A General Model of Multisignature Schemes with Message Flexibility, Order Flexibility, and Order Verifiability**

Shirow MITOMI†*, Nonmember and Atsuko MIYAJI†a), Regular Member

SUMMARY Multisignature scheme realizes that plural users generate the signature on a message, and that the signature is verified. Various studies on multisignature have been proposed [2], [6], [11], [15], [18]. They are classified into two types: RSA [13]-based multisignature [6], [11], and discrete logarithm problem (DLP) based multisignature [2], [15], [18], all of which assume that a message is fixed beforehand. In a sense, these schemes do not have a feature of message flexibility. Furthermore all schemes which satisfy with order verifiability designate order of signers beforehand [2], [18]. Therefore these protocols have a feature of order verifiability but not order flexibility. For a practical purpose of circulating messages soundly through Internet, a multisignature scheme with message flexibility, order flexibility and order verifiability should be required. However, unfortunately, all previous multisignature do not realize these features. In this paper, we propose a general model of multisignature schemes with flexibility and verifiability. We also present two practical schemes based on DLP based message recover signature [10] and RSA signature [6], respectively.

**A preliminary version was presented at SCIS’2000 and ACISP’2000 [9].

1. Introduction

In proportion as the spread of personal computers and network, messages like documents, data, software, etc., have been circulated through Internet. In such environment, an entity sends/forwards an original message to others, or sends a modified message to others. Through the process of circulation, a message has been improved or added a convenient feature one by one, and finally has been completed. However recently it has been a new problem for computer virus to be mixed into a message through the process of this circulation. Apparently it is an obstacle to circulate messages soundly through Internet. Another problem concerns the copyright: it is necessary to distinguish an original author from authors who modify an original message in a circulating message. This is why a multisignature scheme suitable for such an environment should be required.

Up to the present, various studies on multisignature have been proposed [2], [6], [11], [12], [15], [18]. They are classified into two types: RSA [13] based multisignature [6], [11], and discrete logarithm problem (DLP) based multisignature [2], [15], [18]. All schemes assume that a message is fixed beforehand since they suppose the following scenario: a message fixed beforehand is passed and signed one by one through members in an organization like a company. Therefore these schemes cannot handle the following situation: an original message is passed and modified by unspecified entities. Furthermore we want to guarantee such circulating message in the next point: who writes an original message, who modifies the message, to which the message is modified, and how order the message is modified. In previous multisignature schemes [2], [6], [11], [15], [18], signing from the first signer is obliged to start only if one of signers wants to modify a message: theses do not have a feature of message flexibility. Furthermore [6], [11], [15] have a feature of order verifiability neither. Order verifiability is first realized in [2], [18]. However they must designate order of signs beforehand.

If we want to change order of signers, add a new signer, or exclude a signer, we are obliged to reset some data like public keys [2]: these have a feature of order verifiability but not order flexibility. Therefore previous schemes are not suitable for handling the above situation that a message circulates through unspecified entities.

In this paper, we propose a basic model of multisignature scheme that has the following three features:

Message flexibility: A message does not need to be fixed beforehand. Therefore each signer can modify an original message.

Order flexibility: Neither order of signers nor signers themselves need to be designated beforehand. Therefore we can easily change order of signers, add a new signer and exclude a signer.

Message and order verifiability: Each entity can verify who is an original author of a message, who modifies an original message and furthermore to which or how order a message is modified.

We also present two practical schemes based on the DLP based message recovery signature [10] and RSA signature [6]. Furthermore we discuss some typical attacks against our scheme like a ordinary forgery, swapping order of signers, excluding a signer. We denote the functions to break DLP, forge our scheme in ordinary assumption, that in swapping order of signers,
and that in excluding a signer, by DLP, Forge, Swap, and Exclude, respectively. Then we prove the following theorems by using polynomial-time truth-table (\leq_{tt}^P) reducibility of function:

1. Forge \equiv_{tt}^P DLP, (2) Swap \equiv_{tt}^P DLP, and
2. Exclude \equiv_{tt}^P DLP.

Furthermore we investigate a feature of Robustness in a multisignature scheme: a message cannot be recovered if the signature verification fails. Because unauthentic message might damage a receiver especially in case that a message circulate through unspecified entities. Therefore the following feature should be required:

Robustness: If the signature verification on a message fails, then prevent such an unauthentic message from damaging a receiver.

We also propose a general model of multisignature schemes with Robustness, multisigncrypt, which combines our multisignature with a function of encryption. Our multisigncrypt has a feature that a message cannot be recovered if the signature verification fails.

This paper is organized as follows. Section 2 summarizes a multisignature scheme [2] and discusses several drawbacks in case that a message circulate through unspecified entities. Section 3 investigates a model of multisignature with flexibility and verifiability. Section 4 presents two practical schemes concretely and discusses the performance. Section 5 discusses the security on our multisignature scheme. Section 6 presents our multisigncrypt scheme.

2. Previous Work

In this section, we summarize a previous multisignature scheme [2].

2.1 Previous Multisignature Scheme

We assume that n signers $I_1, I_2, ..., I_n$ generate a signature on a fixed message M according to order fixed beforehand.

Initialization: A trusted center generates a prime p, $g \in \mathbb{Z}_p^*$ with prime order q, and set a hash function $h()$. A signer I_i generates a random number $a_i \in \mathbb{Z}_q^*$ as I_i’s secret key. Then I_i’s public key is computed sequentially as follows: $y_1 = g^{a_1} \pmod{p}$, $y_i = (y_{i-1} \cdot g^{a_i}) \pmod{p}$. Then a public key of ordered group $(I_1, I_2, ..., I_n)$ is set to $y = y_n$.

Signature generation:

1. I_1 selects $k_1 \in \mathbb{Z}_q^*$ randomly and computes $r_1 = g^{k_1} \pmod{p}$. If $gcd(r_1, q) \neq 1$, then select new k_1 again.

2. For $i \in \{2, ..., n\}$; a signer I_{i-1} sends r_{i-1} to I_i. I_i selects $k_i \in \mathbb{Z}_q^*$ randomly and computes $r_i = r_{i-1}^{a_i} \cdot g^{k_i} \pmod{p}$. If $gcd(r_i, q) \neq 1$, then select new k_i again.

3. $r = r_i$.

(2) Generation of s: Signer $I_1, ..., I_n$ generate s together as follows.

1. I_1 computes $s_1 = a_1 + k_1 r \cdot h(r, M) \pmod{q}$.

2. For $i \in \{2, ..., n\}$; I_{i-1} sends s_{i-1} to I_i. I_i verifies that $g^{s_{i-1}} = y_{i-1} y_i^{-1} \cdot h(r, M) \pmod{p}$, then computes $s_i = (s_{i-1} + 1) a_i + k_i r \cdot h(r, M) \pmod{q}$.

3. $s = s_i$.

(3) The multisignature on M by order $(I_1, ..., I_n)$ is given by (r, s).

