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Success probability in χ2-attacks

Takashi Matsunaka�, Atsuko Miyaji��, and Yuuki Takano

Japan Advanced Institute of Science and Technology.
{t-matuna, miyaji, ytakano}@jaist.ac.jp

Abstract. Knudsen and Meier applied the χ2-attack to RC6. This at-
tack is one of the most effective attacks for RC6. The χ2-attack can
be used for both distinguishing attacks and for key recovery attacks.
Up to the present, theoretical analysis of χ2-attacks, especially the re-
lation between a distinguishing attack and a key recovery attack, has
not been discussed. In this paper, we investigate the theoretical relation
between the distinguishing attack and the key recovery attack for the
first time, and prove the theorem to evaluate the success probability of
a key recovery attack by using the results of a distinguishing attack. We
also demonstrate the accuracy to χ2-attack on RC5-64 and RC6 without
post-whitening by comparing the implemented results.

Keywords RC6, RC5-64, χ2 attack, statistical analysis

1 Introduction

The χ2-attack makes use of correlations between input (plaintext) and output
(ciphertext), which is measured by the χ2-test. The χ2-attack was originally
proposed by Vaudenay as an attack on the Data Encryption Standard (DES)
[20], and Handschuh et al. applied that to SEAL [6]. The χ2-attack can be used
for both distinguishing attacks and key recovery attacks. Distinguishing attacks
have only to handle plaintexts in such a way that the χ2-value of a part of
ciphertexts becomes significantly a high value. On the other hand, key recovery
attacks have to rule out all wrong keys, and single out exactly a correct key by
using the χ2-value. Therefore, key recovery attacks often require more work and
memory than distinguishing attacks.

In [4, 12], the χ2-attacks were applied to RC6 [18] or a simplified variant
of RC6. They focused on the fact that a specific rotation in RC6 causes the
correlations between input and output, and estimated their key recovery attack
by using only results of a distinguishing attack [4, 12, 16]. Note that their key
recovery attack on RC6 with any round was not implemented because it required
too much memory even in the case of small number of rounds. In [5], a key
recovery attack on RC5-32 [17] by using the χ2-attack was proposed. RC5-w/r/b
means that two w-bit-word plaintexts are encrypted with r rounds by b-byte keys.
� The author is currently with KDDI.

�� Supported by Inamori Foundation.



The χ2-attack to RC5-32 was further improved by [15]. Their attack can analyze
RC5-32 with 10 rounds by a known plaintext attack with negligible memory.
They also pointed out the significant difference between the distinguishing attack
and the key recovery attack: The distinguishing attack succeeds if and only if it
outputs high χ2-value, but the key recovery attack does not necessarily succeed
even if it outputs high χ2-value. In fact, a key recovery attack to RC5-32 in [5]
outputs higher χ2-value but recovers a correct key with lower probability than
that in [15]. This indicates that the security against the key recovery attack
cannot be estimated directly from that against the distinguishing attack. The
χ2-attack to a simplified variant of RC6 are further improved in [16, 7], which
can work on 4-round simplified variants of RC6.

However, up to the present, any theoretical difference between a distinguish-
ing attack and a key recovery attack in χ2-attack has not been discussed. Al-
though the theoretical and experimental complexity analysis on the linear crypt-
analysis is done by P. Junod in [8], it cannot be applied to the χ2-attack. His
analysis is further generalized by using the normal approximation for order statis-
tics in [19]. However, it is not so sharp or suitable for χ2-attack.

In this paper, we investigate the theoretical relation between a distinguishing
attack and a key recovery attack in χ2-attack, for the first time, and give the
theorem that evaluates the success probability of a key recovery attack by using
results of a distinguishing attack. We demonstrate the theorem on a key recovery
algorithm against RC5-64, which is given by us, and make sure the accuracy by
comparing our approximation to implemented results. We also demonstrate the
accuracy to the χ2-attack against RC6 without post-whitening [7]. As a result,
we are able, with our theory, to evaluate the security of key recovery attack in
χ2-attack with less number of plaintexts than expected. We also compare our
theory with [19] by applying them on RC5-64 and RC6P, and show our theory
is more accurate and more suitable for approximation of χ2-attack.

