
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

A General Model of Multisignature Schemes with

Message Flexibility, Order Flexibility, and Order

Verifiability

Author(s) MITOMI, Shirow; MIYAJI, Atsuko

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E84-A(10): 2488-2499

Issue Date 2001-10

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/4431

Rights

Copyright (C)2001 IEICE. Shirow MITOMI, Atsuko

MIYAJI, IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E84-A(10), 2001, 2488-2499.

http://www.ieice.org/jpn/trans_online/ （許諾番

号：08RB0097）

Description

2488
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.10 OCTOBER 2001

PAPER Special Section on Information Theory and Its Applications

A General Model of Multisignature Schemes with Message

Flexibility, Order Flexibility, and Order Verifiability∗∗

Shirow MITOMI†∗, Nonmember and Atsuko MIYAJI†a), Regular Member

SUMMARY Multisignature scheme realizes that plural users
generate the signature on a message, and that the signature is
verified. Various studies on multisignature have been proposed
[2], [6], [11], [15], [18]. They are classified into two types: RSA
[13]-based multisignature [6], [11], and discrete logarithm prob-
lem (DLP) based multisignature [2], [15], [18], all of which assume
that a message is fixed beforehand. In a sense, these schemes do
not have a feature of message flexibility. Furthermore all schemes
which satisfy with order verifiability designate order of signers be-
forehand [2], [18]. Therefore these protocols have a feature of or-
der verifiability but not order flexibility. For a practical purpose
of circulating messages soundly through Internet, a multisigna-
ture scheme with message flexibility, order flexibility and order
verifiability should be required. However, unfortunately, all pre-
vious multisignature do not realize these features. In this paper,
we propose a general model of multisignature schemes with flex-
ibility and verifiability. We also present two practical schemes
based on DLP based message recover signature [10] and RSA
signature [6], respectively.
key words: multisignature scheme, DLP-based signature, RSA

signature, message recovery signature

1. Introduction

In proportion as the spread of personal computers and
network, messages like documents, data, software, etc.,
have been circulated through Internet. In such environ-
ment, an entity sends/forwards an original message to
others, or sends a modified message to others. Through
the process of circulation, a message has been improved
or added a convenient feature one by one, and finally
has been completed. However recently it has been a
new problem for computer virus to be mixed into a
message through the process of this circulation. Ap-
parently it is an obstacle to circulate messages soundly
through Internet. Another problem concerns the copy-
right: it is necessary to distinguish an original author
from authors who modify an original message in a cir-
culating message. This is why a multisignature scheme
suitable for such an environment should be required.

Up to the present, various studies on multisig-
nature have been proposed [2], [6], [11], [12], [15], [18].
They are classified into two types: RSA [13] based

Manuscript received January 23, 2001.
Manuscript revised April 15, 2001.

†The authors are with Japan Advanced Institute of Sci-
ence and Technology, Ishikawa-ken, 923-1292 Japan.

∗Presently, with Fujitsu Co., Ltd.
a) E-mail: miyaji@jaist.ac.jp
∗∗A preliminary version was presented at SCIS’2000 and

ACISP’2000 [9].

multisignature [6], [11], and discrete logarithm problem
(DLP) based multisignature [2], [15], [18]. All schemes
assume that a message is fixed beforehand since they
suppose the following scenario: a message fixed before-
hand is passed and signed one by one through mem-
bers in an organization like a company. Therefore these
schemes cannot handle the following situation: an orig-
inal message is passed and modified by unspecified en-
tities. Furthermore we want to guarantee such circulat-
ing message in the next point: who writes an original
message, who modifies the message, to which the mes-
sage is modified, and how order the message is mod-
ified. In previous multisignature schemes [2], [6], [11],
[15], [18], signing from the first signer is obliged to start
only if one of signers wants to modify a message: theses
do not have a feature of message flexibility. Further-
more [6], [11], [15] have a feature of order verifiability
neither. Order verifiability is first realized in [2], [18].
However they must designate order of signs beforehand.
If we want to change order of signers, add a new signer,
or exclude a signer, we are obliged to reset some data
like public keys [2]: these have a feature of order ver-
ifiability but not order flexibility. Therefore previous
schemes are not suitable for handling the above sit-
uation that a message circulates through unspecified
entities.

In this paper, we propose a basic model of multisig-
nature scheme that has the following three features:
Message flexibility: A message does not need to be
fixed beforehand. Therefore each signer can modify an
original message.
Order flexibility: Neither order of signers nor sign-
ers themselves need to be designated beforehand.
Therefore we can easily change order of signers, add
a new signer and exclude a signer.
Message and order verifiability: Each entity can
verify who is an original author of a message, who mod-
ifies an original message and furthermore to which or
how order a message is modified.

We also present two practical schemes based on the
DLP based message recovery signature [10] and RSA
signature [6]. Furthermore we discuss some typical at-
tacks against our scheme like a ordinary forgery, swap-
ping order of signers, excluding a signer. We denote
the functions to break DLP, forge our scheme in or-
dinary assumption, that in swapping order of signers,

MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES
2489

and that in excluding a signer, by DLP, Forge, Swap,
and Exclude, respectively. Then we prove the following
theorems by using polynomial-time truth-table (≤fp

tt)
reducibility of function:

(1) Forge ≡fp
tt DLP, (2) Swap ≡fp

tt DLP, and
(3) Exclude ≡fp

tt DLP.

Furthermore we investigate a feature of Robustness in a
multisignature scheme: a message cannot be recovered
if the signature verification fails. Because unauthen-
tic message might damage a receiver especially in case
that a message circulate through unspecified entities.
Therefore the following feature should be required:
Robustness: If the signature verification on a mes-
sage fails, then prevent such an unauthentic message
from damaging a receiver.

We also propose a general model of multisignature
schemes with Robustness, multisigncrypt, which com-
bines our multisignature with a function of encryption.
Our multisigncrypt has a feature that a message cannot
be recovered if the signature verification fails.

This paper is organized as follows. Section 2 sum-
marizes a multisignature scheme [2] and discusses sev-
eral drawbacks in case that a message circulate through
unspecified entities. Section 3 investigates a model of
multisignature with flexibility and verifiability. Sec-
tion 4 presents two practical schemes concretely and
discusses the performance. Section 5 discusses the se-
curity on our multisignature scheme. Section 6 presents
our multisigncrypt scheme.

2. Previous Work

In this section, we summarize a previous multisignature
scheme [2].

2.1 Previous Multisignature Scheme

We assume that n signers I1, I2, ..., In generate a sig-
nature on a fixed message M according to order fixed
beforehand.
Initialization: A trusted center generates a prime
p, g ∈ Z

∗
p with prime order q, and set a hash func-

tion h(). A signer Ii generates a random number
ai ∈ Z

∗
q as Ii’s secret key. Then Ii’s public key is

computed sequentially as follows: y1 = ga1 (mod p),
yi = (yi−1 · g)ai (mod p). Then a public key of ordered
group (Ii, I2, ..., Ii) is set to y = yn.

Signature generation:
(1) Generation of r: Signer I1, ..., In generate r together
as follows.

