
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Improved Correlation Attack on RC5

Author(s) MIYAJI, Atsuko; NONAKA, Masao; TAKII, Yoshinori

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E85-A(1): 44-57

Issue Date 2002-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4430

Rights

Copyright (C)2002 IEICE. Atsuko MIYAJI, Masao

NONAKA, Yoshinori TAKII, IEICE TRANSACTIONS on

Fundamentals of Electronics, Communications and

Computer Sciences, E85-A(1), 2002, 44-57.

http://www.ieice.org/jpn/trans_online/ （許諾番

号：08RB0096）

Description

44
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

PAPER Special Section on Cryptography and Information Security

Improved Correlation Attack on RC5

Atsuko MIYAJI†a), Regular Member, Masao NONAKA†,
and Yoshinori TAKII†,††, Nonmembers

SUMMARY Various attacks against RC5 have been ana-
lyzed intensively [1], [2], [4]–[7]. A known plaintext attack [2]
has not been reported that it works on so higher round as a
chosen plaintext attack [1], but it can work more efficiently and
practically. In this paper, we investigate a known plaintext at-
tack against RC5 by improving a correlation attack [7]. As for
a known plaintext attack against RC5, the best known result is
a linear cryptanalysis [2]. They have reported that RC5-32 with
10 rounds can be broken by 264 plaintexts under the heuristic
assumption: RC5-32 with r rounds can be broken with a success
probability of 90% by using 26r+4 plaintexts. However, their as-
sumption seems to be highly optimistic. Our known plaintext
correlation attack can break RC5-32 with 10 rounds (20 half-
rounds) in a more strict sense with a success probability of 90%
by using 263.67 plaintexts. Furthermore, our attack can break
RC5-32 with 21 half-rounds in a success probability of 30% by
using 263.07 plaintexts.
key words: RC5, a known plaintext attack, a correlation attack

1. Introduction

RC5 is a block cipher designed by Rivest [11], which is
constructed by only simple arithmetic such as an ad-
dition, a bit-wise exclusive-or (XOR), and a data de-
pendent rotation. Therefore RC5 can be implemented
efficiently with small memory. RC5-32/r means that
two 32-bit-block plaintexts are encrypted by r rounds,
where one round consists of two half-rounds. RC6 is the
next version of RC5, which has almost the same con-
struction as RC5: RC6 consists of a multiplication, an
addition, XOR, and a data dependent rotation. While
the input of RC5 consists of 2 words such as (L0, R0),
that of RC6 consists of 4 words. This is why approach
of attacks on RC5 is similar to that on RC6, but a slight
difference is needed.

Various attacks against RC5 have been analyzed
intensively [1], [2], [4]–[7]. As for a chosen plaintext
attack, the best known algorithm [1] can break RC5-
32/12 by using (244, 254.5) pairs of chosen plaintexts and
known plaintexts. However, it requires further much
stored plaintexts such as 254.5. Even in the case of RC5-

Manuscript received March 23, 2001.
Manuscript revised June 20, 2001.
Final manuscript received September 20, 2001.

†The author is with Japan Advanced Institute of Science
and Technology, Hokuriku, Ishikawa-ken, 923-1292 Japan.

††Presently, the author is with Japan Air Self Defense
Force.

a) E-mail: miyaji@jaist.ac.jp

32/10, it requires (236, 250.5) pairs of chosen plaintexts
and known plaintexts with stored 250.5 plaintexts. In a
realistic sense, it would be rather infeasible to employ
such an algorithm. On the other hand, a known plain-
text attack can work more efficiently and practically
although it has not been reported that it works on so
higher round like 12. In this paper, we investigate a
known plaintext attack against RC5.

As for a known plaintext attack against RC5, the
best known result is a linear cryptanalysis [2]. They
have reported that RC5-32 with 10 rounds can be bro-
ken by 264 plaintexts under the heuristic assumption:
RC5-32 with r rounds can be broken with a success
probability of 90% by using 26r+4 plaintexts. However,
their assumption seems to be highly optimistic. Ta-
ble 1 shows both their results and our results. In fact,
their experimental results report that RC5-32 with 3
or 4 rounds is broken with a success probability of only
81% or 82% if we use 222 or 228 plaintexts respectively.
This means that their estimation does not hold even
in such lower rounds as 3 or 4. On the other hand,
they also discussed the theoretical complexity of break-
ing RC5-32 with r rounds: RC5-32 with r rounds can
be broken with a success probability of 90% by using
26.8r+2.4 plaintexts. According as their theoretical as-
sumption, it requires 222.8 or 229.6 plaintexts in order
to break RC5-32/3 or RC5-32/4 with a success prob-
ability of 90%. Actually it seems that the theoretical
estimate reflects their experimental results. Note that
under the theoretical assumption, their known plain-
text attack can break RC5-32/9 but not RC5-32/10
with a success probability of 90%. In this paper, we
improve a correlation attack [7] as a known plaintext
attack. Our attack can break RC5-32/10 with a suc-
cess probability of 90% by using 263.67 plaintexts. As
we see in Table 1, our attack can break solidly RC5-
32/2, RC5-32/3, RC5-32/4, and also RC5-32/5 with
less plaintexts and a higher probability compared with
[2]. In a more strict sense our attack can break RC5-32
with 10 rounds by a known plaintext attack.

Correlation attack makes use of correlations be-
tween an input and the output, which is measured by
the χ2 test [6], [7]: the specific rotation in both RC5 and
RC6 is considered to cause the correlations between the
corresponding two 5-bit integer values. In [7], correla-
tion attacks against RC6-32 recover subkeys from the

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
45

Table 1 Required plaintexts for attack on RC5.

r-round estimation 2 rounds 3 rounds 4 rounds 5 rounds
theoretical (heuristic) #texts #keys #texts #keys #texts #keys #texts #keys

[2] 26.8r+2.4(26r+4) 216 92/100 222 81/100 228 82/100 234 9/10
our 26.14r+2.27 215 100/100 222 100/100 228 99/100 233 90/100

attack 214 95/100 221 95/100 227 96/100 232 60/100

1st round to the r-th round by handling a plaintext in
such a way that the χ2-test after one round becomes
significantly higher value. Their main idea is to choose
such a plaintext that the least significant five bits in
the first and third words are constant after one-round
encryption. Therefore plaintexts in RC6 are chosen as
follows: 1. the least significant five bits in the first
and third words are zero; 2. the fourth word is set
to the values that introduce a zero rotation in the 1st
round. To sum up, their attack controls a plaintext
in two parts with 5 bits: 5 bits corresponding to the
χ2-test and 5 bits in relation to data dependent rota-
tions. Let us apply their attack to RC5, where a plain-
text is represented by 2 words (L0, R0). According to
their approach, it is necessary to control a plaintext in
each block with each 5 bits: Choose a plaintext such
that the least significant five bits of L0 is 0 and that
R0 introduces a zero rotation in the 1st round. As a
result, available plaintexts are reduced by 210. Com-
pared with RC6, available plaintexts to attack RC5 is
extremely less since the block size of RC5 is just half of
RC6. Therefore, it is critical to reduce available plain-
texts of RC5 by 210 in order to break RC5 with more
higher round. This is why their attack does not work
well on RC5 directly. In fact, they also reported that
their attacks do not work well on RC5 compared with
the existing attack [1]. In [3], a correlation attack is
also applied to RC5. Their algorithm searches subkeys
from the final round to the 1st round by fixing both
lsb5(R0) and lsb5(L0) to be 0. Their attack also suffers
from the same problem of less available plaintext. The
important factor to target at RC5 is how to increase
the available plaintexts.

