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PAPER Special Section on Discrete Mathematics and Its Applications

New Explicit Conditions of Elliptic Curve Traces for

FR-Reduction∗

Atsuko MIYAJI†a), Regular Member, Masaki NAKABAYASHI†,
and Shunzou TAKANO††, Nonmembers

SUMMARY Elliptic curve cryptosystems [19], [25] are based
on the elliptic curve discrete logarithm problem (ECDLP). If
elliptic curve cryptosystems avoid FR-reduction [11], [17] and
anomalous elliptic curve over Fq [3], [33], [35], then with current
knowledge we can construct elliptic curve cryptosystems over a
smaller definition field. ECDLP has an interesting property that
the security deeply depends on elliptic curve traces rather than
definition fields, which does not occur in the case of the discrete
logarithm problem (DLP). Therefore it is important to character-
ize elliptic curve traces explicitly from the security point of view.
As for FR-reduction, supersingular elliptic curves or elliptic curve
E/Fq with trace 2 have been reported to be vulnerable. However
unfortunately these have been only results that characterize el-
liptic curve traces explicitly for FR- and MOV-reductions. More
importantly, the secure trace against FR-reduction has not been
reported at all. Elliptic curves with the secure trace means that
the reduced extension degree is always higher than a certain level.
In this paper, we aim at characterizing elliptic curve traces by
FR-reduction and investigate explicit conditions of traces vulner-
able or secure against FR-reduction. We show new explicit con-
ditions of elliptic curve traces for FR-reduction. We also present
algorithms to construct such elliptic curves, which have relation
to famous number theory problems.
key words: elliptic curve cryptosystems, trace, FR-reduction

1. Introduction

Koblitz and Miller proposed independently a public key
cryptosystem based on an elliptic curve E defined over
a finite field Fq (q = pr) [19], [25]. If elliptic curve cryp-
tosystems satisfy so called FR-conditions [11], [17], [24]
and avoid anomalous elliptic curve over Fq [3], [33], [35],
then the only known attacks are the Pollard ρ-method
[27] and the Pohlig-Hellman method [26]. Hence with
current knowledge, we can construct elliptic curve cryp-
tosystems over a smaller definition field than the dis-
crete logarithm problem (DLP)-based cryptosystems
like the ElGamal cryptosystems [13] or the DSA [12]
and RSA cryptosystems [28]. Elliptic curve cryptosys-
tems with a 160-bit key are thus believed to have the
same security as both the ElGamal cryptosystems and
RSA cryptosystems with a 1,024-bit key.
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Recently some researches on comparing MOV and
FR-reductions have been reported in [15], [18]. These
attacks imbed a subgroup < G > ⊂ E(Fq ) to F

∗
qk for

an extension field Fqk and reduce ECDLP based on
< G >⊂ E(Fq ) to DLP based on a subgroup of F∗qk ,
where G ∈ E(Fq ) is called a basepoint for ECDLP.
MOV-reduction reduces ECDLP to DLP by using the
Weil pairing [34]. Supersingular elliptic curves [34] have
been reported to be vulnerable against MOV-reduction,
which can be easily recognized by the trace t of the qth-
power Frobenius endomorphism, t = q + 1 − #E(Fq ):
an elliptic curve is supersingular if and only if t ≡ 0
(mod p). On the other hand, FR-reduction reduces
ECDLP to DLP by using the Tate pairing. FR-
reduction can attack elliptic curves with trace 2 in ad-
dition to supersingular elliptic curves. In fact, these
have been only results that characterize elliptic curve
traces explicitly from a point of view of FR- and MOV-
reductions. It is interesting that in the case of E/Fp

over a prime field, dangerous elliptic curve traces hap-
pen to be equal to 0 (supersingular), 1 (anomalous)
and 2, which can be easily recognized from other el-
liptic curves. Thus ECDLP has an interesting property
that the security deeply depends on elliptic curve traces
rather than definition fields, which does not occur in the
case of DLP. Therefore it is important to characterize
elliptic curve trace from the security point of view.

Balasubramanian and Koblitz investigate that ex-
tension degrees required to apply both reductions for
ECDLP on G ∈ E(Fq ) with order n are the same if
n � |q−1 [4]. Therefore without loss of generality we deal
with only FR-reduction. By FR-reduction, ECDLP on
G ∈ E(Fq ) with order n is reduced to DLP on F

∗
qk if

and only if n|qk−1. The probability that elliptic curves
are vulnerable against FR-reduction, i.e. the extension
degree k is small, is shown to be highly unlikely [4]:
FR-reduction is considered not to be threat in a realis-
tic sense. Nevertheless all but supersingular and trace
2 elliptic curves have not been proved to be secure in a
sense that they are strong against FR-reduction. There
might exist another trace of elliptic curves which is re-
duced to at most 6, seriously low, degree extension field,
whose trace might not be simple like 0 or 2. In fact,
supersingular elliptic curves have rather special proper-
ties compared with ordinary elliptic curves [34], which
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is thought to cause such a weak factor. However also
in the case of ordinary elliptic curves, non-special ellip-
tic curves, there might exist elliptic curve traces with a
weak factor.