Signature verification: A multisignature (r, s) on M is verified by checking $g^s \equiv y \cdot r^s \cdot h(r, M) \pmod{p}$.

2.2 Drawbacks

In this section, we discuss the drawbacks of the previous scheme in the following situation: each entity sends an original message or a modified message to others. In such a situation, a multisignature scheme should satisfy the following conditions:

Message flexibility: A message does not need to be fixed beforehand. Therefore each signer can modify an original message.

Order flexibility: Neither order of signers nor signers themselves need to be designated beforehand. Therefore we can easily change order of signers, add a new signer and exclude a signer.

Message and order verifiability: Each entity can verify who is an original author of a message, who modifies an original message and furthermore to which or how order a message is modified.

The previous multisignature has the following drawbacks considering the above situation although it realizes order flexibility:

1. A message M should be fixed beforehand. This scheme does not allow any signer to generate a signature on his modified message.

2. A public key for multisignature should be determined by order of signers. Therefore after setting up a public key for multisignature, a signer can be neither added nor excluded. Even order of signers cannot be changed.

3. The signature generation phase runs two rounds through all signers.

3. Our Basic Multisignature Scheme

This section proposes a basic model of multisignature
schemes with flexibility and verifiability for both message and order, which ensures the security such as the following situation.

Co-work environment: messages like documents, data, software, etc., have been developed independently, have been circulated among coworkers through Internet, have been improved or added a convenient feature one by one, and finally have been completed.

First we define the following notations. An original message M_1 is given by I_1. $M_{1,2,...,i}$ ($i > 2$) denotes a message which is added some modification by the i-th signer I_i. The difference between $M_{1,2,...,i-1}$ and $M_{1,2,...,i}$, which means the modification by I_i, is defined as,

$$m_i = Diff(M_{1,2,...,i-1}, M_{1,2,...,i}).$$

We also define a function $Patch$ which recovers a message,

$$M_{1,2,...,i} = Patch(m_1, m_2, ..., m_i).$$

For the sake of convenience, we denote $m_1 = Patch(M_1)$. We use a signature scheme with a message recovery feature. The signature generation or message recovery function is denoted by $Sign(sk_i, m_i) = sgn_i$, or $Rec(pk_i, sgn_i) = m_i$, respectively, where sk_i is I_i’s secret key and pk_i is I_i’s public key. Let h_1 be a hash function, and ID_i be signer’s identity information. We assume that the space of ID, $Space_{ID} = \{ID_i\}$ is sparse and discrete in $\{0,1\}^*$. We also use two operations \otimes and \oplus in a group G

$$(A \otimes B) \oplus B = A (\forall A, B \in G).$$

For example in case of $G = \mathbb{Z}_p$, \otimes and \oplus mean modular multiplication and modular inversion, respectively. Then the signature generation and verification are done as follows. Figures 1 and 2 show the signature generation and verification, respectively.

Signature generation:

1. The first signer I_1 generates a signature on $h_1(m_1||ID_1)$ as follows,

$$sgn_1 = Sign(sk_1, h_1(m_1||ID_1)) = (r_1, s_1),$$

where a signature sgn_1 is divided into two parts, r_1 and s_1: r_1 is the next input to I_2’s signature generation, which is recovered by I_2’s signature verification. On the other hand, s_1 is the rest of sgn_1, which is sent to all signers as it is. Then send (ID_1, s_1, r_1, m_1) as a signature on m_1 to the next.

2. A signer I_j receives messages $m_1, m_2, ..., m_{j-1}$ from I_{j-1}. If $j > 2$, patch a message $M_{1,2,...,j-1}$ as follows,

$$M_{1,2,...,j-1} = Patch(m_1, m_2, ..., m_{j-1}).$$

I_j modifies $M_{1,2,...,j-1}$ to $M_{1,2,...,j-1,j}$, computes the modification m_j, and generates a signature on m_j by using r_{j-1} of I_j’s signature,

$$sgn_j = Sign(sk_j, r_{j-1} \otimes h_1(m_j||ID_j)) = (r_j, s_j),$$

where sgn_j is divided into r_j and s_j in the same way as the above. Then I_j’s signature on m_j is (r_j, s_j).

3. A multisignature on

$$M_{1,2,...,i} = Patch(m_1, m_2, ..., m_i)$$

by $I_1, I_2, ..., I_{i-1}$ and I_i is given by $(ID_1, s_1, m_1), (ID_2, s_2, m_2), \ldots, (ID_i, s_i, r_i, m_i)$.

Signature verification:

1. A verifier receives $(ID_1, s_1, m_1), (ID_2, s_2, m_2), \ldots, (ID_i, s_i, r_i, m_i)$ from a signer I_i.

![Fig. 1](image-url) *I_j’s signature generation.*

![Fig. 2](image-url) *I_j’s signature verification step.*
2. For \(j = i, i-1, \ldots, 2 \); compute
\[
T_j = \text{Rec}(pk_j, (r_j, s_j)) = r_{j-1} \odot h_1(m_j||ID_j),
\]
\[
r_{j-1} = T_j \odot h_1(m_j||ID_j).
\]
Let \(j = j - 1 \) and repeat step 2.
3. Finally compute
\[
T_1 = \text{Rec}(PK_{p1}, (r_1, s_1)),
\]
and verifies
\[
T_1 \odot h_1(m_1||ID_1).
\]

Our basic model satisfies the four features, message flexibility, order flexibility, message verifiability and order verifiability. Furthermore, we easily see that any message recovery signature can be applied to the above basic model. In the following sections, we present two schemes based on DLP and RSA.

4. A Concrete Multisignature Scheme

In this section, we give an example based on DLP. Another example based on RSA is described in Appendix.

4.1 DLP Based Multisignature Scheme

There are many variants of DLP based schemes in both types of message with appendix [3, 4, 17] and message recovery signature [1, 8, 10]. For the sake of convenience, here we use the following basic scheme which is a message recovery signature scheme with DSA-signature equation [10]. Apparently any message recovery signature scheme such as the original NR-signature [10] can be applied to our multisignature scheme.

Basic scheme: The signer \(I \) generates a signature on a message \(m \) by using her/his secret key \(x \) of \(y = g^x \) (mod \(p \)). First generate \(k \in \mathbb{Z}_q \) randomly, and compute
\[
R = g^k \pmod{p},
\]
\[
r = R + m \pmod{q},
\]
\[
s = (xr + 1)k^{-1} \pmod{q}.
\]
Then the signature on \(m \) is \((r, s)\), and \(m \) is recovered by computing \(R' = g^{s^{-1}y^r} \pmod{p} \), and \(m = r - R' \pmod{q} \).

We present one concrete multisignature scheme by using the above Basic scheme.

Initialization: An authenticated center generates a large prime \(p \), \(g \in \mathbb{Z}_p^* \) with prime order \(q \). Two \(\mathbb{Z}_p^* \)-operations \(\odot \) and \(\odot \) in section 3 are defined as multiplication and inverse in \(\mathbb{Z}_p \), respectively. Each signer generates a pair of secret key \(x_i \in \mathbb{Z}_q^* \) and a public key \(y_i = g^{x_i} \pmod{p} \), and publish a public key \(y_i \) with his identity information \(ID_i \).

