
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Cryptanalysis of Reduced-Round RC6 without

Whitening

Author(s) MIYAJI, Atsuko; NONAKA, Masao

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E86-A(1): 19-30

Issue Date 2003-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4428

Rights

Copyright (C)2003 IEICE. Atsuko MIYAJI,?Masao

NONAKA, IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E86-A(1), 2003, 19-30.

http://www.ieice.org/jpn/trans_online/ （許諾番

号：08RB0094）

Description

IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003
19

PAPER Special Section on Cryptography and Information Security

Cryptanalysis of Reduced-Round RC6 without

Whitening∗∗

Atsuko MIYAJI†∗a), Regular Member and Masao NONAKA††, Nonmember

SUMMARY We investigate the cryptanalysis of reduced-
round RC6 without whitening. Up to now, key recovery algo-
rithms against the reduced-round RC6 itself, the reduced-round
RC6 without whitening, and even the simplified variants have
been infeasible on a modern computer. In this paper, we propose
an efficient and feasible key recovery algorithm against reduced-
round RC6 without whitening. Our algorithm is very useful for
analyzing the security of the round-function of RC6. Our attack
applies to a rather large number of rounds. RC6 without whiten-
ing with r rounds can be broken with a success probability of 90%
by using 28.1r−13.8 plaintexts. Therefore, our attack can break
RC6 without whitening with 17 rounds by using 2123.9 plaintexts
with a probability of 90%.
key words: block cipher, RC6, cryptanalysis, χ2 attack

1. Introduction

RC6 [13] is a block cipher, which is constructed by only
simple arithmetic such as multiplication, addition, bit-
wise exclusive-or (XOR), and data-dependent rotation.
Therefore, RC6 can be implemented efficiently in soft-
ware with a small amount of memory. RC6 is submitted
as a candidate for NESSIE [12], and recently has been
selected to proceed to the next stage. RC6-32/r/16
means that four 32-bit-word plaintexts are encrypted
by r rounds with 16 byte keys. RC6 is the next version
of RC5 [14], which consists of only addition, bit-wise
exclusive-or (XOR), and data-dependent rotation. RC5
also includes a data-dependent rotation, which is much
improved in RC6 in such a way that it is determined
by all 32 bits of both data and subkey, but not 5 bits.
Such an efficient improvement makes RC6 more secure
because it is difficult to handle the rotation with specific
plaintexts. Compared with various attacks against RC5
[1], [2], [4]–[7], [11], any key recovery algorithm against
RC6 [2], [3], [8] requires much memory and work even in
the case of a low round. Multiple linear cryptanalysis
is applied to RC6 with 32-byte keys [16], but it has not
been applied to RC6 with 16-byte keys.

Manuscript received March 23, 2002.
Manuscript revised July 6, 2002.
Final manuscript received September 20, 2002.

†The author is with Japan Advanced Institute of Science
and Technology, Ishikawa-ken, 923-1292 Japan.

††The author is with Matsushita Electric Industrial Co.,
LTD., Kadoma-shi, 571-8501 Japan. This work was con-
ducted when he was with JAIST.

∗Presently, with University of California, Davis.
a) E-mail: miyaji@jaist.ac.jp
∗∗A preliminary version was presented at SCIS’2002.

Correlation attack makes use of correlations be-
tween an input and an output, which is measured by
the χ2 test; the specific rotation in RC6 is considered to
cause the correlations between the corresponding two
10-bit integer values. Correlation attack consists of two
parts, the distinguishing algorithm and the key recov-
ery algorithm. The distinguishing algorithm has only
to handle plaintexts in such a way that the χ2-value of
a part of the ciphertext assumes a significantly higher
value. On the other hand, the key recovery algorithm
has to rule out all false keys, and single out exactly
a correct key by using the χ2-value. However, only
the distinguishing algorithm has been investigated up
to now [4], [8]. That is, only a high χ2-value has been
focused, which is experimentally computed on the av-
erage of keys.

In [8], correlation attacks are applied to recover
subkeys from the 1st subkey to the final subkey by han-
dling a plaintext (A0, B0, C0, D0) in such a way that the
χ2-value after one round becomes a significantly higher.
However, unfortunately, their key recovery algorithm
has not been executed yet although their distinguishing
algorithm has been implemented. Because their algo-
rithm is forced to recover all 32 bits of the first subkey.
It thus requires 262.2 works with 242 memory even in the
case of RC6 with 5 rounds. In a realistic sense, it would
be infeasible to employ such an algorithm on a modern
computer. This is why their key recovery algorithm
is estimated using only the results of the distinguish-
ing algorithm. Their key recovery algorithm is roughly
summarized as follows. 1. Choose a plaintext in such
a way that the least significant five bits of A0 and C0,
lsb5(A0) and lsb5(C0), are fixed, 2. For a plaintext and
the corresponding 227 first subkeys that lead to the zero
rotation in the first round, compute the χ2-value of con-
catenation of lsb5(Ar+1) and lsb5(Cr+1) of an output
after r rounds, (Ar+1, Br+1, Cr+1, Dr+1), 3. Output a
subkey with the highest χ2-value as the first subkey.
Their key recovery algorithm is based on the idea that
the χ2-value is significantly high if a plaintext is suit-
ably fixed so that one (or both) of the data-dependent
rotations in the first round is zero. It works exactly as
a distinguishing algorithm, but, as a key recovery algo-
rithm, it is unlikely to rule out all false keys well for the
following reason: the data-dependent rotation depends
on all bits of the 32-bit subkey, however, the amount of
information on data-dependent rotation is only 5 bits.

20
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

Fixing the first round rotation to zero merely fixes the
5-bit information on the first subkey but not to all its
32bits. In fact, for a plaintext, there are 227 first sub-
keys that lead to zero rotation. This is why the above
algorithm is unlikely to rule out all false keys. We also
note that the number of available plaintexts for each
key in their attack is reduced to 2118.

In [11], a correlation attack against RC5 was pro-
posed based on the same idea of fixing the first round
rotation as in [8]. They reported three interesting new
results: 1. their algorithm can search every four bits
of a subkey in the final round; 2. their algorithm can
recover subkeys with a high probability and a rather
low χ2-value; 3. an algorithm, applying the idea in [8]
to RC5, cannot recover subkeys with high probability
although the χ2-value is extremely high. Their results
indicate that not all bits but a few bits of subkeys can be
recovered under the condition of fixing the first round
rotation, and that a good distinguishing algorithm is
not necessarily a good key recovery algorithm.

