JAIST Repository
https://dspace.jaist.ac.jp/

Title Cryptanalysis of the reduped-round I

Author(s) Miyaji, Atsuko; Nonaka, Mp s ao

o Lecture Notes in Computer Science, :

Citation
480-4914

Issue Date 2002

Type Journal Article

Text version aut hor

URL http://hdl . handle.net/ 101119/ 44438
This is the author-createfd version
At suko Mivyaji, Masao NonakKka, Lectur ¢
Computer Science, 2513/20p2, 2002, -

Rights original publication is apailabl e at
www. springerlink. com,
http://www. springerlink.cpm/content/

geb

Description
December 9-12, 2002

[et al.] (eds.).

|l nformati on and communi c
l nternati onal Conf erence

pr

(@)

f i ons secul
I CI CS 200:
ceedings [/

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Cryptanalysis of the reduced-round RC6

Atsuko Miyaji' and Masao Nonaka?

1 School of Information Science, Japan Advanced Institute of Science and Technology
1-1, Asahidai, Tatsunokuchi, Nomi, 923-1292, Japan
miyaji@jaist.ac. jp
2 Matsushita Electric Industrial Co., LTD.

1006 Kadoma, Kadomashi, Osaka Japan
nonaka@isl.mei.co.jp

Abstract. We investigate the cryptanalysis of the reduced-round RC6
without whitening. Up to the present, previous key recovery algorithm
against the reduced-round RC6 itself, the reduced-round RC6 without
whitening, and even the simplified variants are infeasible on a modern
computer. In this paper, we propose the efficient and feasible key recov-
ery algorithm against the reduced-round RC6 without whitening. Our
algorithm is very useful to analysis the security of the round-function
of RC6. Our attack applies to a rather large number of rounds. RC6
without whitening with r rounds can be broken in a success probability
of 90% by using 2%'"7'3® plaintexts. Therefore, our attack can break
RC6 without whitening with 17 rounds by using 2?3 plaintexts in a
probability of 90%.

keywords: RC6, a known plaintext attack, a correlation attack

1 Introduction

RC6[13] is a block cipher, which is constructed by only simple arithmetic such as
a multiplication, an addition, a bit-wise exclusive-or(XOR), and a data depen-
dent rotation. Therefore, RC6 can be implemented efficiently in software with
small amount of memory. RC6 is submitted as a candidate for NESSIE[12], and
recently has been selected to proceed the next stage. RC6-32/r/16 means that
four 32-bit-word plaintexts are encrypted by r rounds with 16 byte keys. RC6
is the next version of RC5[14], which consists of only an addition, a bit-wise
exclusive-or(XOR), and a data dependent rotation. RC5 also includes a data
dependent rotation, which is much efficiently improved in RC6 in such a way
that it is determined by all 32 bits of both data and subkey but not 5 bits.
Such an efficient improvement makes RC6 much secure because it is difficult
to handle the rotation by choosing specific plaintexts. Compared with various
attacks against RC5[1,2,5,7?,7,4,11], any key recovery algorithm against RC6
[3,2, 8] requires much memory and work even in the case of low round. Multiple
linear cryptanalysis is applied to RC6 with 32-byte keys[16], but it has not been
applied to RC6 with 16-byte keys.

Correlation attack makes use of correlations between an input and an output,
which is measured by the x? test: the specific rotation in RC6 is considered

2 Atsuko Miyaji and Masao Nonaka

to cause the correlations between the corresponding two 10-bit integer values.
Correlation attack consists of two parts, the distinguishing algorithm and the key
recovery algorithm. The distinguishing algorithm has only to handle plaintexts
in such a way that the y2-value of a part of the ciphertext becomes a significantly
higher value. On the other hand, the key recovery algorithm has to rule out all
false keys, and single out exactly a correct key by using the y2-value. However,
only distinguishing algorithm has been investigated, up to the present[8,4]. That
is, only the high x2-value is focused, which is experimentally computed on the
average of keys.