This paper is organized as follows. Section 2 summarizes the notation, RC5-
64 and RC6 algorithms, the χ2-test, and statistical facts used in this paper.
Section 3 gives the theory of success probability in χ2-attack and investigates
the accuracy by comparing the approximations of success probability to 3-round
and 4-round RC5-64 and implemented results. Section 4 applies our theorem to
a key recovery algorithm on RC6 without post-whitening. The accuracy of our
approximation theorem is compared with that of [19] in Section 5. Conclusion
is given in Section 6.

2 Preliminaries

We summarize RC5-64 and RC6 algorithms, the χ2-test, and statistical facts
used in this paper.

2.1 Block cipher RC5-64

Before showing the encryption algorithm of RC5-64, we give some notation.



⊕ : bit-wise exclusive OR;
r: number of rounds ;

a ≪ b : cyclic rotation of a to the left by b-bit;
a ≫ b : cyclic rotation of a to the right by b-bit;
(Li, Ri): input of the i-th round, (L0, R0) and (Lr+1, Rr+1) are a plaintext and

a ciphertext after r-round encryption, respectively;
Si : i-th subkey (S2i and S2i+1 are subkeys of the i-th round);

lsbn(X) : least significant n-bit of X ;
X [i] : i-th bit of X .

The encryption algorithm of RC5-64 is reviewed as follows: a plaintext (L0, R0)
is added with (S0, S1) and set to (L1, R1); and (L1, R1) is encrypted to (Lr+1,
Rr+1) by r iterations of a main loop. The detailed algorithm is given:

Algorithm 1 (RC5-64 Encryption Algorithm)
1. L1 = L0 + S0; R1 = R0 + S1;
2. for i = 1 to r do: Li+1 = ((Li ⊕ Ri) ≪ Ri) + S2i).

Ri+1 = ((Ri ⊕ Li+1) ≪ Li+1) + S2i+1).

Two rotations by Ri or Li+1 in i-th round are called by first rotation or second
rotation, respectively.

2.2 Block cipher RC6

In addition to notation used in RC5-64, we use the following notation.
(Ai, Bi, Ci, Di) : input of the i-th round;

(A0, B0, C0, D0) : plaintext;
msbn(X) : most significant n-bit of X ;

f(x) : x × (2x + 1);
F (x) : f(x) (mod 232) ≪ 5;
x||y : concatenated value of x and y.

The detailed algorithm of RC6 is given:

Algorithm 2 (RC6 Encryption Algorithm)
1. A1 = A0; B1 = B0 + S0; C1 = C0; D1 = D0 + S1;

2. for i = 1 to r do: t = F (Bi); u = F (Di); Ai+1 = Bi;

Bi+1 = ((Ci ⊕ u)� t) + S2i+1; Ci+1 = Di; Di+1 = ((Ai ⊕ t)� u) + S2i;

3. Ar+2 = Ar+1 + S2r+2; Br+2 = Br+1; Cr+2 = Cr+1 + S2r+3; Dr+2 = Dr+1.

Parts 1 and 3 of Algorithm 2 are called pre-whitening and post-whitening, re-
spectively. We call the version of RC6 without post-whitening to, simply, RC6P.

2.3 χ2-Test

We make use of the χ2-tests to distinguish a non-uniformly random distribution
from uniformly random distribution [10, 12, 13]. Let X = X0, ...,Xn−1 be sets of
{a0,..., am−1}, and Naj (X) be the number of X which takes on the value aj .



The χ2-statistic of X which estimates the difference between X and the uniform
distribution is defined as follows:

χ2(X) =
m

n

m−1∑
i=0

(
Nai(X) − n

m

)2

.

Table 1 presents each threshold for 63 degrees of freedom. For example, (level,
χ2) = (0.95, 82.53) in Table 1 means that the value of the χ2-statistic exceeds
82.53 in the probability of 5%, if the observation X is uniform.

Table 1. χ2-distribution with 63 degrees of freedom

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99

χ2 62.33 65.20 68.37 72.20 77.75 82.53 92.01

2.4 Statistical facts

Let us describe statistical facts together with the notation.

Theorem 1 (Distribution of the Means [3]). Let µ and σ2 be the mean
and the variance of a population, respectively. Then the mean and the variance
of the distribution of the mean of a random sample with the size n drawn from
the population are µ and σ2/n, respectively.

Theorem 2 (Central Limit Theorem [3]). Choose a random sample from
a population. If the sample size n is large, then the sampling distribution of
the mean is closely approximated by the normal distribution, regardless of the
population.

Theorem 3 (Law of large numbers [3]). The larger the sample size, the
more probable it is that the sample mean comes arbitrarily close to the population
mean.