RC6 consists of three parts, pre-whitening, r-round
iterations of round function, and post-whitening. In
this paper, we focus on the round function of RC6,
RC6 without whitening. Here we call RC6 without
whitening, simply RC6W. We propose a feasible key re-
covery algorithm for the reduced-round RC6W for the
first time. We improve the distinguishing algorithm in
such a way that the χ2-values for output become sig-
nificantly high with less constraint of plaintexts, and
then improve the key recovery algorithm in such a way
that the variance of the χ2-value is reduced. We know
that output of RC6 is highly unlikely to be uniformly
distributed if B0 or D0 of a plaintext (A0, B0, C0, D0)
introduces zero rotation in the 1st round, and lsb5(A0)
and lsb5(C0) are fixed [8]. More generally, we investi-
gate how output after r rounds, both Ar+1 and Cr+1,
depends on a chosen plaintext, and experimentally find
the following feature of RC6: the χ2-values for the con-
catenation of lsb5(Ar+1) and lsb5(Cr+1) of an output
after r rounds become significantly high if both the
least significant 5 bits of the first and third words be-
fore addition to each 1st-round subkey are merely fixed.
This means that we can use any plaintext by classify-
ing them into groups with the same condition, and thus,
the number of available plaintext is 2128, which is very
useful for distinguishing RC6 without pre-whitening.

We improve the key recovery algorithm by tak-
ing full advantage of the above feature, that is, the
χ2-values become significantly high for any group. As
mentioned above, only the high average of the χ2-value
has been discussed. However, we also direct our atten-
tion to the variance of the χ2-value. We compute the
χ2-value not flatly for all plaintext but for plaintexts
in each group, and then compute the average of these
χ2-values. As a result, the variance of the χ2-value is
reduced, and the key recovery algorithm is expected to
rule out all false keys. The main points of our feasible

key recovery algorithm are as follows.
1. Use any plaintext by classifying it into groups,
2. Compute the χ2-value of an output for plaintexts
in each group, and then compute the average of these
χ2-values.
We also present three key recovery algorithms, which
reflect the effect of computing the χ2-value on each clas-
sified group. By employing our attack, RC6W with
5 rounds can be broken within 20 minutes on PPC
604e/332MHz using 227 plaintexts and 226 memory.
RC6W with r rounds can be broken with a success prob-
ability of 90%, by using 28.1r−13.8 plaintexts. As a re-
sult, our attack can break RC6W with 17 rounds using
2123.9 plaintexts with a probability of 90%. Our algo-
rithm can work faster than an exhaustive key search
for the 128-bit key with a feasible memory size, 226. In
[13], a two-register version for RC6 is also described,
called RC6-64 in this paper. RC6-64 is oriented to 64-
bit architecture, and plaintexts consist of two 64-bit
words. The size of subkeys in RC6-64 is 64 bits. Hense
the security level of one round in RC6-64, the size of
subkeys, is estimated to be equal to that in RC6-32,
which has two 32-bit subkeys in one round. Further-
more the round function of RC6-64 is almost the same
structure as that of RC6. Therefore it is very useful
for discussing the difference of each security level of
each round function. By applying our attack to RC6-
64 without whitening with r rounds, it can be broken
with a success probability of 90% using 25.0r−8.2 plain-
texts. As a result, our attack can break RC6-64 without
whitening with 27 rounds using 2126.8 plaintexts with a
probability of 90%. The weak point of RC5 is thought
to a data dependent rotation, which is defined by only
a 5-bit subkey and data, but not the data structure of
two words. Although the weakness of data-dependent
rotation is improved in both RC6 and RC6-64, RC6-64
is much weaker than RC6. From our results, we see
that the data structure of RC6, 4-word plaintext, also
makes the security high.

This paper is organized as follows. Section 2 sum-
marizes the notation and definitions used in this paper.
Section 3 describes some experimental results including
the above features of RC6. Section 4 presents the cho-
sen plaintext algorithm, Algorithms 2 and 3. Section 5
discusses how to extend the chosen plaintext algorithm
to the known plaintext algorithm, Algorithm 4. Sec-
tion 6 applies Algorithm 4 to a two-register version for
RC6, and discusses the difference between the original
RC6 and a two-register version for RC6 from a security
point of view.

2. Preliminary

This section denotes some notations, definitions, and
experimental remarks. In this paper, RC6-32, the AES
submission version, is simply denoted as RC6. First we

MIYAJI and NONAKA: CRYPTANALYSIS OF REDUCED-ROUND RC6 WITHOUT WHITENING
21

Table 1 χ2-distributions for various degrees of freedom.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99

31 degrees of freedom 30.34 32.35 34.60 37.36 41.42 44.99 52.19

63 degrees of freedom 62.33 65.20 68.37 72.20 77.75 82.53 92.01

255 degrees of freedom 254.33 260.09 266.34 273.79 284.34 293.25 310.46

1023 degrees of freedom 1022.33 1033.83 1046.23 1060.86 1081.38 1098.52 1131.16

describe the RC6 algorithm after defining the following
notations.

+, +: addition mod 232

−, −: subtraction mod 232

×: multiplication mod 232

⊕: bit-wise exclusive OR
r : number of (full) rounds

a≪b: cyclic rotation of a to the left by b bits
a ≫ b: cyclic rotation of a to the right by b bits

Si: i-th subkey
lsbn(X): least significant n bits of X

Xi : i-th bit of X
X [i,j]: from the i-th bit to the j-th bit of

X (i > j)
X: bit-wise inversion of X

f(X): X × (2X + 1)
F (X): f(X) (mod 232) ≪ 5
We denote the least significant bit (LSB) to the 1st

bit, and the most significant bit (MSB) as the 32-nd
bit for any 32-bit element. RC6 encryption is defined
as follows.

Algorithm 1 (Encryption with RC6):
1. A1 = A0; B1 = B0 + S0;

C1 = C0; D1 = D0 + S1

2. for i = 1 to r do:
t = F (Bi); u = F (Di);
Ai+1 = Bi; Bi+1 = ((Ci ⊕ u) ≪ t) + S2i+1;
Ci+1 = Di; Di+1 = ((Ai ⊕ t) ≪ u) + S2i

3. Ar+2 = Ar+1 + S2r+2; Br+2 = Br+1;
Cr+2 = Cr+1 + S2r+3; Dr+2 = Dr+1.

Parts 1 and 3 of Algorithm 1 are called pre-whitening
and post-whitening, respectively. We call the version of
RC6 without pre-whitening or post-whitening as simply
RC6W or RC6 without whitening.

We make use of a χ2-tests for distinguishing a
random sequence from a nonrandom sequence [6],
[8], [9]. Let X = X0, ..., Xn−1 be a sequence with
∀Xi ∈ {a0, · · · , am−1}. Let Naj

(X) be the num-
ber of Xi which equals aj . The χ2-statistic of
X, χ2(X), gives an estimate of the difference be-
tween X and the uniform distribution as follows:
χ2(X) = m

n

∑m−1
i=0

(
Nai

(X)− n
m

)2. Table 1 presents
each threshold for 31, 63, 255 and 1023 degrees of free-
dom. For example, (level, χ2)=(0.95, 44.99) for 31 de-
grees in Table 1 means that the value of the χ2-statistic
exceeds 44.99 with the probability of 5% if the obser-
vation X is uniform. In this work, we adopt these four
degree of freedom. For precision, we often discuss the

χ2-statistic for any degree based on the level. We set
the level to 0.95 in order to distinguish a nonrandom
sequence X from a random sequence.

In our experiments, all plaintexts are generated us-
ing the m-sequence [10]. For example, Algorithms 2, 3,
and 4 uses 108-, 113- and 128-bit random numbers gen-
erated by the m-sequence, respectively. The platforms
are IBM RS/6000 SP (PPC 604e/332MHz× 256) with
memory of 32GB.