In [8], correlation attacks are applied to recover subkeys from the 1st sub-
key to the final subkey by handling a plaintext (Ag, Bo, Co, Do) in such a way
that the y2-value after one round becomes significantly higher value. However,
unfortunately, their key recovery algorithm has not been executed yet although
their distinguishing algorithm has been implemented. Because their algorithm is
forced to recover all 32 bits of the first subkey, and thus it requires 2622 works
with 242 memory even in the case of RC6 with 5 rounds. In a realistic sense, it
would be infeasible to employ such an algorithm on a modern computer. This
is why their key recovery algorithm is estimated by only using the results of
distinguishing algorithm. Their key recovery algorithm is roughly summarized
as follows: 1. Choose a plaintext in such a way that the least significant five bits
of Ag and Cy, lsbs(Ap) and Isbs(Cy), are fixed; 2. For a plaintext and the corre-
sponding 227 first subkeys that leads the zero rotation in the first round, compute
the y2-value of concatenation of [sbs(A4,1) and Isbs(C,41) of an output after r
rounds, (A,41, Bri1,Cri1, Dri1); 3. Output a subkey with the highest x2-value
as the first subkey. Their key recovery algorithm is based on the next idea: the
x2-value is significantly high if a plaintext is suitably fixed so that one (or both)
of the data dependent rotation in the first round is zero. It exactly works well
as a distinguishing algorithm, but, as a key recovery algorithm, it is unlikely
that it rules out all false keys well in the following reason: the data dependent
rotation depends on all bits of 32-bit subkey, however, the information amount
on data dependent rotation is only 5 bits. Fixing the first round rotation to zero
is just fixing the 5-bit information amount on the first subkey but not all its
32bits. In fact, for a plaintext, there are 227 first subkeys that lead to the zero
rotation. This is why the above algorithm is unlikely to rule out all false keys.
We also note that the number of available plaintexts for each key in their attack
is reduced to 2118,

In [11], a correlation attack against RC5 is proposed by using the same idea
of fixing the first round rotation as [8]. They report three interesting and new
results: 1. their algorithm can search every four bits of subkey in the final round;
2. their algorithm can recover subkeys with the high probability with a rather low
x>-value; 3. an algorithm, applying [8] to RC5, cannot recover subkeys with the
high probability although the x2-value is extremely high. Their results indicate
that not all bits but a few bits of subkeys can be recovered under the condition
of fixing the first round rotation, and that a good distinguishing algorithm does
not necessarily work as a good key recovery algorithm.

Cryptanalysis of the reduced-round RC6 3

RC6 consists of three parts, pre-whitening, r-round iterations of round func-
tion, and post-whitening. In this paper, we focus on the round function of RC6,
RC6 without whitening. Here we simply call RC6 without whitening to RC6W.
We propose the feasible key recovery algorithm for the reduced-round RC6W for
the first time. We improve the distinguishing algorithm in such a way that the
x2-values for outputs become significantly high with less constrain of plaintexts,
and then improve key recovery algorithm in such a way that the variance of
x2-value is reduced. We know that an output of RC6 is highly unlikely to be
uniformly distributed if By or Dy of a plaintext (Ag, By, Co, Do) introduces zero
rotation in the 1st round, and Isbs(Ao) and Isb5(Cp) is fixed[8]. More generally,
we investigate how an output after r rounds, both A,; and C,;1, depends on
a chosen plaintext, and find experimentally the following feature of RC6: the
x2-values for the concatenation of Isbs(A, 1) and lsbs(C,1) of an output after
r rounds become significantly high if both the least significant 5 bits of the first
and third words before addition to each 1st-round subkey are just fixed. This
means that we can use any plaintext by classifying them into groups with the
same condition, and thus, the number of available plaintext is 2'2®, which is very
useful for distinguishing RC6 without pre-whitening.

We improve the key recovery algorithm by taking full advantage of the above
feature, that is, the x2-values become significantly high for any group. As men-
tioned above, only the high average of y2-value has been discussed. However, we
also direct our attention to the variance of x2-value. We compute the x2-value
not flatly for all plaintext but for plaintexts in each group, and then compute the
average among these x2-value. As a result, the variance of y2-value is reduced,
and the key recovery algorithm is expected to rule out all false keys. The main
points of our feasible key recovery algorithm are as follows:

1. Use any plaintext by classifying it into groups;
2. Compute the y2-value of an output for plaintexts in each group, and then
compute the average among these x2-value.

