can find such a system in [17]). For instance, at least
in principle, it may be possible to encrypt a program,
send it to a user’s host, and then decrypt and execute it
in a specialized hardware on the host. Unfortunately,
this approach is unreasonable from the viewpoint of
hardware cost at present [10] and impedes wide appli-
cability.

178

The final one is software obfuscation, which trans-
forms programs into the form that is hard to under-
stand and tamper illegally. Software obfuscation is
considered to be the most viable approach to protect
intellectual property rights and secret information of
software in untrusted environments [4] and in this pa-
per we study software tamper resistance by obfuscation
techniques thoroughly.

2.3 Related Work

In this section, we discuss some of existing software
tamper-resistance approaches.

Aucsmith addressed a threat model and design
principles to develop tamper resistant software [3]. Also
he discussed a method to embed a small code fragment
called Integrity Verification Kernel (IVK) into a pro-
gram to realize software tamper resistance.

In 1997, Mambo proposed new software obfusca-
tion techniques in which frequency distributions of in-
structions in obfuscated programs are made as uni-
formly as possible by limiting available instructions for
obfuscation [10].

Keeping application to mobile agent systems in
mind, Hohl proposed the concept of ‘time-limited black-
box security,” which provides tamper-resistance until a
prescribed time limit in order to protect mobile agents
against attacks mounted by malicious hosts [7].

Unfortunately previous obfuscation techniques
share a major drawback that they are not given a the-
oretical basis and they often based their tamper resis-
tance of a software upon the difficulty that human users
experience when the users tamper the software. There-
fore, it is still unclear how effective they are.

In order to mitigate such a situation, Wang et al.
proposed a software obfuscation technique based on the
fact that aliases in a program severely reduce the pre-
cision of static analysis of the program [16]. However,
their approach is limited to the intraprocedural analy-
sis. Since a program consists of many procedures in
general, whether or not it is obfuscated, we must con-
duct interprocedural analysis in order to understand it
more accurately. Moreover, interprocedural analysis
usually involves intraprocedural analysis and most of
software obfuscation techniques that obstruct interpro-
cedural analysis also obstruct intraprocedural analysis.
Consequently, it is desirable that an obfuscation tech-
nique is capable of obstructing interprocedural analysis.
Obfuscation that hinders interprocedural analysis has
another advantage. That is, since interprocedural anal-
ysis is essentially difficult to accomplish [6],[9], even a
little application of such an obfuscation technique to a
program can be quite effective.

3. Our Approach

From the discussions in Sect. 2.3, we shall propose new

IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.1 JANUARY 2003

software obfuscation techniques based on the difficulty
of interprocedural analysis in this section. Further-
more, we provide a theoretical basis to the techniques.

In order to achieve such goals, at first we introduce
function pointers [13], [18] to our obfuscation techniques
and in Sect.3.1 we discuss how difficult the problem
of determining the precise address a function pointer
points to in the presence of arrays of function point-
ers. Note that although similar kinds of problems (also
known as alias problems) have been considered and
proved to be NP-hard or even undecidable [9],[14],
[15],[18] so far, the complexity problem presented in
Sect. 3.1 is appropriately adapted for software obfusca-
tion and completely new.

Moreover, in addition to use of function pointers,
we present two new obfuscation techniques to impede
interprocedural analysis in Sect. 3.2.

3.1 On the Difficulty of Analyzing Function Pointers

In this section, in order to provide a theoretical basis for
our obfuscation techniques, we show that the problem
of precisely determining the address a function pointer
points to in the presence of arrays of function pointers
is NP-hard [5].

Theorem 1: In the presence of assignments for func-
tion pointers from arrays of function pointers and pro-
cedure calls via function pointers, where function point-
ers point to functions returning integers, the problem of
precisely determining if there exists an execution path
in a program, on which a given function pointer points
to a given procedure at a point of the program is NP-
hard?.

Proof: We prove Theorem 1 by showing that 3-SAT
problem [5], which is known to be NP-complete, is poly-
nomial time reducible to the problem of Theorem 1.
Now, suppose that we are given the 3-SAT prob-
lem with the propositional variables {vq, va, ..., U}
whose values are either true or false, and the formula
i1 (V3 li;) where l;; is a literal and is either vy, or
v, for some k (1 < k < m). Furthermore, each \/?zllij
(i=1,2, ..., n)is called a clause. Then we construct
the C program in Fig. 1, the size of which is obviously
polynomial of the length of the formula. Note that
the condition parts of the if-statements in Fig. 1 do not
matter since we have assumed that all paths are exe-
cutable. Thus they are omitted but the symbol ‘-’ is
put in each if-statement instead.
In the code fragment L1, v; (i = 1, 2, ..., m) is
declared as a function pointer and corresponds to the

THere static analysis of a program is conducted under
the assumption that all execution paths within procedures,
without regard to interprocedural paths, are executable.
This assumption is commonly found in the literature and
is often called ‘meet over all paths’ [11]. For further back-
grounds behind the way of this proof, see [14], for example.