More importantly, the secure trace against FR-
reduction has not been reported yet. Elliptic curves
with the secure trace means that the reduced extension
degree is always higher than a certain level. This means
that the security of ECDLP over E/Fq is guaranteed by
the security of widely known DLP on F

∗
qk with higher k

than a certain level since FR-reduction gives an isomor-
phism between ECDLP over E/Fq and DLP based on a
subgroup of F∗qk [20]. In another light, the secure trace
against FR-reduction is useful for construction of ellip-
tic curve cryptosystems. Let’s consider the following
requirements: it is desirable that a domain parameter
such as an elliptic curve or a basepoint should be cho-
sen independently by each entity or by each application
in order to keep security high [1], and that such an ini-
tialization could be done more easily over lower CPU
power or smaller memory like a smart card. In such
requirements, it would be certainly desirable that an
elliptic curve is constructable at least as easy as gen-
erating a prime number, which is a dominant step of
RSA-key generation [28]. This is why explicit condi-
tions of secure elliptic-curve traces is useful since we
can construct easily an elliptic curve with a given spe-
cific trace. Apparently SEA algorithm [7], [10], [30], [32]
is not suitable since it requires rather large memory.

In this paper, we aim at characterizing elliptic
curve traces by FR-reduction and investigate explicit
conditions of traces vulnerable or secure against FR-
reduction. Here we summarize our results on new ex-
plicit conditions of elliptic curve traces against FR-
reduction.

• Let E/Fq be an elliptic curve with prime order and
the trace t.
◦ Theorem 2: ECDLP on E/Fq is reduced to DLP
on F

∗
q3 by FR-reduction

⇔ (i) (q, t) can be represented by q = 12l2 − 1 and
t = −1± 6l (l ∈ Z), or

(ii) (q, t) can be represented by q = pr (r is even)
and t = ±√

q (i.e. supersingular elliptic curves).
◦ Theorem 3: ECDLP on E/Fq is reduced to DLP on
F
∗
q4 by FR-reduction

⇔ (i) (q, t) can be represented by q = l2 + l + 1 and
t = −l, l + 1 (l ∈ Z), or

(ii) (q, t) can be represented by q = 2r (r is odd)
and t = ±

√
2q (i.e. supersingular elliptic curves).

◦ Theorem 4: ECDLP on E/Fq is reduced to DLP on
F
∗
q6 by FR-reduction

⇔ (i) (q, t) can be represented by q = 4l2 + 1 and
t = 1± 2l (l ∈ Z), or

(ii) (q, t) can be represented by q = 3r and t = ±
√
3q

(r is odd) (i.e. supersingular elliptic curve).

Up to the present, it has not been reported whether
there exist another elliptic curve trace, except supersin-
gular and trace 2, reduced to at most 6-degree exten-
sion field or not. However, our explicit conditions mean
that prime-order elliptic curves are reduced to at most
6-degree extension field if and only if they satisfy at
least one of conditions of Theorems 2, 3 and 4.

• Let ECDLP on E(Fq ) with the trace t be reduced to
DLP on F

∗
qk .

◦ Theorem 5: If t ≥ 3, then the extension degree k
satisfies

k ≥ log q
log (t− 1)

− ε,

where ε is a real number such that 1
10 > ε > 0.

◦ Corollary 4: Let t = 3. Then the extension degree
k satisfies

k > log q − ε.

Theses are the first explicit elliptic-curve-trace condi-
tions on which reduced extension degrees are always
higher than a certain level. In the case of E/Fp , dan-
gerous elliptic curve traces happen to be equal to 0, 1
and 2. To the contrary, our result shows that E/Fp

with trace 3 is secure against FR-reduction.
Furthermore, we present an algorithm to construct

elliptic curves with the above conditions and present
some examples.

This paper is organized as follows. Section 2 sum-
marizes MOV- and FR-reductions. Section 3 inves-
tigates new explicit conditions vulnerable or secure
against FR-reduction by showing Theorems 2, 3, 4,
and 5. Section 4 shows algorithms to construct elliptic
curves with new explicit conditions. Section 5 presents
some examples.

2. MOV-Reduction and FR-Reduction

In this section, we summarize MOV- and FR-reductions
against ECDLP on G ∈ E(Fq ) with order n. Here
the n-torsion subgroup is denoted by E[n] = {P ∈
E | nP = O}.

We compare MOV-reduction with FR-reduction.
In MOV-reduction, ECDLP on G is reduced to DLP for
the smallest integer k such that E[n] ⊂ E(Fqk ). Thus
supersingular elliptic curves can be efficiently reduced
to F

∗
qk for k ≤ 6. On the other hand, in FR-reduction

ECDLP on G is reduced to DLP for the smallest in-
teger k such that n|qk − 1. If E[n] ⊂ E(Fqk ), then
n|qk − 1 [31]. Therefore such an elliptic curve vulner-
able against MOV-reduction is also vulnerable against
FR-reduction. In fact FR-reduction works also for el-
liptic curves with trace 2 efficiently in addition to su-
persingular elliptic curves.

Balasubramanian and Koblitz [4] show that if n is
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Table 1 Known explicit conditions for FR-reduction.