1. I1 selects k1 ∈ Z
∗
q randomly and computes r1 =

gk1 (mod p). If gcd(r1, q) �= 1, then select new k1
again.

2. For i ∈ {2, ..., n}; a signer Ii−1 sends ri−1 to Ii.
Ii selects ki ∈ Z

∗
q randomly and computes ri =

rai
i−1 · gki (mod p). If gcd(ri, q) �= 1, then select
new ki again.

3. r = ri.

(2) Generation of s: Signer I1, ..., In generate s together
as follows.

1. I1 computes s1 = a1 + k1r · h(r,M) (mod q).
2. For i ∈ {2, ..., n}; Ii−1 sends si−1 to Ii. Ii verifies
that gsi−1 =? yi−1r

r·h(r,M)
i−1 (mod p), then computes

si = (si−1 + 1)ai + kir · h(r,M) (mod q).
3. s = si.

(3) The multisignature on M by order (I1, ..., In) is
given by (r, s).

Signature verification: A multisignature (r, s) on
M is verified by checking gs =? y · rr·h(r,M) (mod p).

2.2 Drawbacks

In this section, we discuss the drawbacks of the previ-
ous scheme in the following situation: each entity sends
an original message or a modified message to others. In
such a situation, a multisignature scheme should satisfy
the following conditions:

Message flexibility: A message does not need to be
fixed beforehand. Therefore each signer can modify an
original message.
Order flexibility: Neither order of signers nor sign-
ers themselves need to be designated beforehand.
Therefore we can easily change order of signers, add
a new signer and exclude a signer.
Message and order verifiability: Each entity can
verify who is an original author of a message, who mod-
ifies an original message and furthermore to which or
how order a message is modified.

The previous multisignature has the following draw-
backs considering the above situation although it real-
izes order flexibility:

1. A message M should be fixed beforehand. This
scheme does not allow any signer to generate a
signature on his modified message.

2. A public key for multisignature should be deter-
mined by order of signers. Therefore after setting
up a public key for multisignature, a signer can be
neither added nor excluded. Even order of signers
cannot be changed.

3. The signature generation phase runs two rounds
through all signers.

3. Our Basic Multisignature Scheme

This section proposes a basic model of multisignature

2490
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.10 OCTOBER 2001

Fig. 1 Ij ’s signature generation.

Fig. 2 Ij ’s signature verification step.

schemes with flexibility and verifiability for both mes-
sage and order, which ensures the security such as the
following situation.
Co-work environment: messages like documents,
data, software, etc., have been developed indepen-
dently, have been circulated among coworkers through
Internet, have been improved or added a convenient
feature one by one, and finally have been completed.

First we define the following notations. An original
message M1 is given by I1. M1,2,...,i (i > 2) denotes a
message which is added some modification by the i-
th signer Ii. The difference between M1,2,...,i−1 and
M1,2,...,i, which means the modification by Ii, is defined
as,

mi = Diff(M1,2,...,i−1,M1,2,...,i).

We also define a function Patch which recovers a mes-
sage,

M1,2,...,i = Patch(m1,m2, ...,mi).

For the sake of convenience, we denote m1 =
Patch(M1). We use a signature scheme with a message
recovery feature. The signature generation or message
recovery function is denoted by Sign(ski,mi) = sgni,
or Rec(pki, sgni) = mi, respectively, where ski is Ii’s
secret key and pki is Ii’s public key. Let h1 be a hash
function, and IDi be signer’s identity information. We
assume that the space of ID, SpaceID = {IDi} is
sparse and discrete in {0, 1}∗. We also use two op-
erations ⊗ and 	 in a group G

(A⊗B)	B = A (∀A,B ∈ G).
For example in case of G = Zp , ⊗ and 	 mean modu-
lar multiplication and modular inversion, respectively.
Then the signature generation and verification are done
as follows. Figures 1 and 2 show the signature gener-
ation and verification, respectively.

Signature generation:

1. The first signer I1 generates a signature on
h1(m1||ID1) as follows,

sgn1 = Sign(sk1, h1(m1||ID1)) = (r1, s1),

where a signature sgn1 is divided into two parts, r1
and s1: r1 is the next input to I2’s signature gen-
eration, which is recovered by I2’s signature verifi-
cation. On the other hand, s1 is the rest of sgn1,
which is sent to all signers as it is. Then send
(ID1, s1, r1,m1) as a signature on m1 to the next.

2. A signer Ij receives messages m1,m2, ...,mj−1
from Ij−1. If j > 2, patch a message M1,2,...,j−1 as
follows,

M1,2,...,j−1 = Patch(m1,m2, ...,mj−1).

Ij modifies M1,2,...,j−1 to M1,2,...,j−1,j , computes
the modification mj ,

mj = Diff(M1,2,...,j−1,M1,2,...,j),

and generates a signature on mj by using rj−1 of
Ij ’s signature,

sgnj = Sign(skj , rj−1 ⊗ h1(mj ||IDj))
= (rj , sj),

where sgnj is divided into rj and sj in the same
way as the above. Then Ij ’s signature on mj is
(rj , sj).

3. A multisignature on

M1,2,...,i = Patch(m1,m2, ...,mi)

by I1, I2, ..., Ii−1 and Ii is given by (ID1, s1,m1),
(ID2, s2,m2), · · · , (IDi, si, ri,mi).

Signature verification:

1. A verifier receives (ID1, s1,m1), (ID2, s2,m2), · · · ,
(IDi, si, ri,mi) from a signer Ii.

MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES
2491

2. For j = i, i− 1, · · · , 2; compute

Tj = Rec(pkj , (rj , sj))
= rj−1 ⊗ h1(mj ||IDj),

rj−1 = Tj 	 h1(mj ||IDj).

Let j = j − 1 and repeat step 2.
3. Finally compute

T1 = Rec(PKp1, (r1, s1)),

and verifies

T1 =? h1(m1||ID1).

Our basic model satisfies the four features, message
flexibility, order flexibility, message verifiability and or-
der verifiability. Furthermore, we easily see that any
message recovery signature can be applied to the above
basic model. In the following sections, we present two
schemes based on DLP and RSA.

4. A Concrete Multisignature Scheme

In this section, we give an example based on DLP. An-
other example based on RSA is described in Appendix.

4.1 DLP Based Multisignature Scheme

There are many variants of DLP based schemes in both
types of message with appendix [3], [4], [17] and message
recovery signature [1], [8], [10]. For the sake of conve-
nience, here we uses the following basic scheme which
is a message recovery signature scheme with DSA-
signature equation [10]. Apparently any message recov-
ery signature scheme such as the original NR-signature
[10] can be applied to our multisignature scheme.
Basic scheme: The signer I generates a signature on
a message m by using her/his secret key x of y = gx

(mod p). First generate k ∈ Zq randomly, and compute

R = gk (mod p),

r = R +m (mod q),

s = (xr + 1)k−1 (mod q).