OGISO et al.: SOFTWARE OBFUSCATION ON A THEORETICAL BASIS AND ITS IMPLEMENTATION

int ¢true() { return 1; }
int false() { return 0; }
main()

{
L1 int (xfp)(); (+v1) ()5 (:01)(05 -5 (+vm) (5 (#0m) ();
int (+A[2])();

L2: A[0] = false; A[l] = true;

L3: if (-) { vi = true; v1 = false; }
else { v1 = false; V1 = true; }

if (-) { vm = true; vm = false; }
else { vm = false; Uy = true; }

L4: if (-) fp =l1,1; else if () fp = l1,2; else fp = l1,3;
if (-) fp = A[(fp)O&& 12,10);
else if (-) fp = A[(fp)()&& l2,2()];
else fp = A[(fp)()&&l2,3()];

it () fp = Al(Fp) &l 1 0
else if () fp = Al(fp) kel 20);
else fp = A[(fp))&&ln,30));

Fig.1 Reduction of 3-SAT to the problem in Theorem 1.

propositional variable v; of the 3-SAT problem. Sim-
ilarly, v; is also declared as a function pointer, but it
corresponds to the negation of the propositional vari-
able v;. Moreover, [;; (i =1,2,...,n,j=1,2,3)in
Fig. 1 corresponds to the j-th literal [;; of i-th clause in
the formula, i.e., vy or Ty for some k (1 < k < m), and
should be regarded as such. L2 assigns the addresses of
functions false and true to A[0] and A[1], respectively.

Any execution path through if-statements in L3
corresponds to a truth value assignment of the 3-SAT
problem and the converse is also true. Thus if the 3-
SAT problem has a solution, then every clause has at
least one literal that is true and the corresponding lit-
eral variable in Fig.1 points to the function address
true. Consequently we have the corresponding execu-
tion path, on which function pointer fp points to func-
tion true at Lb5.

Furthermore, if the 3-SAT problem has no solution,
there exists at least one clause whose all three literals
are false. In such a case, fp does not point to function
true, but to false, at L5 on any execution path.

On the other hand, now it should be clear that if
function pointer fp points to function true at L5 on an
execution path, then the 3-SAT problem has a solution
with the corresponding truth value assignment.

For the reasons stated above, the 3-SAT problem
has a solution if and only if we can determine if there
exists an execution path, on which function pointer fp
points to function address true at L5. This completes
the proof. o

179

3.2 Proposed Obfuscation Techniques

Theorem 1 in Sect.3.1 means that the complexity is
NP-hard to conduct precise interprocedural analysis on
programs that have assignments for function pointers
from arrays of function pointers and procedure calls via
function pointers. Thus, this fact gives a theoretical
basis to software obfuscation with such techniques.

Based on this discussion, in this section we pro-
pose software obfuscation techniques that transform
programs into the forms described above. First, we
present how function pointers are used in our proposed
approach. Then we additionally propose two new ob-
fuscation techniques to significantly reduce the preci-
sion of interprocedural analysis by increasing the num-
ber of unrealizable paths of programs.

3.2.1 Use of Function Pointers for Software Obfusca-
tion

In particular, one of useful obfuscation techniques that
can be used along with function pointers are arrays.
Arrays have essentially the same semantics as pointers
and computation of indices of array variables is difficult
for the similar reason as in the case of pointers [1].
Therefore in order to obstruct static analysis, we find
it useful to store function addresses or pointers in arrays
and to make procedure calls via the arrays and function
pointers. This is why they are used in Theorem 1.

Our obfuscation procedures with respect to func-
tion pointers are given below. They consist of three
phases, i.e., (1) Decomposition of procedures, (2) Use
of function pointers, and (3) Introduction of arrays
of function pointers. Below, the procedures are con-
cisely described because of space limitation, although,
it should be noted that they roughly correspond to the
algorithm that was implemented in our prototype ob-
fuscation tool discussed in Sect.4.1. Also notice that
although the example programs below that result from
obfuscation are intentionally not so obfuscated for the
purpose of explanation, it is not difficult to transform a
program into any more obfuscated form, as our obfus-
cation tool does. Moreover, the NP-hardness result of
Theorem 1 means that the complexity of interprocedu-
ral analysis of the obfuscated programs is expected to
be exponential of the program sizes. Therefore we can
hardly expect the precise analysis of the programs.