We also present three key recovery algorithms, which reflect the effect of com-
puting the y2-value on each classified group. By employing our attack, RC6W
with 5 rounds can be broken within 20 minutes on PPC 604e/332MHz by using
227 plaintexts and 226 memory. RC6W with r rounds can be broken with a suc-
cess probability of 90% by using 28177138 plaintexts. As a result, our attack can
break RC6W with 17 rounds by using 2'23° plaintexts in a probability of 90%.
Our algorithm can work faster than an exhaustive key search for the 128-bit key
with feasible size of memory, 225. In [13], a two register version for RC6 is also
described, called RC6-64 in this paper. RC6-64 is oriented to 64-bit architecture,
and plaintexts consists of two 64-bit words. The size of subkeys in RC6-64 is 64
bits. So the security level of one round in RC6-64, the size of subkeys, is esti-
mated to be equal to that in RC6-32, which has two 32-bit subkeys in one round.
Furthermore the round function of RC6-64 is almost the same structure as that
of RC6. So it is very useful to discuss the difference of each security of round
function. By applying our attack to RC6-64 without whitening with r rounds, it
can be broken in a success probability of 90% by using 2°:97~82 plaintexts. As a

4 Atsuko Miyaji and Masao Nonaka

result, our attack can break RC6-64 without whitening with 27 rounds by using
2126-8 plaintexts in a probability of 90%. The weakpoint of RC5 is thought to a
data dependent rotation, which is defined by only 5-bit subkey and data, but not
the data structure of two words. Although the weakness of data dependent ro-
tation is improved in both RC6 and RC6-64, RC6-64 is much weaker than RC6.
From our results, we see that the data structure of RC6, 4-word plaintexts, also
makes the security high.

This paper is organized as follows. Section 2 summarizes some notations and
definitions in this paper. Section 3 describes some experimental results including
the above features of RC6. Section 4 presents the chosen plaintext algorithm, Al-
gorithm 2 and 3. Section 5 discusses how to extend the chosen plaintext algorithm
to the known plaintext algorithm, Algorithm 4. Section 6 applies Algorithm 4 for
a two-register version for RC6, and discusses the difference between the original
RC6 and a two-register version for RC6 from a security point of view.

2 Preliminary

This section denotes some notations, definitions, and experimental remarks. In
this paper, RC6-32, AES submission version, is simply denoted to RC6. First we
describe RC6 algorithm after defining the following notations.
+, H (—,) : an addition (subtraction) mod 232; @ : a bit-wise exclusive OR;
r : the number of (full)rounds;
a <K b(a >>b) : a cyclic rotation of a to the left(right) by b bits;
(L;, R;): an input of the i-th half-round, (Lo, Rp) is a plaintext,
(Lns1, Rhe1) is a ciphertext after h half-rounds encryption;
S; : the i-th subkey(Sp41 is a subkey of the h-th half-round);
I[sb,(X) : the least significant n bits of X;
X? : denotes the i-th bit of X;
X531 : denotes from the i-th bit to the j-th bit of X (i > j);
X : a bit-wise inversion of X.
FX): X x(2X +1); F(X): f(X) (mod 2*?) « 5.
We denote the least significant bit(LSB) to the 1st bit, and the most significant
bit(MSB) as the 32-th bit for any 32-bit element. RC6 encryption is defined as
follows:

Algorithm 1 (Encryption with RC6)
1. A1 = Ao; B1=Bo+ So; Ci1=Co; D1 = Do+ S1;
2. for i=1 to r do: t=F(B;); u=F(D;); Aiy1 = Bi;
Bit1 = ((Ci®u) Kt)+ S2iq1; Civ1=Di; Diy1 = ((Aidt) K u)+ Sai;
3. Aryo=Ary1 4+ S2r42; Bry2=DBrq1; Cry2 =Crq1 + S2r43; Drga=Dryy.

The part 1, or 3 of Algorithm 1 is called to pre-whitening, or post-whitening,
respectively. We call the version of RC6 without both pre-whitening and post-
whitening to, simply, RC6W or RC6 without whitening.

We make use of the x2-tests for distinguishing a random sequence from non-
random sequence [6,8,9]. Let X = Xj,...,X,,_1 be a sequence with VX; €

Cryptanalysis of the reduced-round RC6 5

{ao, -+ ,am-1}. Let N, (X) be the number of X; which equals a;. The x*-
statistic of X, x?(X), estimates the difference between X and the uniform dis-
tribution as follows: y>(X) = 2 "7 1 (N, (X) — %)2 Table 1 presents each
threshold for 31, 63, 255, 1023 degrees of freedom. For example, (level, x2)=(0.95,
44.99) for 31 degrees in Table 1 means that the value of y>-statistic exceeds 44.99
in the probability of 5% if the observation X is uniform. In this paper, we uses
these four degree of freedom. For preciseness, we often discuss the y2-statistic
for any degree by the level. We set the level to 0.95 in order to distinguish a
sequence X from a random sequence.