Then the signature onm is (r, s), andm is recovered by
computing R′ = gs−1

yr·s−1
(mod p), and m = r − R′

(mod q).
We present one concrete multisignature scheme by

using the above Basic scheme.
Initialization: An authenticated center generates a
large prime p, g ∈ Z

∗
p with prime order q. Two Zp -

operations ⊗ and 	 in section 3 are defined as multi-
plication and inverse in Zp , respectively. Each signer
generates a pair of secret key xi ∈ Z

∗
q and a public key

yi = gxi (mod p), and publish a public key yi with his
identity information IDi.

Signature generation:

1. The first signer I1 generates a signature on an orig-
inal message m1. First generate k1 ∈ Zq randomly,
compute

R1 = gk1 (mod p),

r1 = R1 + h1(m1||ID1) (mod q),

s1 = (x1r1 + 1)k−11 (mod q),

where I1’s signature on m1 is (r1, s1), and send
(ID1, s1, r1, m1) to the next signer I2.

2. A signer Ij(j ≥ 2) receives
M1,2,··· ,j−1 = Patch(m1,m2, · · · ,mj−1),
and modifies M1,··· ,j−1 to M1,··· ,j . Then Ij
generates a signature on the difference mj =
Diff(M1,··· ,j−1,M1,··· ,j): generate kj ∈ Zq ran-
domly, and compute

Rj = gkj (mod p),

rj = Rj + h1(mj ||IDj)× rj−1 (mod q),

sj = (xjrj + 1)k−1j (mod q),

where Ij ’s signature on mj is (rj , sj).
3. A multisignature on

M1,2,...,i = Patch(m1,m2, ...,mi)

by I1, · · · , Ii−1 and Ii is given by (ID1, s1,m1),
· · · , (IDi−1, si−1,mi−1), (IDi, si, ri,mi).

Signature verification:

1. A verifier receives (ID1, s1, m1), · · · , (IDi−1,
si−1,mi−1) and (IDi, si, ri,mi) from the signer Ii.

2. For j = i, i− 1, · · · , 3, 2; compute

R′
j = g

s−1
j y

rj ·s−1
j

j (mod p),

Tj = rj −R′
j (mod q), and

rj−1 = Tj · (h1(mj ||IDj))−1 (mod q)

by using Ij ’s public keys yj . Let j = j − 1 and
repeat step 2.

3. Finally compute R′
1 = gs−1

1 y
r1·s−1

1
1 (mod p), and

T1 = r1−R′
1 (mod q), and verify T1 =? h1(m1||ID1)

(mod q).

Our multisignature based on ElGamal-type signature
has a feature that each signer has only one pair of a
public key and a secret key.

2492
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.10 OCTOBER 2001

Table 1 Performance of DLP-based multisignature schemes.

Computation amount #M(1024) Signature
Ii’s signature signature size #rounds Features
generation verification (bits)

Our scheme 253 302i 160(i + 1) 1 MF, MV, OF, OV
Primitive scheme 253 291i 320i 1 MF, MV, OF

Scheme [15] 242 250 + 242i 160 + 1024i 1 —
Scheme [2] 283 292 1, 184 2 OV

MF: Message Flexibility, MV: Message Verifiability, OF: Order Flexibility, OV: Order Verifiability

4.2 Performance Evaluation

We evaluate our DLP-based multisignature scheme
from a point of view of computation amount, the signa-
ture size and the number of rounds, where the signature
size means that the final multisignature by I1, · · · , Ii,
and the number of rounds means how many times the
process to generate the signature runs among all sign-
ers. There has not been proposed a multisignature with
message flexibility, order flexibility and order verifiabil-
ity. One primitive scheme with message flexibility is a
simple chain of signature: each signer makes a signature
on his own modification and sends it together with the
previous signer’s signature. Apparently it does not sat-
isfy order verifiability. We also compare our schemes
with the primitive scheme, which is based on DSA-
signature. For a simple discussion, we assume the fol-
lowing conditions: (1) a primitive arithmetic of binary
methods [7] is used for computation of exponentiation;
(2) we denote the number of signers, the computation
time for one n-bit modular multiplication and that for
one n-bit modular inversion by i, M(n) and I(n), re-
spectively; (3) we assume thatM(n) = (m

n)
2M(m) and

that I(n) = 10M(n); (4) two primes p and q are set to
1024 and 160 bits respectively, in DLP-based signature
schemes.

DLP based-multisignature schemes are mainly
classified into two types, one-round scheme [15] and
two-round scheme in Sect. 2. Generally, the signature
verification phase in two-round scheme is more simple
than one-round scheme. However the signature gen-
eration phase in two-round scheme, which runs twice
through all signers, is rather complicated. Here we
compare our scheme with the primitive scheme, one-
round scheme [15] and two-round scheme [2]. Table 1
shows performance of 4 schemes. From Table 1, we see
that the computation amount for signature verification
increases only a little bit, and that the signature size is
even reduced, compared with the same one-round mul-
tisignature. Therefore our protocol can realize four fea-
tures with message flexibility, order flexibility, message
verifiability, and order verifiability only with negligi-
ble additional computation amount in signature gener-
ation.

5. Security Consideration

In this section, we discuss the security relation between
our DLP based multisignature scheme and DLP. Here
we aim at such a situation that there exist attackers
among signers, and that they try to forge not only a
message but also signer’s order. Therefore we assume
that all signers except for an honest signer In collude
in attacks: attackers use all secret keys xj(j �= n), ran-
dom numbers kj , public information like public keys,
all messages m1, · · · , mn ∈ Z, all identity informa-
tion ID1, · · · , IDn ∈ Z, and so their hash values,
h1(m1||ID1) = H1, · · · , h1(mn||IDn) = Hn ∈ Z, and
valid partial signatures. By using these informations,
attackers try to forge Ii’s signatures. For simplicity,
we denote the sequence x1, x2, ..., xn by x[1,n] and the
sequence x1, x2, ..., xi−1, xi+1, ..., xn by x[1,n,i], where
1 ≤ i ≤ n. We also denote x1, x2, ..., xn ∈ Zq by
x[1,n] ∈ Zq .

Generally speaking, two types of attacks in the se-
curity proof are required: the passive attack as the first
step and the active attack as the next step [5]. Our
scheme gives a general model of multisignature schemes
with message flexibility, order flexibility, and their ver-
ifiability for the first time. Therefore as the first step
we discuss the precise security model in the passive at-
tack. In our security proof, we use the polynomial-time
truth-table (≤fp

k−tt) reducibility of the function version
[14]. In ≤fp

k−tt only k non-adaptive queries to an oracle
are allowed. Here we simply write ≤fp

tt because we do
not have to stress the number of queries.

5.1 Functions

First we define some functions.

Definition 1: DLP(X, g, p, q) is the function that on
input two primes p, q with q|(p− 1), X, g ∈ Z

∗
p outputs

a ∈ Zq such that X = ga (mod p) if such a ∈ Zq exists.

We define the function Forge that forges In’s valid
signature (rn, sn) on m[1,n] in order I[1,n] by using
available public information, a signature on m[1,n−1]
by I[1,n−1] and available secret data like x[1,n−1] and
k[1,n−1] for attackers I[1,n−1].