Now we are ready to present our obfuscation pro-
cedures with respect to function pointers.

(1) Decomposition of procedures

At first we randomly pick a procedure, decomposes
it into smaller procedures, and reconstruct the origi-
nal procedure with the decomposed ones while main-
taining the original semantics. The fundamental prin-
ciple of decomposition of procedures is to randomly

180
int a, b;
func () { . ~
int a, b; funcl() { a = b; }
func2() { b = a+l; }
func () {
if (a > b)
d20 | —
if (a > b)
b = a+l; funcl();
) func2 () ;
}
Fig.2 Decomposition of procedures.

choose some consecutive statements and to organize
them into a new procedure. In the simplest case, first
we randomly select a procedure that does not have
global branches (e.g., procedure calls, goto-statements,
return-statements, and so forth). Such a procedure may
have if-statements or for-statements since they are lo-
cal branches within the procedure. Then we further
choose a sequence of statements in the procedure and
form them into a new procedure. The newly created
procedure must reflect its computation on the origi-
nal procedure. In the simplest case above, it can be
done by letting these procedures sharing global vari-
ables, which have been promoted from local variables
within the original procedure. This process is illus-
trated in Fig. 2.

The step above is repeated at random on multi-
ple procedures in the program. At this stage we might
insert dummy functions into the program. Thus the
numbers of nodes and edges of the control flow graph
and the call graph become larger and as a result the
technique makes interprocedural analysis of the pro-
gram more difficult.

(2) Use of function pointers

A set of procedures and decomposed ones randomly
chosen are now forced to be called via function point-
ers. For instance, the program at the right hand side of
Fig. 2 might be transformed into the one in Fig.3. As
drawn in Fig. 3, two new if-statements have been newly
introduced. Note that since the values of the condi-
tion expressions a*(a+1)%2 and (b-2)*(b-1)*b%6 al-
ways equal to zero regardless of the values of a and
b respectively, the semantics of the original program
is maintained. However, generally speaking, in static
analysis it is very difficult to evaluate such expressions
and this results in a difficulty in determining the execu-
tion paths in the presence of if-statements’. Needless
to say, such condition expressions can be made arbi-
trarily complicated as long as the original semantics is
retained. Therefore the if-statements make it difficult
to determine the function addresses that fp points to.

(3) Introduction of arrays of function pointers

Here we introduce arrays of function pointers. Then

IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.1 JANUARY 2003

int a, b; int (*fp) ();

() {a=Db;}
func2() { b = a+1; }
func () { ...

if (a > b) {
if (a*(a+1l)%2 == 0)
fp = funcl;
else
fp = func2;

(fp) ()
}
if ((b-2)*(b-1)*b%6 != 0)
fp = funcl;
else
fp = func2;
. (fp) O ...

Fig.3 Use of function pointers.

we store function addresses at random into the arrays
and prepare expressions to compute each index using
some (direct or indirect) function calls. Now some of
procedure calls are replaced with the calls via the ar-
rays. For example, one possible program into which the
program in Fig.3 are converted is presented in Fig. 4.
There the array A of function pointers, and function
funcO that helps index calculation of A are provided.
In this case, note that funcO always returns an even
integer irrespective of a and thus the semantics of the
original program is maintained. Various methods of
obfuscating index computation are also possible. For
example, we may embed the address of i-th function in
the ((¢ x k) mod p)-th element of an array, where p is
a prime, 1 < ¢ < p—1, and k is a constant randomly
chosen in the range 1 < k < (p — 1). Hence each value
of ik mod p is different and scattered over the array.
Some of others are also implemented in our prototype
tool.

Now assignments to £p depend on the function call
via (previous value of) fp and the corresponding el-
ement of A. Combination of them significantly defeat
static analysis as discussed so far.

3.2.2 Obfuscation to Increase the Number of Unreal-
izable Paths

One of the reasons why interprocedural analysis is dif-
ficult is that it must follow the execution paths that
are realizable, as stated in Sect.2.1. Based on this
fact, in this section we propose two novel software ob-
fuscation techniques to hinder interprocedural analysis:
Mergence of procedure calls into one call and Additions

fThis leads to the ‘meet over all paths’ assumption as
stated in Theorem 1. Note that this assumption works fine
for intraprocedural analysis, but cannot necessarily cope
with some interprocedural analysis in the face of unreal-
izable paths. This will be further discussed in Sect. 3.2.2.