The probability density function of the normal distribution with the mean µ and
the variance σ2 is given by the following equation,

φ(µ,σ2)(x) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
.

We also follow commonly used notation: the probability density and the cumu-
lative distribution functions of the standard normal distribution are denoted by
φ(x) and Φ(x); the probability of distribution X in the range X ≤ I is denoted
by Pr(X ≤ I); and N is used for the normal distributions.



3 Theoretical analysis on χ2-attacks

This section presents the theorem of success probability in χ2-attack, where we
use a key recovery algorithm to RC5-64 based on [15].

3.1 Key recovery algorithm of RC5-64

The following algorithm recovers the least significant five bits of S2r+1. Let us
set (x, y) = (lsb6(Lr+1), lsb6(Rr+1)), s = lsb5(S2r+1)(s = 0, 1, · · · , 25 − 1), and
S2r+1[6] = 0, where x corresponds to the rotation amount in the r-th round.

Algorithm 3
1. Choose a plaintext (L0, R0) with lsb6(R0)=0, and encrypt it.
2. For each s, decrypt a 6-bit y with a key S2r+1[6]||s by 1 round to

a 6-bit z.
3. For each value s, x, and z, update each array by incrementing count[s][x][z].
4. For each s and x, compute χ2[s][x].
5. Compute the average ave[s] of {χ2[s][x]}x for each s and output s with

the highest ave[s] as lsb5(Sr+1).

Figure 1 shows the outline of Algorithm 3. Algorithm 3 averages the χ2-values
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Fig. 1. Algorithm 3

χ2[s][x] by second rotation amount x in the r-th round, in which there are 26

rotations.

3.2 Statistical analysis of χ2-attacks

We show the theorem on the success probability of Algorithm 3 by investigating
the distribution of χ2-values for a correct key and wrong keys.



Notation Let us use the following notation.

– e : recovered-key bit size (There are one correct key and 2e −1 wrong keys.);
– PS : success probability of a key recovery attack;
– Xd[r,n]: distributions of χ2-values on lsb6(Rr+1) of RC5-64 with lsb6(R0) = 0

by using 2n plaintexts;
– µd[r,n] (σ2

d[r,n]): mean (variance) of distribution of χ2-values on lsb6(Rr+1)
of RC5-64 with lsb6(R0) = 0 by using 2n plaintexts;

– Xc[r,n] (Xw[r,n]) : distributions of χ2-values of a key recovery attack to r-
round RC5-64 by using a correct key (a wrong key);

– µc[r,n] (σ2
c[r,n]) : mean (variance) of distribution of mean of χ2-values of a key

recovery attack in r-round RC5-64 with a correct key by using 2n plaintexts;
– fc[r,n](x) : probability density function of distribution of χ2-values with a

correct key in r-round RC5-64;
– µw (σ2

w) : mean (variance) of distribution of χ2-values in a key recovery
attack r-round RC5-64 with a wrong key;

– fw[r,n](x) : probability density function of distribution of χ2-values with a
wrong key in r-round RC5-64.

Distributions of χ2-values In this section, we put forward three hypotheses
on distribution of χ2-values.

Hypothesis 1 If the number of plaintexts to compute the χ2-values is enough
large, then the sample of χ2-values on each key candidate approximately follows
a normal distribution.

Hypothesis 2 (Wrong-Key Randomization Hypothesis 1) Each distribu-
tion of χ2-values of key-recovery attack on i-th wrong key Xw(1)[r,n], Xw(2)[r,n],
· · · , Xw(2e−1)[r,n] is independent and approximately equal to each other.

Hypothesis 3 (Wrong-Key Randomization Hypothesis 2) Distribution of
χ2-values of key-recovery attack on a wrong key Xw[r,n] is approximately equal
to that of Xd[r,n′], where n′ is the real number of plaintexts that is used for
computing χ2-value of Xw[r,n].

Hypotheses 1 and 2 are simple and natural, which are often used in a statistical
analysis of the security, including the differential and linear attack as in [8,
19]. On the other hand, Hypothesis 3 means that the distribution of χ2-values
recovered by using a wrong key is approximately equal to that before recovering.
This is considered as a variant of Hypothesis 2, which means that a wrong key
randomizes data. We note here that Hypothesis 3 is the ideal case for an attacker,
and, thus, the results can be seen as an upper bound for the actual success
probability. It also reflects experimental results in [7].