3. χ2-Statistic of RC6

In this section, we investigate how to attain to much
stronger biases with less constraint of plaintexts. In [8],
if plaintexts (A0, B0, C0, D0) are chosen in such a way
that both lsb5(A0) and lsb5(C0) are fixed, and both B0

and D0 introduce zero rotation in the 1st round, then
the ciphertexts lead to much stronger biases. However,
such a condition is a rather strict constraint because
the number of plaintexts satisfying with such conditions
are reduced to 2108. We investigate other conditions
that have almost the same effect with less constraint of
plaintexts. To observe this, we conduct the following
experiments.

Test 1: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) in the case
where both B0 and D0 induce zero rotation in the 1st
round; lsb5(A0) = 0; and lsb5(C0) = 0.
Test 2: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) in the case
where both B0 and D0 induce zero rotation in the 1st
round; lsb5(A0) = 0, ..., 31; and lsb5(C0) = 0.
Test 3: χ2-test on lsbn(Ar+1)||lsbn(Cr+1) for n =
3, 4, 5 in the case where both lsb5(A0) and lsb5(C0) are
set to 0, and both B0 and D0 induce zero rotation in
the 1st round.
Test 4: χ2-test on (any consecutive 5 bits of Ar+1)
||lsb5(Cr+1) in the case where both lsb5(A0) and
lsb5(C0) are set to 0, and both B0 and D0 induce zero
rotation in the 1st round.
The conditions on plaintexts and ciphertexts in Test
1 are the same as those in [8]. Apparently, the con-
ditions on plaintexts or ciphertexts in other tests are
eased. We observe whether or not almost the same ef-
fect as obtained in Test 1 is obtained under the eased
conditions.

3.1 Tests 1 and 2

The ciphertexts lead to much stronger biases if plain-
texts (A0, B0, C0, D0) are chosen in such a way that

22
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

Table 2 The χ2-value on lsb5(Ar+1)||lsb5(Cr+1) of RC6 in Test 1(the average of 100
keys, the level and the variance).

4 rounds
texts 212 213 214

The χ2-value Average Level Variance Average Level Variance Average Level Variance
1045.450 0.694 1774.828 1076.568 0.881 2177.806 1126.800 0.987 2448.999

6 rounds
texts 228 229 230

The χ2-value Average Level Variance Average Level Variance Average Level Variance
1041.933 0.667 2098.079 1060.985 0.801 2263.724 1095.914 0.944 2942.704

Table 3 The χ2-value on lsbn(Ar+1)||lsbn(Cr+1) of RC6 for each # texts, the average
of 100 keys, the level, and the variance.

4 rounds
texts 212 213 214

χ2-value Average Level Variance Average Level Variance Average Level Variance
n = 3 66.275 0.635 140.251 69.518 0.733 155.518 81.111 0.938 244.195
n = 4 268.910 0.737 493.753 277.883 0.845 618.303 301.961 0.977 679.494
n = 5 1045.450 0.694 1774.828 1076.568 0.881 2177.806 1126.800 0.987 2448.973

6 rounds
texts 229 230 231

χ2-value Average Level Variance Average Level Variance Average Level Variance
n = 3 71.804 0.791 203.645 76.572 0.883 209.564 88.474 0.981 270.062
n = 4 273.571 0.797 580.289 290.854 0.939 699.839 323.876 0.998 1049.104
n = 5 1060.985 0.801 2263.680 1095.913 0.944 2942.691 1173.418 0.999 3270.362

both lsb5(A0) and lsb5(C0) are 0; and both B0 and D0

induce zero rotation in the 1st round [8]. Test 1 reveals
the effect. The implementation results for the case of
r = 4, 6 are shown in Table 2. We compute the χ2-value
on lsb5(Ar+1)||lsb5(Cr+1), averaging over 100 keys, and
the level and the variance. Especially, the variance will
be discussed in the following sections. In the case of
Test 1, the number of available plaintexts is 2108. Next
we discuss the difference between Tests 1 and 2. In the
first round, each of A1 and C1 is added to each round
key, and thus neither lsb5(A1) nor lsb5(C1) is zero in
the final stage of the first round even if plaintexts are
chosen under the conditions of Test 1. Therefore, the
same effect as lsb5(A0), lsb5(C0) = 0 is expected if only
lsb5(A0) and lsb5(C0) is merely fixed. Test 2 is used
to examine the hypothesis. The experimental results of
Test 2 are presented in Fig. 1. In Fig. 1, the horizontal
line corresponds to the fixed value of lsb5(A0) and the
vertical line corresponds to the significance level of the
χ2-value for each number of plaintexts. In Fig. 1, we
see that any lsb5(A0) can be distinguished from a ran-
dom sequence in almost the same way as lsb5(A0) = 0.
The same discussion also holds in the case of lsb5(C0).
In summary, we need not set lsb5(A0) = lsb5(C0) = 0
in order to increase the χ2-value. We can use plain-
texts with any (A0, C0) merely by classifying them to
lsb5(C0) and lsb5(A0), and thus the number of available
plaintexts is 2118.

3.2 Test 3

The bias for lsb5(Ar+1)||lsb5(Cr+1) of an output after

Fig. 1 The χ2-value for each lsb5(A0) of RC6 in Test2
(averaged over 104 keys).

r-rounds is confirmed to have highly nonuniform dis-
tribution [8]. In Test 3, we examine whether or not
output with other bit-size leads also to highly nonuni-
form distribution. In our key recovery algorithm shown
in Sects. 4 and 5, the size of the recovered key can be
set flexibly. Therefore if the nonuniform distribution of
lsbn(Ar+1)||lsbn(Cr+1) for n
= 5 also holds, then our
algorithm can work according to the memory capac-
ity of the machine. The experimental results of Test
3 in the case of 4 and 6 rounds are presented in Ta-
ble 3. From the experimental results, we see that the
larger n is, the higher the nonuniform distribution of
lsbn(Ar+1)||lsbn(Cr+1) is, and that the nonuniform dis-
tribution of lsbn(Ar+1)||lsbn(Cr+1) for n = 3, 4 is also
observed in the same way as n = 5. Since we use the
χ2-value on lsb3(Ar+1)||lsb3(Cr+1) in Sect. 4, other ex-
perimental results in the case of lsb3(Ar+1)||lsb3(Cr+1)

MIYAJI and NONAKA: CRYPTANALYSIS OF REDUCED-ROUND RC6 WITHOUT WHITENING
23

Table 4 The χ2-value on lsb3(A5)||lsb3(C5) of RC6 for each # texts, the average of
105 keys, the level, and the variance.

texts 27 28 29

χ2-value Average Level Variance Average Level Variance Average Level Variance
63.174 0.530 126.426 63.241 0.532 126.612 63.395 0.538 126.645

texts 210 211

χ2-value Average Level Variance Average Level Variance
63.820 0.553 130.434 64.655 0.581 131.970

Table 5 The χ2-value on lsb5(A5)||lsb5(C5) of RC6 without pre-whitening in Test 5
(the average of 100 keys, the level, and the variance).

texts 212 213 214

χ2-value Average Level Variance Average Level Variance Average Level Variance
1054.720 0.761 2653.532 1083.073 0.906 2634.250 1137.702 0.993 2504.252

Fig. 2 Level of the χ2-value in each consecutive 5 bits of
A5||lsb5(C5) of RC6 for each # texts (averaged over 104 keys).

are shown in Table 4.