In this paper, we investigate how output Lh+1 after
h half-rounds depends on a chosen plaintext, and find
experimentally the following features of RC5.

1. The χ2-values for the least significant five bits on
Lh+1 become significantly high by simply setting
such R0 that fixes a rotation amount in the 1st
half-round. Note that any rotation amount, which
is not necessarily small rotation amount, outputs
the higher χ2-values.

2. Any consecutive five bits on Lh+1 outputs similarly
high χ2-values by simply setting such R0 that fixes
a rotation amount in the 1st half-round.

Usually we know that output of RC5 is highly unlikely
to be uniformly distributed if a plaintext is chosen in
such a way that it introduces a zero rotation or small
amount rotation in the 1st half-round [7]. However,
from the above feature 1, output of RC5 is also highly

unlikely to be uniformly distributed if only a rotation
in the 1st half-round is fixed. Apparently a rotation in
the 1st half-round is fixed if and only if the least sig-
nificant five bits of R0 is fixed. This means that any
plaintext can be used for correlation attack by classify-
ing it in the same least significant five bits. In this way
we can extend a chosen plaintext correlation attack to
a known plaintext attack without any cost. From the
above feature 2, any consecutive five bits on Lh+1 can
be used to compute the χ2-values in the similar success
probability.

We improve a correlation attack as a known plain-
text attack by taking full advantage of the above fea-
tures. The main points of our attack on RC5 are as
follows:

1. Use any plaintext by classifying it into the same
least significant five bits.

2. Determine the parts, on which the χ2-statistic is
measured, according to ciphertexts.

We also present two algorithms to recover 31 bits of the
final half-round key: one recovers each 4 bits in serial
and the other recovers each 4 bits in parallel. By em-
ploying our correlation attack, RC5-32 with r rounds (h
half-rounds) can be broken with a success probability of
90% by using 26.14r+2.27(23.07h+2.27) plaintexts. There-
fore in a more strict sense our attack can break RC5-
32/10 with 263.67 plaintexts in a probability of more
than 90%. In the case of success probability 30%, our
attack can break RC5-32 with r rounds (h half-rounds)
by using 25.90r+1.12(22.95h+1.12) plaintexts. Therefore
our attack can break RC5-32 with 21 half-rounds by
using 263.07 plaintexts in a probability of 30%.

This paper is organized as follows. Section 1 sum-
marizes some notations and definitions, which are used
in this paper. Section 3 applies Knudsen-Meier’s cor-
relation attack on RC5, and discusses the differences
between RC5 and RC6. Section 4 describes some ex-
perimental results including the above features of RC5.
Section 5 presents our key recovery algorithms, main
algorithm, a serial key recovery algorithm, and a paral-
lel key recovery algorithm. Section 6 discusses how to
extend our main algorithm to a known plaintext algo-
rithm.

2. Preliminary

This section denotes some notations and definitions,
which are used in the following sections.

46
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

2.1 RC5

Here we describe RC5 algorithm after defining the fol-
lowing notations.
+, + : an addition mod 232;
−, − : a subtraction mod 232;

⊕ : a bit-wise exclusive OR;
r : the number of (full)rounds;
h : the number of half-rounds (h = 2r);

an b : a cyclic rotation of a to the left by b bits;
ao b : a cyclic rotation of a to the right by b bits;
(Li, Ri): an input of the i-th half-round, (L0, R0),

(Lh+1, Rh+1) is a plaintext, a ciphertext
after h half-rounds encryption, respectively;

Si : the i-th subkey (Sh+1 is a subkey of
the h-th half-round);

lsbn(X) : the least significant n bits of X;
Xi : denotes the i-th bit of X;

X [i,j] : denotes from the i-th bit to the j-th bit of
X (i > j);

X : a bit-wise inversion of X.
We set the least significant bit (LSB) as the 1st

bit, and the most significant bit (MSB) as the 32-th bit
for any 32-bit element. RC5 encryption is defined as
follows. Figure 1 shows 1 half-round of encryption and
decryption: a plaintext (L0, R0) is encrypted to (Lh+1,
Rh+1) by h half-rounds iterations of a main loop, which
is called one half-round. Note that two consecutive half-
rounds correspond to one round of RC5.

Algorithm 1 (RC5 encryption):
1. L1 = L0 + S0; R1 = R0 + S1;
2. for i = 1 to h do:

Li+1 = Ri; Ri+1 = ((Li ⊕ Ri)n Ri) + Si+1).

Fig. 1 Encryption and decryption with RC5-w/r/b.

2.2 χ2-Test

We make use of the χ2-tests for distinguishing a ran-
dom sequence from nonrandom sequence [5], [7], [8]. Let
X = X0, ...,Xn−1 be sets of {a0,..., am−1}. Let Naj

(X)
be the number of X which takes on the value aj . The
χ2-statistic ofX which estimates the difference between
X and the uniform distribution is defined as follows:

χ2(X) =
m

n

m−1∑
i=0

(
Nai

(X)− n

m

)2

.

In our investigation of RC5, we use the threshold for 31
degrees of freedom, which is shown in Table 2. For ex-
ample, (level, χ2)=(0.95, 44.99) in Table 2 means that
the value of χ2-statistic exceeds 44.99 in the probability
of only 5% if the observation X is uniform. Here, we set
the level to 0.95 in order to distinguish the observation
X from a random permutation.

2.3 Experimental Remark

In our experiments, all plaintexts are generated by
using m-sequence [9]. For example, Main algorithm
uses 59-bit random number generated by m-sequence,
and Extended algorithm in Sect. 6 uses 64-bit ran-
dom number generated by m-sequence. The platforms
in our experiments are IBM RS/6000 SP (PowerPC
604e/332MHz × 256) with memory of 32GB.

3. Applying Knudsen-Meier’s Correlation At-
tack to RC5

In [7], Knudsen and Meier proposed a key-recovery at-
tack to RC6, which estimates a subkey from the 1st
round to the r-th round by handling a plaintext. Their
main idea is to choose such a plaintext that the least
significant five bits in the first and third words are con-
stant after one-round encryption. Therefore plaintexts
in RC6 are chosen as follows: 1. the least significant five
bits in the first and third words are zero; 2. the fourth
word is set to the values that introduce a zero rotation
in the 1st round. To sum up, their attack controls a
plaintext in two parts with 5 bits: 5 bits corresponding
to the χ2-test and 5 bits in relation to data dependent
rotations. Let us apply their idea to RC5 directly.