Success probability of χ2-attacks We show the theorem on the success
probability of Algorithm 3 by investigating the distribution of χ2-values for a
correct key and wrong keys. We may note that χ2-attacks compute the χ2-value
on a part for every key candidate and output a key with the highest χ2-value as
a correct key.

Lemma 1. Let n ≥ 6 and r ≥ 4. The distribution of χ2-values on a correct key
in Algorithm 3, Xc[r,n], follows a normal distribution of N (µd[r−1,n−6], σ

2
d[r−1,n−6]/26).

Therefore, the probability density function of distribution of χ2-values on a cor-
rect key in Algorithm 3, fc[r,n](x), is given by

fc[r,n](x) = φ(µd[r−1,n−6],σ
2
d[r−1,n−6]/26)(x).

Proof. The distribution Xc[r,n] follows a normal distribution from Hypothesis 1.
When a correct key is used in Algorithms 3, six-bit data lsb6(Rr+1) is decrypted
correctly by 1 round. χ2-values are computed for every second rotation in r-th
round, where each rotation amount is uniformly distributed on 2n plaintexts.
As a result, the χ2-values in Algorithm 3 is computed by using roughly 2n−6

plaintexts. Putting together the facts and Theorem 1, the distribution Xc[r,n]

follows a normal distribution N (µd[r−1,n−6, σ
2
d[r−1,n−6]/26). Thus, we get

fc[r,n](x) = φ(µd[r−1,n−6],σ2
d[r−1,n−6]/26)(x).

Lemma 2. Let n ≥ 6 and r ≥ 4. The distribution of χ2-values on a wrong key in
Algorithm 3, Xw[r,n], follows a normal distribution of N (µd[r,n−6], σ

2
d[r,n−6]/26).

Therefore, the probability density function of distribution of χ2-values on a wrong
key in Algorithm 3, fw[r,n](x), is given by

fw[r,n](x) = φ(µd[r,n−6,σ2
d[r,n−6]/26)(x).

Proof. The distribution Xw[r,n] follows a normal distribution N (µd[r,n′], σ
2
d[r,n′)

from Hypotheses 1 and 3. Here, n′ is the real number of plaintexts that is used for
computing χ2-value of Xw[r,n]. In the same discussion as Lemma 1, χ2-values are
computed for every second rotation amount in r-th round, which is uniformly dis-
tributed on 2n plaintexts. As a result, the χ2-values in Algorithm 3 is computed
by using roughly 2n−6 plaintexts. Putting together the facts and Theorem 1,
the distribution Xw[r,n] follows a normal distribution N (µd[r,n−6], σ

2
d[r,n−6]/26).

Thus, we get

fw[r,n](x) = φ(µd[r,n−6],σ2
d[r,n−6]/26)(x).

Using the above preparations, the success probability of the key recovery attack
on χ2-attack is evaluated as follows.

Theorem 4. The success probability PS of e-bit key recovery algorithm to r-
round RC5-64 with 2n plaintexts can be evaluated by using fc[r,n](x) and fw[r,n](x)
as follows,

PS =
∫ ∞

−∞
fc[r,n](x) ∗

(∫ x

−∞
fw[r,n](u)du

)2e−1

dx.



Proof. The e-bit key can be recovered correctly if and only if the χ2-value of a
correct key is higher than that of all 2e −1 wrong keys. This means that the key
recovery algorithm to r-round RC5-64 with 2n plaintexts succeeds if and only if

Xc[r,n] > Xw[r,n] (∀w).

From Hypothesis 2, any distribution on wrong keys is independent and approx-
imately equal to each other, which is denoted by Xw[r,n]. Thus, the success
probability PS can be evaluated by

PS = Pr(Xc[r,n] > Xw[r,n])2
e−1

=
∫ ∞

−∞
fc(x) ∗

(∫ x

−∞
fw(u)du

)2e−1

dx.

Theorem 5. The success probability PS of e-bit key recovery algorithm to r-
round RC5-64 with 2n plaintexts can be evaluated by using the distributions of
χ2-values in the distinguishing algorithm as follows,

PS =
∫ ∞

−∞
φ(µd[r−1,n−6],σ2

d[r−1,n−6]/26)(x) ∗
(∫ x

−∞
φ(µd[r,n−6],σ2

d[r,n−6]/26)(u)du

)2e−1

dx.

Proof. Theorem 5 follows immediately from Lemmas 1 and 2 and Theorem 4.