Table 1. x>-distribution with each degree of freedom

| Level| 050 0.60 070 0.80 090 095 0.99]
| 31 degree of freedom| 30.34 32.35 34.60 37.36 41.42 44.99 52.19)
| 63 degree of freedom| 62.33 65.20 68.37 7220 77.75 82.53 92.01]
[255 degree of freedom[254.33 260.09 266.34 273.79 284.34 293.25 310.46]
[1023 degree of freedom[1022.33 1033.83 1046.23 1060.86 1081.38 1098.52 1131.16]

In our experiments, all plaintexts are generated by using m-sequence[10]. For
example, Algorithm 2, 3, or 4 uses 108-, 113- or 128-bit random number gen-
erated by m-sequence, respectively. The platforms are IBM RS/6000 SP (PPC
604e/332MHz x 256) with memory of 32 GB.

3 xZ-statistic of RC6

In this section, we investigate how to lead to much stronger biases with less
constraint of plaintexts. In [8], if plaintexts (Ag, By, Co, Do) are chosen in such
a way that both lsbs(Ag) and lsbs(Cp) are fixed, and that both By and Dy
introduce zero rotation in the 1st round, then the ciphertexts lead much stronger
biases. However, such condition is rather strict constraint because the number of
plaintexts satisfied with such conditions are reduced to 21°8. We investigate other
conditions that has almost the same effect with less constraint of plaintexts. To
observe this, we conduct the following experiments.

Test 1: x2-test on lsbs(A,41)||lsbs(Cri1) in the case which both By and Dy
introduce zero rotation in the 1st round, Isbs(Ag) = 0, and Isbs(Cp) = 0.

Test 2: x>-test on Isbs(A,11)||lsbs(Cry1) in the case which both By and Dy
introduce zero rotation in the 1st round, lsbs(A4p) =0, ...,31, and lsb5(Cp) = 0.
Test 3: x>-test on Isb,(A,+1)||lsbn(Cry1) for n = 3,4,5 in the case which both
Isbs(Ap) and Isbs(Cp) are set to 0, and both By and Dy introduce zero rotation
in the 1st round.

Test 4: y’-test on (any consecutive 5 bits of A.11) ||lsbs(Cri1) in the case
which both Isbs(Ag) and Isbs(Cy) are set to 0, and both By and Dy introduce

6 Atsuko Miyaji and Masao Nonaka

zero rotation in the 1st round.

The conditions on plaintexts and ciphertexts in Test 1 is the same with that
in [8]. Apparently, the conditions on plaintexts or ciphertexts in other tests is
eased. We observe whether the almost same effect as Test 1 is expected with the
eased conditions or not.

3.1 Test 1 and 2

The ciphertexts lead much stronger biases if plaintexts (Ag, Bg, Co, Do) are cho-
sen in such a way that both Isbs(Ag) and Isbs(Cp) is 0, and that both By and
Dy introduces zero rotation in the 1st round[8]. Test 1 examines the effect. The
implementation results in the case of r = 4,6 are shown in Table 2. We compute
the x2-value on lsbs(A11)||lsbs(Cy41) on the average of 100 keys, and the level
and the variance. Especially, the variance will be discussed in the following sec-
tions. In the case of Test 1, the number of available plaintexts is 218, Next we

Table 2. The x*-value on Isbs(A,+1)||lsbs(C,+1) of RC6 in Test 1(the average of 100
keys, the level and the variance)

4 rounds

texts 212 213 2!