Signature generation:

1. The first signer \(I_1 \) generates a signature on an original message \(m_1 \). First generate \(k_1 \in \mathbb{Z}_q \) randomly, compute
\[
R_1 = g^{k_1} \pmod{p},
\]
\[
r_1 = R_1 + h_1(m_1||ID_1) \pmod{q},
\]
\[
s_1 = (x_1r_1 + 1)k_1^{-1} \pmod{q},
\]
where \(I_1 \)'s signature on \(m_1 \) is \((r_1, s_1)\), and send \((ID_1, s_1, r_1, m_1)\) to the next signer \(I_2 \).

2. A signer \(I_j(j \geq 2) \) receives
\[
M_1,2,\ldots,j-1 = \text{Patch}(m_1, m_2, \ldots, m_{j-1}),
\]
and modifies \(M_1,\ldots,j-1 \) to \(M_1,\ldots,j \). Then \(I_j \) generates a signature on the difference \(m_j = \text{Diff}(M_1,\ldots,j-1, M_1,\ldots,j) \): generate \(k_j \in \mathbb{Z}_q \) randomly, and compute
\[
R_j = g^{k_j} \pmod{p},
\]
\[
r_j = R_j + h_1(m_j||ID_j) \pmod{q},
\]
\[
s_j = (x_jr_j + 1)k_j^{-1} \pmod{q},
\]
where \(I_j \)'s signature on \(m_j \) is \((r_j, s_j)\).

3. A multisignature on
\[
M_1,2,\ldots,i = \text{Patch}(m_1, m_2, \ldots, m_i)
\]
by \(I_1,\ldots,I_{i-1} \) and \(I_i \) is given by \((ID_1, s_1, m_1), \ldots, (ID_{i-1}, s_{i-1}, m_{i-1}), (ID_i, s_i, r_i, m_i)\).

Signature verification:

1. A verifier receives \((ID_1, s_1, m_1), \ldots, (ID_{i-1}, s_{i-1}, m_{i-1}), (ID_i, s_i, r_i, m_i)\) from the signer \(I_i \).
2. For \(j = i, i-1, \ldots, 3, 2 \); compute
\[
R'_{j} = g^{s_i^{-1}y_j^{-1}r_j} \pmod{p},
\]
\[
T_j = r_j - R'_j \pmod{q} \text{ and }
\]
\[
r_{j-1} = T_j \odot h_1(m_j||ID_j) \pmod{q}\]
by using \(I_j \)'s public keys \(y_j \). Let \(j = j - 1 \) and repeat step 2.

3. Finally compute \(R'_1 = g^{s_i^{-1}y_j^{-1}r_j} \pmod{p} \), and \(T_1 = r_1 - R'_1 \pmod{q} \), and verify \(T_1 \odot h_1(m_1||ID_1) \pmod{q} \).

Our multisignature based on ElGamal-type signature has a feature that each signer has only one pair of a public key and a secret key.
4.2 Performance Evaluation

We evaluate our DLP-based multisignature scheme from a point of view of computation amount, the signature size and the number of rounds, where the signature size means that the final multisignature by \(I_1, \ldots, I_i \), and the number of rounds means how many times the process to generate the signature runs among all signers. There has not been proposed a multisignature with message flexibility, order flexibility and order verifiability. One primitive scheme with message flexibility is a simple chain of signature: each signer makes a signature on his own modification and sends it together with the previous signer’s signature. Apparently it does not satisfy order verifiability. We also compare our schemes with the primitive scheme, which is based on DSA-signature. For a simple discussion, we assume the following conditions: (1) a primitive arithmetic of binary methods [7] is used for computation of exponentiation; (2) we denote the number of signers, the computation time for one \(n \)-bit modular multiplication and that for one \(n \)-bit modular inversion by \(i, M(n) \) and \(I(n) \), respectively; (3) we assume that \(M(n) = (\frac{n}{\pi})^2 M(m) \) and that \(I(n) = 10M(n) \); (4) two primes \(p \) and \(q \) are set to 1024 and 160 bits respectively, in DLP-based signature schemes.

DLP based-multisignature schemes are mainly classified into two types, one-round scheme [15] and two-round scheme in Sect. 2. Generally, the signature verification phase in two-round scheme is more simple than one-round scheme. However the signature generation phase in two-round scheme, which runs twice through all signers, is rather complicated. Here we compare our scheme with the primitive scheme, one-round scheme [15] and two-round scheme [2]. Table 1 shows performance of 4 schemes. From Table 1, we see that the computation amount for signature verification increases only a little bit, and that the signature size is even reduced, compared with the same one-round multisignature. Therefore our protocol can realize four features with message flexibility, order flexibility, message verifiability, and order verifiability only with negligible additional computation amount in signature generation.

Table 1 Performance of DLP-based multisignature schemes.

<table>
<thead>
<tr>
<th></th>
<th>Computation amount #M(1024)</th>
<th>Signature size (bits)</th>
<th>#rounds</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(253)</td>
<td>(302i)</td>
<td>(160(i + 1))</td>
<td>1</td>
</tr>
<tr>
<td>Primitive scheme</td>
<td>(253)</td>
<td>(2911)</td>
<td>520i</td>
<td>1</td>
</tr>
<tr>
<td>Scheme [15]</td>
<td>(242)</td>
<td>(250 + 242i)</td>
<td>(160 + 1024i)</td>
<td>2</td>
</tr>
<tr>
<td>Scheme [2]</td>
<td>(283)</td>
<td>(292)</td>
<td>(1,184)</td>
<td>2</td>
</tr>
</tbody>
</table>

MF: Message Flexibility, MV: Message Verifiability, OF: Order Flexibility, OV: Order Verifiability

5. Security Consideration

In this section, we discuss the security relation between our DLP based multisignature scheme and DLP. Here we aim at such a situation that there exist attackers among signers, and that they try to forge not only a message but also signer’s order. Therefore we assume that all signers except for an honest signer \(I_n \) collude in attacks: attackers use all secret keys \(x_j (j \neq n) \), random numbers \(k_j \), public information like public keys, all messages \(m_1, \ldots, m_n \in \mathbb{Z} \), and identity information \(ID_1, \ldots, ID_n \in \mathbb{Z} \) and so their hash values, \(h_1(m_1||ID_1) = H_1, \ldots, h_1(m_n||ID_n) = H_n \in \mathbb{Z} \), and valid partial signatures. By using these informations, attackers try to forge \(I_i \)’s signatures. For simplicity, we denote the sequence \(x_1, x_2, \ldots, x_n \) by \(x[i,n] \) and the sequence \(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n \) by \(x[i,n,i] \), where \(1 \leq i \leq n \). We also denote \(x_1, x_2, \ldots, x_n \in \mathbb{Z}_q \) by \(x[i,n] \in \mathbb{Z}_q \).