Theorem 5 indicates the following two factors for high success probability.

– (Factor 1) Maximize the average of χ2-values computed by a correct key;
– (Factor 2) Minimize the variances (the error) of each distribution of χ2-

values computed by each key.

3.3 Accuracy of the Approximations of the security on RC5-64

We estimate the success probability of Algorithm 3 by using Theorem 5. In the
beginning, we conduct the following distinguishing test on 2 - 4 rounds and get
the distribution of χ2-values on lsb6(Rh+1), Xd[r,n]. Our experiments use 100
kinds of plaintexts and 100 keys and, thus, conduct 10000 trials in total.

Distinguishing Test: The χ2-test on lsb6(Rh+1) with lsb6(R0) = 0.

The experimental results are shown in Table 2.
The success probability of Algorithm 3 to RC5-64, based on Theorem 5, is

computed on Table 3. To evaluate the estimation, we also implement Algorithm 3
on 2-round and 3-round RC5-64. Our implementations generate all plaintexts by
using M-sequence: Algorithm 3 uses 122-bit random numbers generated by M-
sequence, whose primitive polynomial of M-sequence is x122 + x108 + x8 + x + 1.
The platform is IBM RS/6000 SP (PPC 604e/332MHz × 256) with memory of
32 GB. Table 3 shows the implemented results among 100 keys for RC5-64 with
3 - 4 rounds. Comparing the estimation with the implemented results, we see
that our theory can evaluate the success probability of key recovery algorithm of
χ2-attack. Furthermore, the necessary number of plaintexts for this evaluation
is reduced by 26 from that of Table 3. In summary, our theory can evaluate the
success probability in χ2-attack by using less number of plaintexts.



Table 2. mean and variance for Xd[r,n] (r = 2, 3, 4, 10000 trials)

mean µd[r,n] (variance σd[r,n])

#texts 2 rounds 3 rounds 4 rounds

212 63.41 (125.83) 63.02 (126.76) –
213 63.40 (130.56) 62.91 (125.31) –
214 64.03 (132.04) 62.96 (125.09) –
215 64.80 (139.10) 62.91 (123.37) –
216 66.63 (149.53) 62.97 (125.71) –
217 70.02 (178.01) 62.83 (124.80) –
220 – 63.09 (124.31) 62.84 (123.69)
221 – 63.41 (126.33) 62.99 (123.79)
222 – 63.68 (125.68) 63.01 (122.39)
223 – 64.39 (130.16) 63.18 (124.95)
224 – 66.11 (135.60) 63.06 (122.94)
225 – 69.22 (152.86) 63.05 (124.57)
226 – 75.43 (174.06) 63.23 (124.58)

4 Theoretical analysis on χ2-attacks to RC6 without
post-whitening

We apply Theorem 5 to a key recovery algorithm on RC6P [7] and investigate
the accuracy of approximations by comparing it with implemented results.

4.1 Key recovery algorithm of RC6P

Intuitively, a key recovery algorithm [7] fixes some bits out of lsbn(B0)||lsbn(D0),
check the χ2-value of lsb3(Ar)||lsb3(Cr), and recover lsb2(S2r)||lsb2(S2r+1) of r-
round RC6P. Here we use the following notation: (yb, yd) = (lsb3(Br+1), lsb3(Dr+1)),
(xc, xa) = (lsb5(F (Ar+1)), lsb5(F (Cr+1))), (sa, sc) = (lsb2(S2r), lsb2(S2r+1)),
s = sa||sc, and (S2r[3], S2r+1[3]) = (0, 0), where xa (resp. xc) is the rotation
amounts on Ar (resp. Cr) in the r-th round.

Algorithm 4 ([7])
1. Choose a plaintext (A0, B0, C0, D0) with (lsb5(B0), lsb5(D0)) = (0, 0)

and encrypt it.
2. For each (sa, sc), decrypt yd||yb with a key (S2r[3]||sa, S2r+1[3]||sc) by
1 round

to za||zc, which are denoted by a 6-bit integer z = za||zc.
3. For each s, xa, xc, and z, update each array by incrementing count[s][xa][xc][z].
4. For each s, xa, and xc, compute χ2[s][xa][xc].
5. Compute the average ave[s] of {χ2[s][xa][xc]}xa,xc for each s and output

s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

Figure 2 shows the outline of Algorithm 4.