3.3 Test 4

In Test 4, we compute the χ2-value in (any consecutive
5 bits of Ar+1)||lsb5(Cr+1). Figure 2 shows the experi-
mental results in the case of 4 rounds. The horizontal
line corresponds to the first bit of consecutive 5 bits of
A5, and each plot presents the level of the χ2-value in
the case of each consecutive 5 bits for each number of
plaintexts. For example, the cases of i = 1 and i = 32
correspond to A

[5,1]
5 and {A32

5 , A
[4,1]
5 }. In Fig. 2, we see

that (any consecutive five bits of A5)||lsb5(C5) can be
distinguished from a random sequence in almost the
same way as lsb5(A5)||lsb5(C5).

3.4 χ2-Statistic of RC6 without Pre-Whitening

In this section, we focus attention on RC6 without pre-
whitening, and investigate how to obtain much stronger
biases with less constraint of plaintexts. In Test 2,
we saw that the χ2-value on lsb5(Ar+1)||lsb5(Cr+1)
becomes significantly high if both B0 and D0 induce
zero rotation in the 1st round, and both lsb5(A0) and
lsb5(C0) are fixed. That is, in Test 2, both lsb5((A0 ⊕
F (B0 + S0)) ≪ F (D0 + S1)) and lsb5((C0 ⊕ F (D0 +
S1)) ≪ F (B0+S0)) are fixed. Therefore, in the case of

RC6 without pre-whitening, the same effect as Test 2
is expected if only both lsb5((A0 ⊕ F (B0)) ≪ F (D0))
and lsb5((C0⊕F (D0)) ≪ F (B0)) are fixed. To observe
this, we carry out the next experiments.

Test 5: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) of RC6 with-
out pre-whitening with lsb5((C0⊕F (D0)) ≪ F (B0)) =
0, and lsb5((A0 ⊕ F (B0)) ≪ F (D0)) = 0.
Test 6: χ2-test on lsb5(Ar+1)||lsb5(Cr+1) of RC6 with-
out pre-whitening with lsb5((C0⊕F (D0)) ≪ F (B0)) =
0, and lsb5((A0 ⊕ F (B0)) ≪ F (D0)) = 0, .., 31.

Table 5 shows the result of Test 5 in the case of 4
rounds. Compared with Table 2, we see that almost
the same effect as Test 1 is obtained from Test 5. More
strictly, the effect of Test 5 is better than that of Test
1. The experimental results of Test 6 are presented
in Fig. 3. In Fig. 3, the horizontal line corresponds to
the fixed value of lsb5((A0 ⊕ F (B0)) ≪ F (D0)) and
the vertical line corresponds to the χ2-value for each
number of plaintexts. From Fig. 1, we see that any
lsb5((A0 ⊕ F (B0)) ≪ F (D0)) can be distinguished
from a random sequence in almost the same way as
lsb5((A0 ⊕ F (B0)) ≪ F (D0)) = 0. The same discus-
sion also holds in the case of lsb5((C0 ⊕ F (D0)) ≪
F (B0)) = 0.

More importantly, in the case of the analysis of
RC6 without pre-whitening, we can handle plaintexts
by controlling lsb5((A0 ⊕ F (B0)) ≪ F (D0)). In
summary, we can use any plaintext in the analysis
for RC6 without pre-whitening merely by classifying
it into each of lsb5((A0 ⊕ F (B0)) ≪ F (D0)) and
lsb5((C0 ⊕ F (D0)) ≪ F (B0)), and thus the number
of available plaintexts is 2128.

3.5 Remarks on Experimental Results

We have seen, from the experimental results, that high
correlation between an input and an output of RC6 is
observed if both input and output are chosen appro-
priately. Correlation attack makes use of such correla-
tion; if we choose a correct key, then high correlations
between an input and an output of RC6 would be ob-

24
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

α = lsb5((A0 ⊕ F (B0)) ≪ F (D0))

Fig. 3 The χ2-value for each lsb5((A0 ⊕F (B0)) ≪ F (D0)) of
RC6 without pre-whitening in Test 6 (averaged over 104 keys).

served, but if we choose a false key, then high correla-
tions between an input and an output of RC6 would not
be observed. In the distinguishing algorithm, the χ2-
value is computed on the average of keys, and thus only
the conditions under which the average χ2-value is high
are discussed. However, results of each experimental
show that the variance of distribution of the χ2-value
cannot be negligible in the case of correct keys. Gen-
erally, for a normally distributed X with the average
µ, and the variance σ2, the probability that the data
exists in {µ−σ ≤ X ≤ µ+σ}, Pr(µ−σ ≤ X ≤ µ+σ),
satisfies

Pr(µ− σ ≤ X ≤ µ+ σ) = 0.68.

Therefore, if the variance were not reduced, then we
could not rule out all false keys, and single out exactly
a correct key. In the following sections, we will design
key recovery algorithms in such a way that the variance
of χ2-distribution is reduced.

3.6 Estimation

In the following sections, we will show key recovery al-
gorithms, based on the χ2-test. We actually implement
these key recovery algorithms against RC6W with 5
rounds, and evaluate the χ2-value necessary for key re-
covery against RC6W with 5 rounds. For the discussion
of RC6W with more rounds, we use the same method
as in [8] to estimate the complexities of key recovery
algorithms; we estimate slope, that is, how many plain-
texts are required to obtain similar values in a χ2-test
on r + 1 rounds compared with r rounds.

Our key recovery algorithms are Algorithms 2, 3,
and 4. The conditions of the χ2-test of these three key
recovery algorithms are classified into two cases: one
is the case of both Algorithms 2 and 3, and the other
is that of Algorithm 4. We discuss the slope in each
case. Note that our algorithms are applied to RC6W,
but from the point of view of the χ2-value, we can make
use of the χ2-test of RC6. The χ2-value without post-
whitening is the same as that with post-whitening. The

Table 6 log2 #(texts) required for the χ2-value of RC6
with each level.

Condition 1 Condition 2
Level 4 rounds 6 rounds 4 rounds 6 rounds
0.70 12.5 28.3 14.9 30.8
0.75 12.9 28.6 15.3 31.1
0.80 13.1 29.2 15.6 31.6
0.90 13.8 30.2 16.1 32.5
0.95 14.2 30.7 16.6 32.8

conditions without pre-whitening are the same as those
under which B0 and D0 induce zero rotation in the 1st
round of RC6.