Generally speaking, two types of attacks in the security proof are required: the passive attack as the first step and the active attack as the next step [5]. Our scheme gives a general model of multisignature schemes with message flexibility, order flexibility, and their verifiability for the first time. Therefore as the first step we discuss the precise security model in the passive attack. In our security proof, we use the polynomial-time truth-table \((\leq_P^{k-t})\) reducibility of the function version [14]. In \(\leq_P^{k-t} \) only \(k \) non-adaptive queries to an oracle are allowed. Here we simply write \(\leq_P^t \) because we do not have to stress the number of queries.

5.1 Functions

First we define some functions.

Definition 1: DLP\((X,g,p,q)\) is the function that on input two primes \(p, q \) with \(q|p-1 \), \(X,g \in \mathbb{Z}_p^* \) outputs \(a \in \mathbb{Z}_q \) such that \(X = g^a \ (mod \ p) \) if such \(a \in \mathbb{Z}_q \) exists.

We define the function \(\text{Forge} \) that forges \(I_n \)’s valid signature \((r_n,s_n)\) on \(m_{[1,n]} \) in order \(I_{[1,n]} \) by using available public information, a signature on \(m_{[1,n-1]} \) by \(I_{[1,n-1]} \) and available secret data like \(x_{[1,n-1]} \) and \(k_{[1,n-1]} \) for attackers \(I_{[1,n-1]} \).

Definition 2: \(\text{Forge}(y_0, g, p, q, H_{[1,n]}|x_{[1,n-1]}|) \)
mitomi and miyaji: a general model of multisignature schemes

\(s_{[1,n-1]}, r_{n-1}, k_n \) is the function that on input two primes \(p, q \) with \(q(p-1) \), \(y_n, g \in \mathbb{Z}_{p}^{\ast} \), \(s_{[1,n-1]}, r_{n-1}, x_{[1,n-1]} \), \(k_n, H_{[1,n]} \in \mathbb{Z}_{q}^{\ast} \), outputs \((r_n, s_n) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \) such that \(R_n = g^{k_n}, R_n = y_n^{r_n/s_n} g^{s_n}, \) and \(r_n = R_n + H_n r_{n-1}, \) for \(j = n-1, \ldots, 3, 2: R_j = g^{s_j} y_j^{r_{j+1}^{-1}} \) (mod \(p \)), \(T_j = r_j - R_j \) (mod \(q \)), and \(r_j - 1 = T_j \) (mod \(q \)), where \(y_i = g^{r_i} \) (mod \(q \))(i = 1, \cdots, n - 1) if such \((r_n, s_n) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \) exists.

Next we define the function \texttt{Exclude}\(T \) forges \(I_n \)'s valid signature \((s_{n}, k_{n}) \) on \(m_{[1,n-1]} \) in order \(I_{[1,n-1]} \) by using available public information, a signature on \(m_{[1,n]} \) by \(I_{[1,n]} \) and available secret data \(x_{[1,n-1]} \) and \(k_{[1,n-1]} \) for attackers \(I_{[1,n-1]} \).

\textbf{Definition 3:} \texttt{Exclude}\(T \) (\(y_n, g, p, q, H_{[1,n]} \), \(x_{[1,n-1]} \), \(s_{[1,n-1]}, r_{n-2}, r_n \)) is the function that on input two primes \(p, q \) with \(q(p-1) \), \(y_n, g \in \mathbb{Z}_{p}^{\ast} \), \(x_{[1,n-1]} \), \(r_{n-2}, s_{[1,n-1]} \), \(H_{[1,n]} \in \mathbb{Z}_{q}^{\ast} \), outputs \((s_{n}, k_{n}) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \) such that \(R'_n = g^{k_n} \) (mod \(p \)), \(r'_n = H_n \times r_{n-2} + R'_n \) (mod \(q \)), \(R'_n = g^{s_{n-1}} y_n^{r_{n-2}} g^{s_{n-1}} \) (mod \(p \)), for \(j = n - 2, \cdots, 2: R_j = g^{s_j} y_j^{r_{j+1}^{-1}} \) (mod \(p \)), \(T_j = r_j - R_j \) (mod \(q \)), and \(r_j - 1 = T_j \) (mod \(q \)), where \(y_i = g^{r_i} \) (mod \(q \))(i = 1, \cdots, n - 1) if such \((s_{n}, k_{n}) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \) exists.

Next we define the function \texttt{Swap}\(T \) forges valid multisignature on \(m_{[1,n-2]} \), \(m_n, m_{n-1} \) in order \(I_{[1,n-2]} \), \(I_n, I_{n-1} \) by using available public information, a valid multisignature \((r_n, s_n) \) on \(m_{[1,n]} \) by \(I_{[1,n]} \) and available secret data \(x_{[1,n-1]} \) and \(k_{[1,n-1]} \) of attackers \(I_{[1,n-1]} \). From the assumption that \(I_{[1,n-1]} \) are attackers, the function \texttt{Swap}\(T \) forges \(I_n \)'s signature \((r_{n}, s_{n}) \) on \(m_{[1,n]} \) in order \(I_{[1,n-2]} \), \(I_n, I_{n-1} \) for a valid signature \((r_n, s_{n}) \) on \(m_{[1,n]} \) by \(I_{[1,n]} \) is just the same as the function that computes \texttt{Forge}\(T \) in the case of which forges \(I_n \)'s valid signature \((r_n, s_n) \) on \(m_{[1,n-1]} \) in order \(I_{[1,n-2]} \), \(I_n \) by using available public information, a signature on \(m_{[1,n-2]} \) by \(I_{[1,n-2]} \) and available secret data \(x_{[1,n-2]} \) and \(k_{[1,n-2]} \) for attackers \(I_{[1,n-2]} \), and adds attacker \(I_{n-1}'s \) signature on \(m_{[1,n]} \) in order \(I_{[1,n-2]} \), \(I_n, I_{n-1} \). Therefore as for \texttt{Exchange} it is enough to investigate the security of \texttt{Forge}. More strictly the following theorem holds.

\textbf{Theorem 2:} \texttt{Exchange} \(\leq_{IFT}^{P} \texttt{Forge} \).

Finally we define the function \texttt{Attack}\(T \) in order to discuss the relation between the basic scheme and the multisignature scheme. The function \texttt{Attack} that forges \(I_n \)'s valid signature \((r, s) \) on \(m \) in the basic scheme by using information of multisignatures such as available public information, a signature on \(m_{[1,n]} \) by \(I_{[1,n]} \) and available secret data like \(x_{[1,n-1]} \) and \(k_{[1,n-1]} \) of attackers \(I_{[1,n-1]} \).