Table 3. Comparison of theoretical and implemented results in Algorithm 3

3 rounds

theoretical results: mean (variance) implemented results

#texts correct key wrong key PS SUC

220 64.03 (2.06) 62.96 (1.95) 0.128 0.15
221 64.80 (2.17) 62.91 (1.93) 0.277 0.36
222 66.63 (2.34) 62.97 (1.96) 0.683 0.62
223 70.02 (2.78) 62.83 (1.95) 0.991 0.92

4 rounds

theoretical results: mean (variance) implemented results

#texts correct key wrong key PS SUC

228 64.68 (1.96) 63.01 (1.91) 0.080 0.09
230 66.11 (2.12) 63.06 (1.92) 0.552 0.53
231 69.22 (2.39) 63.05 (1.95) 0.973 0.89
232 75.43 (2.72) 63.23 (1.95) 1.000 1.000

SUC: the probability of recovered keys in 100 keys
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Fig. 2. Algorithm 4

4.2 Success probability of Algorithm 4

By applying Lemmas 1 and 2 and Theorem 4 to Algorithm 4, we get the theo-
rem of success probability on RC6P. Before showing the theorem, we give some
notation, which has the same meaning as that in Section 3.2.

– e : recovered-key bit size (There are one correct key and 2e −1 wrong keys.);
– PS : success probability of a key recovery attack;
– Xd[r,n]: distributions of χ2-values on lsb3(Ar+1)||lsb3(Cr+1) of RC6P with

lsb5(B0)||lsb5(D0) = 0 by using 2n plaintexts;
– µd[r,n] (σ2

d[r,n]): mean (variance) of distribution of χ2-values on lsb3(Ar+1)||lsb3(Cr+1)
of RC6 with lsb5(B0)||lsb5(D0) = 0 by using 2n plaintexts;

– Xc[r,n] (Xw[r,n]) : distributions of χ2-values of a key recovery attack to r-
round RC6P by using a correct key (a wrong key);

– µc[r,n] (σ2
c[r,n]) : mean (variance) of distribution of mean of χ2-values of a key

recovery attack to r-round RC6P with a correct key by using 2n plaintexts;
– fc[r,n](x) : probability density function of distribution of χ2-values with a

correct key in r-round RC6P;



– µw (σ2
w) : mean (variance) of distribution of χ2-values in a key recovery

attack to r-round RC6P with a wrong key;
– fw[r,n](x) : probability density function of distribution of χ2-values with a

wrong key in r-round RC6P.

By assuming three hypotheses on wrong-key distribution in Section 3.2, we get
the following lemmas and a theorem in the same way as those of RC5-64. The
detailed proof will be given in the final version.

Lemma 3. Let n ≥ 10 and r ≥ 4. The distribution of χ2-values on a correct key
in Algorithm 4, Xc[r,n], follows a normal distribution of N (µd[r−1,n−10], σ

2
d[r−1,n−10]/210).

Therefore, the probability density function of distribution of χ2-values with a cor-
rect key in Algorithm 4, fc[r,n](x), is given by

fc[r,n](x) = φ(µd[r−1,n−10],σ
2
d[r−1,n−10]/210)(x).

Lemma 4. Let n ≥ 10 and r ≥ 4. The distribution of χ2-values on a wrong key
in Algorithm 4, Xw[r,n], follows a normal distribution of N (µd[r+1,n−10], σ

2
d[r+1,n−10]/210).

Therefore, the probability density function of distribution of χ2-values with a cor-
rect key in Algorithm 4, fw[r,n](x), is given by

fw[r,n](x) = φ(µd[r+1,n−10],σ
2
d[r+1,n−10]/210)(x).

Lemma 4 is derived from Hypothesis 3. In the case of Algorithm 4, Xd[r,n′] defined
in Algorithm 3 of Hypothesis 3 corresponds to the distributions of χ2-values on
lsb3(Br+1)||lsb3(Dr+1)), which are equal to that on lsb3(Ar+2)||lsb3(Cr+2) and
thus it corresponds to Xd[r+1,n′] defined in Algorithm 4.

Theorem 6. The success probability PS of e-bit key recovery algorithm to r-
round RC6P with 2n plaintexts can be evaluated by using the distributions of
χ2-values in the distinguishing algorithm as follows,

PS =
∫ ∞

−∞
φ(µd[r−1,n−10],σ

2
d[r−1,n−10]/210)(x) ∗

(∫ x

−∞
φ(µd[r+1,n−10],σ

2
d[r+1,n−10]/210)(u)du

)2e−1

dx.