Fq (q = pr) trace(E) extension degree
p �≡ 1 (mod 4) if r is even 0 2
p �≡ 1 (mod 3) if r is even ±√

q 3
p = 2 and r is odd ±

√
2q 4

p = 3 and r is odd ±
√
3q 6

r is even ±2√q 1
∀q 2 1

Table 2 New explicit conditions for FR-reduction.

Fq (q = pr) t = trace(E) extension degree k
12l2 − 1 −1± 6l 3
l2 + l+ 1 −l, l + 1 4
4l2 + 1 1± 2l 6

∀q t ≥ 3 k ≥ log q
log (t−1)

− ε

a prime and n � |q − 1, then

E[n] ⊂ E(Fqk ) ⇔ n | qk − 1.

As a result there is no difference between MOV-
reduction and FR-reduction except elliptic curves with
trace 2. Without loss of generality, we deal with the
only FR-reduction in this paper.

Table 1 summarizes known explicit conditions of
elliptic curve traces for FR-reduction, where the exten-
sion degree k means that ECDLP on E(Fq ) is reduced
to DLP on a subgroup of F∗pk .

As for the probability such that ECDLP is reduced
to the lower degree extension field by FR-reduction,
Balasubramanian and Koblitz show the next theorem.

Theorem 1 [4]: Let (p, E) be a randomly chosen pair
of a prime p in the interval M/2 ≤ p ≤ M and an
elliptic curve E/Fp with prime order n. The probability
Pr of n|pk − 1 for some k ≤ (log p)2 satisfies

Pr < C
(logM)9(log logM)2

M

for C > 0. ✷

Theorem 1 says that FR-reduction is highly un-
likely to be efficient attack against ECDLP. However we
note that Theorem 1 does not describe whether there
might exist another explicit criterion of an elliptic curve
trace vulnerable or secure against FR-reduction or not.
From Table 1, we see that such an explicit condition
that gives the extension degree higher than a certain
level has not been reported.

3. New Explicit Conditions for Elliptic Curve
Traces

In this section, we investigate new explicit conditions
of elliptic curve traces for FR-reduction. Table 2 shows
our results, which will be discussed in the following sec-
tions.

3.1 New Explicit Conditions Vulnerable against FR-
Reduction

In this section, we investigate new conditions of which
ECDLP on E/Fq is reduced to DLP on seriously low ex-
tension field like Fq3 , Fq4 , and Fq6 , which just occurs in
the case of supersingular elliptic curves. Supersingular
elliptic curves have rather special properties compared
with ordinary elliptic curves [34], which would no doubt
cause such vulnerable factor. Here we show that there
exist also vulnerable conditions of traces in the case of
ordinary elliptic curves.

Let E/Fq be an elliptic curve with order n =
#E(Fq ) = q + 1 − t, where t is the trace of E. Then
we show the conditions of which ECDLP on E/Fq is
reduced to DLP on F

∗
q3 by FR-reduction.

Theorem 2: Let E/Fq be an elliptic curve with prime
order n (q > 64). ECDLP on E/Fq is reduced to DLP
on F

∗
q3 by FR-reduction if and only if one of the follow-

ing conditions holds,
(i) (q, t) can be represented by q = 12l2 − 1 and
t = −1± 6l (l ∈ Z).
(ii) (q, t) can be represented by q = pr (r is even) and
t = ±√

q (i.e. supersingular elliptic curves).

Proof: We assume that ECDLP on E/Fq with prime
order n is reduced to DLP on F

∗
q3 by FR-reduction.

From the condition of FR-reduction, n satisfies that
n|q3−1 and n � |q−1 since n is a prime. Therefore there
is an integer λ such that q2 + q + 1 = λn. By setting
n = q+1− t and q2 + q+1 = (q+1)2 − t2 + t2 − q, we
get the following equation,

(q + 1− t)(q + 1 + t− λ) = q − t2. (1)

By Hasse’s Theorem, the trace t satisfies |t| ≤ 2
√
q.

Hence, (1) satisfies

−3 ≤
(
1 +

1
q
− t

q

)
(q + 1 + t− λ) ≤ 1. (2)

For the assumption of q, t ∈ Z and q > 64, we conclude
that (q, t) satisfies one of the following equations,

q + 1 + t− λ = −3,−2,−1, 0, 1 (3)

By substituting (3) to (1), we get that (q, t) satisfies
the following equations,

t2 + 3t− 4q − 3 = 0, (4)

t2 + 2t− 3q − 2 = 0, (5)

t2 + t− 2q − 1 = 0, (6)

t2 − q = 0, (7)
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t2 − t+ 1 = 0. (8)

By simple discussion on the existence of integer solu-
tions for congruence equations, we get that (t, q) ∈ Z×Z

exists if and only if (t, q) satisfies (5) or (7).
In the case of (5), (t, q) is expressed by t = −1±6l

and q = 12l2 − 1 for l ∈ Z since q = pr for a prime p,
and t ∈ Z satisfies

t = −1±
√
3(q + 1).