OGISO et al.: SOFTWARE OBFUSCATION ON A THEORETICAL BASIS AND ITS IMPLEMENTATION

of redundant return-statements. The fundamental idea
of these two techniques is to increase the number of
unrealizable paths of programs. The techniques fun-
damentally reduce the precision of static analysis and
make the obfuscated programs harder to read.

Notice that they are general obfuscation tech-
niques and are not necessarily used combinedly with
function pointers, although they are in our obduction
tool.

(1) Merge procedure calls into one call

This technique accommodates multiple procedure calls

int a, b; int (*fp) (); int (*A[10]) ();
func0() { return ((a-1)*a); }

funcl() { a = b; }

func2() { b = a+1; }

func ()
A[0] = A[1l] = funcO; A[2] = funcl;
A[3] = func2;
A[4] = A[6] = funcO; /* dummy */
A[5] = A[9] = funcl; /* dummy */
A[7] = A[8] = func2; /* dummy */
fp A[(func0()%2)*a*b];
if (a > b) {

(
if (a*(a+l)%2 == 0)
fp = A[((fp) ()%2)+2];

fp = A[((fp) ()%2)+4];

(fp) () ;

}
fp = A[b&l];
if ((b-2)*(b-1)*b%6 != 0)
fp = A[((fp) ()%2)+5];
else

fp = A[((fp) ()%2)+31];

(fp) () ;

Fig.4 Introduction of arrays of function pointers.

181

into a newly created procedure. More detailed process
of this is as follows. First we randomly select multiple
procedure calls f;, (...), ..., fi, (...) in a procedure, say,
func, where f;, ..., fi, have the same type of return
values. Next we create a new procedure (let us call
this procedure fp4+1) and include f;, (...), ..., fi, (...) in
fnt1- At that time, we introduce a position variable
(e.g., sw) to remember positions where f; , ..., f; are
called in func. Finally we replace f;, (...), ..., fi, (...) in
func with the calls to funcypy;. If some of f;,, ..., fi,
need parameters, they can be passed via parameters of
funcpyq.

For example, consider a trivial case of the trans-
formation above. This is shown in Fig. 5. As illustrated
in the figure, two procedure calls func1 () and func2()
are selected at random, procedure func3() is newly
created, and finally the two calls are embedded into
func3() in some obfuscated fashion. After such obfus-
cation is performed, the call graph changes as depicted
in Fig. 6.

Now look at the call graph more carefully. As Fig. 6

int sw;
funcl() { ... }
func2() { ... }
funcl () {) func3 () { ...
func2() { ...} switch (sw) {
case 0: funcl(); break;
func () { case 1: func2(); break;
funcl () ; —-)
func2 () ;)
3 T func() { ...
sw = (sw-1)*sw%2;
func3 () ;
sw = swrsw* (sw+1l)* (sw+1)%4+1;
func3 () ;
}

Fig.5 Merge procedure calls into one call.

func ! funcl

.
1
i
|
Y

call funcl I entry funcl

(1)

(2)

call func2

(4)

call func3

return func3

call func3

(5)

[S ey
1 |
.
v |

return func3

Fig. 6

Call graph change after procedure calls merged.

182

shows, it is straightforward to follow the execution path
on the call graph before transformed. On the other
hand, the call graph after transformed (at the right
hand side of Fig.6) has now two unrealizable paths,
namely, one is * -+ — [(15) exit funcl] — [(9) return
funcl] — [(12) exit func3] — [(5) return func3] —
.-+, and the other is ‘- -+ — [(18) exit func2] — [(11)
return func2] — [(12) exit func3] — [(2) return
func3] — ---." If interprocedural analysis ignores the
unrealizable paths, it only fails or otherwise yields im-
precise analysis results [9]. However, even if interpro-
cedural analysis tries to follow the realizable paths, it
becomes more difficult as the size of the program be-
comes larger or our obfuscation techniques are applied
to the program more and more times.

(2) Additions of redundant return-statements

Another obfuscation technique here can also compli-
cates the call graph and hinder interprocedural anal-
ysis. This is done by adding redundant return-
statements. For example, see Fig.7. The call graph
change due to the obfuscation is drawn in Fig.8. It is
not hard to see that the call graph becomes more com-
plicated and the number of unrealizable paths increases

funcl() { fu?zt(;'{

int a; l

ribun a e
: ; return a+l;

else

e) ¢ return a;

int x, vy; '

x = funcl(); fuzié)x{ Yi

v = funcl(); x;funcl()'

y = funcl(); ...
} }

Fig.7 Additions of redundant return-statements.