Algorithm 2 (Knudsen-Meier’s attack to RC5):
This algorithm recovers lsb5(S1).
Set s = lsb5(S1), and lsb5(R0) = x.
1. For each s(s = 0, 1, · · · , 31) of lsb5(S1),

compute x in such a way that it leads to

Table 2 χ2-distribution with 31 degree of freedom.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999 0.9999
χ2 30.34 32.35 34.60 37.36 41.42 44.99 52.19 61.10 69.11

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
47

Table 3 #texts required for χ2-value > 44.99 in Test 1, 2 and 3. (on the average of
100 keys)

#half-rounds 4 5 6 7 8 9 10
Test 1(log2(#texts)) 9.08 11.77 14.92 18.05 20.93 24.36 26.98
Test 2(log2(#texts)) 10.94 14.05 16.83 19.84 22.79 25.74 28.57
Test 3(log2(#texts)) 14.26 17.26 19.62 23.14 25.75 — —

a zero rotation in the 1-st half-round.
In other words, set x+ s = 0 (mod 32).

2. Choose plaintexts (L0, R0) with
(lsb5(L0), lsb5(R0)) = (0, x), and set
y = lsb5(L2h+1)

3. For each plaintext (L0, R0), update each
array by incrementing count[s][y].

4. For each s, compute the χ2-value χ2[s],
set lsb5(S1) = s for the highest value
χ2[s], and output lsb5(S1).

In order to fix lsb5(R2) after the 1st half-round,
Algorithm 2 fixes lsb5(L0) to be 0 and lsb5(R0) to be
the value that leads zero rotation amount in the 1st
half-round. As a result, Algorithm 2 can use only 254

plaintexts. In general, the number of plaintexts on RC5
is not so large as RC6. Therefore it is not efficient to ap-
ply their attack to RC5. An attack should be improved
in such a way that more plaintexts are available. In
[3], a correlation attack is also applied to RC5. Their
algorithm searches subkeys from the final subkey by
fixing both lsb5(R0) and lsb5(L0) to be 0. Therefore
their algorithm also suffers from the same problem of
less available plaintext. Note that available plaintexts
are 254 in both case.

4. χ2-Statistic of RC5

In this section, we investigate how to reduce the con-
straint of plaintexts in order to increase available plain-
texts. In RC5, lsb5(R0) determines the 1st half-round
data dependent rotation, so it would be desirable to
handle lsb5(R0) in some way. On the other hand, the
effect of lsb5(L0) = 0 deeply depends on lsb5(R0) as
follows: 1. if lsb5(R0) is fixed to a value that leads zero
rotation amount in the 1st half-round in the same way
as [7], then lsb5(L0) = 0 can fix lsb5(R2), that is, fix
the rotation amount of the 2nd half-round, and can also
fix lsb5(L3) for any available plaintext; 2. if lsb5(R0) is
fixed to just 0 in the same way as [3], then lsb5(L0) = 0
can not fix lsb5(R2) (i.e. lsb5(L3)) for any available
plaintext. Therefore, we want to investigate the effect
of lsb5(L0) = 0 in the case of lsb5(R0) = 0. Further-
more we want to investigate which parts are suitable
for being measured by χ2-statistic. In other words, we
investigate which parts output the higher χ2-statistics.
To observe these situations, we conduct the following
five experiments in each h half-round.

Test 1: χ2-test on lsb5(Lh+1) in setting lsb5(R0) =
lsb5(L0) = 0.

Test 2: χ2-test on lsb5(Lh+1) in setting lsb5(R0) = 0.

Test 3: χ2-test on lsb5(Lh+1) in setting lsb5(L0) = 0.
Test 4: χ2-test on lsb5(Lh+1) in setting lsb5(R0) =

x(x = 0, 1, ..., 31). (There are 32 cases in Test 4.)
Test 5: χ2-test on any consecutive 5 bits of Lh+1 in

setting lsb5(R0) = 0. (There are 32 cases in Test
5.)

4.1 Test 1, 2, and 3

Here we investigate the experimental results of Test 1,
2, and 3. Before showing experimental results, we dis-
cuss the differences between Test 1 and Test 2. The con-
dition of lsb5(R0) = 0 means that the rotation amount
of the 1st half-round is only fixed. The purpose of two
tests is to observe the effect of handling a plaintext in
the part corresponding to the χ2-test under the condi-
tion that the rotation amount of the 1st half-round is
fixed. Apparently Test 1 handles a plaintext in the part
corresponding to the χ2-test, but Test 2 does not han-
dle it. On the other hand, Test 3 sets only lsb5(L0) = 0,
so cannot control the rotation amount of the 1st half-
round at all. In [3], Test 1 and Test 3 are experimented
and investigated, but Test 2 is not discussed.

Table 3 shows the experimental results of Test 1,
2, and 3 which describe the number of plaintexts re-
quired for χ2-value exceeding 44.99. These tests are
computed to the second decimal place, and the χ2-
value is computed on the average of 100 different keys.
From Table 3, we see that the χ2-value in setting only
lsb5(L0) = 0 (Test 3) is much lower than Test 1, and
also lower Test 2. This means that fixing the rotation
amount of the 1st half-round, that is lsb5(R0) = 0,
causes highly nonuniform distribution. In fact, Test 3
requires about 25 times as many plaintexts as Test 1 in
order to get the same effect as Test 1. This is why Test
3 has no advantage to Test 1 even if available number
of plaintexts is considered. The same result on Test 1
and 3 is also reported in [3] although Test 2 is neither
experimented nor investigated.

Next we focus on the effect of lsb5(L0) = 0 un-
der the condition that the rotation amount of the 1st
half-round is fixed. From Table 3, we see that in each
half-round, the χ2-value in Test 1 is higher than that
in Test 2, but that almost the same effect of Test 1 is
expected in Test 2 if we use about 22 times plaintexts
as many as Test 1. On the other hand, each available
number of plaintexts in Test 1(lsb5(L0), lsb5(R0) = 0)
or Test 2(lsb5(R0) = 0) is 254 or 259, respectively. From
Table 3, each number of plaintexts required for χ2-value
exceeding 44.99 on h half-rounds, log2(#text), is esti-

48
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

Fig. 2 #texts for distinguishing from random permutation in
each lsb5(R0). (on the average of 100 keys)

mated

log2(#text) = 3.03h− 3.21 (Test 1),
log2(#text) = 2.93h− 0.73 (Test 2)

by using the least square method. Therefore by substi-
tuting each available number of plaintexts, we conclude
that the case of Test 1 or Test 2 is estimated to be dis-
tinguishable from a random sequence by 18 half-rounds
or 20 half-rounds, respectively. As a result, Test 2 is
more advantageous than Test 1.