Definition 2: Forge(yn, g, p, q, H[1,n], x[1,n−1],

MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES
2493

s[1,n−1], rn−1, kn) is the function that on input two
primes p, q with q|(p − 1), yn, g ∈ Z

∗
p , s[1,n−1], rn−1,

x[1,n−1], kn, H[1,n] ∈ Z
∗
q , outputs (rn, sn) ∈ Z

∗
q × Z

∗
q

such that Rn = gkn , Rn = y
rn/sn
n g1/sn , and rn =

Rn +Hnrn−1, for j = n − 1, ..., 3, 2: Rj = gs−1
j y

rj ·s−1
j

j

(mod p), Tj = rj − Rj (mod q), and rj−1 = Tj · H−1
j

(mod q), and R1 = gs−1
1 y

r1·s−1
1

1 (mod p), T1 = r1 − R1
(mod q), and T1 = H1 (mod q), where yi = gxi

(mod p)(i = 1, · · · , n − 1) if such (rn, sn) ∈ Z
∗
q × Z

∗
q

exists.

Next we define the function Exclude that forges
In’s valid signature (s′n, kn) on m[1,n,n−1] in order
I[1,n,n−1] by using available public information, a signa-
ture onm[1,n] by I[1,n] and available secret data x[1,n−1]
and k[1,n−1] for attackers I[1,n−1].

Definition 3: Exclude(yn, g, p, q, H[1,n], x[1,n−1],
s[1,n], rn−2, rn) is the function that on input two primes
p, q with q|p − 1, g, yn ∈ Z

∗
p , x[1,n−1], rn, rn−2, s[1,n],

H[1,n] ∈ Z
∗
q , outputs (s′n, kn) ∈ Z

∗
q × Z

∗
q such that

R′
n = gkn (mod p), r′n = Hn × rn−2 + R′

n (mod q),
R′

n = gs′
n
−1
yn

r′
n·s′

n
−1
(mod p), for j = n − 2, · · · , 2:

Rj = gs−1
j y

rj ·s−1
j

j (mod p), Tj = rj − Rj (mod q),

and rj−1 = Tj · H−1
j (mod q), and R1 = gs−1

1 y
r1·s−1

1
1

(mod p), T1 = r1−R1 (mod q), and T1 = H1 (mod q),
where yi = gxi (mod p)(i = 1, · · · , n − 1) if such
(s′n, kn) ∈ Z

∗
q × Z

∗
q exists.

Next we define the function Swap that forges
valid multisignature on m[1,n−2], mn, mn−1 in order
I[1,n−2], In, In−1 by using available public information,
a valid multisignature (rn, s[1,n]) on m[1,n] by I[1,n] and
available secret data x[1,n−1] and k[1,n−1] of attackers
I[1,n−1]. From the assumption that I[1,n−1] are attack-
ers, the function Swap that forges In’s signature (rn, sn)
on m[1,n−2], mn, mn−1 in order I[1,n−2], In, In−1 for a
valid signature (rn, s[1,n]) on m[1,n] by I[1,n] is just the
same as the function that computes Exclude and adds
attacker In−1’s signature on m[1,n−2], mn, mn−1 in or-
der I[1,n−2], In, In−1. Oppositely, the function Exclude
is just the same as the function that for a valid signa-
ture (rn, s[1,n]) on m[1,n] by I[1,n], computes Swap and
outputs only In’s multisignature (rn, sn). Therefore the
following theorem holds.

Theorem 1: Swap ≡fp
tt Exclude.

Next we investigate the function Exchange that
forges valid multisignature on m[1,n] in order I[1,n−2],
In, In−1 by using available public information, a
valid multisignature (rn, s[1,n]) on m[1,n] by I[1,n] and
available secret data x[1,n−1] and k[1,n−1] of attackers
I[1,n−1]. Swap changes both order of signers and order of
messages, but Exchange changes only order of signers.
From the assumption that I[1,n−1] are attackers, the
function Exchange that forges In’s signature (r′n, s

′
n)

on m[1,n] in order I[1,n−2], In, In−1 for a valid signa-
ture (rn, s[1,n]) on m[1,n] by I[1,n] is just the same as
the function that computes Forge in the case of which
forges In’s valid signature (rn, sn) on m[1,n−1] in order
I[1,n−2], In by using available public information, a sig-
nature on m[1,n−2] by I[1,n−2] and available secret data
like x[1,n−2] and k[1,n−2] for attackers I[1,n−2], and adds
attacker In−1’s signature on m[1,n] in order I[1,n−2], In,
In−1. Therefore as for Exchange it is enough to investi-
gate the security of Forge. More strictly the following
theorem holds.

Theorem 2: Exchange ≤fp
tt Forge.

Finally we define the function Attack in order
to discuss the relation between the basic scheme and
the multisignature scheme. The function Attack that
forges In’s valid signature (r, s) on m in the basic
scheme by using information of multisignatures such as
available public information, a signature on m[1,n] by
I[1,n] and available secret data like x[1,n−1] and k[1,n−1]
of attackers I[1,n−1].

Definition 4: Attack(yn, g, p, q, H[1,n], x[1,n−1],
s[1,n], rn, rn−1, m) is the function that on input two
primes p, q with q|(p−1), yn, g ∈ Z

∗
p , s[1,n], rn, x[1,n−1],

H[1,n],m ∈ Z
∗
q , outputs (r, s) ∈ Z

∗
q × Z

∗
q such that

R = yr/s
n g1/s, and m = R − r if such (r, s) ∈ Z

∗
q × Z

∗
q

exists.

For the sake of the following proof, we define the
function SIGN that generates a valid signature, includ-
ing all partial signatures, (r[1,n], s[1,n]) on messages
m[1,n] by signers I[1,n] by using all secret data x[1,n]
and k[1,n] of signers I[1,n]. This function means just the
signature generation function. Apparently it is easy to
compute SIGN.

Definition 5: SIGN(g, p, q, x[1,n], k[1,n], H[1,n]) is the
function that on input two primes p, q with q|(p−1), g ∈
Z
∗
p , x[1,n], k[1,n], H[1,n] ∈ Z

∗
q , outputs r[1,n], s[1,n] ∈ Z

∗
q

such that for j = n, ..., 3, 2: Rj = gs−1
j y

rj ·s−1
j

j (mod p),
Tj = rj − Rj (mod q) and rj−1 = Tj · H−1

j (mod q);

R1 = gs−1
1 y

r1·s−1
1

1 (mod p), T1 = r1−R1 (mod q), T1 =
H1 (mod q), where yi = gxi (mod p)(i = 1, · · · , n) if
such r[1,n], s[1,n] ∈ Zq exists.

5.2 Reduction among Functions

Here we show our results. First we set functions ψi to
give the i-th element, ψi(a[1,n]) = ai(i ≤ n).

Theorem 3: Forge ≡fp
tt DLP

Proof: First we show that Forge ≤fp
tt DLP. For inputs

(yn, g, p, q, H[1,n], x[1,n−1], s[1,n−1], rn−1, kn) of Forge,
set Rn = gkn (mod p), rn = rn−1 ·Hn + Rn (mod q).
Then

2494
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.10 OCTOBER 2001

Forge(yn, g, p, q,H[1,n], x[1,n−1], s[1,n−1], rn−1)

= (rn, (DLP(yn, g, p, q)rn + 1)k−1n (mod q))
= (rn, sn).