\textbf{Definition 4:} \texttt{Attack} (\(y_n, g, p, q, H_{[1,n]} \), \(x_{[1,n-1]} \), \(s_{[1,n-1]}, r_{n-1}, r, m \)) is the function that on input two primes \(p, q \) with \(q(p-1) \), \(y_n, g \in \mathbb{Z}_{p}^{\ast} \), \(s_{[1,n-1]} \), \(r_{n-1} \), \(m \in \mathbb{Z}_{q}^{\ast} \), outputs \((r, s) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \) such that \(R = y_n^{r_{n-1}} g^{s_{n-1}}, \) and \(m = R - r \) if such \((r, s) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \).

For the sake of the following proof, we define the function \texttt{SIGN} that generates a valid signature, including all partial signatures, \((r_1, s_1) \) on messages \(m_{[1,n]} \) by signers \(I_{[1,n]} \) by using all secret data \(x_{[1,n]} \) and \(k_{[1,n]} \) of signers \(I_{[1,n]} \). This function means just the signature generation function. Apparently it is easy to compute \texttt{SIGN}.

\textbf{Definition 5:} \texttt{SIGN} (\(g, p, q, x_{[1,n]} \), \(k_{[1,n]} \), \(H_{[1,n]} \)) is the function that on input two primes \(p, q \) with \(q(p-1) \), \(g \in \mathbb{Z}_{p}^{\ast} \), \(x_{[1,n]} \), \(k_{[1,n]} \), \(H_{[1,n]} \in \mathbb{Z}_{q}^{\ast} \), outputs \(r_{[1,n]}, s_{[1,n]} \in \mathbb{Z}_{q}^{\ast} \) such that for \(j = n, \cdots, 3, 2: R_j = g^{s_j} y_j^{r_{j+1}^{-1}} \) (mod \(p \)), \(T_j = r_j - R_j \) (mod \(q \)) and \(r_j - 1 = T_j \) (mod \(q \)), \(R_1 = g^{s_1} y_1^{r_{1}^{-1}} \) (mod \(p \)), \(T_1 = r_1 - R_1 \) (mod \(q \)), \(T_1 = H_1 \) (mod \(q \)), where \(y_i = g^{r_i} \) (mod \(p \))(i = 1, \cdots, n) if such \((r_{[1,n]}, s_{[1,n]}) \in \mathbb{Z}_{q}^{\ast} \times \mathbb{Z}_{q}^{\ast} \).

5.2 Reduction among Functions

Here we show our results. First we set functions \(\psi_i \) to give the \(i \)-th element, \(\psi_i(a_{[1,n]}) = a_i (i \leq n) \).

\textbf{Theorem 3:} \texttt{Forge} \(\leq_{IFT}^{P} \texttt{DLP} \).

\textbf{Proof:} First we show that \texttt{Forge} \(\leq_{IFT}^{P} \texttt{DLP} \). For inputs \((y_n, g, p, q, H_{[1,n]} \), \(x_{[1,n-1]} \), \(s_{[1,n-1]} \), \(r_{n-1}, k_n \)) of \texttt{Forge}, set \(R_n = g^{k_n} \) (mod \(p \)), \(r_n = r_{n-1} \cdot H_n + R_n \) (mod \(q \)). Then
Theorem 4:

For inputs \((y_n, g, p, q, H_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1})\) we get

\[
(r_n, \text{DLP}(y_n, g, p, q)r_n + 1)k_n^{-1} \pmod q
\]

\[
=r_n, s_n)
\]

Next we show that \(\text{DLP} \leq_{ti} \text{Forge}\). For input \((y_n, g, p, q)\) of DLP, fix \(k_1 \in \mathbb{Z}_q^*, n_{[1,n]} \in \mathbb{Z}, x_{[1,n-1]} \in \mathbb{Z}_q^*, \)
and set

\[
(r_{[1,n-1]}, s_{[1,n-1]}) = \text{SIGN}(g, p, q, x_{[1,n-1]}, k_{[1,n-1]}, H_{[1,n-1]})
\]

which is computed in time polynomial from the definition. Then

\[
\text{DLP}(y_n, g, p, q) = (\psi_2(\text{Forge}(y_n, g, p, q, H_{[1,n]}, x_{[1,n-1]}), s_{[1,n-1]}, r_{n-1}, k_n)) \cdot k_n - 1)r_n^{-1},
\]

where

\[
r_n = \psi_1(\text{Forge}(y_n, g, p, q, H_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1}, k_n)).
\]

Therefore we get \(\text{DLP} \equiv_{ti} \text{Forge}\).

\[\Box\]

Theorem 5: Attack \(\leq_{ti} \text{Forge}\)

Proof: For input \((y_n, g, p, q, H_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1}, m)\) of \(\text{Attack}\), fix \(k_n \in \mathbb{Z}_q^*, n_{[1,n]} = H_{[i]} = H_i(i = 1, \ldots, n-1), \)
and \(H_n = m/r_{n-1} \pmod p\). Then

\[
\text{Attack}(y_n, g, p, q, H_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1}, m) = \text{Forge}(y_n, g, p, q, H_{[1,n]}, x_{[1,n-1]}, s_{[1,n-1]}, r_{n-1}, k_n).
\]

Therefore we get \(\text{Attack} \leq_{ti} \text{Forge}\). \[\Box\]

From Theorem 5, we see that \(\text{Forge}\) includes such an attack against the basic scheme by using available information on multisignatures.

6. Further Discussion

We discuss how to add the following feature to our multisignature scheme.

Robustness: If the signature verification fails, then prevent such an unauthentic message from damaging a receiver.

We realize robustness by combining our multisignature with an encryption function. So we call it multisigncrypt. Multisigncrypt has a feature that a message cannot be recovered if the signature verification fails, in addition to message flexibility, order flexibility, and order verifiability. Therefore a multisigncrypt can prevent computer virus mixed into a message from damaging a receiver since unauthentic message can not be recovered.

6.1 Multisigncrypt Scheme

For simplicity, we present the multisigncrypt scheme by using our basic multisignature scheme.

Initialization: A center publishes two hash functions \(h_1\) and \(h_2\), and an encryption and the decryption function, \(E(K_i, m_i)\) and \(D(K_i, C_i)\), in addition to initialization in basic multisignature scheme, where \(h_2\) is used for computing a session key \(K_i\) for \(E\) and \(D\), and \(C_i\) is a cipher text. Figures 3 and 4 show the signature generation and verification, respectively.

Signature generation:

1. The first signer \(I_1\) computes

\[
sgm_1 = \text{sign}(sk_1, h_1(m_1||ID_1)) = (r_1, s_1),
\]

where \(sgm_1\) is divided into two parts of \(r_1\) and \(s_1\) in the same way as Sect. 3, generates a session key \(K_1\),

\[
K_1 = h_2(h_1(m_1||ID_1)),
\]

and encrypts \(m_1||ID_1\) by an encryption function \(E\),
MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES

Fig. 3 I_j's signature generation.

\[C_1 = E(K_1, m_1 || ID_1), \]
and sends \((ID_1, s_1, r_1, C_1)\) to the next signer \(I_2\).