In the case of both Algorithms 2 and 3, the slope of
the χ2-test is estimated under the following conditions.
Condition 1 The χ2-test on lsb3(Ar+1)||lsb3(Cr+1)
of RC6 in the case where both B0 and D0 introduce
zero rotation in the 1st round, lsb5(A0) = 0, and
lsb5(C0) = 0.
Condition 1 is the same as the conditions in the case
of n = 3 in Test 3. The precise experimental results
in Condition 1 are shown in Table 6. Table 6 shows
the number of plaintexts required for the χ2-value with
levels, 0.70, 0.75, 0.80, 0.90, and 0.95, which were cal-
culated to the first decimal place. From Table 6, we
can estimate that, to obtain similar values in a χ2-test
on r+1 rounds, a factor of 28.1 additional plaintexts is
required compared to r rounds.

In the case of Algorithm 4, the slope of the χ2-test
is estimated under the following conditions.
Condition 2 The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) of
RC6 in the case where both B0 and D0 introduce zero
rotation in the 1st round, lsb3(A0) = 0, and lsb3(C0) =
0.

The precise experimental results obtained under
Condition 2 are also shown in Table 6. From Table 6,
we can estimate that to obtain similar values in a χ2-
test on r + 1 rounds, we require a factor of 28.1 addi-
tional plaintexts compared to r rounds as in the case
of Condition 1.

4. A Chosen Plaintext Correlation Algorithm

In this section, we present two chosen-plaintext key re-
covery algorithms against RC6W, Algorithms 2 and 3.

4.1 Algorithm 2

The conditions on plaintexts in Algorithm 2 are the
same as those in [8], but Algorithm 2 is designed mak-
ing use of the results of tests in Sect. 3 as follows.
1. The χ2-statistic is not measured on a fixed part of
Ar+1||Cr+1 (Test 4).
2. The degree of χ2-statistic is flexibly set to 63 in
such a way that Algorithm 2 is feasible, that is, the
χ2-statistic is computed on 6 bits of Ar+1||Cr+1 (Test
3).

MIYAJI and NONAKA: CRYPTANALYSIS OF REDUCED-ROUND RC6 WITHOUT WHITENING
25

Fig. 4 Outline of Algorithm 2.

3. The χ2-value is computed for za||zc, to which
lsb3(Br+1)||lsb3(Dr+1) is exactly decrypted by 1 round
(see Fig. 4).
4. The decrypted data, za||zc, is classified into 64 cases
according to each rotation number of the r-th round,
and the χ2-value is computed for each classified case.

Algorithm 2:
This algorithm recovers both lsb2(S2r) and
lsb2(S2r+1) of RC6W. Set (lsb3(Br+1), lsb3(Dr+1)) =
(yb, yd), (lsb2(S2r), lsb2(S2r+1)) = (sa, sc), and
(lsb5(F (Ar+1)), lsb5(F (Cr+1))) = (xc, xa), where xa

and xc are the rotation amounts on Ar and Cr in
the r-th round, respectively.
1. Choose a plaintext (A0, B0, C0, D0)

with (lsb5(A0), lsb5(C0), lsb5(F (B0)),
lsb5(F (D0))) = (0, 0, 0, 0), and encrypt it.

2. For each sa, sc = 0, 1, 2, 3, set s = sa||sc and
S3

2r, S
3
2r+1 = 0, and decrypt yd||yb with the

key (S3
2r||sa, S3

2r+1||sc) by 1 round using the
r-th round rotation amounts xa and xc. The
decryptions of yd||yb are set to za||zc = z.

3. For each of s, xa, xc, and z, we update each
array by incrementing count[s][xa][xc][z].

4. For each s, xa, and xc, compute χ2[s][xa][xc].
5. Compute the average ave[s] of {χ2[s][xa][xc]} for

each s, and output s with the highest ave[s] as
lsb2(S2r)||lsb2(S2r+1).

Algorithm 2 yields the χ2-value on z, to which y is de-
crypted by the final round subkey. Since the χ2-values
on decryption z using each key, lsb3(S2r)||lsb3(S2r+1) =
1||sa||1||sc, 1||sa||0||sc, 0||sa||1||sc, 0||sa||0||sc, are coin-
cident with each other [11], we may decrypt y by setting
S3

2r, S
3
2r+1 = 0 temporarily. Algorithm 2 works as a 6-

bit examination and 4-bit estimation, but it can work
flexibly as a 2n-bit examination and 2(n − 1)-bit esti-
mation for n = 3, 4, and 5 according to the memory
capacity. We can recover other bits of round keys S2r

and S2r+1 by repeating Algorithm 2 sequentially. Ap-

Table 7 Success probability and the χ2-value of Algorithm 2
(in 100 trials).

#texts #keys χ2-value(63 degree)
Average Level Variance

217 12 63.106 0.527 0.165
218 8 63.076 0.526 0.122
219 16 63.216 0.531 0.109
220 32 63.492 0.541 0.107
221 71 64.049 0.561 0.102
222 99 65.119 0.597 0.133
223 100 67.321 0.668 0.218

Table 8 log2(#texts) required for recovering a key with suc-
cess probabilities of 90%, 70%, and 30% in Algorithm 2 (in 100
trials).

90% 70% 30%
log2(#text) 21.4 21.0 20.0

parently, the number of available plaintexts is 2108.
Table 7 shows the results for RC6W with 5 rounds:

the success probability among 100 trials, the average
χ2-value of recovered keys, the level, and the variance.
Let us compare the results of Algorithm 2 with those in
Table 4. In Algorithm 2, the χ2-value is computed on
each group, classified by the rotation number in the
final round. Since all plaintexts in our experiments
are randomly generated by m-sequences, plaintexts are
roughly estimated to be uniformly distributed among
all groups. Therefore, the χ2-test is computed by us-
ing 1/210 times the number of plaintexts, the results
of which are shown in Table 7. The χ2-test using
220 − 223 plaintexts in Algorithm 2 corresponds to that
of 210 − 213 in the case of n = 3 of Test 3. In a sense,
Algorithm 2 yields the χ2-value for the sample mean,
which keeps the average of χ2-value but reduces the
variance of χ2-value from the statistical fact. Compar-
ing Table 7 with Tables 3 and 4, we see that the variance
of χ2-value in Algorithm 2 is about 1/210 as much as
that in the corresponding Test 3, and that the average
of χ2-value in Algorithm 2 is almost the same as that
in the corresponding Test 3. Algorithm 2 can recover a
key with a rather low level by reducing the variance of
the χ2-value.

More precise experimental results are shown in Ta-
ble 8. All results are calculated to the first decimal
place. Using the data in Table 8, the number of plain-
texts required for recovering a key in r rounds with the
success probability of 90%, log2(#text), is estimated as

log2(#text) = 8.1r − 19.1
using the slope computed in Sect. 3. By substituting
log2(#text) = 108, Algorithm 2 can break RC6W with
15 rounds with 2102.4 plaintexts with a probability of
90%. Algorithm 2 is faster than an exhaustive key
search with 220 memory.

26
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

Table 9 Success probability and the χ2-value of Algorithm 3
(in 100 trials).

#texts #keys χ2-value(63 degree)
Average Level Variance

222 21 63.067 0.526 0.003
223 54 63.135 0.528 0.003
224 93 63.267 0.533 0.005

4.2 Algorithm 3

We improve Algorithm 2 by making use of the results
of Test 2, that is, we ease the conditions on (A0, C0) of
plaintexts. The conditions on plaintexts in Algorithm 3
are that: both B0 and D0 induce zero rotation in the
1st round, and both lsb5(A0) and lsb5(C0) are merely
fixed.