4.2 Test 4

Next, we observe the experimental results of Test 4,
which are shown in Figure 2. As we have discussed
the above, setting lsb5(R0) = 0 means to fix the rota-
tion amount in the first round. Note that the rotation
amount is not necessarily equal to 0. Therefore the
same effect as lsb5(R0) = 0 would be expected if only
fixing lsb5(R0). Test 4 examines the hypothesis. In
Fig. 2, the horizontal line corresponds to the fixed value
of lsb5(R0) and the vertical line corresponds to required
plaintexts in order to exceed the threshold χ2-value of
44.99 for each lsb5(R0). From Fig. 2, we see that any
lsb5(R0) can be distinguished from a random permuta-
tion in almost the same way as lsb5(R0) = 0, i.e. just
fixing the rotation amount in the 1st half-round. To
sum up, we do not have to set lsb5(R0) = 0 in order to
increase the χ2-value. We use any R0 by just classify-
ing it into the same lsb5(R0). As a result, we can use
all plaintexts (264) to attack on RC5.

4.3 Test 5

We observe the experimental results of Test 5, which
are shown in Fig. 3. The horizontal line corresponds
to the first bit of consecutive 5 bits of Lh+1, and each
plot presents required plaintexts in order to exceed the

Fig. 3 #texts for distinguishing from random permutation in
each part. (on the average of 100 keys)

Fig. 4 Outline of our key recovery algorithm.

threshold χ2-value of 44.99 for each consecutive 5 bits.
In the case of i = 1, it corresponds to L[5,1]

h+1. In the

case of i = 32, it corresponds to L32h+1, L
[4,1]
h+1. In Test 5,

we compute the χ2-value in each part with 5 bits, and
compute how many plaintexts are required in order to
exceed the threshold χ2-value of 44.99. From Fig. 3, we
see that any consecutive five bit can be distinguished
from a random permutation in almost the same way as
L
[5,1]
h+1. In other word, correlations are observed on any
consecutive five bits of Lh+1.

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
49

Fig. 5 Success probability of main algorithm. (in 100 trials)

Table 4 Success probability of main algorithm. (in 100 trials)

4 half-rounds 5 half-rounds 6 half-rounds
#texts #keys #texts #keys #texts #keys
210 31 214 42 217 48
211 69 215 75 218 72
212 93 216 99 219 94

7 half-rounds 8 half-rounds 9 half-rounds 10 half-rounds
#texts #keys #texts #keys #texts #keys #texts #keys
220 46 223 41 226 35 229 44
222 88 225 89 228 84 231 88
223 100 226 98 229 98 232 99

5. Key Recovery Algorithm

In this section, we present a key recovery algorithm,
called Main algorithm, by using the results of tests in
Sect. 4.

5.1 Key Recovery of the Least Significant 4 bits

Main algorithm is designed by making use of the results
of tests as follows:
1. Only lsb5(R0) is fixed to 0 (Test 1, 2);
2. The parts measured by χ2-statistic are not fixed to
lsb5(Lh+1) (Test 5);
3. The χ2-value is computed on z to which consecutive
5 bits y is exactly decrypted by 1 half-round (see Fig. 4);
4. The decrypted z is classified into 32 cases according
to lsb5(Lh+1) = x, and the χ2-value is computed on
each distribution of z for each lsb5(Lh+1) = x.

In Sect. 6, Main algorithm is extended to a known
plaintext correlation attack in such a way that uses any
fixed lsb5(R0) by using the result of Test 4. This al-
gorithm is called Extended algorithm. Note that, in
Main algorithm or Extended algorithm, the number of
available plaintexts is 259 or 264, respectively.

Algorithm 3 (Main algorithm):

This algorithm recovers lsb4(Sh+1). Let
(lsb5(Lh+1), lsb5(Rh+1)) = (x, y), where x is just
rotation amounts in the h-th half-round.

1. Choose a plaintext (L0, R0) with
lsb5(R0)=0, and encrypt it.

2. For each candidate s(s = 0, 1, · · · , 15) of
lsb4(Sh+1), set S5h+1 = 0, and decrypt
Rh+1 by 1 half-round. Note that we know
the exact rotation number x in the final
round, and that we exactly know where y
is decrypted by 1 half-round shown in
Fig. 4, which is set to z.

3. For each value s, x, and z, we update
each array by incrementing count[s][x][z].

4. For each s and x, compute χ2[s][x].
5. Compute the average ave[s] of {χ2[s][x]}x

for each s, and output s with the highest
ave[s] as lsb4(Sh+1).

Main algorithm computes the χ2-value on z de-
crypted of exactly y by the final round subkey. There-
fore Main algorithm estimates only lsb4(Sh+1) since
the χ2-value in lsb5(Sh+1) = 1s is the same as that
in lsb5(Sh+1) = 0s in the following reason. For s =
lsb4(Sh+1) we set two candidates t and t′ of lsb5(Sh+1)
to t = 1s and t′ = 0s. So t = t′ + 16 (mod 32). We
also set (lsb5(Lh+1), lsb5(Rh+1)) = (x, y), and the de-
crypted value of y by using t or t′ to z or z′, respectively.

50
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

Table 5 # texts required for recovering a key with the success probability 90% and
45% in Main algorithm.

#half-rounds 4 5 6 7 8 9 10
log2(#text) (90%) 11.89 15.43 18.78 22.07 25.15 28.28 30.92

log2(#text) (45%) 10.76 13.94 17.23 19.96 23.22 26.59 29.30

Then z[4,1] = z′[4,1] and z5 = z′5. Therefore z = z′+16
(mod 32). As a result, each distribution by using t or
t′, count[t][x][z] or count[t′][x][z′] satisfies

count[t][x][z] = count[t′][x][z′ + 16 (mod 32)],

so we get χ2[t][x] = χ2[t′][x] from the definition of χ2-
value. This is why the χ2-value in S[5,1]

h+1 = 1s is the

same as that in S[5,1]
h+1 = 0s for s = S

[4,1]
h+1 .

Figure 5 and Table 4 show the success probability
among 100 trials for RC5 with 4, · · · , 10 half-rounds.
More precise experimental results are shown in Table 5.
In our policy, we design all experiments as precisely as
possible. Usually experimental results are shown rather
roughly such as Tables 1 and 4. For example, 228 plain-
texts can recover a key with the success probability
82%[2] seen in Table 1. However it is not necessarily
minimum number of plaintexts that can recover keys
with the success probability 82%. Generally the effi-
ciency of algorithm is discussed with the success prob-
ability of 80% or 90%. So such discussion will be done
rather roughly. In our experiment, we calculate all ex-
periments to the second decimal place which is shown
in Table 5. From Table 5, the number of plaintexts re-
quired for recovering a key on r rounds (h half-rounds)
with the success probability of 90%, log2(#text), is es-
timated

log2(#text) = 6.23r + 0.07
(log2(#text) = 3.12h+ 0.07)

by using the least square method. By substituting
log2(#text) = 59, we conclude that our algorithm is
estimated to recover a key on RC5 with 18 half-rounds
with 256.23 plaintexts in the success probability of 90%.
In the case of success probability of 45%, the number
of required plaintexts is estimated as follows,

log2(#text) = 6.18r − 1.47
(log2(#text) = 3.09h− 1.47).

Therefore, our algorithm can recover a key correctly
on RC5 until 19 half-rounds with 257.24 plaintexts in
the success probability of 45%. As we have seen the
above result, it is indispensable to increase available
plaintexts in order to break RC5 by higher round. In
Sect. 6, we will extend Main algorithm to break RC5 by
20 half-rounds.