2. A signer \(I_j\) verifies the signature on \(m_1, \ldots, m_{j-1}\) from \(I_{j-1}\) according to the verification step in the next paragraph, and modifies \(M_{1,\ldots,j-1} = Patch(m_1, \ldots, m_{j-1})\) to \(M_{1,\ldots,j}\). Then \(I_j\) generates a signature on the difference \(m_j = Diff(M_{1,\ldots,j-1}, M_{1,\ldots,j-1,j})\):

\[
sgn_j = Sign(sk_j, r_{j-1} \odot h_1(m_j || ID_j)) = (r_j, s_j),
\]

\[K_j = h_2(r_{j-1} \odot h_1(m_j || ID_j)), \]
and encrypts \(m_j || ID_j\) by using the session key \(K_j\),

\[C_j = E(K_j, m_j || ID_j). \]

3. A multisignature on \(M_{1,2,\ldots,i} = Patch(m_1, m_2, \ldots, m_i)\)
by \(I_1, \ldots, I_i\) is given by \((ID_1, s_1, C_1), (ID_2, s_2, C_2), \ldots, (ID_i, s_i, r_i, C_i)\).

Signature verification:

1. The verifier receives \((ID_1, s_1, C_1), \ldots, (ID_{i-1}, s_{i-1}, r_{i-1}, C_{i-1}), (ID_i, s_i, r_i, C_i)\) from the signer \(I_i\).

2. For \(j = i, \ldots, 3, 2\): compute

\[T_j = Rec(pk_j, (s_j, r_j)), \]
and decrypts \(m_j\) and \(ID_j\) by

\[m'_j || ID'_j = D(K_j, C_j). \]

If \(ID'_j \neq ID_j\) holds, then accept the signature and recover \(r_{j-1}\),

\[r_{j-1} = T_j \odot h_1(m'_j || ID'_j). \]
Set \(j = j - 1\) and repeat step 2.

3. Compute

\[T_1 = Rec(pk_1, (s_1, r_1)) \]
and decrypt \(m_1\) and \(ID_1\) by

\[m'_1 || ID'_1 = D(K_1, C_1). \]

If \(h_1(m'_1 || ID'_1) \neq T_1\) holds, then accept the signature and finally patch all messages,

\[M_{1,\ldots,i} = Patch(m_1, \ldots, m_i). \]

In both cases of DLP- and RSA-based multisignature schemes, we can also add the feature of Robustness in the same way as the above.

7. **Conclusion**

In this paper, we have proposed a new multisignature scheme suitable for circulating messages through Internet. Our multisignature scheme realizes the four features, Message flexibility, Order flexibility, Message verifiability and Order verifiability, maintaining both signature size and computation amount in signature generation/verification low: the computation amount for the signature verification increases only a little bit, and the signature size is even reduced compared with one round previous multisignature scheme. We have also proposed the multisigncrypt scheme, which realizes Robustness in addition to Message flexibility, Order flexibility, Message verifiability, and Order verifiability. Furthermore, we have proved the following equivalences between our DLP-based multisignature and DLP in some typical attacks by using the reducibility of functions.

1. **Forge** \(\equiv_{lp}^{lpDLP}\),
2. **Swap** \(\equiv_{lp}^{lpDLP}\),
3. **Exclude** \(\equiv_{lp}^{lpDLP}\).
References

Appendix: Another Concrete Multisignature Scheme

A.1 RSA-Based Multisignature Scheme

Here we present our multisignature scheme based on RSA multisignature [6].

Initialization: An authenticated center publishes small primes in addition to \(\{p_1\}, \{p_2\} = \{1, 2, 3, 5, \ldots\} \). A signer \(I_i \) with identity information \(ID_i \) generates two large primes \(p_i \) and \(q_i \) secretly, and computes public keys \(n_{i,l} \) and \(e_{i,l} \, \in \, \mathbb{Z}^{*}_{n_{i,l}} \) in such a way that

\[
L_{i,l} = \begin{cases}
LCM((p_i - 1), (q_i - 1)) & (l = 1) \\
LCM((p_i - 1), (q_i - 1), (r_i - 1)) & (l \geq 2)
\end{cases}
\]

\[
e_{i,l}d_{i,l} = 1 \pmod{L_{i,l}},
\]

by using \(\{r_i\} \). For the sake of convenience, we denote \(n_i = p_i q_i \). Let \(e_i = e_{i,1} \). Signer \(I_i \) publishes all his public keys \(n_{i,l}, e_{i,l} \) and \(r_i \) like Table A-1. Let \(n_{\text{min}} = \min\{n_i\} \), and \(h_1 \) be a hash function to \(\mathbb{Z}_{n_{\text{min}}}^* \), where \(\min\{n_i\} \) means the minimum integer of \(\{n_i\} \).

In RSA-based multisignature, both operations in \(\mathbb{Z}_{n_{\text{r}}} \) and \(\circ \) are set to \(\oplus \) (EOR), and \(I_i \’s \) signature \(sgn_i \) is just the next input to \(I_{i+1} \’s \) signature generation: \(sgn_i \) is not divided into two parts.

Signature generation:

1. The first signer \(I_1 \) generates a signature on an original message \(m_1 \): select a minimum number \(n_{1,l_1} \) such that \(n_{1,l_1} > h_1(m_1 | ID_1) \) and compute \(sgn_1 = (h_1(m_1 | ID_1))d_{1,l_1} \pmod{n_{1,l_1}} \). Then send \((ID_1, m_1, l_1, sgn_1) \) as a signature on \(m_1 \) to the next.

2. A signer \(I_j \) receives \(m_1, m_2, \ldots, m_{j-1} \) from \(I_{j-1} \). If \(j > 2 \), patch the message \(M_{1,2,\ldots,j-1} = \text{Patch}(m_1, m_2, \ldots, m_{j-1}) \), modify it to \(M_{1,2,\ldots,j} \). Then \(I_j \) generates a signature on \(m_j = \text{Diff}(M_{1,2,\ldots,j-1}, M_{1,2,\ldots,j-1,j}) \): select a minimum number \(n_{j,l_j} \) such that \(n_{j,l_j} > sgn_{j-1} \oplus h_1(m_j | ID_j) \), and compute \(T = sgn_{j-1} \oplus h_1(m_j | ID_j) \) and \(sgn_j = T^{d_{j,l_j}} \pmod{n_{j,l_j}} \).

3. A multisignature on

\[
M_{1,2,\ldots,i} = \text{Patch}(m_1, m_2, \ldots, m_i)
\]

Table A-1 \(I_i \’s \) pairs of secret key and public key.

<table>
<thead>
<tr>
<th>(l)</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_3)</th>
<th>(r_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>public keys</td>
<td>((n_{i,1}, e_{i,1}))</td>
<td>((n_{i,2}, e_{i,2}))</td>
<td>(n_{i,3})</td>
<td>(n_{i,4})</td>
</tr>
<tr>
<td>secret keys</td>
<td>(d_{i,1})</td>
<td>(d_{i,2})</td>
<td>(d_{i,3})</td>
<td>(d_{i,4})</td>
</tr>
</tbody>
</table>
Table A.2 Performance of RSA based signatures.