In the case of (7), (t, q) is expressed by t = ±√
q =

±√
pr for even integers r. This is just a supersingular

elliptic curve.
Conversely, if a prime-order elliptic curve E/Fq

satisfies (i) or (ii) in Theorem 2, then #E(Fq ) = n
satisfies n|q3 − 1. Therefore ECDLP on E/Fq is re-
duced to DLP on F

∗
q3 . ✷

Note that possible order of elliptic curves is given
by Deuring [9] and Waterhouse [17]. In the case of
E/Fp , there exactly exists an elliptic curve of type (i)
in Theorem 2. In the case of F2r , there does not exist
any elliptic curve of type (i) in Theorem 2, but in the
case of Fpr (p ≥ 3) there exists.

We get the next corollary easily from Theorem 2.

Corollary 1: Let E/Fq be an elliptic curve with trace
t. If (q, t) can be represented by q = 12l2 − 1 and
t = −1 ± 6l(l ∈ Z), then ECDLP on E(Fq ) is reduced
to DLP on F

∗
q3 by FR-reduction.

Proof: Here we set #E(Fq ) = n and let order of G ∈
E(Fq ) be m. Then m divides n. From the assumption,
n = 12l2 ± 6l+ 1. This yields 12l2 ≡ ±6l− 1 (mod n).
Then by using the relation of both 12l2 ≡ ±6l − 1
(mod n) and q = 12l2 − 1, we get

q3 − 1 = (12l2 − 2)((12l2 − 1)2 + 12l2)
≡ (12l2 − 2)((±6l − 2)2 + (±6l − 1)) (mod n)
≡ (12l2 − 2)(36l2 ∓ 18l + 3) (mod n)
≡ 0 (mod n)
≡ 0 (mod m).

Therefore ECDLP on ∀ < G >⊂ E(Fq ) is reduced to
DLP on F

∗
q3 by FR-reduction. ✷

Next we show the conditions of which ECDLP on
E/Fq is reduced to DLP on F

∗
q4 by FR-reduction.

Theorem 3: Let E/Fq be an elliptic curve with prime
order n (q > 36). ECDLP on E/Fq is reduced to DLP
on F

∗
q4 by FR-reduction if and only if one of the follow-

ing conditions holds,
(i) (q, t) can be represented by q = l2+ l+1 and t = −l,
l + 1 for l ∈ Z.
(ii) (q, t) can be represented by q = 2r (r is odd) and
t = ±

√
2q (i.e. supersingular elliptic curves).

Proof: We assume that ECDLP on E/Fq with prime
order n is reduced to DLP on F

∗
q4 by FR-reduction.

From the condition of FR-reduction, n satisfies that
n|q4 − 1 and n � |q2 − 1 since n is a prime. Therefore
there is an integer λ such that q2+1 = λn. In the same
way as Theorem 2, we get the following equation,

(q + 1− t)(q + 1 + t− λ) = 2q − t2. (9)

From Hasse’s Theorem, (9) satisfies that

−2 ≤
(
1 +

1
q
− t

q

)
(q + 1 + t− λ) ≤ 2. (10)

In the same discussion as Theorem 2, we get that
(t, q) ∈ Z × Z exists if and only if (t, q) satisfies

t2 − 2q = 0, (11)

t2 − t− q + 1 = 0. (12)

In the case of (11), t satisfies t = ±
√
2q = ±

√
2pr for

p = 2 and an odd positive integer r. This is just a
supersingular elliptic curve. In the case of (12), (t, q) is
expressed by t = −l, l + 1 and q = l2 + l + 1 for l ∈ Z

since t ∈ Z satisfies

t =
1±

√
4q − 3
2

.

Apparently if a prime-order elliptic curve E/Fq satis-
fies (i) or (ii) in Theorem 3, then ECDLP on E/Fq is
reduced to DLP on F

∗
q4 . ✷

The next corollary follows from Theorem 3.

Corollary 2: Let E/Fq be an elliptic curve with trace
t. If (q, t) can be represented by q = l2+l+1 and t = −l,
l + 1 for l ∈ Z, then ECDLP on E(Fq ) is reduced to
DLP on F

∗
q4 by FR-reduction.

In the same way as Theorems 2 and 3, the explicit
conditions of which ECDLP on E/Fq is reduced to DLP
on F

∗
q6 by FR-reduction are shown as follows.

Theorem 4: Let E/Fq be an elliptic curve with prime
order n. ECDLP on E/Fq is reduced to DLP on F

∗
q6 by

FR-reduction if and only if one of the following condi-
tions holds,
(i) (q, t) can be represented by q = 4l2+1 and t = 1±2l
for l ∈ Z.
(ii) (q, t) can be represented by q = 3r and t = ±

√
3q

for an odd integer r (i.e. supersingular elliptic curve).

Corollary 3: Let E/Fq be an elliptic curve with trace
t. If (q, t) can be represented by q = 4l2 + 1 and t =
1 ± 2l for l ∈ Z, then ECDLP on E/Fq is reduced to
DLP on F

∗
q6 by FR-reduction.

Remark 1: Theorems 2, 3, and 4 use the fact that the
k-th cyclotomic polynomial is decomposed into at most
2-degree irreducible polynomials over Z in the case of
k = 3, 4, and 6, respectively. For other cases of k, the
same discussion might be used if the k-th cyclotomic
polynomial is decomposed into irreducible polynomials
with rather small degrees over Z.
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3.2 New Explicit Conditions Secure against FR-
Reduction

In this section, from a secure point of view we inves-
tigate a new explicit condition of elliptic curve traces
on which the reduced extension degree is always higher
than a certain level. As for the known results on E/Fp ,
dangerous elliptic curves happen to be small traces like
0, 1 and 2. However, on the contrary, our results of The-
orems 2, 3 and 4 suggest that the elliptic curve trace
whose order is near upper bound in Hasse’s Theorem
[34] should be vulnerable. As a result, we show that the
extension degree is higher than a certain level when the
positive trace except for t = 0, 1 and 2 is small enough.