The y’-value| Average Level Variance| Average Level Variance| Average Level Variance

1045.450 0.694 1774.828|1076.568 0.881 2177.806(1126.800 0.987 2448.999

6 rounds

texts 278 2%9 230

The y’-value| Average Level Variance| Average Level Variance| Average Level Variance

1041.933 0.667 2098.079]|1060.985 0.801 2263.724|1095.914 0.944 2942.704

discuss the difference between Test 1 and 2. In the first round, each of 4; and
C is added to each round key, and thus neither Isbs(A;) nor Isbs(Cy) is zero in
the final stage of the first round even if plaintexts are chosen with the condition
of Test 1. Therefore, the same effect as lsbs(Ag), [sbs(Co) = 0 is expected if only
Isbs(Ap) and lsbs(Cop) is just fixed. Test 2 examines the hypothesis. The exper-
imental results of Test 2 are presented in Figure 1. In Figure 1, the horizontal
line corresponds to the fixed value of Isb5(Ao) and the vertical line corresponds
to the significance level of the y2-value for each number of plaintexts. From Fig-
ure 1, we see that any lsbs(Ap) can be distinguished from a random sequence
in almost the same way as lsbs(Ap) = 0. The same discussion also holds in the
case of Isb5(Cp). To sum up, we do not have to set Isbs(Ag) = Isb5(Cp) = 0 in
order to increase the y2-value. We can use plaintexts with any (Ao, Cp) by just
classifying it to each 1sbs(Cp) and Isbs(Ap), and thus the number of available
plaintexts is 2118,

Cryptanalysis of the reduced-round RC6 7

=202
065 i b 0.65 g
0.60 i 0.60 —-2M2
+2M3
055 055 21

15 9 13 17 2 B9 1 5 9

13 172 25 29
1sh5(Aq) the first bit(i)

Fig. 1. The x2-value for each Isbs(Ap) of Fig. 2. Level of the y?-value in each con-
RC6 in Test2 (on the average of 10* keys) secutive 5 bits of As||lsbs(Cs) of RC6 for
each # texts (on the average of 10" keys)

3.2 Test 3

The bias for 1sbs(Ap41)|[lsbs(Cry1) of an output after r-rounds are confirmed
to be highly nonuniform distribution[8]. In Test 3, we examine whether outputs
with other bit-size lead also highly nonuniform distribution or not. Our key
recovery algorithm shown in Section 4 and 5 can set the size of recovered key
flexibly. Therefore if the nonuniform distribution of lsb,(A.+1)||lsbn(Cryq) for
n # 5 also holds, then our algorithm can work according to the memory capacity
of machine. The experimental results of Test 3 in the case of 4, 6 rounds are
presented in Table 3. From the experimental results, we see that the larger n is,
the higher the nonuniform distribution of lsb, (A.+1)||lsbn(Cr41) is, and that the
nonuniform distribution of Isb,(Ay1)||lsbn(Cri1) for n = 3,4 is also observed
in the same way as n = 5. Since we use the y?-value on Isb3(A,+1)||lsb3(Cri1)
in Section 4, other experimental results in the case of Isbz(Ar+1)||lsb3(Crt1) are
shown in Table 4.

3.3 Test 4

In Test 4, we compute the y?-value in (any consecutive 5 bits of A, 1||lsb5(Cri1)).
Figure 2 shows the experimental results in the case of 4 rounds. The horizon-
tal line corresponds to the first bit of consecutive 5 bits of Az, and each plot
presents the level of y2-value in the case of each consecutive 5 bits for each
number of plaintexts. For example, the case of ¢ = 1, or i = 32 corresponds to
Agf’l], or {Agz,A?’l]}. From Figure 2, we see that (any consecutive five bits of

As||lsbs(C5)) can be distinguished from a random sequence in almost the same
way as le5(A5)||le5(C5)

8

Atsuko Miyaji and Masao Nonaka

Table 3. The Xz-value on Isby (Ar41)||lsbn(Cr41) of RC6 for each # texts, the average
of 100 keys, the level, and the variance

4 rounds
texts 212 213 211
x?-value| Average Level Variance| Average Level Variance| Average Level Variance
n=3 66.275 0.635 140.251| 69.518 0.733 155.518| 81.111 0.938 244.195
n=4 | 268.910 0.737 493.753| 277.883 0.845 618.303| 301.961 0.977 679.494
n=2>5 [1045.450 0.694 1774.828|1076.568 0.881 2177.806|1126.800 0.987 2448.973
6 rounds
texts 279 230 231
x>-value| Average Level Variance| Average Level Variance| Average Level Variance
n=3 71.804 0.791 203.645| 76.572 0.883 209.564| 88.474 0.981 270.062
n=4 | 273.571 0.797 580.289| 290.854 0.939 699.839| 323.876 0.998 1049.104
n =25 [1060.985 0.801 2263.680({1095.913 0.944 2942.691|1173.418 0.999 3270.362