Next we show that DLP ≤fp
tt Forge. For input (yn,

g, p, q) of DLP, fix k[1,n] ∈ Z
∗
q , H[1,n] ∈ Z, x[1,n−1] ∈ Z

∗
q ,

and set

(r[1,n−1], s[1,n−1])
= SIGN(g, p, q, x[1,n−1], k[1,n−1], H[1,n−1]),

which is computed in time polynomial from the defini-
tion. Then

DLP(yn, g, p, q)
= (ψ2(Forge(yn, g, p, q,H[1,n], x[1,n−1],

s[1,n−1], rn−1, kn)) · kn − 1)r−1n ,

where

rn = ψ1(Forge(yn, g, p, q,H[1,n], x[1,n−1], s[1,n−1],
rn−1, kn)).

Therefore we get DLP≡fp
tt Forge. ✷

Theorem 4: Exclude ≡fp
tt DLP

Proof: First we show that Exclude ≤fp
tt DLP. For in-

puts (yn, g, p, q, H[1,n], x[1,n−1], s[1,n], rn−2, rn) of
Exclude, fix kn ∈ Zq , and set Rn = gkn (mod p), and
r′n = rn−2 ·Hn +Rn (mod q). Then

Exclude(yn, g, p, q,H[1,n], x[1,n−1], s[1,n], rn−2, rn)

= ((DLP(yn, g, p, q)r′n + 1)k
−1
n (mod q), kn).

Next we show that DLP ≤fp
tt Exclude. For inputs

(yn, g, p, q) of DLP, fix k[1,n−1] ∈ Z
∗
q , H[1,n−1] ∈ Z,

x[1,n−1] ∈ Z
∗
q , sn, rn ∈ Z

∗
q and set

(r[1,n−1], s[1,n−1])
= SIGN(g, p, q, x[1,n−1], k[1,n−1], H[1,n−1]),

which is computed in time polynomial from the defini-
tion. Furthermore set Rn = gs−1

n y
rn·s−1

n
n (mod p) and

Hn = (rn −Rn)/rn−1. Then

DLP(yn, g, p, q) = (s′n · kn − 1) · r′−1n ,

where

s′n = ψ1(Exclude(yn, g, p, q,H[1,n], x[1,n−1],
s[1,n], rn−2, rn),

kn = ψ2(Exclude(yn, g, p, q,H[1,n], x[1,n−1],
s[1,n], rn−2, rn)),

R′
n = g

kn (mod p), and

r′n = rn−2 ·H1 +R′
n (mod q).

Therefore we get DLP≡fp
tt Exclude. ✷

Theorem 5: Attack ≤fp
tt Forge

Proof: For input (yn, g, p, q, H[1,n], x[1,n−1], s[1,n],
rn, rn−1, m) of Attack, fix kn ∈ Z

∗
q , and set H ′

i =
Hi(i = 1, · · · , n−1), andH ′

n = m/rn−1 (mod p). Then

Attack(yn, g, p, q,H[1,n], x[1,n−1], s[1,n], rn, rn−1,m)
= Forge(yn, g, p, q,H ′

[1,n], x[1,n−1], s[1,n−1],

rn−1, kn).

Therefore we get Attack ≤fp
tt Forge. ✷

From Theorem 5, we see that Forge includes such an
attack against the basic scheme by using available in-
formation on multisignatures.

6. Further Discussion

We discuss how to add the following feature to our mul-
tisignature scheme.

Robustness: If the signature verification fails, then
prevent such an unauthentic message from damaging a
receiver.

We realize robustness by combining our multisignature
with an encryption function. So we call it multisign-
crypt. Multisigncrypt has a feature that a message
cannot be recovered if the signature verification fails,
in addition to message flexibility, order flexibility, and
order verifiability. Therefore a multisigncrypt can pre-
vent computer virus mixed into a message from dam-
aging a receiver since unauthentic message can not be
recovered.

6.1 Multisigncrypt Scheme

For simplicity, we present the multisigncrypt scheme by
using our basic multisignature scheme.
Initialization: A center publishes two hash func-
tions h1 and h2, and an encryption and the decryption
function, E(Ki,mi) and D(Ki, Ci), in addition to ini-
tialization in basic multisignature scheme, where h2 is
used for computing a session key Ki for E and D, and
Ci is a cipher text. Figures 3 and 4 show the signature
generation and verification, respectively.

Signature generation:

1. The first signer I1 computes

sgn1 = sign(sk1, h1(m1||ID1)) = (r1, s1),

where sgn1 is divided into two parts of r1 and s1
in the same way as Sect. 3, generates a session key
K1,

K1 = h2(h1(m1||ID1)),

and encrypts m1||ID1 by an encryption function
E,

MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES
2495

Fig. 3 Ij ’s signature generation.

Fig. 4 Ij ’s signature verification step.

C1 = E(K1,m1||ID1),

and sends (ID1, s1, r1, C1) to the next signer I2.
2. A signer Ij verifies the signature on m1, · · · ,mj−1
from Ij−1 according to the verification step in
the next paragraph, and modifies M1,··· ,j−1 =
Patch(m1, · · · ,mj−1) to M1,··· ,j . Then Ij gen-
erates a signature on the difference mj =
Diff(M1,··· ,j−1,M1,··· ,j−1,j): compute

sgnj = Sign(skj , rj−1 ⊗ h1(mj ||IDj))
= (rj , sj),

Kj = h2(rj−1 ⊗ h1(mj ||IDj)),

and encrypts mj ||IDj by using the session key Kj ,

Cj = E(Kj,mj ||IDj).

3. A multisignature on

M1,2,...,i = Patch(m1,m2, ...,mi)

by I1, · · · , Ii is given by (ID1, s1, C1),
(ID2, s2, C2), · · · , (IDi, si, ri, Ci).

Signature verification:

1. The verifier receives (ID1, s1, C1), · · · , (IDi−1,
si−1, ri−1, Ci−1), (IDi, si, ri, Ci) from the signer
Ii.

2. For j = i, ..., 3, 2: compute

Tj = Rec(pkj , (sj , rj)), and Kj = h2(Tj),

and decrypts mj and IDj by

m′
j ||ID′

j = D(Kj , Cj).

If ID′
j =? IDj holds, then accept the signature and

recover rj−1,

rj−1 = Tj 	 h1(m′
j ||ID′

j).

Set j = j − 1 and repeat step 2.

3. Compute

T1 = Rec(pk1, (s1, r1)) and K1 = h2(T1),

and decrypt m1 and ID1 by

m′
1||ID′

1 = D(K1, C1).

If h1(m′
1||ID′

1) =? T1 holds, then accept the signa-
ture and finally patch all messages,

M1,··· ,i = Patch(m1, · · · ,mi).

In both cases of DLP- and RSA-based multisignature
schemes, we can also add the feature of Robustness in
the same way as the above.