T
'
func v funcl

call funcl

entry funcl

Fig. 8

IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.1 JANUARY 2003

from two to four. Thus the same discussion in Sect. (1)
also applies to the obfuscation technique in this section
and demonstrates its validity.

3.3 Example of Obfuscation

At the end of Sect. 3, for completeness of the descrip-
tion of this section, we show in Fig. 9 an example of an
obfuscated program to which all obfuscation techniques
are applied.

4. Prototype Implementation and Experi-
ments

This section describes our implementation of the pro-
posed obfuscation techniques and presents experiments
results.

4.1 Prototype Obfuscation Tool

We have implemented an obfuscation tool based on our
proposed technique with SUIF [2]. SUIF is a com-
piler infrastructure system being developed at Stanford
University, and enables us to manipulate programs in
SUIF’s intermediate representation called IR. Further-
more, SUIF provides various transformation utilities
between IR and various programming languages, and
also has a lot of support packages. We used one of
the packages to conduct interprocedural analysis of pro-
grams. A main part of the structure of our obfuscation
tool is depicted in Fig. 10.

Our obfuscation tool is written in C++ and the
main module of it is ObfuscatePass class, which is
a subclass of Pass of SUIF2 system. Pass class cor-
responds to one compiler pass and analyses programs
transformed into IR. An outline of ObfuscatePass class
is given in Fig. 11.

Now our obfuscation tool works roughly as fol-
lows. The obfuscation tool first reads a tar-

'
'

funcl

entry funcl

-~

v |

Call graph change after return-statements added.

OGISO et al.: SOFTWARE OBFUSCATION ON A THEORETICAL BASIS AND ITS IMPLEMENTATION

183
int a, b, c¢; int (*fpl) (), (*fp2) (); int (*A[10]) ();
func0() { ... 1f (a*(a+l)*(a+2)%6) return (a*(a+2)); else return ((a-1)*a); }
funcl() { a = b; }
func2() { b = a+l; }
func3 () { ...
switch (c¢) {
case 0: fpl = funcl; break;
case 1: fpl = func2; break;
}
(fpl) () ;
}
func () .
A[0] = A[1l] = funcO; A[2] = A[3] = func3;
Al4] = A[6] = funcO; /* dummy */ A[5] = A[9] = funcl; /* dummy */
A[7] = A[8] = func2; /* dummy */
fp2 = A[(func0()%2)*a*b];
if (a > b) {
if (a*(a+1)%2 == 0) fp2 = A[((fp2) ()%2)+2]; else fp2 = A[((fp2) ()%2)+4];
... c = (c-1)*c%2;
(£p2) ()
}
. fp2 = A[b&l];
if ((b-2)*(b-1)*b%6 != 0) fp2 = A[((fp2) ()%2)+5]; else fp2 = A[((fp2) ()%2)+3];
... C = c*c*(c+l) *(c+1)%4+1;
(£p2) ()
}
Fig.9 Example of obfuscation.

call "obfuscate"

do_file_set_block

do_file_block

\ 4
_’| do_procedure_definition |

_slice_func

create_variable

create_function

create_fpointer

_create_function

_insert_array_assign

_import_fpointer

_replace_fcall_by
array_with_fpointer

_complicate_cflow

Fig.10 Prototype obfuscation tool.

get program and transform it into IR representa-
tion with the help of SUIF2. Then two methods
of ObfuscatePass class, namely, do_file_set_block
and do_file_block, are executed in turn for
initialization. do_file_set_block initialize the
global data structures and do_file block invokes
methods _create variable, _create_function, and
_create_fpointer in order to generate auxiliary vari-
ables, dummy functions, function pointers and arrays
of function pointers.

After the initialization phase, the tool ob-
fuscates the target program via the call to do
_procedure_definition, possibly multiple times.

class ObfuscatePass
public:
ObfuscatePass (SuifEnv *enc,

public Pass {

const LString &name)
Pass (env, name) {}
virtual ~ObfuscatePass (void)
void do_procedure_definition
(ProcedureDefinition *proc_def)
_slice_func (proc_def) ;
_import_fpointer (proc_def) ;
_complicate_cflow(proc_def) ;

{}

{

}
protected:
void _complicate_cflow
(ProcedureDefinition *proc_def) {
list<Statement*> *slist=
collect_objects<Statment> (proc_def)

Expression *alws_true_cond
_build_opaque_expression() ;

else_part->append_statement (dummy_call) ;

}
extern "C" void init_obfuscater (SuifEnv *suif_env)
ModuleSubSystem *ms
suif_env->get_module_subsystem() ;

ms->register_module (
new ObfustatePass (suif_env,

{

"obfuscate"))

Fig.11 ObfuscatePass class.

do_procedure_definition method transforms proce-
dures selected at random into obfuscated ones, by
calling _slice_func (decomposition of procedures),
_import_fpointer (introduction of function pointers
and arrays), and _complicate_cflow (complicate the
structure of the call graph).