4.3 Accuracy of the Approximations of the security on RC6P

We estimate the success probability of Algorithm 4 by using Theorem 6. In the
beginning, we conduct the following distinguishing test on 3 and 5 rounds and get
the distribution of χ2-values on lsb3(Ar+1)||lsb3(Cr+1), Xd[r,n]. Our experiments
use 100 kinds of plaintexts and 100 keys and thus conduct 10000 trials in total.

Distinguishing Test:
The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) with lsb3(B0)||lsb3(D0) = 0.

The experimental results are shown in Table 4.
The success probability of Algorithm 4 to RC6P, based on Theorem 6, is

computed on Table 5. To evaluate the estimation, we implement Algorithm 4



Table 4. mean and variance for Xd[r,n] (r = 3, 5, 10000 trials)

mean µd[r,n] (variance σd[r,n])

#texts 3 rounds 5 rounds

26 63.03(124.25) 63.02(123.82)
27 63.05(125.25) 63.02(125.06)
28 63.12(125.92) 62.99(125.47)
29 63.26(126.89) 63.01(125.82)
210 63.51(128.07) 63.02(125.97)
211 64.08(130.62) 62.99(125.97)
212 65.17(135.41) 63.00(125.98)

on 4-round RC6P. Our implementations generate all plaintexts by using M-
sequence: Algorithm 4 uses 118-bit random numbers generated by M-sequence,
whose primitive polynomial of M-sequence is x118+x36+x8+x+1. The platform
is the same as that in Section 3.3. Table 5 also shows implemented results among
100 keys for 4-round RC6P. Comparing the estimation with implemented results,
we see that our theorem can evaluate the success probability of key recovery
algorithm of χ2-attack. Furthermore, the necessary number of plaintexts for
this evaluation is reduced by 210 from that of Table 5. In summary, our theory
can also evaluate the success probability in χ2-attack by using less number of
plaintexts.

Table 5. Comparison of theoretical and implemented results in Algorithm 4 to 4-round
RC6P

theoretical results: mean (variance) implemented results

#texts correct key wrong key PS SUC

218 63.12(0.123) 62.99(0.123) 0.111 0.11
219 63.26(0.124) 63.01(0.123) 0.185 0.15
220 63.51(0.125) 63.02(0.123) 0.388 0.40
221 64.08(0.128) 62.99(0.123) 0.882 0.75
222 65.17(0.132) 63.00(0.123) 1.000 1.00

SUC: the probability of recovered keys in 100 keys

4.4 Approximations of the security on 6-round RC6P

By using Theorem 6, we can estimate the security on 6-round RC6P theoretically
although it is not easy to compute experimentally. The experimental results of
distinguishing test on 5- and 7-round RC6P are shown in Table 6. The approxi-
mation of the security on 6-round RC6P is shown in Table 7. The results indicate
that a correct key on 6-round RC6P can be recovered by using 216 times as many



texts as those on 4-round RC6P, which reflects the estimation of security of RC6
or RC6P [11, 7].

Table 6. mean and variance for Xd[r,n] (r = 5, 7, 10000 trials)

mean µd[r,n] (variance σd[r,n])

#texts 5 rounds 7 rounds

224 63.3060(128.796) 63.0142(126.729)
225 63.3729(126.632) 63.0180(126.843)
226 63.7322(129.106) 62.8563(126.375)
227 64.4361(132.361) 62.8587(126.070)
228 66.0068(141.824) 63.1763(124.279)

Table 7. Approximations of the security on 6-round RC6P

#texts correct key wrong key PS

234 63.31(0.126) 63.01(0.124) 0.215
235 63.37(0.124) 63.02(0.124) 0.263
236 63.73(0.126) 62.86(0.123) 0.747
237 64.44(0.129) 62.86(0.123) 0.990
238 66.01(0.139) 62.86(0.123) 1.000

SUC: the probability of recovered keys in 100 keys

5 Comparison of approximation theorems of χ2-attack

Another approximation of success probability was proposed in [19]. It is based
on order statistics and applied to differential and linear attack. Although it is
also applicable to χ2-attack, the accuracy has not been reported yet. From the
point of view of accuracy of success probability in χ2-attack, we compare our
theory to [19].