7. Conclusion

In this paper, we have proposed a new multisignature
scheme suitable for circulating messages through In-
ternet. Our multisignature scheme realizes the four
features, Message flexibility, Order flexibility, Message
verifiability and Order verifiability, maintaining both
signature size and computation amount in signature
generation/verification low: the computation amount
for the signature verification increases only a little bit,
and the signature size is even reduced compared with
one round previous multisignature scheme. We have
also proposed the multisigncrypt scheme, which real-
izes Robustness in addition to Message flexibility, Order
flexibility, Message verifiability, and Order verifiabil-
ity. Furthermore, we have proved the following equiva-
lences between our DLP-based multisignature and DLP
in some typical attacks by using the reducibility of func-
tions.

1. Forge≡fp
tt DLP,

2. Swap≡fp
tt DLP,

3. Exclude≡fp
tt DLP.

2496
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.10 OCTOBER 2001

References

[1] M. Abe and T. Okamoto, “A signature scheme with mes-
sage recovery as secure as discrete logarithm,” Advances
in Cryptology—Proc. ASIACRYPT’99, Lecture Notes in
Computer Science, vol.1716, pp.378–389, Springer-Verlag,
1999.

[2] M. Burmester, Y. Desmedt, H. Doi, M. Mambo,
E. Okamoto, M. Tada, and Y. Yoshifuji, “A struc-
tured ElGamal-Type multisignature scheme,” Advances in
Cryptology—Proc. PKC’2000, Lecture Notes in Computer
Science, pp.466–482, Springer-Verlag, 2000.

[3] “Specification for a digital signature standard,” National
Institute for Standards and Technology, Federal Informa-
tion Standard Publication XX, draft, 1991.

[4] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Trans. Inf.
Theory, vol.IT-31, no.4, pp.469–472, 1985.

[5] S. Goldwasser, S. Micali, and R.L. Rivest, “A digital sig-
nature scheme secure against adaptive chosen-message at-
tacks,” SIAM J. Computing, vol.17, no.2, pp.281–308, 1988.

[6] K. Itakura and K. Nakamura, “A public-key cryptosystem
suitable for digital multisignatures,” NEC J. Res. Dev.71,
Oct. 1983.

[7] D.E. Knuth, The art of computer programming, vol.2,
Seminumerical Algorithms, 2nd ed., Addison-Wesley, Read-
ing, Mass., 1981.

[8] A. Miyaji, “Another countermeasure to forgeries over mes-
sage recovery signature,” IEICE Trans. Fundamentals,
vol.E80-A, no.11, pp.2192–2200, Nov. 1997.

[9] S. Mitomi and A. Miyaji, “A multisignature scheme with
message flexibility, order flexibility and order verifiabil-
ity,” Information Security and Privacy—Proc. ACISP 2000,
Lecture Notes in Computer Science, vol.1841, pp.298–312,
Springer-Verlag, 2000.

[10] K. Nyberg and R.A. Rueppel, “Message recovery for sig-
nature schemes based on the discrete logarithm problem,”
Designs Codes and Cryptography, vol.7, pp.61–81, 1996.

[11] T. Okamoto, “A digital multisignature scheme using bi-
jective public-key cryptosystems,” ACM Trans. Computer
Syst., vol.6, no.8, pp.432–441, 1988.

[12] T. Okamoto and K. Ohta, “A digital multisignature
scheme based on the Fiat-Shamir scheme,” Advances
in Cryptology—Proc. ASIACRYPT’91, Lecture Notes in
Computer Science, vol.739, pp.139–148, Springer-Verlag,
1993.

[13] R. Rivest, A. Shamir, and L. Adleman, “A method for ob-
taining digital signatures and public-key cryptosystems,”
Commun. ACM, vol.21, no.2, pp.120–126, 1978.

[14] K. Sakurai and H. Shizuya “Relationships among the
computational powers of breaking discrete log cryptosys-
tem,” Advanced in Cryptology—Proc. Eurocrypt’95, Lec-
ture Notes in Computer Science, vol.921, pp.341–355,
Springer-Verlag, 1995. (J. Cryptology, vol.11, pp.29–43,
1998.)

[15] A. Shimbo, “Multisignature schemes based on the Elgamal
scheme,” The 1994 Symposium on Cryptography and In-
formation Security, vol.SCIS94-2C, Jan. 1994.

[16] R.D. Silverman, “A cost-based security analysis of sym-
metric and asymmetric key length,” CryptoBytes in RSA
Laboratories, vol.13, 1999.

[17] C.P. Schnorr, “Efficient signature generation by smart
cards,” J. Cryptology, vol.4, pp.161–174, 1991.

[18] T. Saito, “A multiple signature scheme enabling a specified
Signer’s order,” The 1997 Symposium on Cryptography and
Information Security, vol.SCIS97-33A, Jan. 1994.

Appendix: Another Concrete Multisignature
Scheme

A.1 RSA-Based Multisignature Scheme

Here we present our multisignature scheme based on
RSA multisignature [6].
Initialization: An authenticated center publishes
small primes in addition to {1}, {rl} = {1, 2, 3, 5, · · · }.
A signer Ii with identity information IDi generates two
large primes pi and qi secretly, and computes public
keys ni,l and ei,l ∈ Z

∗
ni,l

in such a way that

ni,l = piqirl, (l ≥ 1)

Li,l =




LCM((pi − 1), (qi − 1))
(l = 1)

LCM((pi − 1), (qi − 1), (rl − 1))
(l ≥ 2)

ei,ldi,l = 1 (mod Li,l),

by using {rl}. For the sake of convenience, we denote
ni = piqi(= ni,1) and ei = ei,1. Signer Ii publishes
all his public keys ni,l, ei,l and rl like Table A· 1. Let
nmin = min{ni}i, and h1 be a hash function to Znmin

,
where min{ni}i means the minimum integer of {ni}i.

In RSA-based multisignature, both operations in
Zni,l

⊗ and 	 are set to ⊕ (EOR), and Ii’s signature
sgni is just the next input to Ii+1’s signature genera-
tion: sgni is not divided into two parts.

Signature generation:

1. The first signer I1 generates a signature on an
original message m1: select a minimum number
n1,l1 such that n1,l1 > h1(m1||ID1) and compute
sgn1=(h1(m1||ID1))d1,l1 (mod n1,l1). Then send
(ID1,m1, l1, sgn1) as a signature on mi to the
next.

2. A signer Ij receives m1,m2, ...,mi−1 from Ij−1.
If j > 2, patch the message M1,2,...,j−1 =
Patch(m1,m2, ...,mj−1), modify it to M1,2,...,j .
Then Ij generates a signature on mj =
Diff(M1,2,...,j−1,M1,2,...,j−1,j): select a mini-
mum number nj,lj such that nj,lj > sgnj−1 ⊕
h1(mj ||IDj), and compute T = sgnj−1 ⊕
h1(mj ||IDj), and sgnj = T

dj,lj (mod nj,lj).
3. A multisignature on

M1,2,...,i = Patch(m1,m2, ...,mi)

Table A· 1 Ii’s pairs of secret key and public key.

l 1 2 · · · · · ·
rl r1 r2 · · · · · ·

public keys (ni,1, ei,1) (ni,2, ei,2) · · · · · ·
secret keys di,1 di,2 · · · · · ·

MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES
2497

Table A· 2 Performance of RSA based signatures.