Algorithm 3:
This algorithm recovers both lsb2(S2r) and
lsb2(S2r+1) of RC6W. Set (lsb3(Br+1), lsb3(Dr+1))
= (yb, yd), (lsb2(S2r), lsb2(S2r+1)) = (sa, sc), and
(lsb5(F (Ar+1)), lsb5(F (Cr+1))) = (xc, xa), where xa

and xc are the rotation amounts on Ar and Cr in
the r-th round, respectively.
1. Choose a plaintext (A0, B0, C0, D0) with

(lsb5(F (B0)), lsb5(F (D0)), lsb5(C0)) = (0, 0, 0),
set lsb5(A0) = t, and encrypt it.

2. For each (sa, sc) (sa, sc = 0, 1, 2, 3), set a 4-bit
integer s = sa||sc, S3

2r, S
3
2r+1 = 0, and decrypt

yd||yb with the key (S3
2r||sa, S

3
2r+1|| sc) by 1

round. We set a decryption of yd,yb to za, zc,
which are 3-bit integers. We also set a 6-bit
integer z = za||zc.

3. For each of s, t, xa, xc, and z, we update each
array by incrementing count[s][t][xa][xc][z].

4. For each s, t, xa, xc, compute χ2[s][t][xa][xc].
5. Compute the average ave[s] of {χ2[s][t][xa] [xc]}

for each s, and output s with the highest
ave[s] as lsb2(S2r)||lsb2(S2r+1).

The number of available plaintexts in Algorithm 3 is
2113. Algorithm 3 uses plaintexts with lsb5(C0) = 0,
but this condition is further eased by classifying the
value of lsb5(C0). Then the number of available plain-
texts becomes 2118.

Table 9 shows the results for RC6W with 5 rounds:
the success probability among 100 trials, the average
χ2-value of recovered keys, the level, and the vari-
ance. Let us compare the results with those of Algo-
rithm 2 in Table 7. In Algorithm 3, the plaintexts com-
puted on the χ2-value is further classified to each group
by the value of lsb5(A0). Since all plaintexts in our
experiments are randomly generated by m-sequences,
plaintexts are roughly estimated to be uniformly dis-
tributed among all groups. Therefore, the χ2-test of
using 222 − 224 plaintexts in Algorithm 3 corresponds
to that of 217 − 219 in Algorithm 2. In the same way,

Table 10 log2(#texts) required for recovering a key with suc-
cess probabilities of 90%, 70%, and 30% in Algorithm 3 (in 100
trials).

90% 70% 30%
log2(#text) 23.9 23.3 22.5

the χ2-test of using 222 − 224 plaintexts in Algorithm 3
corresponds to that of 27 − 29 in the case of n = 3 of
Test 3. We see the average χ2-value by using 222, 223,
or 224 in Table 9 is roughly equal to those by using 217,
218, or 219 in Table 7, and 27, 28, or 29 in Table 4, re-
spectively. On the other hand, the variance of χ2-value
by using 222, 223, or 224 in Table 9 is about 1/25 that
by using 217, 218, or 219 in Table 7, and about 1/215

that by using 27, 28, or 29 in Table 4, respectively. Al-
gorithm 3 keeps the level of the average χ2-value with
less variance of χ2-value. As a result, Algorithm 3 can
recover a key with a lower level than Algorithm 2 by
reducing the variance of χ2-value.

More precise experimental results are shown in Ta-
ble 10. All results are calculated to the first decimal
place. Using the data in Table 10, the number of plain-
texts required for recovering a key in r rounds with the
success probability of 90%, log2(#text) is estimated as

log2(#text) = 8.1r − 16.6
using the bias computed in Sect. 3. By substituting
log2(#text) = 118, Algorithm 2 can break RC6W with
16 rounds with 2113.0 plaintexts with a probability of
90%. Algorithm 3 is faster than an exhaustive key
search with 225 memory.

5. A Known Plaintext Correlation Algorithm

In this section, we present another key recovery al-
gorithm, Algorithm 4, which applies Algorithm 3 in
such a way that all plaintexts are available. We have
seen that it is very effective for key recovery to com-
pute the χ2-value for each appropriate group instead
of computing the χ2-value directly for any plaintexts.
We apply the idea to the results of Tests 5 and 6 pre-
sented in Sect. 3. Algorithm 4 classifies any plaintext
(A0, B0, C0, D0) into the same lsb3((A0 ⊕ F (B0)) ≪
F (D0)) and lsb3((C0 ⊕ F (D0)) ≪ F (B0)).

Algorithm 4:
This algorithm recovers both lsb2(S2r) and
lsb2(S2r+1) of RC6W. Set (lsb3(Br+1), lsb3(Dr+1)) =
(yb, yd), (lsb2(S2r), lsb2(S2r+1)) = (sa, sc), and
(lsb5(F (Ar+1)), lsb5(F (Cr+1)) = (xc, xa), where xa

and xc are the rotation amounts on Ar and Cr in
the r-th round, respectively.

1. Given a plaintext (A0, B0, C0, D0), set
lsb3((A0 ⊕ F (B0)) ≪ F (D0)) = ta, lsb3((C0 ⊕
F (D0)) ≪ F (B0)) = tc, and encrypt it.

2. For each (sa, sc) (sa, sc = 0, 1, 2, 3), set a

MIYAJI and NONAKA: CRYPTANALYSIS OF REDUCED-ROUND RC6 WITHOUT WHITENING
27

4-bit integer s = sa||sc, S3
2r, S

3
2r+1 = 0, and

decrypt yd||yb with the key (S3
2r||sa, S

3
2r+1|| sc)

by 1 round. We set a decryption of yd, yb

to za, zc, which are 3-bit integers. We also
set a 6-bit integer z = za||zc.

3. For each of s, ta, tc, xa, xc, and z, we update
each array by incrementing count[s][ta][tc]
[xa][xc][z].

4. For each s, ta, tc, xa, xc, compute χ2[s][ta][tc]
[xa][xc].

5. Compute the average ave[s] of {χ2[s][ta][tc][xa]
[xc]} for each s, and output s with the
highest ave[s] as lsb2(S2r) ||lsb2(S2r+1).

The number of available plaintexts in Algorithm 4 is
2128. Algorithm 4 classifies plaintexts according to each
3-bit (A0 ⊕ F (B0)) ≪ F (D0) and (C0 ⊕ F (D0)) ≪
F (B0), which may be enlarged to, for example, 5, like
the conditions of Tests 5 and 6. However, the larger the
classified bit size is, the greater the memory is required.

Table 11 show the results for RC6W with 5 rounds:
the success probability among 100 trials, the average
χ2-value of recovered keys, the level, and the variance.
We see that, in Algorithm 4, the variance of χ2-value
is much more reduced than Algorithm 2 or 3. As a
result, Algorithm 4 can recover a key more efficiently
than Algorithms 2 and 3 by reducing the variance of
χ2-value.