184

4.2 Experiments

In this section we present application of our obfusca-
tion tool to six programs, that is, RC6, MD5, jpeg2ps,
Camellia, FFT, and coretest.

Table 1 shows the differences between the control
flow graphs of the original programs and those of the
obfuscated programs. We can readily see from the ta-
ble that there exist increases of about 2.17 times in the
number of nodes and about 2.22 times in the number
of edges on the average. The increase of the numbers
of nodes and edges of control flow graphs of programs
significantly obstruct analysis of software programs, es-
pecially interprocedural analysis [1],[9]. Thus control
flow and data flow analysis become harder. Further-
more, as discussed in Sect. (1) and Sect.(2), we can
expect that these results immediately lead to the diffi-
culty of interprocedural analysis.

Now turn to Table 2. The table indicates the
changes of the numbers and the types of procedure calls
after obfuscation. In Table 2, ‘All Call Sites’ and ‘Di-
rect Call Sites’ represent the numbers of all procedure
calls and direct calls via procedure names, respectively.
Furthermore, in the table ‘Indirect Calls’ and ‘Indirect
Call Targets’ mean the numbers of indirect procedure
calls via function pointers and possible target addresses
function pointers point to, respectively.

As shown in Table 2, all procedure calls of all pro-

IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.1 JANUARY 2003

pointer points to per indirect call in the obfuscated pro-
grams. In particular FFT has 40 candidates on the av-
erage. These result give a good evidence that precision
of interprocedural analysis is drastically reduced by our
obfuscation techniques.

We have evaluated performance degradation due
to the obfuscation, as indicated in Table 3 and Ta-
ble 4. The experiments were conducted on a Sun Ul-
tra 5 (UltraSPARC-II 400MHz) with Solaris 8 (SunOS
5.8). Programs were compiled by gcc 2.8.1 with no op-
timization option and with optimization option ‘-O2.’
Each execution time was the average of 10000 times
execution. The average rate of execution times of ob-
fuscated programs over original programs is 1.4 in non-
optimized versions, on the other hand, the rate becomes
1.93 in optimized versions. Obfuscation interferes with
optimization in nature, thus the difference of execution
times of the original programs and the obfuscated ones
would become larger if the programs were optimized
versions.

Finally we show the change of the program sizes
before and after obfuscation in Table 5 and Table 6.
Similar discussion as in the case of execution time also
holds here.

grams before obfuscation are direct calls. On the other Table 3 Change of execution time (non-optimized).
hand, after obfuscation we have many indirect calls. In- Before Obfus- | After Obfus-
tuitively speaking, this directly means the difficulty of program || cation [sec] cation [sec]
interprocedural analysis. RC6 0.21 0.27
More noteworthy in Table 2 is the number of the MD‘Z 8;? (1);;
: jpeg2ps . .
possible target addresses. T.he table shows that on ‘Fhe Carsollia D.95 0.5
average we have 23.8 candidate addresses a function FFT 020 024
coretest 0.37 0.38
Table 1 Change of the control flow graph.
Before Obfuscation || After Obfuscation Table 4 Change of execution time (optimized).
program #nodes | #edges || #nodes | #edges Before Obfus- | After Obfus:
RC6 143 146 464 488 program || cation [sec] cation [sec]
MDE') 684 684 1331 1353 RCG 0.13 0.17
ipeg2ps 965 1069 1728 1866 NIDE 096 057
Camellia 617 597 1297 1356 Tpeg2ps 017 017
FFT 1741 1817 2895 3040 Camellia 0.07 0.30
coretest 205 212 470 485 FET 0.08 011
coretest 0.37 0.37
Table 2 Change of procedure calls.
| | Before Obfuscation || After Obfuscation |
Direct | All Call Indirect | Indirect Direct | All Call Indirect | Indirect
program | Call Sites Sites | Call Targets Calls Call Sites Sites | Call Targets Calls
RC6 0 0 0 0 2 41 351 39
MD5 11 11 0 0 15 95 2400 80
jpeg2ps 141 141 0 0 146 214 1904 68
Camellia 68 68 0 0 77 161 2016 84
FFT 75 75 0 0 87 227 5600 140
coretest 46 46 0 0 48 80 384 32