Computation amount #M(1024) Signature
Ii’s signature signature size #rounds Features
generation verification (bits)

Our scheme 1536 9i 1024 + 10i 1 MF, MV, OF, OV
Primitive scheme 1536 9i 1024i 1 MF, MV, OF

MF: Message Flexibility, MV: Message Verifiability, OF: Order Flexibility, OV: Order Verifiability

by I1, · · · , Ii−1 and Ii is given by (ID1, l1,m1),
(ID2, l2,m2), · · · , and (IDi, li,mi, sgni).

Signature verification:

1. The verifier receives (ID1, l1,m1), (ID2, l2,m2),
· · · , (IDi, li,mi, sgni) from a signer Ii.

2. For j = i, i− 1, ..., 2; compute

T ′ = (sgnj)
ej,lj (mod nj,lj),

sgnj−1 = h1(mj ||IDj)⊕ T ′

by using Ij ’s public key (nj,lj , ej,lj). Let j = j − 1
and repeat step 2.

3. Compute T ′ = sgn
e1,l1
1 (mod n1,l1) by us-

ing I1’s public key (n1,l1 , e1,l1), and check
T ′ =? h1(m1||ID1).

In our multisignature scheme, order of signers does not
have to be fixed beforehand. Therefore even if all pub-
lic keys {ni} are set to be the same size, such a case
as ni+1 < ni may happen. This is why we need an ad-
ditional set of {rl}. The number of signers in a series
of multisignatures might be limited according as {rl}.
However from a practical point of view, it does not seem
to cause a serious problem considering the number of
signers for a series of multisignatures.

Our multisignature based on RSA has the following
features: (1) The size of multisignature keeps low even
if the number of signers increases, compared with DLP
based scheme. (2) It is necessary for each signer to have
plural pairs of secret and public key.

A.2 Performance Evaluation

We evaluate our RSA-based multisignature scheme
from a point of view of computation amount, and the
signature size, where the signature size means that the
final multisignature by I1, · · · , Ii. There has not been
proposed a multisignature with message flexibility, or-
der flexibility and order verifiability. One primitive
scheme with message flexibility is a simple chain of sig-
nature: each signer makes a signature on his own modi-
fication and sends it together with the previous signer’s
signature. Apparently it does not satisfy order verifia-
bility. We also compare our schemes with the primitive
scheme. For a simple discussion, we assume the fol-
lowing conditions: (1) a primitive arithmetic of binary
methods [7] is used for computation of exponentiation;

(2) we denote the number of signers and the computa-
tion time for one n-bit modular multiplication by i and
M(n), respectively, whereM(n) = (m

n)
2M(m); (3) two

primes pj and qj are set to 512 bits, and rl is less than
10 bits in RSA-based signature schemes.

Here we compare our RSA-based multisignature
scheme with the primitive scheme. Table A· 2 shows
performance of two schemes. From Table A· 2, we see
that our protocol can realize four features, message flex-
ibility, order flexibility, message verifiability and order
verifiability, with the same computation amount as the
primitive scheme. Note that the signature size is even
reduced.

A.3 Security Consideration

In this section, we investigate the security relation
between our RSA based multisignature scheme and
RSA† in the same point as Sect. 5. Here we dis-
cuss some of attack models since all results hold in
almost the same way as Sect. 5. For simplicity, we
denote the sequence n1,1, n1,2, · · · , n1,l, n2,1, · · · , nj,l,
by n[1,j],[1,l], and d1,1 ∈ Zn1,1 , · · · , dj,l ∈ Znj,l

by
d[1,j],[1,l] ∈ Zn[1,j],[1,l] in addition to notations defined
in Sect. 5.

A.4 Functions

First we define some functions.

Definition 6: RSA(n,m, e) is the function that on in-
put an integer n ∈ Z, m, e ∈ Zn , outputs s ∈ Zn such
that se = m (mod n) if such s ∈ Zn exists.

We define the function Forge that forges Ij ’s valid
signature (sgnj , lj) on m[1,j] in order I[1,j] by using
available public information, a signature on m[1,j−1] by
I[1,j−1] and available secret data such as p[1,j−1], q[1,j−1]
and d[1,j−1],[1,l] of attackers I[1,j−1].

Definition 7: Forge-RSA(nj,[1,l], r[1,l], ej,[1,l], H[1,j],
p[1,j−1], q[1,j−1], d[1,j−1],[1,l], sgn[1,j−1], l[1,j−1]) is
the function that on input nj,[1,l] ∈ Z, ej,[1,l] ∈
Znj,[1,l] , primes p[1,j−1], q[1,j−1], r[1,l], and d[1,j−1],[1,l] ∈

†The original RSA signature [13] sets n to a product
of two primes, that is n = pq. For simplicity, here we use
a generalized model of RSA in which the number of prime
factors of n is not limited to 2, and the recent result of [16] is
included. Apparently the original RSA problem is reduced
to the generalized RSA problem.

2498
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.10 OCTOBER 2001

Zn[1,j−1],[1,l] , H[1,j] ∈ Znmin
, l[1,j−1] ∈ {1, · · · , l},

sgn1 ∈ Zn1,l1
, · · · , sgnj−1 ∈ Znj−1,lj−1

, out-
puts (sgnj , lj) ∈ Znj,lj

× {1, · · · , l} such that for
i=j, . . . , 3, 2: Ti=sgni

ei,li (mod ni,li); sgni−1 = Hi ⊕
Ti, T1=sgn1e1,l1 (mod n1,l1), T1 = H1 where ni,t =
piqirt(1 ≤ i ≤ j − 1, 1 ≤ t ≤ l), and nmin =
min{n[1,j],1}j , if such (sgnj , lj) exists, and otherwise
outputs ⊥.

Next we define the function Exclude that forges Ij ’s
valid signature (sgn′j , l

′
j) on m[1,j,j−1] in order I[1,j,j−1]

by using available public information, a signature on
m[1,j] by I[1,j] and available secret data such as p[1,j−1],
q[1,j−1] and d[1,j−1],[1,l] of attackers I[1,j−1].

Definition 8: Exclude-RSA(nj,[1,l], r[1,l], ej,[1,l],
H[1,j], p[1,j−1], q[1,j−1], d[1,j−1],[1,l], sgn[1,j], lj−2, lj)
is the function that on input nj,[1,l] ∈ Z, ej,[1,l] ∈
Znj,[1,l] , primes p[1,j−1], q[1,j−1], r[1,l], and d[1,j−1],[1,l] ∈
Zn[1,j−1],[1,l] , H[1,j] ∈ Znmin

, sgn1 ∈ Zn1,l1
, · · · , sgnj ∈

Znj,lj
, lj−2, lj ∈ {1, · · · , l}, outputs (sgn′j , l′j) ∈

Znj,l′
j
×{1, · · · , l} such that Tj = sgn′j

ej,l′
j (mod nj,l′j

);
sgnj−2 = Hj ⊕ Tj , for i = j − 2, ..., 3, 2: Ti =
sgni

ei,li (mod ni,li); sgni−1 = Hi ⊕ Ti, T1 = sgn1e1,l1

(mod n1,l1), T1 = H1 if such (sgn
′
j , l

′
j) exists, and oth-

erwise outputs ⊥.