Theorem 5: Let E/Fq be an elliptic curve with prime
order n (q > 861), ECDLP on E(Fq ) be reduced to
DLP on F

∗
qk , and t be the elliptic curve trace. If t ≥ 3,

then the extension degree k satisfies

k ≥ log q
log (t− 1)

− ε,

where ε is a real number such that 1
10 > ε > 0.

Proof: ECDLP on E(Fq ) is reduced to DLP on Fqk

if and only if

qk ≡ 1 (mod n). (13)

By substituting n = q + 1 − t to (13), we get that k is
the smallest integer satisfying

(t− 1)k ≡ 1 (mod n). (14)

From the assumption and Hasse’s theorem, t satisfies
3 ≤ t ≤ 2

√
q � q ≈ n. Therefore

1 < (t− 1)k < n < n+ 1

if 1 ≤ k < log n
log(t−1) . Then it follows that the smallest

integer k such that (t − 1)k ≡ 1 (mod n) is greater
than or equal to log n

log(t−1) . Furthermore by substituting
n = q + 1− t, we get that

k ≥ log q
log (t− 1)

− ε,

where ε = − logt−1 (1− t−1
q ). By using the relation of

3 ≤ t ≤ 2
√
q, we get easily that

0 < ε < − logt−1

(
1− 2

√
q
+

1
q

)
<

1
10
,

if q > 861. Apparently the larger q is, the smaller ε is.
Thus the lower bound of extension degree is given by

k ≥ log q
log (t− 1)

− ε. ✷

The above theorem gives a lower bound of extension
degree k in the case of small t ≥ 3, which ensures the
security of ECDLP over E/Fq by that of widely known
DLP on F

∗
qk .

The next corollary easily follows from Theorem 5.

Corollary 4: Let E/Fq be an prime order elliptic
curve with t = 3 (q > 861) and ECDLP on E(Fq )
be reduced to DLP on F

∗
qk . Then the extension degree

k satisfies

k > log q − ε,

where ε is a real number such that 1
10 > ε > 0.

Remark 2: The extension degree k < log q means
that FR-reduction gives a subexponential attack
against ECDLP under the index calculus method [8],
which runs over any field Fq in time Lq[1/2, c] =
exp((c + O(1))(log q)1/2(log log q)1/2). On the other
hand, the extension degree k < (log q)2 means that
FR-reduction gives a subexponential attack against
ECDLP under the number field sieve [14] which runs
over some fields Fq in time Lq[1/3, c] = exp((c +
O(1))(log q)1/3(log log q)2/3). Therefore in order to
construct enough secure elliptic curve cryptosystems
it would be desirable that k ≥ (log q)2. However the
condition of k ≥ log q in Corollary 4 is not highly opti-
mistic if we estimate under a rather realistic assumption
of the discrete logarithm algorithm for definition fields
of elliptic curves [8], [29].

In the case of prime-order elliptic curves E/Fp with
t = 3, we will easily see that the following strict condi-
tion also holds: the extension degree is just exponential.

Corollary 5: Let E/Fp be a prime-order elliptic curve
with t = 3 (i.e. #E(Fp) = p − 2 is prime). If 2 is
a primitive root in Fp−2 , then the extension degree k
such that ECDLP on E(Fp) is reduced to DLP on F

∗
pk

satisfies k = p− 3.

4. Algorithm

In this section, we describe algorithms to construct el-
liptic curves vulnerable or secure against FR-reduction
in Sect. 3 and confirm that such elliptic curves exist in
a realistic sense (i.e. constructable). From the point of
view of theoretical interest, each construction is deeply
related to each famous number theory problem: the
former is a problem of finding integer solutions of Pell’s
equation [16], and the latter is a problem of finding twin
prime numbers.

4.1 Construction of Elliptic Curves Reducible to
Lower Extension Degree

Here we present an algorithm to construct elliptic
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curves over Fp in Corollary 1 since Theorem 2 is a spe-
cial case of Corollary 1. By using the CM-method [2]†,
the dominant step of construction of elliptic curves with
both p = 12l2 − 1 and t = −1± 6l(l ∈ Z) is finding in-
teger solutions (l, y) of 12l2 ± 12l− 5 = dy2 for a given
positive integer d ≡ 3 (mod 4), which is easily trans-
formed into finding integer solutions of an indetermi-
nate equation

x2 − 3dy2 = 24. (15)

From the elementary number theory [36], all integer
solutions (x, y) of (15) is given by

x+ y
√
3d = (x1 + y1

√
3d)(t0 + u0

√
3d)n,

where (t0, u0) is the minimum positive integer solution
on ε = t0 + u0

√
3d > 0 of Pell’s equation,

T 2 − 3dU2 = 1, (16)

and (x1, y1) is an integer solution of (15) in the following
domain Dom,

Dom = {(x, y)|
√
24 ≤ x < t0

√
24,

0 ≤ x < u0

√
24}.