Table 4. The y*-value on Isbs(As)||lsbs(Cs) of RC6 for each # texts, the average of
105 keys, the level, and the variance

50
Average Level Variance
63.395 0.538 126.645

28

Average Level Variance

63.241 0.532 126.612
oIt

Average Level Variance

64.655 0.581 131.970

o7
Average Level Variance
63.174 0.530 126.426

texts 210
x2-value

texts
x2-value

Average Level Variance
63.820 0.553 130.434

3.4 x?2-statistic of RC6 without pre-whitening

In this section, we focus attention on RC6 without pre-whitening, and investigate
how to lead much stronger biases with less constraint of plaintexts. In Test 2,
we see that the y2-value on Isbs(A,11)||lsbs(C,+1) becomes significantly high if
both B and Dy introduce zero rotation in the 1st round, and both lsbs(A4g) and
Isbs(Co) are fixed. That is, in Test 2, both [sbs((Ag P F (Bo+Sp)) <K F(Dg+51))
and Isbs((Co @ F(Do + S1)) << F(Bg + Sp)) are fixed. Therefore, in the case of
RC6 without pre-whitening, the same effect as Test 2 is expected if only both
Isbs((Ao & F'(Bo)) << F(Do)) and Isbs((Co & F(Do)) < F(By)) are fixed. To
observe this, we do the next experiments.

Test 5: y?-test on lsbs(A,4+1)||lsbs(Cri1) of RC6 without pre-whitening with
1sbs((Co @ F(Dy)) <& F(By)) = 0, and Isbs((Ag @ F(By)) <& F(Dy)) = 0.
Test 6: y>-test on Isbs(A,41)||lsbs(Cri1) of RC6 without pre-whitening with
Isbs((Co® F(Dy)) <« F(Byp)) = 0, and Isbs((Ag @ F(By)) <K F(Dy)) =0, ..,31.

Table 5 shows the result of Test 5 in the case of 4 rounds. Compared with Table 2,
we see that almost the same effect as Test 1 is obtained from Test 5. More strictly,
the effect of Test 5 is better than that of Test 1. The experimental results of Test

Cryptanalysis of the reduced-round RC6 9

6 is presented in Figure 3. In Figure 3, the horizontal line corresponds to the
fixed value of Isbs((Ag ® F(By)) <€ F(Dy)) and the vertical line corresponds
to the x2-value for each number of plaintexts. From Figure 1, we see that any
Isbs((Ag ® F(Bo)) < F(Dy)) can be distinguished from a random sequence in
almost the same way as Isbs((Ao ® F(Bo)) <« F(Dg)) = 0. The same discussion
also holds in the case of Isb;((Co ® F(Dy)) <€ F(Byp)) = 0.

More importantly, in the case of analysis of RC6 without pre-whitening, we
can handle plaintexts by controlling lsbs((Ag ® F(By)) <€ F(Dy)). To sum up,
we can use any plaintext to analysis for RC6 without pre-whitening by just
classifying it into each lsbs((Ao @ F(Bo)) < F(Dy)) and lsb5((Co & F(Dy)) K
F(By)), and thus the number of available plaintexts is 2128,

Table 5. The y>-value on Isbs(As)||lsbs(Cs) of RC6 without pre-whitening in Test
5(the average of 100 keys, the level, and the variance)

texts 212 213 21
x>-value| Average Level Variance| Average Level Variance| Average Level Variance
1054.720 0.761 2653.532{1083.073 0.906 2634.250(1137.702 0.993 2504.252

1.00

0.95
0.90

0.85

0.80

level

0.75

0.70 ’

212
0.65 203

2714

0.60

0 4 8 12 16 20 24 28
a

a =1sbg((Ag @ F(Bp)) K F(Dyg))

Fig. 3. The y?-value for each Isbs((Ao © F(By)) <« F(Dy)) of RC6 without pre-
whitening in Test 6 (on the average of 10* keys)

3.5 Experimental remarks

We have seen from the experimental results that high correlations between an
input and an output of RC6 are observed if both inputs and outputs are chosen
appropriately. Correlation attack makes use of the correlation: if we choose a
correct key, then high correlations between an input and an output of RC6 would

10 Atsuko Miyaji and Masao Nonaka

be observed; but if we choose a false key, then high correlations between an input
and an output of RC6 would not be observed. In distinguishing algorithm, the y>-
value is computed on the average of keys, and thus only the conditions, of which
the average of y2-value is high, are discussed. However, each experimental results
show that variance of distribution of the y2-value can not be negligible in the
case of correct keys. Generally, for a normally distributed X with the average u,
and the variance o2, the probability that the data exists in {u—0 < X < p+o},
Pr(p — o < X < u+ o), satisfies

Pr(p—0 <X <p+o0)=0.68.