In our approximation, we do not use the result of 4
half-rounds but all other results except for 4 half-rounds
in order to improve the approximation efficiency. The
key recovery with 4 half-rounds examines a bias for dis-
tribution of consecutive 5 bits in L4, which is equivalent

to examine a bias for distribution of a consecutive 5 bits
in L2. A bias for distribution of L2 depends on the 2nd
half-round operation, S0, and plaintexts R0. This is
why, compared with key recovery of more than 4 half-
rounds, key recovery with 4 half-rounds depends deeply
on the choice of S0, and plaintexts R0. In fact, we have
examined the coefficient of determination [12] for each
approximation polynomial, which evaluates the approx-
imation efficiency of the least square method: the coef-
ficient of determination for approximation polynomial
including the result of 4 half-rounds is worse than that
for approximation polynomial without the result of 4
half-rounds. This is why we do not use the result of
4 half-rounds but all other results, 5–10 half rounds.
Note that the only approximation polynomial with the
result of 4 half-rounds indicates lower coefficient of de-
termination. We get almost the same approximation
polynomial even if the result of any half-round except
4 half-rounds is used.

5.2 Key Recovery of Any Consecutive 4Bits

Here discusses two algorithms that recover any consec-
utive 4 bits: the serial key recovery algorithm and the
parallel key recovery algorithm.

5.2.1 The Serial Key Recovery Algorithm

The serial key recovery algorithm recovers each 4 bits
sequentially from S[4,1]

h+1 to S
[28,25]
h+1 , and 3-bit S[31,29]

h+1 by
using Algorithm 3. For example, in the case of recover-
ing S[8,5]

h+1 , we set S
[4,1]
h+1 to the value recovered before and

apply Algorithm 3 by setting s = S[8,5]
h+1 and y = R

[9,5]
h+1.

After repeating the above procedures by eight times,
S
[31,1]
h+1 , that is all bits of Sh+1 except for MSB of Sh+1

are recovered. Our experimental results of serial key re-
covery are shown in Fig. 6 and Table 6. The results in
Table 6 are divided into two cases of S[28,25]

h+1 , · · · , S[8,5]
h+1

and S[31,29]
h+1 since only S[31,29]

h+1 is 3-bit estimation. Ta-
ble 6 shows the average of success probability of each
interval of S[28,25]

h+1 , · · · , S[8,5]
h+1 and the success probability

of S[31,29]
h+1 . Compared with Tables 6 and 4, we see that

any key of intervals from S[31,29]
h+1 to S[8,5]

h+1 can be recov-

ered with almost the same high probability as S[4,1]
h+1 . In

the case of 6 half-rounds (h = 6), 8 half-rounds (h = 8),
and 10 half-rounds (h = 10), we can recover S[31,1]

h+1 with
a success probability of about 95%, 98%, and 97% by
using about 219, 226, and 232 plaintexts on the average,
respectively.

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
51

Fig. 6 Success probability of serial key recovery. (in 100 trials)

Table 6 Success probability of serial key recovery. (the average of 6*100 trials of

S
[28,25]
h+1 , · · · , S[8,5]

h+1 and S
[31,29]
h+1 (100 trials an interval))

4 half-rounds 5 half-rounds 6 half-rounds
#keys #keys #keys

#texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗

210 32.3 44 214 45.0 57 216 24.0 30
211 60.7 74 215 80.2 90 218 72.7 81
212 94.0 99 216 98.3 100 219 95.3 99

7 half-rounds 8 half-rounds 9 half-rounds 10 half-rounds
#keys #keys #keys #keys

#texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗

219 26.0 38 223 38.2 44 226 35.8 41 228 26.5 29
222 89.2 96 225 88.5 92 228 87.2 90 231 85.5 90
223 98.2 100 226 98.2 100 229 97.2 98 232 97.7 100

I∗: the average of S
[28,25]
h+1 , · · · , S[8,5]

h+1 , II∗: S
[31,29]
h+1

5.2.2 The Parallel Key Recovery Algorithm

We have seen that the serial key recovery algorithm
can recover the final half-round key S[31,1]

h+1 with the sig-
nificantly high success probability. However, unfortu-
nately, the serial key recovery algorithm can not work in
parallel. This section investigates how to recover each
subkey of S[31,29]

h+1 ,..., S[4,1]
h+1 in parallel. Before showing

our parallel key recovery algorithm, we explain the next
experiments.

Test 6: Apply Algorithm 3 to S
[4+4i,1+4i]
h+1 (i =

0, 1, · · · , 6) or S[31,29]
h+1 by setting lower bits of Sh+1 than

S
[4+4i,1+4i]
h+1 or S[31,29]

h+1 to 0. Compute the probability
with which a correct key can be recovered.
Test 7: Apply Algorithm 3 to S

[4+4i,1+4i]
h+1 (i =

0, 1, · · · , 6) or S[31,29]
h+1 by setting lower bits of Sh+1 than

S
[4+4i,1+4i]
h+1 or S[31,29]

h+1 to 0. Compute the probability
with which a key including ±1 (mod 16) error or ±1
(mod 8) error can be recovered respectively.

Figure 7 and Table 7 (Fig. 8 and Table 8) show the ex-

perimental results in Test 6 (Test 7). Table 7 or 8 shows
the average of success probability of S[28,25]

h+1 , · · · , S[8,5]
h+1

and the success probability of S[31,29]
h+1 in Test 6 or 7.

Table 8 also shows the success probability of S[4,1]
h+1 in

Test 7. The result of S[4,1]
h+1 in Test 6 is the same as that

in Main algorithm (Table 4). From the experimental
results, we see that the probability of recovering a cor-
rect key (Test 6) is about 50% while that of recovering
a key including ±1 error (Test 7) is more than 90%.
The reason is that key recovering with ±1 error ab-
sorbs the error bridging of lower bits much better than
correct-key recovering. In fact, the success probability
of S[4,1]

h+1 in Test 7, which does not suffer from bridging

on lower bits, is higher than that of S[31,29]
h+1 , · · · , S[8,5]

h+1
in Test 7. Let us discuss the difference between Test
7 and the serial key recovery algorithm in Sect. 5.2.1.
From the experimental results, we see that the proba-
bility of S[31,29]

h+1 , · · · , S[8,5]
h+1 in Test 7 is almost the same

but slightly worse than that in the serial key recov-
ery algorithm. The reason is expected that the serial
key recovery in S[31,29]

h+1 , · · · , S[8,5]
h+1 can compute the right

bridging on lower bits by using the recovered correct

52
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

Fig. 7 Success probability of Test 6. (in 100 trials)

Table 7 Success probability of Test 6 (the average of 6*100 trials of

S
[28,25]
h+1 , · · · , S[8,5]

h+1 and S
[31,29]
h+1 . (100 trials an interval))

4 half-rounds 5 half-rounds 6 half-rounds
#keys #keys #keys

#texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗

212 38.7 41 215 33.2 33 218 30.7 38
214 47.7 50 216 46.8 45 220 50.0 49
215 48.7 47 217 50.3 46 221 50.3 48

7 half-rounds 8 half-rounds 9 half-rounds
#keys #keys #keys

#texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗

221 25.2 35 224 25.2 30 227 26.8 23
222 37.2 42 226 45.2 45 228 39.8 47
223 43.7 46 227 47.8 45 229 49.3 56

Fig. 8 Success probability of Test 7. (in 100 trials)

keys for the lower bits.
Next we focus our mind on Test 6. Both Fig. 7 and

Table 7 show that Test 6 suffers completely from error
bridging of lower bits. More importantly, the probabil-
ity of Test 6 converges to about 50 %: however many
plaintexts are used, the probability has never become
higher than an upper bound. From this, we put forward

a hypothesis that some specific keys are not almost re-
covered. In fact, we see experimentally that, in the
case of recovering keys of S[8,5]

h+1 , S
[8,5]
h+1 can not be al-

most recovered when the lower bits S[4,1]
h+1 = 8, · · · , 15.