Here we call two integer solutions (x, y) and (x′, y′) of
(15) are associated if

x+ y
√
3d = ±(x′ + y′

√
3d)(t0 + u0

√
3d)n

for ∃n ∈ {0,±1,±2, · · · }.
After finding an integer solution (x, y) of (15) in

the above procedure, the construction of elliptic curves
E/Fp with the trace t easily follows the CM-method.
In order to find integer solutions efficiently, we need
some techniques specific to (15). Here we show only
specific techniques, all of which are proved by simple
discussion on the existence of integer solutions for con-
gruence equations.

Lemma 1: If there exists an integer solution (l, y) of
12l2 ± 12l − 5 = dy2, then d ≡ 19 (mod 24).

Proof: From dy2 = 12l2±12l−5 = 12l(l±1)−5 ≡ 19
(mod 24), we get dy2 ≡ 19 (mod 24). By using the fact
of y2 ≡ 0, 1, 4, 9, 12, 16 (mod 24), we get that d ≡ 19
(mod 24) if there exists an integer solution of dy2 ≡ 19
(mod 24). ✷

Lemma 2: Let d ∈ Z be d ≡ 19 (mod 24). If
there exists an integer solution (x0, y0) of (15), then
gcd(x0, y0) = 1.

Proof: Let (x, y) be an integer solution of (15) and
gcd(x, y) = g > 1. Then g = 2 since g2|24. So we can
set x = 2x′ and y = 2y′ (x′, y′ ∈ Z) with gcd(x′, y′) =
1. From the assumption of d ≡ 19 (mod 24), (x′, y′)
satisfies x′2 +3y′2 ≡ 6 (mod 12). This is contradictory
because there does not exist any integer solution (x, y)
of x2 + 3y2 ≡ 6 (mod 12). ✷

Corollary 6: Let d ∈ Z be d ≡ 19 (mod 24). If there
exists an integer solution (x0, y0) of (15), then both x0

and y0 are odd.

Proof: This follows from Lemma 2. ✷

Lemma 3: Let d ∈ Z be d ≡ 19 (mod 24) and (x0, y0)
be a set of integer solutions of (15). Then both (x0, y0)
and (x0,−y0) are not associated.

Proof: Two solutions (x, y) and (x′, y′) of (15) are
associated if and only if xy′ − x′y ≡ 0 (mod 24) (see
Sect. 34 in [36]). Therefore if both (x0, y0) and (x0,−y0)
are associated, then 2x0y0 ≡ 0 (mod 24). This is con-
tradictory to Corollary 6. ✷

Lemma 4: Let d ∈ Z be d ≡ 19 (mod 24). Then there
are at most two integer solutions in Dom for (15).

Proof: From Lemma 2, there exist an integer solution
s satisfying the following conditions:

12d = s2 − 96m, gcd(24, s,m) = 1,

s2 ≡ 12d (mod 96), and − 24 ≤ s < 24,

if there exist an integer solution (x, y) in Dom for (15)
(see Sect. 35 in [36]). From the simple discussion on the
existence of integer solutions for congruence equations,
there are at most two integer solutions s satisfying the
above conditions. Therefore there are at most two in-
teger solutions in Dom for (15). ✷

The next proposition follows from Lemmas 3 and
4.

Proposition 1: Let d ∈ Z be d ≡ 19 (mod 24). Then
there exist just two sets of integer solutions in Dom for
(15) if there exist.

Here we give the algorithm as follows:

Algorithm 1: Given the upper bound
UP > 0 on a prime p, this algorithm outputs
(p, d, l), or fail if such a (p, d, l) does not
exist.

1. Choose a positive integer d such that
d ≡ 19 (mod 24).

2. Find the minimum positive integer
solution (t0, u0) of (16).

†The procedure of the CM-method includes a step of
computing the Hilbert class polynomials [23], Pd(x). The
computation of the Hilbert class polynomials are not so easy
if the degree of the Hilbert class polynomial, deg(Pd(x)),
namely the class number is large. Therefore we usually fix d
and so Pd(x) beforehand in order to avoid the computation
of Pd(x) as we will see in Algorithm 2. In another way,
we may make use of the recent researches [5], [6] on the
construction of the CM elliptic curves by both the CM tests
and liftings instead of the CM-method.
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3. Find an integer solution (x, y) ∈ Dom of
(15), if exists.
Otherwise, output fail and terminate the
algorithm.

4. For n ≥ 1, set xn, yn in such a way that
xn + yn

√
3d := (x+ y

√
3d)(t0 + u0

√
3d)n.

5. Set l1,n := (xn−3)/6, l2,n := (xn+3)/6, p1,n :=
12l21,n − 1, and p2,n = 12l22,n − 1.

6. If p1,n > UP and p2,n > UP, then output
fail and terminate the algorithm.

7. If p1,n or p2,n is prime, then output
(p1,n, d, l1,n) or (p1,n, d, l2,n) respectively,
and terminate the algorithm.
Otherwise goto 4.