OGISO et al.: SOFTWARE OBFUSCATION ON A THEORETICAL BASIS AND ITS IMPLEMENTATION

Table 5 Change of program size (non-optimized).
Before Obfus- | After Obfus-
program | cation [sec] cation [sec]
RC6 9420 15696
MD5 18740 36824
jpeg2ps 24028 48988
Camellia 16744 31560
FFT 48068 92476
coretest 9540 16384
Table 6 Change of program size (optimized).
Before Obfus- | After Obfus-
program | cation [sec] cation [sec]
RC6 8200 12168
MD5 13960 22396
jpeg2ps 19380 38260
Camellia 12280 38260
FFT 22228 48804
coretest 8892 13456

4.3 Some Remarks on Automatic Deobfuscation Tool

So far we have described our prototype implementation
and the experimental results. In this section, we discuss
automatic backword procedures to cancel obfuscation.
Such an operation is often called deobfuscation [4].

Implementation of obfuscation is a relatively com-
plicated task, but it is really implementable. On the
other hand, deobfuscation is difficult to carry out and
hence it is hard to implement. The reason is given be-
low.

In general, once syntax analysis has finished, pro-
gram transformation is possible without static analy-
sist. Obfuscation is a kind of (complicated) program
transformation and does not need static analysis (i.e.,
data flow or control flow analysis). Therefore it is im-
plementable in principle. Most of complicated tasks
of obfuscation lies in maintaining the semantics of the
original program.

On the other hand, deobfuscation is also a kind of
program transformation, although, it is by no means an
easy operation. This is because in deobfuscation pro-
cedures, it is not sufficient to transform a program into
another form while maintaining the original semantics.
In addition, deobfuscation must transform the obfus-
cated program into more intelligible form. Thus, for
example, in deobfuscation it may be necessary to re-
move dummy functions introduced in obfuscation, in-

YOf course since we have not conducted static analysis
yet, we cannot understand the behaviour of the program (for
instance, we cannot know execution paths of the program,
or use-def relationships of data in the program, and so forth,
at this stage). In spite of that, we can transform a program
into an equivalent one. It is easy to understand such a
situation if you imagine program transformation of a source
code in a high-level programming language into a binary
code.

185

vestigate the obfuscated execution paths and recover
the original paths from those, etc. (Hence deobfusca-
tion is similar to optimization in a sense [4].) Therefore
static analysis is mandatory in deobfuscation process.
However, our obfuscation techniques make it difficult in
various ways to conduct such static analysis, as thor-
oughly discussed in our paper.

In summary, software obfuscation is one-way trans-
formation in nature.

5. Conclusion

Software obfuscation is promising to protect intellectual
property rights and secret information of software in
untrusted environments. Therefore we have proposed
new software obfuscation techniques in this paper. The
techniques are based on the difficulty of interprocedural
analysis of software programs. The essence of our ob-
fuscation techniques is a new computational complexity
problem, which is, roughly speaking, the one to pre-
cisely determine the address a function pointer points
to in the presence of arrays of function pointers. We
have shown that the problem is NP-hard and the fact
provides a theoretical basis for our obfuscation tech-
niques. Furthermore, we have already implemented a
prototype tool which obfuscates C programs according
to our proposed techniques and in this paper we de-
scribe the implementation and discuss the experiments
results by means of our obfuscation tool. The experi-
mental results show that the precision of interprocedu-
ral analysis is greatly reduced and the call for graphs of
obfuscated programs are made much more complicated
than original ones. They implies the effectiveness of
our obfuscation approaches.

Acknowledgment

The authors would like to thank the anonymous referees
for valuable and helpful comments on this paper.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Princi-
ples, Techniques and Tools, Addison-Wesley, 1986.

[2] G. Aigner, A. Diwan, D.L. Heine, M.S. Lam, D.L. Moore,
B.R. Murphy, and C. Sapuntzakis, An overview of the
SUIF2 compiler infrastructure, Computer Systems Labo-
ratory, Stanford University, http://suif.stanford.edu/.

[3] D. Aucsmith, “Tamper resistant software: An implemen-
tation,” in R.J. Anderson ed., Information Hiding: First
International Workshop, Lecture Notes in Computer Sci-
ence, vol.1174, pp.317-333, Springer-Verlag, 1996.

[4] C. Collberg, C. Thomborson, and D. Low, A taxonomy
of obfuscating transformations, Technical Report 148, De-
partment of Computer Science, the University of Auckland,
Auckland, New Zealand, 1997.

[5] M.R. Garey and D.S. Johnson, Computers and Intractabi-
lity—A Guide to the Theory of NP-completeness, W.H.
Freeman and Co., 1979.