Especially when S[4,1]
h+1 = 11, · · · , 15, any S[8,5]

h+1 can not
be recovered at all however many plaintexts are used.

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
53

Table 8 Success probability of Test 7 (the average of 6*100 trials of

S
[28,25]
h+1 , · · · , S[8,5]

h+1 , S
[31,29]
h+1 and S

[4,1]
h+1 . (100 trials an interval))

4 half-rounds 5 half-rounds 6 half-rounds

#keys #keys #keys
#texts I∗ II∗ III∗ #texts I∗ II∗ III∗ #texts I∗ II∗ III∗

210 33.0 58 38 214 41.2 65 56 216 30.2 49 29
211 52.5 66 63 215 67.2 82 82 218 63.3 78 76
212 83.5 88 96 216 93.0 95 99 219 86.2 92 96
213 98.3 97 100 217 98.8 100 100 220 98.0 99 99

7 half-rounds 8 half-rounds 9 half-rounds
#keys #keys #keys

#texts I∗ II∗ III∗ #texts I∗ II∗ III∗ #texts I∗ II∗ III∗

219 33.2 58 41 223 39.8 66 49 225 30.2 52 35
222 81.2 91 87 225 80.8 86 87 228 79.2 93 83
223 97.2 98 100 226 95.8 99 98 229 94.3 96 97

I∗: the average of S
[28,25]
h+1 , · · · , S[8,5]

h+1 , II∗: S
[31,29]
h+1 , III∗: S

[4,1]
h+1

Table 9 Error-bridging R
[4,1]
h+1 and the probability for S

[4,1]
h+1 . (β = 0)

S
[4,1]
h+1 0 1 2 3 4 5 6 7

error-bridging R
[4,1]
h+1 - 0 0,1 0,1,2 0, · · · , 3 0, · · · , 4 0, · · · , 5 0, · · · , 6

Probability 0 1/16 2/16 3/16 4/16 5/16 6/16 7/16

8 9 10 11 12 13 14 15
0, · · · , 7 0, · · · , 8 0, · · · , 9 0, · · · , 10 0, · · · , 11 0, · · · , 12 0, · · · , 13 0, · · · , 14
1/2 9/16 10/16 11/16 12/16 13/16 14/16 15/16

Thus we have observed that the success probability of
key recovering in S[8,5]

h+1 deeply depends on the lower bits

S
[4,1]
h+1 .
For simplicity, let us investigate the case of recov-

ering S[8,5]
h+1 . The same discussion holds in other cases of

S
[31,29]
h+1 , · · · , S[12,9]

h+1 . In Test 6, we set lower 4 bits than

S
[8,5]
h+1 to be 0. To make the discussion clear, we de-

note the real value by S[4,1]
h+1 , and the assumed value

by β. So in Tests 6, β = 0. Then for any Rh+1,
(Rh+1 − Sh+1)[9,5] is determined by S[9,5]

h+1 , R
[9,5]
h+1, and

the bridging on (R[4,1]
h+1 − S

[4,1]
h+1), which is estimated by

(R[4,1]
h+1 − β) in Test 6. This is why key recovering is

failed if and only if the bridging on (R[4,1]
h+1 − β) is not

coincident with that on (R[4,1]
h+1−S

[4,1]
h+1). The probability

that bridging on (R[4,1]
h+1−β) is not coincident with that

on (R[4,1]
h+1−S

[4,1]
h+1) is different for each S

[4,1]
h+1 . For exam-

ple in the case of S[4,1]
h+1 = 0 a bridging on (R[4,1]

h+1 − 0)
is apparently coincident with that on (R[4,1]

h+1 − S[4,1]
h+1)

for any R[4,1]
h+1. We investigate, for each S[4,1]

h+1 , R
[4,1]
h+1

that becomes an error-bridging and compute the error-
bridging probability to all R[4,1]

h+1. Table 9 shows the

results. From Table 9, in the case of S[4,1]
h+1 = 8, · · · , 15

a bridging on (R[4,1]
h+1−0) is not coincident with that on

(R[4,1]
h+1−S

[4,1]
h+1) with the probability of 1/2 and over. In

these keys, the χ2-value is also computed by using in-

valid value with the probability of 1/2 and over. There-
fore it is expected that recovering such keys is difficult
even if many plaintexts are used. To observe this, we
conduct an experiment on the relation between success
probability of a key recovering and error-bridging prob-
ability of the key in each half-round. Table 10 shows
each success probability of keys with the error-bridging
probability of less than 1/2, that of 1/2 or above, and
that of 10/16 or above. We see in Table 10 that: 1.
keys with the error-bridging probability of less than
1/2 can be recovered correctly by using enough many
plaintexts; 2. keys with the error-bridging probability
of 1/2 and over cannot almost be recovered correctly
even if many plaintexts are used; 3. any key with the
error-bridging probability of 11/16 and over cannot be
recovered correctly. From these observation, we esti-
mate the lower bound of probability to recover a correct
key, Pr(β), as the probability of keys with the error-
bridging-probability of less than 1/2,

Pr(β)=

keys with
(the error-bridging probability) < 1/2

keys in S[4,1]
h+1

.

Therefore we get Pr(0) = 1/2 = 0.50, which reflects
the experimental results in Fig. 7, Tables 7 and 10.