Therefore, if the variance would not be reduced, then we could not rule out all
false keys, and single out exactly a correct key. In the following sections, we will
design key recovery algorithms in such a way that the variance of x2-distribution
is reduced.

3.6 Estimation

In the following sections, we will show key recovery algorithms, based on x2-
test. We actually implement theses key recovery algorithms against RC6W with
5 rounds, and evaluate the x2-value necessary for key recovery against RC6W
with 5 rounds exactly. For the discussion against RC6W with more rounds,
we use the same method as [8] to estimate the complexities of key recovery
algorithms: we estimate slope, that is, how many plaintexts are required to get
similar values in a x2-test on r + 1 rounds compared with 7 rounds.

Our key recovery algorithms are Algorithm 2, 3, and 4. The condition of
x2-test of these three key recovery algorithms are classified into two cases: one
is the case of both Algorithm 2 and 3; and the other is that of Algorithm 4. We
discuss the slope in each case. Note that our algorithms are applied to RC6W,
but from the point of view of x2-value, we can make use of y2-test of RC6. As for
the post-whitening, the y2-value without post-whitening is the same as that with
post-whitening. As for the pre-whitening, the condition without pre-whitening
is the same as that of which By and Dy introduce zero rotation in the 1st round
of RC6.

In the case of both Algorithm 2 and 3, the slope of y2-test is estimated by
that of the following conditions:

Condition 1 The x2-test on [sb3(A,11)||lsb3(Cy41) of RC6 in the case which
both By and Dy introduce zero rotation in the 1lst round, lsbs(Ag) = 0, and
le5(Co) =0.

Condition 1 is the same with the case of n = 3 in Test 3. The precise experi-
mental results in Condition 1 are shown in Table 6. Table 6 shows the number
of plaintexts required for the y2-value with each level, 0.70, 0.75, 0.80, 0.90, and
0.95, which are calculated to the first decimal place. From Table 6, we can esti-
mate that to get similar values in a y2-test on r + 1 rounds compared r rounds
requires a factor of 281 additional plaintexts.

Cryptanalysis of the reduced-round RC6 11

In the case of Algorithm 4, the slope of x2-test is estimated by that of the
following conditions:
Condition 2 The y?-test on [sb3(A,11)||lsb3(C,41) of RC6 in the case which
both By and Dy introduce zero rotation in the 1lst round, Isb3(Ag) = 0, and
le3(Co) = 0
The precise experimental results in Condition 2 are also shown in Table 6. From
Table 6, we can estimate that to get similar values in a x-test on 7 + 1 rounds
compared r rounds requires a factor of 28! additional plaintexts in the same
way as Condition 1.

Table 6. logz#(texts) required for the x2-value of RC6 with each level

Condition 1 Condition 2
Level|4 rounds|6 rounds|{4 rounds|6 rounds
0.70 12.5 28.3 14.9 30.8
0.75 12.9 28.6 15.3 31.1
0.80 13.1 29.2 15.6 31.6
0.90 13.8 30.2 16.1 32.5
0.95 14.2 30.7 16.6 32.8

4 A chosen plaintext correlation algorithm

In this section, we present two chosen-plaintext key recovery algorithms against
RC6W, Algorithm 2 and 3.

4.1 Algorithm 2

The conditions on plaintexts in Algorithm 2 are the same with [8], but Algo-
rithm 2 is designed by making use of the results of tests in Section 3 as follows:

1. The x2-statistic are not measured on a fixed part of 4, 41||Cr41 (Test 4);

2. The degree of y2-statistic is flexibly set to 63 in such a way that Algorithm 2
is feasible, that is, compute the y>-statistic on 6 bits of A,;1]|C.11 (Test 3);
3. The x?-value is computed on z,||z., to which [sb3(B,41)||lsb3(D,+1) is exactly
decrypted by 1 round (see Figure 4);

4. The decrypted data, z,]|z., is classified into 64 cases according to each rota-
tion number of the r-th round, and the x2-value is computed on each classified
case.