<table>
<thead>
<tr>
<th></th>
<th>Computation amount</th>
<th>Signature size (bits)</th>
<th>#rounds</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our scheme</td>
<td>1536</td>
<td>9i</td>
<td>1024 + 10i</td>
<td>1</td>
</tr>
<tr>
<td>Primitive scheme</td>
<td>1536</td>
<td>9i</td>
<td>1024i</td>
<td>1</td>
</tr>
</tbody>
</table>

MF: Message Flexibility, MV: Message Verifiability, OF: Order Flexibility, OV: Order Verifiability

by \(I_1, \cdots, I_{i-1} \) and \(I_i \) is given by \((ID_1, l_1, m_1), (ID_2, l_2, m_2), \cdots, (ID_i, l_i, m_i, sgn_i)\).

Signature verification:

1. The verifier receives \((ID_1, l_1, m_1), (ID_2, l_2, m_2), \cdots, (ID_i, l_i, m_i, sgn_i)\) from a signer \(I_i \).
2. For \(j = i, i - 1, \ldots, 2 \); compute
 \[
 T' = (sgn_j)^{e_{j,l_j}} \pmod{n_j,l_j},
 \]
 \[
 sgn_{j-1} = h_1(m_j || ID_j) \oplus T'
 \]
 by using \(I_j \)'s public key \((n_{j,l_j}, e_{j,l_j})\). Let \(j = j - 1 \) and repeat step 2.
3. Compute \(T'' = sgn_{1,l_1} \pmod{n_1,l_1} \) by using \(I_1 \)'s public key \((n_{1,l_1}, e_{1,l_1})\), and check \(T'' \oplus h_1(m_1 || ID_1) \).

In our multisignature scheme, order of signers does not have to be fixed beforehand. Therefore even if all public keys \(\{n_i\} \) are set to be the same size, such a case as \(n_{i+1} < n_i \) may happen. This is why we need an additional set of \(\{r_1\} \). The number of signers in a series of multisignatures might be limited according as \(\{r_1\} \). However from a practical point of view, it does not seem to cause a serious problem considering the number of signers for a series of multisignatures.

Our multisignature based on RSA has the following features: (1) The size of multisignature keeps low even if the number of signers increases, compared with DLP based scheme. (2) It is necessary for each signer to have plural pairs of secret and public key.

A.2 Performance Evaluation

We evaluate our RSA-based multisignature scheme from a point of view of computation amount, and the signature size, where the signature size means that the final multisignature by \(\{I_1, \cdots, I_i\} \). There has not been proposed a multisignature with message flexibility, order flexibility and order verifiability. One primitive scheme with message flexibility is a simple chain of signature: each signer makes a signature on his own modification and sends it together with the previous signer’s signature. Apparently it does not satisfy order verifiability. We also compare our schemes with the primitive scheme. For a simple discussion, we assume the following conditions: (1) a primitive arithmetic of binary methods [7] is used for computation of exponentiation; (2) we denote the number of signers and the computation time for one \(n \)-bit modular multiplication by \(i \) and \(M(n) \), respectively, where \(M(n) = (\frac{2n}{n})^2 M(m) \); (3) two primes \(p_j \) and \(q_j \) are set to 512 bits, and \(r_1 \) is less than 10 bits in RSA-based signature schemes.

Here we compare our RSA-based multisignature scheme with the primitive scheme. Table A.2 shows performance of two schemes. From Table A.2, we see that our protocol can realize four features, message flexibility, order flexibility, message verifiability and order verifiability, with the same computation amount as the primitive scheme. Note that the signature size is even reduced.

A.3 Security Consideration

In this section, we investigate the security relation between our RSA based multisignature scheme and RSA\(^*\) in the same point as Sect.5. Here we discuss some attack models since all results hold in almost the same way as Sect.5. For simplicity, we denote the sequence \(n_{1,1}, n_{1,2}, \cdots, n_{1,l_1}, n_{2,1}, \cdots, n_{1,l_1} \) by \(n_{1,1}, l_1 \), and \(d_{1,1} \in Z_{n_{1,1} \cdots l_1} \) by \(d_{1,1} \in Z_{n_{1,1} \cdots l_1} \) in addition to notations defined in Sect.5.

A.4 Functions

First we define some functions.

Definition 6: RSA\((n, m, e)\) is the function that on input an integer \(n \in Z, m, e \in Z_n \), outputs \(s \in Z_n \) such that \(s^e \equiv m \pmod{n} \) if such \(s \) exists.

We define the function \(\text{Forge} \) that forges \(I_j \)'s valid signature \((sgn_j, l_j)\) on \(m_{[1,j]} \) in order \(I_{[1,j]} \) by using available public information, a signature on \(m_{[1,j-1]} \) by \(I_{[1,j-1]} \) and available secret data such as \(p_{[1,j-1]}, q_{[1,j-1]} \) and \(d_{[1,j-1],1,l_1} \) of attackers \(I_{[1,j-1]} \).

Definition 7: Forge-RSA\((n, l, e, p, q, H, l_{[1,j-1]}, sgn_{[1,j-1]}, l)\) is the function that on input \(n_{[1,j]}, l, e_{[1,j]}, H, l_{[1,j-1]}, sgn_{[1,j-1]} \) and \(d_{[1,j-1],1,l} \) is included. Apparently the original RSA problem is reduced to the generalized RSA problem.

\(^*\)The original RSA signature [13] sets \(n \) to a product of two primes, that is \(n = p q \). For simplicity, here we use a generalized model of RSA in which the number of prime factors of \(n \) is not limited to 2, and the recent result of [16] is included.
Next we define the function \textit{Exclude} that forges \(I_{j} \)'s valid signature \((sgn_{j}, l_{j})\) on \(m_{1,j-1} \) in order \(I_{1,j-1} \) by using available public information, a signature on \(m_{1,j} \) by \(I_{1,j} \) and available secret data such as \(p_{1,j-1}, q_{1,j-1} \), and \(d_{1,j-1,1,1} \) of attackers \(I_{1,j-1} \).

Definition 8: \textit{Exclude-RSA}(\(n_{1,j-1,1}, r_{1,j}, e_{1,j}, H_{1,j}, p_{1,j-1}, q_{1,j-1}, d_{1,j-1,1,1} \)) is the function that on input \(n_{1,j-1,1} \in \mathbb{Z} \), \(e_{1,j} \in \mathbb{Z} \), \(H_{1,j} \), \(p_{1,j-1}, q_{1,j-1} \), \(d_{1,j-1,1,1} \in \mathbb{Z} \), \(m_{1,j-1,1} \), \(sgn_{1,j} \), \(l_{j-2} \), \(l_{j} \) such that \(T_{j} = sgn_{j} e_{1,j} \) (mod \(n_{1,j} \)); \(sgn_{j-2} = H_{j} \oplus T_{j} \), for \(i = j-2, ..., 3, 2 \): \(T_{i} = sgn_{i} e_{1,i} \) (mod \(n_{1,i} \)), \(T_{1} = H_{1} \) if such \((sgn_{j}, l_{j})\) exists, and otherwise outputs ⊥.