More precise experimental results are shown in Ta-
ble 12. All results are calculated to the first decimal
place. Using the data in Table 12, the number of plain-
texts required for recovering a key in r rounds with the
success probability of 90%, log2(#text), is estimated as

log2(#text) = 8.1r − 13.8
using the slope computed in Sect. 3. By substituting
log2(#text) = 128, Algorithm 4 can break RC6W with
17 rounds using 2123.9 plaintexts with a probability of
90%.

Let us discuss the amount of work. For each plain-
text in Algorithm 4, we encrypt a plaintext, and de-
crypt a ciphertext by 1 round with each candidate s.
Here we set one unit of work as 1 encryption. In the

Table 11 Success probability and the χ2-value of Algorithm 4
(in 100 trials).

#texts #keys χ2-value(63 degrees)
Average Level Variance

225 26 63.057 0.526 0.0003
226 59 63.108 0.528 0.0005
227 100 63.230 0.532 0.0007

Table 12 log2(#texts) required for recovering a key with suc-
cess probabilities of 90%, 70%, and 30% in Algorithm 4 (in 100
trials).

90% 70% 30%
log2(#text) 26.7 26.3 25.3

case of RC6W with 5 rounds, we obtain a complexity
of

226.7(1 + 24/5) = 226.7 ∗ 4.2 ≤ 226.7 ∗ 22.1 = 228.8.

In the case of RC6W with 17 rounds, we obtain a com-
plexity of

2123.9(1 + 24/17) ≤ 2123.9 ∗ (1 + 0.95) ≤ 2124.9.

In summary, Algorithm 4 can break, with the proba-
bility of 90%, RC6W with 5 rounds or 17 rounds us-
ing 226.7 or 2123.9 plaintexts, and 228.8 or 2124.9 work,
respectively. Note that each case is within the same
memory capacity of 226.

6. A Key Recovery Algorithm against RC6-64

In [13], a two-register version for RC6, which is oriented
to 64-bit architecture, was also described. Here we call
the two-register version for RC6 simply RC6-64. In this
section, we apply the idea of Algorithm 4 to RC6-64,
and discuss the difference between RC6 and RC6-64
from the point of view of the security.

6.1 A Two-Register Version for RC6

Here we present RC6-64. The round function of RC6-
64 has almost the same structure as that of RC6, but
it consists of two units (Ai, Bi). An input of the i-th
round is denoted by (Ai, Bi), and (A0, B0) is a plain-
text, where Ai and Bi are each 64 bits. The i-th subkey
Si is also 64 bits. Here the function F is modified to
F6 in a 64-bit-oriented manner;

F6(X) = X(2X + 1) (mod 264) ≪ 6.

Algorithm 5 (Encryption with RC6-64):
1. A1 = A0; B1 = B0 + S0;
2. for i = 1 to r do:

t = F6(Bi); Ai = ((Ai ⊕ t) ≪ t) + Si;
Ai+1 = Bi;Bi+1 = Ai;

3. Ar+2 = Ar+1 + Sr+1; Br+2 = Br+1.

Part 1 and 3 of Algorithm 5 are called pre-whitening
and post-whitening, respectively. We call the version of
RC6-64 with neither pre-whitening nor post-whitening,
simply RC6-64W. As we see in Algorithm 5, RC6-64
is designed based as the same concept as RC6. There-
fore, we should expect that the security of the round-
function is estimated to be almost the same as that of
RC6. However, the security of RC6-64 is lower than
that of RC6, as shown in the next section.

6.2 Key Recovery Algorithm to RC6-64W

We apply Algorithm 4 in Sect. 5 to RC6-64W.

Algorithm 6 (Algorithm to RC6-64W):

28
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

Table 13 Success probability and the χ2-value of Algorithm 6 to RC6-64W with 5 and
7 rounds (in 100 trials).

5 rounds 7 rounds
#texts #keys χ2-value(63 degrees) #texts #keys χ2-value(63 degrees)

Average Level Variance Average Level Variance
215 20 31.214 0.545 0.0296 225 30 31.278 0.548 0.0394
216 65 31.504 0.559 0.0290 226 53 31.512 0.559 0.0302
217 96 32.022 0.584 0.0335 227 95 32.050 0.586 0.0286

Table 14 log2(#texts) required for recovering a key with success probabilities of 90%,
70%, and 30% in Algorithm 6 to RC6-64W with 5 and 7 rounds (in 100 trials).

5 rounds 7 rounds
90% 70% 30% 90% 70% 30%

log2(#text) 16.8 16.2 15.3 26.9 26.2 25.0

Table 15 The χ2-value on lsb5(Ar+1) in Test 7 (the average of 100 keys, the level and
the variance).

4 rounds
texts 26.9 28.7 29.5

The χ2-value Average Level Variance Average Level Variance Average Level Variance
34.600 0.700 86.071 40.893 0.890 126.840 51.261 0.988 188.444

6 rounds

texts 216.5 217.5 218.9

The χ2-value Average Level Variance Average Level Variance Average Level Variance
33.966 0.674 73.204 37.666 0.809 112.739 45.193 0.952 131.131

This algorithm recovers lsb4(Sr) of RC6-64W.
Set lsb5(Br+1) = y, lsb4(Sr) = s, and lsb6(F6

(Ar+1)) = x, where x is the rotation amount on
Ar in the r-th round.

1. Given a plaintext (A0, B0), set lsb5((A0 ⊕
F6(B0)) ≪ F6(B0)) = t, and encrypt it.

2. For each s (s = 0, · · · , 15), set S5
r = 0, and

decrypt y with the key S5
r ||s by 1 round. We

also set a decryption of y to z, which is a
5-bit integer.

3. For each of s, t, x, and z, we update each
array by incrementing count[s][t][x][z].

4. For each s, t, and x, compute χ2[s][t][x].
5. Compute the average ave[s] of {χ2[s][t][x]} for

each s, and output s with the highest ave[s]
as lsb4(Sr).

The number of available plaintexts in Algorithm 6 is
2128. Table 13 show the results for RC6-64W with 5
and 7 rounds: the success probability among 100 tri-
als, the average χ2-value of recovered keys, the level,
and the variance. More precise experimental results are
shown in Table 14. All results are calculated to the first
decimal place. Using the data in Table 14, the number
of plaintexts required for recovering a key in r rounds
with the success probability of 90%, log2(#text), is es-
timated as

log2(#text) = 5.0r − 8.2.
By substituting log2(#text) = 128, Algorithm 6 can
break RC6-64W with 27 rounds with 2126.8 plaintexts

with a probability of 90%.
Here we estimate the amount of work in the same

way as for Algorithm 4. In the case of RC6W-64 with 5,
7, or 27 rounds, we obtain a complexity of 218.9, 228.7,
or 2127.5, respectively. In summary, Algorithm 6 can
break, with the probability of 90%, RC6W-64 with 27
rounds by using 2126.8 plaintexts, 2127.5 work, and 220

memory.