186

[6]

(13]

[14]

(18]

M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interpro-
cedural pointer alias analysis,” ACM Trans. Prog. Lang.
Syst., vol.21, no.4, pp.848-894, 1999.

F. Hohl, “Time limited blackbox security: Protecting mo-
bile agents from malicious hosts,” in G. Vigna ed., Mo-
bile Agents Security, Lecture Notes in Computer Science,
vol.1419, pp.92-113, Springer-Verlag, 1998.

T. Iwai, K. Kuriyama, W. Wu, and F. Mizoguchi, “A pro-
posal for tamper-resistant mobile agents,” Computer Secu-
rity Symposium (CSS99), pp.43-48, Oct. 1999.

W.A. Landi, Interprocedural aliasing in the presence of
pointers, PhD thesis, Rutgers University, New Brunswick,
NJ, Jan. 1992.

M. Mambo, T. Murayama, and E. Okamoto, “A tentative
approach to constructing tamper-resistant software,” New
Security Paradigm Workshop, pp.23-33, Sept. 1997.

T.J. Marlowe and B.G. Ryder, “Properties of data flow
frameworks: A unified model,” Acta Inf., vol.28, no.2,
pp.121-163, 1990.

M. Misawa, K. Akai, and T. Matsumoto, “Evaluation of ob-
fuscator by searching runtime data,” Symposium on Cryp-
tography and Information Security (SCIS 2002), pp.365—
370, Jan. 2002.

R. Muth and S. Debray, On the complexity of function
pointer may-alias analysis, Technical Report TR96-18, De-
partment of Computer Science, University of Arizona, Oct.
1996.

E.W. Myers, “A precise inter-procedural data flow algo-
rithm,” Conference record of the 8th ACM Symposium
on Principles of Programming Languages (POPL), pp.219—
230, 1981.

G. Ramalingam, “The undecidability of aliasing,” ACM
Trans. Prog. Lang. Syst., vol.16, no.6, pp.1467-1471, Nov.
1994.

C. Wang, J. Hill, J. Knight, and J. Davidson, “Soft-
ware tamper resistance: Obstructing static analysis of pro-
grams,” Technical Report CS-2000-12, Department of Com-
puter Science, University of Virginia, Dec. 2000.

U.G. Wilhelm, S. Staamann, and L. Buttyan, On the prob-
lem of trust in mobile agent systems, Symposium on Net-
work and Distributed System Security, Internet Society,
March 1998.

S. Zhang and B. Ryder, Complexity of single level function
pointer aliasing analysis, Technical Report LCSR-TR-233,
Laboratory of Computer Science Research, Rutgers Univer-
sity, Oct. 1994.

Toshio Ogiso received the B.E. from
National Institution for Academic De-
grees (NIAD) and M.info.Sc. from Japan
Advanced Institute of Science and Tech-
nology (JAIST) in 2002. He has joined
Ministry of Land, Infrastructure and
Transport since 2002 and engaged in con-
trol of Electricity and Telecommunication
System.

IEICE TRANS. FUNDAMENTALS, VOL.E86-A, NO.1 JANUARY 2003

ol

Yusuke Sakabe received the B.E.
of Engineering from the Nagoya Insti-
tute of Technology in 2000. He is cur-
rently a student of master course of the
Japan Advanced Institute of Science and
Technology. His research interests include
tamper-resistant softwares.

Masakazu Soshi received his B.E.
and M.S. degrees from University of To-
kyo, in 1991 and in 1993 respectively,
and his Ph.D. degree from University
of Electro-Communications in 1999. He
worked as an associate for University
of Electro-Communications from 1997 to
1998. Since 1999, He has been an as-
sociate of Japan Advanced Institute of
Science and Technology (JAIST). His re-
search interests include theoretical anal-

ysis of access matrix models, anonymous communication, and
development of security architectures in general.

Atsuko Miyaji received the B.Sc.,
the M.Sc., and Dr. Sci. degrees in math-
ematics from Osaka University, Osaka,
Japan in 1988, 1990, and 1997 respec-
tively. She joined Matsushita Electric In-
dustrial Co., LTD from 1990 to 1998 and
engaged in research and development for
secure communication. She has been an
associate professor at JAIST (Japan Ad-
vanced Institute of Science and Technol-
ogy) since 1998. She has joined the com-

puter science department of University of California, Davis since
2002. Her research interests include the application of projec-
tive varieties theory into cryptography and information security.
She received IPSJ Sakai Special Researcher Award in 2002. She
is a member of the International Association for Cryptologic Re-
search, the Institute of Electronics, Information and Communica-
tion Engineers and the Information Processing Society of Japan.