In order to improve the parallel attack, we have
searched all available β(0 ≤ β ≤ 15) to find β with
the maximum Pr(β). The maximum Pr(β) is 15/16 =
0.9375, which is given by β = 7, 8. We have also inves-
tigated a type of two-valued β such as

54
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

Table 10 Success probability of each key recovering in S
[8,5]
h+1 with each

error-bridging probability. (β = 0, in 100 keys)

Error-bridging 4 half-rounds 5 half-rounds

probability S
[4,1]
h+1 214 217 220 217 220 223

< 1/2 0, · · · , 7 54/55 55/55 55/55 44/45 45/45 45/45
≥ 1/2 8, · · · , 15 3/45 2/45 2/45 6/55 6/55 4/55

≥ 11/16 11, · · · , 15 0/23 0/23 0/23 0/38 0/38 0/38

6 half-rounds 7 half-rounds 8 half-rounds
220 223 226 223 226 229 226 229 232

51/51 51/51 51/51 45/50 49/50 49/50 47/51 51/51 51/51
5/49 1/49 2/49 10/50 2/50 4/50 5/49 5/49 4/49
0/32 0/32 0/32 0/29 0/29 0/29 0/32 0/32 0/32

Table 11 Error-bridging R
[4,1]
h+1 and the probability for S

[4,1]
h+1 . (β = 8)

S
[4,1]
h+1 0 1 2 3 4 5 6 7

error-bridging R
[4,1]
h+1 0, · · · , 7 1, · · · , 7 2, · · · , 7 3, · · · , 7 4, · · · , 7 5, 6, 7 6, 7 7

Probability 1/2 7/16 6/16 5/16 4/16 3/16 2/16 1/16

8 9 10 11 12 13 14 15
– 8 8, 9 8, 9, 10 8, · · · , 11 8, · · · , 12 8, · · · , 13 8, · · · , 14
0 1/16 2/16 3/16 4/16 5/16 6/16 7/16

Table 12 Success probability of each key recovering in S
[8,5]
h+1 with each

error-bridging probability. (β = 8, in 100 keys)

Error-bridging 4 half-rounds 5 half-rounds

probability S
[4,1]
h+1 214 217 220 217 220 223

< 1/2 1, · · · , 15 91/92 92/92 92/92 87/92 91/92 91/92
1/2 0 4/8 4/8 5/8 5/8 4/8 4/8

6 half-rounds 7 half-rounds 8 half-rounds

220 223 226 223 226 229 226 229 232

83/92 89/92 90/92 89/96 94/96 95/96 86/95 94/95 94/95
5/8 6/8 5/8 2/4 2/4 3/4 3/5 2/5 4/5

β =

{
4 if R[4,1]

h+1 < 8,

11 otherwise.

However, even in this type, the maximum Pr(β) is
15/16. There are total 256 kinds of β including two-
valued, out of which 87 kinds give the maximum Pr(β).

We discuss the improved parallel attack by using
β = 8, in which Pr(8) is just 15/16. Table 11 shows
R
[4,1]
h+1 that becomes an error-bridging and the error-

bridging probability for each S[4,1]
h+1 . Table 12 shows

each success probability of keys with the error-bridging
probability of less than 1/2, and that of keys with the
error-bridging probability of 1/2. From Table 12, in
the same way as β = 0, keys with the error-bridging
probability of less than 1/2 can be recovered correctly
by using enough many plaintexts. More precise exper-
imental results are shows in Fig. 9 and Table 13. From
Table 13, we see that a parallel algorithm can be im-
proved to recover a correct key with the success prob-
ability of about 90% by using roughly twice plaintexts
as many as Test 7.

6. A Known Plaintext Correlation Algorithm

In this section, we extend Algorithm 3 in such a way
that any plaintext, including lsb5(R0) 	= 0, can be used
as follows: For given any plaintext(L0, R0), classify
them into the same lsb5(R0), and apply Algorithm 3.
The algorithm is as follows.

Algorithm 4 (Extended algorithm):
This algorithm recovers lsb4(Sh+1). Let
x = lsb5(Lh+1) in the same way as Algorithm 3.

1. Given n known plaintexts (L0, R0),
classify each plaintext (L0, R0) into 32
cases c[l](l = 0, 1, · · · , 31) according to
lsb5(R0).

2. For each c[l](l = 0, 1, · · · , 31), compute
χ2[l][s][x] according to Step 2--4 in
Algorithm 3.

3. Compute the average ave[l][s] of {χ2[l][s][x]}x

for each s and each l.
4. Compute sum[s] =

∑31
l=0 ave[l][s] for each s,

and output s with the highest sum[s]

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
55

Fig. 9 Success probability of improved parallel key recovery. (in 100 trials)

Table 13 Success probability of improved parallel key recovery (the average of

6*100 trials of S
[28,25]
h+1 , · · · , S[8,5]

h+1 and S
[31,29]
h+1 . (100 trials an interval))

4 half-rounds 5 half-rounds 6 half-rounds

#keys #keys #keys
#texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗

211 41.3 46 214 29.2 48 218 52.7 59
212 71.2 84 215 57.7 55 219 77.7 82
213 91.5 91 216 84.7 83 220 92.5 93
214 95.7 96 217 93.2 95 222 97.2 97

7 half-rounds 8 half-rounds 9 half-rounds 10 half-rounds
#keys #keys #keys #keys

#texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗ #texts I∗ II∗

220 30.7 49 223 26.7 37 227 42.8 55 230 45.7 48
222 71.7 73 226 86.5 90 228 68.2 78 231 67.0 81
223 90.3 93 227 95.0 94 229 88.2 90 232 86.0 94

I∗: the average of S
[28,25]
h+1 , · · · , S[8,5]

h+1 , II∗: S
[31,29]
h+1

Fig. 10 Success probability of Extended algorithm. (in 100 trials)

as lsb4(Sh+1).

In Extended algorithm, all plaintexts are also ran-
domly generated by m-sequences as we have described
in Sect. 2. Therefore lsb5(R0) of plaintexts used in our

experiments are uniformly distributed in {0, 1, · · · , 31}.
Figure 10 and Table 14 show that the success probabil-
ity among 100 trials for RC5 with 4–10 half-rounds.
More precise experimental results are shown in Ta-
ble 15. From Table 15, the number of plaintexts re-

56
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.1 JANUARY 2002

Table 14 Success probability of Extended algorithm. (in 100 trials)

4 half-rounds 5 half-rounds 6 half-rounds
#texts #keys #texts #keys #texts #keys
213 43 216 30 219 30
214 95 217 65 220 71
215 100 218 94 221 95

7 half-rounds 8 half-rounds 9 half-rounds 10 half-rounds
#texts #keys #texts #keys #texts #keys #texts #keys
222 41 225 27 228 35 231 37
223 72 226 57 230 88 232 60
224 96 227 96 231 99 233 90

Table 15 # texts required for recovering a key with the success probability 90%, 45%,
and 30% in Extended algorithm.

#half-rounds 4 5 6 7 8 9 10
log2(#text) (90%) 13.96 17.73 20.63 23.71 26.64 30.01 33.00
log2(#text) (45%) 13.09 16.39 19.41 22.14 25.62 28.43 31.52
log2(#text) (30%) 12.53 15.94 18.81 21.63 25.07 27.53 30.70

Table 16 The χ2-value of correct keys and wrong keys in 4 half-rounds. (in 100 trials)

Key recovering Correct keys Wrong keys∗

texts probability Average Variance Average Variance
Main algorithm 212 93% 40.50 3.69 38.42 2.41

Extended algorithm 214 95% 32.31 0.10 32.08 0.09

∗: The highest χ2-value among wrong keys is used for each trial.

quired for recovering a key on r rounds (h half-rounds)
with the success probability of 90%, log2(#text), is es-
timated

log2(#text) = 6.14r + 2.27
(log2(#text) = 3.07h+ 2.27)

by using the least square method. By substituting
log2(#text) = 64, we conclude that our algorithm is
estimated to recover a key on RC5 with 20 half-rounds
with 263.67 plaintexts in the success probability of 90%.
In the case of success probability of 30%, the number
of required plaintexts is estimated as follows,

log2(#text) = 5.90r + 1.12
(log2(#text) = 2.95h+ 1.12).