6.3 Further Discussion

We discuss the difference between the round function
of RC6 and that of RC6-64 from the point of view of
the security. First we conduct the following Test 7 of
RC6-64, the results of which are shown in Table 15.
Test 7: χ2-test on lsb5(Ar+1) in RC6-64 with r rounds
in the case where B0 induces zero rotation in the 1st
round, and lsb5(A0) = 0
Let us compare each round function between RC6-64
and RC6 using the data in Tables 15 and 2. The size
of subkeys in RC6-64 is 64 bits. Hence, the security
level of one round in RC6-64, the size of subkeys of one
round, is estimated to be equal to that in RC6-32, which
has two 32-bit subkeys in one round. Furthermore, the
round function of RC6-64 has almost the same structure
as that of RC6. However, the slope, defined in Sect. 3.6,
of RC6-64 is apparently lower than that of RC6. This
means that the correlations between an input of the
round function and the output in RC6-64 is retained
more than in RC6. The round function of RC6-64 mixes
up data less than that of RC6. We often discuss that

MIYAJI and NONAKA: CRYPTANALYSIS OF REDUCED-ROUND RC6 WITHOUT WHITENING
29

Table 16 Our results with the success probability of 90%.

Cipher #rounds #works #texts #memory
RC6W 5 228.8 226.7 226

RC6W 17 2124.9 2123.9 226

RC6W-64 5 218.9 216.8 220

RC6W-64 7 228.7 226.9 220

RC6W-64 27 2127.5 2126.8 220

the weak point of RC5 is in a data-dependent rotation,
which is defined by only 5 bits of subkey and data.
Although this weakness of data-dependent rotation is
improved in both RC6 and RC6-64, RC6-64 is much
weaker than RC6. The difference between RC6-64 and
RC6 is the data structure: RC6-64 consists of 2 units,
and RC6 consists of 4 units. Both RC6-64 and RC6
make use of modular-additions in order to mix data
within the unit. Correlations are induced by the con-
secutiveness of modular-additions. Our results indicate
that the structure of RC6, 4-unit plaintexts, reduce cor-
relations more efficiently than that of RC6-64, 2-unit
plaintexts.

7. Conclusions

We have proposed an efficient and feasible known plain-
text correlation attack on RC6W and RC6W-64. Our
attack can break RC6W/r(RC6W-64/r) with a success
probability of 90% using 28.1r−13.8(25.0r−8.2) plaintexts.
Therefore, our attack can break RC6W (RC6W-64)
with 17 (27) rounds by using 2123.9(2126.8) plaintexts.
Table 16 summarizes our results. We have also found
that the security of the round function of RC6 is en-
hanced by not only the data-dependent rotation being
dependent on all bits of the input unit, but also by the
consecutiveness of modular additions being broken by
dividing data into 4 units.

Acknowledgments

The authors express our gratitude to Soichi Furuya and
Hirotaka Yoshida for their kind support. The authors
wish to thank the anonymous referees for invaluable
comments.

References

[1] A. Biryukov and E. Kushilevitz, “Improved cryptanalysis
of RC5,” Advances in Cryptology-Proceedings of EURO-
CRYPT’98, Lecture Notes in Computer Science, vol.1403,
pp.85–99, Springer-Verlag, 1998.

[2] J. Borst, B. Preneel, and J. Vandewalle, “Linear cryptanal-
ysis of RC5 and RC6,” Proc. Fast Software Encryption,
Lecture Notes in Computer Science, vol.1636, pp.16–30,
Springer-Verlag, 1999.

[3] S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “Improved
analysis of some simplified variants of RC6,” Proc. Fast
Software Encryption, Lecture Notes in Computer Science,
vol.1636, pp.1–15, Springer-Verlag, 1999.

[4] J. Hayakawa, T. Shimoyama, and K. Takeuchi, “Correla-
tion attack to the block cipher RC5 and the simplified vari-
ants of RC6,” submitted paper in Third AES Candidate
Conference, April 2000.

[5] B. Kaliski and Y. Lin, “On differential and linear crypt-
analysis of the RC5 encryption algorithm,” Advances in
Cryptology-Proceedings of CRYPTO’95, Lecture Notes in
Computer Science, vol.963, pp.171–184, Springer-Verlag,
1995.

[6] J. Kelsey, B. Schneier, and D. Wagner, “Mod n cryptanal-
ysis, with applications against RC5P and M6,” Proc. Fast
Software Encryption, Lecture Notes in Computer Science,
vol.1636, pp.139–155, Springer-Verlag, 1999.

[7] L. Knudsen and W. Meier, “Improved differential at-
tacks on RC5,” Advances in Cryptology-Proceedings of
CRYPTO’96, Lecture Notes in Computer Science, vol.1109,
pp.216–228, Springer-Verlag, 1996.

[8] L. Knudsen and W. Meier, “Correlations in RC6 with a re-
duced number of rounds,” Proc. Fast Software Encryption,
Lecture Notes in Computer Science, vol.1978, pp.94–108,
Springer-Verlag, 2001.

[9] D. Knuth, The art of computer programming, vol.2,
Seminumerical Algorithms, 2nd ed., Addison Wesley, Read-
ing, Mass. 1981.

[10] A. Menezes, P.C. Oorschot, and S. Vanstone, Handbook of
applied cryptography, CRC Press, 1996.

[11] A. Miyaji, M. Nonaka, and Y. Takii, “Improved Correlation
Attack on RC5,” IEICE Trans. Fundamentals, vol.E85-A,
no.1, pp.44–57, Jan. 2002.

[12] http://cryptonessie.org
[13] R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, The RC6

Block Cipher, vo1.1, v.1.1, 1998.
Available at http://www.rsasecurity.com/rsalabs/rc6

[14] R. Rivest, “The RC5 encryption algorithm,” Proc. Fast
Software Encryption, Lecture Notes in Computer Science,
vol.1008, pp.86–96, Springer-Verlag, 1995.

[15] S. Shirohata, An Introduction of Statistical Analysis, Ky-
ouritu Syuppan, 1992.

[16] T. Shimoyama, M. Takenaka, and T. Koshiba, “Multiple
linear cryptanalysis of a reduced round RC6,” Proc. Fast
Software Encryption, Lecture Notes in Computer Science,
vol.2365, pp.76–88, Springer-Verlag, 2002.

30
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.1 JANUARY 2003

Atsuko Miyaji received her B.Sc.,
M.Sc., and Dr. Sci. degrees in mathemat-
ics from Osaka University, Osaka, Japan
in 1988, 1990, and 1997, respectively. She
was with Matsushita Electric Industrial
Co., LTD from 1990 to 1998, where she
engaged in research and development of
secure communications. She has been an
associate professor at JAIST (Japan Ad-
vanced Institute of Science and Technol-
ogy) since 1998, and with the computer

science department of University of California, Davis since 2002.
Her research interests include the application of projective va-
rieties theory into cryptography and information security. She
received the IPSJ Sakai Special Researcher Award in 2002. She
is a member of the International Association for Cryptologic Re-
search and the Information Processing Society of Japan.

Masao Nonaka received his B.Sc. de-
gree in computer science and engineering
from University of Aizu, and M. Info. Sci.
degree from Japan Advanced Institute of
Science and Technology in 2000 and 2002,
respectively. He joined Matsushita Elec-
tric Industrial Co., LTD. in 2002 and is
engaged in research and development in
the field of information security systems.
He is a member of the Information Pro-
cessing Society of Japan.