As for the function Swap-RSA that forges valid multisig-
nature on m[1,j−2], mj , mj−1 in order I[1,j−2], Ij , Ij−1
by using available public information, a valid multisig-
nature on m[1,j] by I[1,j] and available secret data of
attackers I[1,j−1], we can easily get the following result
in the same way as Theorem 2.

Theorem 6: Swap-RSA ≡fp
tt Exclude-RSA.

For the sake of the following proof, we define the func-
tion SIGN-RSA that generates a valid signature, includ-
ing all partial signatures, (sign[1,j], l[1,j]) on messages
m[1,j] by signers I[1,j] by using all secret data such as
p[1,j] and q[1,j] of signers I[1,j]. This function means
just the signature generation function. Apparently it is
easy to compute SIGN-RSA.

Definition 9: SIGN-RSA(n[1,j],[1,l], H[1,j], d[1,j],[1,l],
e[1,j],[1,l]) is the function that on input n[1,j],[1,l] ∈
Z, e[1,j],[1,l] ∈ Zn[1,j],[1,l] , the corresponding RSA-
keys d[1,j],[1,l], and H[1,n] ∈ Znmin

, outputs
(l[1,j], sgn1, · · · , sgnj) ∈ {1, l} × Zn1,l1

× · · · × Znj,lj

such that for i = j, ..., 3, 2: Ti = sgni
ei,li (mod ni,li);

sgni−1 = Hi⊕Ti, T1 = sgn1e1,l1 (mod n1,l1), T1 = H1,
where nmin = min{ni,1}i if such (sgn[1,j], l[1,j]) exists,
and otherwise outputs ⊥.

Here we show our results.

Theorem 7: Forge-RSA ≡fp
tt RSA

Proof: First we show that Forge-RSA ≤fp
tt RSA. For

inputs (nj,[1,l], r[1,l], ej,[1,l], H[1,j], p[1,j−1], q[1,j−1],

d[1,j−1],[1,l], sgn[1,j−1], l[1,j−1]) of Forge-RSA, set T =
sgnj−1⊕Hj , and set the minimum integer lj such that
nj,lj > T . If such lj does not exist, then output ⊥.
Then by using (nj,lj , ej,lj),

Forge-RSA(nj,[1,l], r[1,l], ej,[1,l], H[1,j], p[1,j−1],

q[1,j−1], d[1,j−1],[1,l], sgn[1,j−1], l[1,j−1])
= (RSA(nj,lj , T, ej,lj), lj).

Next we show that RSA ≤fp
tt Forge-RSA. For inputs

(n,m, e) of RSA, set r1 = 1, nj = n, ej,1 = e, fix ej,[2,l] ∈
Zn , primes p[1,j−1], q[1,j−1], and r[2,l], and computes
key pairs of (n[1,j−1],[1,l], d[1,j−1],[1,l], e[1,j−1],[1,l]) from
p[1,j−1], q[1,j−1] and r[1,l]. Then set nmin = {ni,1}i, fix
H[1,j−1] ∈ Znmin

, and set

(sgn[1,j−1], l[1,j−1])
= SIGN-RSA(n[1,j−1],[1,l], H[1,j−1], d[1,j−1],[1,l],
e[1,j−1],[1,l]),

and Hj = m⊕ sgnj−1. Then

RSA(n,m, e)
= ψ1(Forge− RSA(nj,[1,l], r[1,l], ej,[1,l], H[1,j],

p[1,j−1], q[1,j−1], d[1,j−1],[1,l],

sgn[1,j−1], l[1,j−1])).

Therefore we get Forge-RSA ≡fp
tt RSA. ✷

Theorem 8: Exclude-RSA ≡fp
tt RSA

Proof: First we show that Exclude-RSA ≤fp
tt RSA. For

inputs (nj,[1,l], r[1,l], ej,[1,l], H[1,j], p[1,j−1], q[1,j−1],
d[1,j−1],[1,l], sgn[1,j], lj−2, lj) of Exclude-RSA, set T =
sgnj−2⊕Hj , and set the minimum integer lj such that
nj,lj > T . If such a lj does not exist, then output ⊥.
Then

Exclude-RSA(nj,[1,l], r[1,l], ej,[1,l], H[1,j], p[1,j−1],

q[1,j−1], d[1,j−1],[1,l], sgn[1,j], lj−2, lj)
= (RSA(nj,lj , T, ej,lj), lj).

Next we show that RSA ≤fp
1−tt Exclude-RSA. For

inputs (n,m, e) of RSA, set r1 = 1, nj = nj,1 = n,
ej,1 = e, fix ej,[2,l] ∈ Zn , primes p[1,j−1], q[1,j−1], and
r[2,l], computes key pairs of (n[1,j−1],[1,l], d[1,j−1],[1,l],
e[1,j−1],[1,l]) from p[1,j−1], q[1,j−1], and r[1,l]. Then fix
H[1,j−1] ∈ Znmin

for nmin = min{ni}i, and set

(sgn[1,j−1], l[1,j−1])
= SIGN-RSA(n[1,j−1],[1,l], H[1,j−1], d[1,j−1],[1,l],
e[1,j−1],[1,l]),

and Hj = m⊕ sgnj−2. Then

RSA(n,m, e)
= ψ1(Forge− RSA(nj,[1,l], r[1,l], ej,[1,l], H[1,j],

p[1,j−1], q[1,j−1], d[1,j−1],[1,l], sgn[1,j], lj−2, lj).

MITOMI and MIYAJI: A GENERAL MODEL OF MULTISIGNATURE SCHEMES
2499

Therefore we get Exclude-RSA ≡fp
tt RSA. ✷

Shirow Mitomi received the B.E.
from the Department of Computer Sci-
ence, Tokyo Institute of Technology and
the M. Info. Sc. from JAIST in 1998 and
2000 respectively. He had researched the
security of flexible multiple signature sys-
tems. He has joined FUJITSU LIMITED
since 2000 and developes Internet banking
systems.

Atsuko Miyaji received the B.Sc.,
the M.Sc., and Dr.Sci. degrees in math-
ematics from Osaka University, Osaka,
Japan in 1988, 1990, and 1997 respec-
tively. She joined Matsushita Electric In-
dustrial Co., LTD from 1990 to 1998 and
engaged in research and development for
secure communication. She has been an
associate professor at JAIST (Japan Ad-
vanced Institute of Science and Technol-
ogy) since 1998. Her research interests in-

clude the application of projective varieties theory into cryptog-
raphy and information security. She is a member of the Interna-
tional Association for Cryptologic Research and the Information
Processing Society of Japan.