5.1 Success probability based on order statistic

The main idea of an analysis based on order statistics is as follows:

1. distributions of a correct key follows a normal distribution;
2. distributions of wrong keys are sorted in increasing order;
3. the highest distribution of wrong keys follows a normal distribution;
4. the success probability is computed as the probability that the distribution

of correct key is greater than the highest distribution of wrong keys.



We may note that assumptions on distributions of a correct key and a wrong key
is the same as those in Section 3.2. When we apply an analysis of order statistics
to e-bit key recovery on RC5-64 or RC6P, the success probability is computed
as follows:

1. distributions of a correct key follows a normal distribution N (µc[r,n], σ
2
c[r,n]);

2. distributions of wrong keys are sorted in increasing order, Xw(1)[r,n], · · · , Xw(2e−1)[r,n];
3. the highest distribution Xw(2e−1)[r,n] are assumed to follow a normal distri-

bution N (µ[r,n], σ
2
[r,n]), where the average and the variance are given as:

µ[r,n] = µw[r,n] + σw[r,n]Φ
−1(1 − 2−e) and σ[r,n] =

σw[r,n]

φ(Φ−1(1 − 2−e))
2−e.

Then, the success probability is computed as the probability that the distribution
of correct key is greater than the highest distribution of wrong keys as follows:

Theorem 7 ([19]). The success probability PSel of e-bit key recovery algorithm
can be evaluated by using the distributions of χ2-values in the distinguishing
algorithm as follows

PSel =
∫ ∞

− µc[r,n]−µ[r,n]√
σ2

c [r,n]+σ2
[r,n]

φ(x)dx,

where

µ[r,n] = µw[r,n] + σw[r,n]Φ
−1(1 − 2−e) and σ[r,n] =

σw[r,n]

φ(Φ−1(1 − 2−e))
2−e.

5.2 Accuracy of approximations of success probability in χ2-attack

We compare approximations of the success probability of 3-round and 4-round
RC5-64 and 4-round RC6P based on our theorems to those of Theorem 7, es-
pecially. Table 8 or 9 shows results of 3-round and 4-round RC5-64 or 4-round
RC6P, respectively. These results indicate that our approximation is more ac-
curate than Theorem 7. Theorem 7 gives rather loose upper bounds. On the
other hand, our theorem approximates the success probability more accurately.
Especialy when PS > 0.8, our estimation gives a lower upper bound.

Our theorem deals with distributions of all wrong keys. On the other hand,
Theorem 7 deals with only the highest distribution of wrong keys. This is one
reason that our theorem can estimate strictly. Furthermore, Theorem 7 aims at
dealing with differential or linear attack rather than χ2-attack. This is why our
theorems are more suitable for computing the success probability in χ2-attack.

6 Conclusion

In this paper, we have proved the theorems that evaluate the success probabil-
ity in χ2-attack by using the distinguishing test. The derived formulae can be
computed efficiently and provide a practical analysis for the estimation of the
success probability in χ2-attack. We have also demonstrated that our theorems
can estimate success probability in χ2-attacks against RC5-64 and RC6P.



Table 8. Comparison between Theorems 5 and 7 in the accuracy on to RC5-64

#texts Theorem 5 Theorem 7 SUC
PS error rates PSel error rates

220 0.128 15% 0.252 68% 0.15
221 0.277 23% 0.441 23% 0.36
222 0.683 10% 0.815 31% 0.62
223 0.991 8% 0.997 8% 0.92

#texts Theorem 5 Theorem 7 SUC
PS error rates PSel error rates

228 0.080 11% 0.387 330% 0.09
230 0.552 4% 0.716 35% 0.53
231 0.973 9% 0.991 11% 0.89
232 1.000 0% 1.000 0% 1.000

SUC: the probability of recovered keys in 100 keys (implemented results)

Table 9. Comparison between Theorems 5 and 7 in the accuracy on to 4-round RC6P

#texts Theorem 5 Theorem 7 SUC
PS error rates PSel error rates

218 0.111 0.9% 0.150 36% 0.11
219 0.185 23% 0.233 55% 0.15
220 0.388 3% 0.452 13% 0.40
221 0.882 18% 0.916 22% 0.75
222 1.000 0% 1.000 0% 1.00

221.1 0.889 16% 0.922 20% 0.768
221.2 0.921 12% 0.947 16% 0.817
221.3 0.946 12% 0.966 14% 0.846
221.4 0.966 8% 0.980 9% 0.896
221.5 0.979 7% 0.989 8% 0.919

SUC: the probability of recovered keys in 100 or 1000 keys (implemented results)
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