As for the function \textit{Swap-RSA} that forges valid multisignatures on \(m_{1,j-2} \), \(m_{j}, m_{1,j-1} \) in order \(I_{1,j-2}, I_{j}, I_{1,j-1} \) by using available public information, a valid multisignature on \(m_{1,j} \) by \(I_{1,j} \) and available secret data of attackers \(I_{1,j-1} \), we can easily get the following result in the same way as Theorem 2.

Theorem 6: \textit{Swap-RSA} \(\equiv_{IP} \) \textit{Exclude-RSA}.

For the sake of the following proof, we define the function \textit{SIGN-RSA} that generates a valid signature, including all partial signatures, \((sgn_{1,j}, l_{1,j})\) on messages \(m_{1,j} \) by signers \(I_{1,j} \) by using all secret data such as \(p_{1,j} \) and \(q_{1,j} \) of signers \(I_{1,j} \). This function means just the signature generation function. Apparently it is easy to compute \textit{SIGN-RSA}.

Definition 9: \textit{SIGN-RSA}(\(n_{1,j,1}, [1,i], H_{1,j}, d_{1,j,1,1}, e_{1,j,1} \)) is the function that on input \(n_{1,j,1}, [1,i] \in \mathbb{Z} \), \(e_{1,j,1} \in \mathbb{Z} \), \(H_{1,j} \in \mathbb{Z} \), \(d_{1,j,1,1} \in \mathbb{Z} \), \(m_{1,j,1} \in \mathbb{Z} \), \(sgn_{1,j,1} \), \(l_{1,j} \) such that for \(i = j, ..., 3, 2 \): \(T_{i} = sgn_{i} e_{1,i} \) (mod \(n_{1,i} \)); \(sgn_{j-1} = H_{j} \oplus T_{j} \), \(T_{1} = sgn_{1} e_{1,1} \) (mod \(n_{1,1} \)), \(T_{1} = H_{1} \), where \(r_{min} = \min\{n_{1,j}\} \), if such \((sgn_{1,j}, l_{1,j})\) exists, and otherwise outputs ⊥.

Here we show our results.

Theorem 7: \textit{Forge-RSA} \(\equiv_{IP} \) \textit{RSA}.

Proof: First we show that \textit{Forge-RSA} \(\leq_{IP} \) \textit{RSA}. For inputs \(n_{j,1}, r_{1,j}, e_{j,1} \), \(H_{1,j} \), \(p_{1,j-1}, q_{1,j-1} \), \(d_{1,j-1,1,1} \), \(sgn_{1,j-1,1,1} \), \(l_{1,j-1,1} \) of \textit{Forge-RSA}, set \(T = sgn_{j-1} \oplus H_{j} \), and set the minimum integer \(l_{j} \) such that \(n_{j,l_{j}} > T \). If such \(l_{j} \) does not exist, then output ⊥. Then by using \((n_{j,l_{j}}, e_{j,l_{j}}) \)

\[\text{Forge-RSA}(n_{j,1}, r_{1,j}, e_{j,1}, H_{1,j}, p_{1,j-1}, q_{1,j-1}, d_{1,j-1,1,1}, sgn_{1,j-1,1,1}, l_{1,j-1,1}) = (\text{RSA}(n_{j,l_{j}}, T, e_{j,l_{j}}, l_{j})) \]

Next we show that \textit{RSA} \(\leq_{IP} \) \textit{Forge-RSA}. For inputs \((n, m, e)\) of \textit{RSA}, set \(r_{1} = 1, n_{j} = n, e_{j} = e \), fix \(e_{j,2} \in [1, n] \), \(m_{1,j} \), \(p_{1,j-1}, q_{1,j-1} \), \(d_{1,j-1,1,1} \), \(sgn_{1,j} \), \(l_{j-2}, l_{j} \) from \(p_{1,j-1}, q_{1,j-1} \), and \(r_{1,j} \). Then set \(n_{min} = \{n_{i,j}\} \), fix \(H_{1,j} \), and set \(sgn_{1,j,1,1} = H_{1} \). Then

\[\text{RSA}(n, m, e) = (\psi_{1}(\text{Forg} - \text{RSA}(n_{j,1}, r_{1,j}, e_{j,1}, H_{1,j}), p_{1,j-1}, q_{1,j-1}, d_{1,j-1,1,1}, sgn_{1,j}, l_{j-2}, l_{j})) \].

Therefore we get \textit{Forge-RSA} \(\equiv_{IP} \textit{RSA} \). □

Theorem 8: \textit{Exclude-RSA} \(\equiv_{IP} \textit{RSA} \).

Proof: First we show that \textit{Exclude-RSA} \(\leq_{IP} \textit{RSA} \). For inputs \(n_{j,1,1}, r_{1,1}, e_{1,1}, H_{1,1}, p_{1,j-1}, q_{1,j-1}, d_{1,j-1,1,1,1}, sgn_{1,j,1,1}, l_{j-2}, l_{j} \) of \textit{Exclude-RSA}, set \(T = sgn_{j-2} \oplus H_{j} \), and set the minimum integer \(l_{j} \) such that \(n_{j,l_{j}} > T \). If such a \(l_{j} \) does not exist, then output ⊥. Then

\[\text{Exclude-RSA}(n_{j,1,1}, r_{1,1}, e_{1,1}, H_{1,1}, p_{1,j-1}, q_{1,j-1}, d_{1,j-1,1,1,1}, sgn_{1,j,1,1}, l_{j-2}, l_{j}) = (\text{RSA}(n_{j,l_{j}}, T, e_{j,l_{j}}, l_{j})) \]

Next we show that \textit{RSA} \(\leq_{IP} \textit{Exclude-RSA} \). For inputs \((n, m, e) \) of \textit{RSA}, set \(r_{1} = 1, n_{j} = n, e_{j} = e \), fix \(e_{j,2} \in [1, n] \), \(m_{1,j} \), \(p_{1,j-1}, q_{1,j-1} \), and \(r_{1,j} \), computes key pairs of \((n_{1,j-1,1,1}, d_{1,j-1,1,1}, e_{1,j-1,1,1}) \) from \(p_{1,j-1}, q_{1,j-1} \), and \(r_{1,j} \). Then fix \(H_{1,j} \), and \(sgn_{1,j,1,1} \) such that \(\psi_{1}(\text{For} - \text{RSA}(n_{j,1,1}, r_{1,1}, e_{1,1}, H_{1,1}, p_{1,j-1}, q_{1,j-1}, d_{1,j-1,1,1,1}, sgn_{1,j,1,1}, l_{j-2}, l_{j})) \)
Therefore we get \(\text{Exclude-RSA} \equiv_{tt} f^p \text{RSA} \).