4.2 Construction of Elliptic Curves Reducible to
Higher Extension Degree

Here we present an algorithm to construct elliptic
curves E/Fp with t = 3 in Corollary 4, in which the
CM-method is also used in the same way as Sect. 4.1.
By using the CM-method, the dominant steps of con-
struction of prime-order elliptic curves E/Fp with t = 3,
namely #E(Fp) = p − 2, are finding a prime number
p = dl2 + dl + d+9

4 with l ∈ Z for an given positive in-
teger d ≡ 3 (mod 4), and checking p− 2 is also prime.

In this case we can easily show the following con-
dition of d.

Lemma 5: Let p ∈ Z be p = dl2 + dl + d+9
4 with a

positive integer d ≡ 3 (mod 4). If both p and p− 2 are
prime, then d ≡ 19 (mod 24).

Proof: For the assumption of d ≡ 3 (mod 4), we set
d = 3 + 4m (m ∈ Z). Then

p = dl2 + dl +
d+ 9
4

= dl(l + 1) + (m+ 3) (17)
≡ m+ 1 (mod 2). (18)

Since p is prime, m ≡ 0 (mod 2) from (18). So we can
set d = 3 + 8m′ (∃m′ ∈ Z). On the other hand, we get
p ≡ 1 (mod 6) since both p and p − 2 are prime and
also get easily l(l + 1) ≡ 0, 2 (mod 6) for ∀l ∈ Z. If
l(l + 1) ≡ 0 (mod 6), then m′ ≡ 2 (mod 3) from (17).
This yields d ≡ 19 (mod 24). If l(l + 1) ≡ 2 (mod 6),
then this yields contradictory. In this way we get d ≡ 19
(mod 24). ✷

Here we give the algorithm as follows:

Algorithm 2: Given the upper bound UP > 0 on
a prime p, this algorithm outputs a
prime-order elliptic curve E/Fp with t = 3,
or fail if such an E/Fp does not exist.

1. Choose a positive integer d such that
d ≡ 19 (mod 24).

2. Set p = dl2 + dl + d+9
4 , Z � l > 0.

3. If p > UP, then output fail and terminate
the algorithm.
Otherwise goto step 4.

4. If both p and p − 2 are prime, then goto
step 5. Otherwise goto step 2 and try
the next l.

5. Compute the Hilbert class polynomial
Pd(x).

6. Solve a root j0 of Pd(x) ≡ 0 (mod p).
7. Construct two elliptic curves Ej0 and E′

j0
,

Ej0 : y2 = x3 + aj0x+ bj0,
E′

j0
: y2 = x3 + aj0c

2x+ bj0c
3,

where aj0 = 3j0
1728−j0

(mod p),
bj0 = 2j0

1728−j0
(mod p), and

c is any quadratic non-residue in Fp.
8. Output E ∈ {Ej0 , E

′
j0
} with #E(Fp) = p − 2

and terminate the algorithm.

Note that the step 8 can be performed easily: output
E such that (p− 2)G = O for E(Fp) � ∃G �= O.

5. Experimental Results

In this section, we present some examples in both vul-
nerable and secure cases.

5.1 Elliptic Curves Reducible to Lower Extension De-
gree

We present one example which satisfies the condition
of Corollary 1. We searched elliptic curves E/Fp in the
range of 0 < p < 21000 by using Algorithm 1. Our
modulo arithmetic uses the GNU MP Library GMP
[37]. The platform is an Alpha 21264 (500MHz/C
Compiler for Digital UNIX). It took on the average
0.101 sec to find an elliptic curve E/Fp in the case of
d = 19. We have also confirmed experimentally that
vulnerable elliptic curves with new explicit conditions
are constructable systematically in the same way as su-
persingular or trace 2 elliptic curves. This means that
even in the case of ordinary elliptic curves, we must
check FR-conditions.

Recently some researches [21], [22] on a protocol
using an elliptic curve E/Fp with the computable FR-
reduction have been proposed, in which an elliptic curve
E/Fp reduced to Fpk with the computable lower ex-
tension degree is desired. Our approach is also deeply
related to their researches.

Example 1:
E/Fp : x3 + ax + b

p = 9 08761 00379 04279 08077 54895 57583 80356
67582 90265 31247 (170-bit),

a = 8 18416 34259 48882 91485 04408 88116 40789
05308 57899 75506,

b = 6 66070 44332 39783 49780 03588 18034 13282
86571 48420 57992,
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Table 3 The number of twin primes (p, p − 2).
d deg(Pd(x)) # twin primes times (sec)
19 1 190 0.55097
43 1 1,157 0.094596
67 1 1,902 0.064297
91 2 450 0.365852
115 2 1,036 0.209392
139 3 139 0.323987
163 1 5,158 0.053331
187 2 1,402 0.107929
211 3 292 1.401844
235 2 2,523 0.089963
259 4 247 0.348319
283 3 645 0.234224
307 3 696 0.134928
331 3 1,458 0.103192
355 4 635 0.261890
379 3 1,583 0.074222
403 2 3,392 0.069164

p = dl2 + dl + d+9
4
, (276 − 220 ≤ l ≤ 276 + 220)

t = −5 22138 20118 54029 93899 01413,
#E(Fp) = 72 ∗ 313 ∗ n,

n = 59 25285 28258 73893 72612 30363 15589 78126

20544 05453 (156-bit).