Therefore our algorithm can recover a key correctly on
RC5 until 21 half-rounds with 263.07 plaintexts in the
success probability of 30%.

As for Extended algorithm, both the serial and im-
proved parallel key recovery algorithm also work for re-
covering S[31,1]

h+1 in the same way as Main algorithm.

6.1 Further Discussion

Here we discuss the difference between Extended al-
gorithm and Main algorithm. Extended algorithm re-
quires about 22 times as many plaintexts as Main algo-
rithm in order to recover correct keys as we have seen in
Tables 14 and 4. In our experiments all plaintexts are
randomly generated. Therefore, strictly speaking, the

χ2-value in Extended algorithm is computed by using
about 2−3 times as many plaintexts as Main algorithm
since the χ2-value in Extended algorithm is computed
for each lsb5(R0). As a result, Extended algorithm
can recover a key correctly with the lower χ2-value.
We investigate experimentally the relation between χ2-
value of correct keys and that of wrong keys in both
algorithms. Table 16 shows each average and variance
in 100 keys. As for wrong keys, the highest χ2-value
among wrong keys is shown, which often causes to re-
cover a wrong key. From Table 16, we see that the
average among χ2-value of correct keys in Extended al-
gorithm is lower and the variance is much lower than
that in Main algorithm. We expect that Extended al-
gorithm reduces the variant of χ2-value by using not
specific lsb5(R0) but all lsb5(R0) and can recover a key
correctly with the lower χ2-value.

7. Conclusions

In this paper, we have proposed a known plaintext cor-
relation attack on RC5, which improves a chosen plain-
text correlation attack on RC6 proposed by Knudsen-
Meier. We have also shown three algorithms, main al-
gorithm, a serial key recovery algorithm, and a parallel
key recovery algorithm. Main algorithm recovers each
consecutive 4-bit subkey of the final half-round on RC5.
Two algorithms, a serial key recovery algorithm, and a
parallel key recovery algorithm recover 31-bit subkey of
the final half-round on RC5 by using main algorithm:
a serial key recovery algorithm works in serial with the

MIYAJI et al.: IMPROVED CORRELATION ATTACK ON RC5
57

significantly high success probability, and a parallel key
recovery algorithm works in parallel with rather lower
success probability and much more plaintexts than se-
rial algorithm.

Our correlation attack has been estimated to break
RC5-32/r with a success probability of 90% by using
26.14r+2.27 plaintexts. Therefore our attack can break
RC5-32 with 20 half-rounds (10 rounds) by 263.67 plain-
texts. Furthermore our improved attack can break
RC5-32 with 21 half-rounds in a success probability of
30% by using 263.07 plaintexts.

Acknowledgments

The authors wish to thank Shiho Moriai and Takeshi
Shimoyama for their valuable comments. The authors
expresses my gratitude to Motoji Ohmori for helpful
comments. The authors are also grateful to anonymous
referees for invaluable comments.

References

[1] A. Biryukov and E. Kushilevitz, “Improved cryptanalysis
of RC5,” Advances in Cryptology-Proceedings of EURO-
CRYPT’98, Lecture Notes in Computer Science, vol.1403,
pp.85–99, Springer-Verlag, 1998.

[2] J. Borst, B. Preneel, and J. Vandewalle, “Linear Crypt-
analysis of RC5 and RC6,” Proc. Fast Software Encryp-
tion, Lecture Notes in Computer Science, vol.1636, pp.16–
30, Springer-Verlag, 1999.

[3] J. Hayakawa, T. Shimoyama, and K. Takeuchi, “Correla-
tion attack to the block cipher RC5 and the simplified vari-
ants of RC6,” submitted paper in Third AES Candidate
Conference, April 2000.

[4] B. Kaliski and Y. Lin, “On differential and linear crypt-
analysis of the RC5 encryption algorithm,” Advances in
Cryptology—Proceedings of CRYPTO’95, Lecture Notes
in Computer Science, vol.963, pp.171–184, Springer-Verlag,
1995.

[5] J. Kelsey, B. Schneier, and D. Wagner, “Mod n Cryptanal-
ysis, with applications against RC5P and M6,” Proc. Fast
Software Encryption, Lecture Notes in Computer Science,
vol.1636, pp.139–155, Springer-Verlag, 1999.

[6] L. Knudsen and W. Meier, “Improved differential at-
tacks on RC5,” Advances in Cryptology—Proceedings of
CRYPTO’96, Lecture Notes in Computer Science, vol.1109,
pp.216–228, Springer-Verlag, 1996.

[7] L. Knudsen and W. Meier, “Correlations in RC6 with a
reduced number of rounds,” Proc. Fast Software Encryp-
tion, Lecture Notes in Computer Science, Springer-Verlag,
to appear.

[8] D. Knuth, The art of computer programming, vol.2,
Seminumerical Algorithms, 2nd ed., Addison-Wesley, Read-
ing, Mass., 1981.

[9] A. Menezes, P.C. Oorschot, and S. Vanstone, Handbook of
applied cryptography, CRC Press, 1996.

[10] R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6
Block Cipher. v1.1,” 1998.

[11] R. Rivest, “The RC5 encryption algorithm,” Proc. Fast
Software Encryption, Lecture Notes in Computer Science,
vol.1008, pp.86–96, Springer-Verlag, 1995.

[12] S. Shirohata, An introduction of statistical analysis, Ky-
oritsu Syuppan, 1992.

Atsuko Miyaji received the B.Sc.,
the M.Sc., and Dr. Sci. degrees in math-
ematics from Osaka University, Osaka,
Japan in 1988, 1990, and 1997 respec-
tively. She joined Matsushita Electric In-
dustrial Co., LTD from 1990 to 1998 and
engaged in research and development for
secure communication. She has been an
associate professor at JAIST (Japan Ad-
vanced Institute of Science and Technol-
ogy) since 1998. Her research interests in-

clude the application of projective varieties theory into crypto-
graphy and information security. She is a member of the Interna-
tional Association for Cryptologic Research and the Information
Processing Society of Japan.

Masao Nonaka received the degree
of B.Sc. in Computer Science and Engi-
neering from University of Aizu, Japan,
in 2000. He has joined Japan Ad-
vanced Institute of Science and Technol-
ogy (JAIST) since 2000. He is currently
a master student at School of Information
Science. His current research field is cryp-
tology, especially cryptanalysis regarding
symmetric key cryptsystem.

Yoshinori Takii received the B.E.
from the Department of Computer Sci-
ence, National Defense Academy and the
M. info. Sc. from JAIST in 1999 and 2001
respectively. He has joined Japan Air Self
Defese Force since 1995 and engages in re-
search and development of secret key ci-
phers. He had studied the information se-
curity in JAIST from 1999 to 2001.