5.2 Elliptic Curves Reducible to Higher Extension De-
gree

We present experimental results and some examples of
elliptic curves in Corollaries 4 and 5. We have con-
firmed that secure elliptic curves with new explicit
conditions are constructible systematically. Table 3
shows numerical results of twin primes (p, p − 2) with
p = dl2 + dl + d+9

4 , which was searched in the range
of 276 − 220 ≤ l ≤ 276 + 220. Our modulo arithmetic
uses the GNU MP Library GMP [37]. The platform
is an Alpha 21264 (500MHz/C Compiler for Digital
UNIX). It took on the average 0.053 sec to find a pair
of (p, p − 2) in the case of d = 163. For other cases of
d, we could found such a pair of primes on the average
0.064–1.402 sec.

Figure 1 shows the plot of Table 3 from the point of
view of deg(Pd(x)) and the size of d on Pd(x). From our
experimental result, we have found a heuristic property
that the number of twin primes are closely related to
two factors, deg(Pd(x)) and the size of d on Pd(x). If
we fix the size of d, then the larger deg(Pd(x)) is, the
less twin primes are found. If we fix deg(Pd(x)), then
the larger the size of d is, the more twin primes are
found.

We present E/Fp : y2 = x3 + ax+ b with t = 3 in
the following. In Examples 2–4, 2 is a primitive root in
Fp−2 .

Example 2:
E1/Fp : y2 = x3 + a1x + b1, E2/Fp : y2 = x3 + a2x + b2,
(|p| = 159 − bit)

p = 519 51816 01449 69382 38659 23754 49686 02163
04833 66071,

Fig. 1 Relations between # twin primes and Pd(x).

n = 519 51816 01449 69382 38659 23754 49686 02163
04833 66069,

a1 = 35 29380 82819 03345 16798 59515 21747 57876
817006 32697,

b1 = 408 46477 52610 12095 24877 04686 28212 53233
12948 77155,

a2 = 43 94541 02577 39111 90178 78324 59422 25137
69507 32067,

b2 = 375 64238 02684 72329 52558 68052 72738 84867

16227 32092.

Example 3:
E1/Fp : y2 = x3 + a1x + b1, E2/Fp : y2 = x3 + a2x + b2,
E3/Fp : y2 = x3 + a3x + b3, (|p| = 159 − bit)

p = 793 54971 71445 13671 92705 06772 26939 83458
80422 30471,

n = 793 54971 71445 13671 92705 06772 26939 83458
80422 30469,

a1 = 622 32433 75781 36504 38145 80347 56708 57012
73203 93428,

b1 = 679 39946 41002 62226 89665 55822 46785 65828
08943 39109,

a2 = 546 59131 03249 88457 46494 19390 10636 40227
07442 50852,

b2 = 364 39420 68833 25638 30996 12926 73757 60151
38295 00568,

a3 = 261 88075 85593 34219 51163 09691 46231 55329
60288 84192,

b3 = 179 85880 00172 30155 26919 24926 22984 48533
06563 08058.

Example 4:
E/Fp : y2 = x3 + ax + b, (|p| = 240 − bit)

p = 112 49846 54526 86189 73518 65205 55113 42541
99281 27068 83806 23265 87119 55023 07023,

n = 112 49846 54526 86189 73518 65205 55113 42541
99281 27068 83806 23265 87119 55023 07021,

a = 52 37381 80880 77183 56601 62811 25609 08710
91667 71974 15904 90057 09224 69377 60775,

b = 34 91587 87253 84789 04401 08540 83739 39140

61111 81316 10603 26704 72816 46251 73850.

Example 5:
E1/Fp : y2 = x3 + a1x + b1, E2/Fp : y2 = x3 + a2x + b2,
E3/Fp : y2 = x3 + a3x + b3, (|p| = 240 − bit)

p = 145 62684 79172 80895 91487 33486 94032 72646
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08218 46342 12380 03553 12226 43548 52871,
n = 145 62684 79172 80895 91487 33486 94032 72646

08218 46342 12380 03553 12226 43548 52869,

a1 = 144 44371 02824 33267 37769 11780 11326 91187
09134 83450 79361 18648 91066 43377 85210,

b1 = 50 11979 94855 57136 68786 73438 08285 32827
34850 99302 48151 81056 65622 14743 74505,

a2 = 26 77304 81723 26198 90654 78404 65044 67257
17139 39775 54321 43896 98924 70624 48137,

b2 = 66 39098 14206 44431 24265 63432 08040 69053
47499 08631 07007 63782 36691 94932 49715,

a3 = 47 49197 80769 28734 86477 41659 37707 95433
64827 81423 90680 35668 50843 51479 03933,

b3 = 31 66131 87179 52489 90984 94439 58471 96955

76551 87615 93786 90445 67229 00986 02622.

6. Conclusion

In this paper, we have shown some new explicit condi-
tions of elliptic curve traces vulnerable or secure against
FR-reduction. We have also presented algorithms to
construct elliptic curves with our new explicit condi-
tions. Especially our new secure elliptic curve realizes
rather light initialization, which sets up a pair of elliptic
curve and basepoint.
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