Algorithm 2 This algorithm recovers both Isby(Ss.) and lsb2(S2,41) of RCEW.
Set (Isb3(Br41),lsbs(Drt1)) = (yb,ya)s (Isb2(S2r),lsb2(S2r41)) = (Sa,5c), and
(Isbs(F(Ar41)),1sbs(F(Cr41))) = (TeyTa), where z, or x. is the rotation amount
on A, or C, in the r-th round, respectively.

1. Choose a plaintext (Ao, Bo,Co, Do) with

12 Atsuko Miyaji and Masao Nonaka

(Isbs(Ao),lsbs(Co), lsbs(F(Bo)),lsbs(F(Dy))) = (0,0,0,0), and encrypt it.

2. For each (Sa,Sc) (Sa,8c =0,1,2,3), set a 4-bit integer s = sal|sc,
SST,SST+1 =0, and decrypt ydl||ys with the key (SSTHSQ,SST_,_IHSC) by 1 round.
Note that, by using the r-th round rotation amount z, and z., yq4 and y,
can be decrypted to z, and z.. We also set a 6-bit integer z = z4l|zc.

3. For each value s, zu., Tc, and z, we update each array by incrementing
count[s][za][zc][2].

4. For each s, Za, and Z., compute X [s][Za][z]-

5. Compute the average awve[s] of {x’[s][xa][z.]} for each s, and output s with
the highest ave[s| as [sba(S2,)||lsb2(S2r+1)-

2

Larta | [Breay] [crea | [Drelyd]
Isb3 1sb3

Fig. 4. Outline of Algorithm 2

Algorithm 2 computes the y2-value on z, to which y is decrypted by the fi-
nal round subkey. Since the y2-value on the decryption z by using each key,
Lsbs(S2r)||lsbs(Sart1) = 1f|sal[1||se, 1]]5al[0]|sc, Ollsal|1][se, Ol|sa]|0]]sc are coin-
cident each other[11], we may decrypt y by setting S5, SSH_I = 0 temporarily.
Algorithm 2 shown the above works as 6-bit examination and 4-bit estimation,
but it can work flexibly as 2n-bit examination and 2(n — 1)-bit estimation for
n = 3,4,5 according to the capacity of memory. We can recover other bits of
round keys S, and Sa.y1 by repeating Algorithm 2 sequentially. Apparently,
the number of available plaintexts is 2108,

Table 7 shows the results for RC6W with 5 rounds: the success probability
among 100 trials, the average of y2-value of recovered keys, the level, and the
variance. Let us compare the results in Algorithm 2 with Table 4. In Algorithm 2,
the y2-value is computed on each group, classified by the rotation number in the
final round. Since all plaintexts in our experiments are randomly generated by
m-sequences, plaintexts are roughly estimated to be uniformly distributed to
each group. Therefore, the x2-test is computed by using 1/2!° times the number
of plaintexts in Table 7. The y2-test of using 220 — 223 plaintexts in Algorithm 2

Cryptanalysis of the reduced-round RC6 13

corresponds to that of 2'© — 213 in the case of n = 3 of Test 3. In a sense,

Algorithm 2 computes the y2-value for sample mean, which keeps the average
of x2-value but reduce the variance of y2-value from statistical fact. Comparing
Table 7 with Table 3 and 4, we see that the variance of y2-value in Algorithm 2
is about 1/2!° as much as that in the corresponding Test3, and that the average
of x2-value in Algorithm 2 is almost the same as that in the corresponding Test3.
Algorithm 2 can recover a key with rather low level by reducing the variance of
x2-value.

More precise experimental results are shown in Table 8. All experiments are
calculated to the first decimal place. From Table 8, the number of plaintexts
required for recovering a key in r rounds with the success probability of 90%,
logs (#text), is estimated,

loga(#text) = 8.1r — 19.1,

by using the slope computed in Section 3 . By substituting logs(#text) = 108,
Algorithm 2 can break RC6W with 15 rounds with 2924 plaintexts with a
probability of 90%. Algorithm 2 can work faster than an exhaustive key search
with 220 memory.

Table 7. Success probability and the y2-value of Algorithm 2 (in 100 trials)

#texts|#keys| x?-value(63 degree)
Average|Level|Variance

217 12| 63.106 [0.527| 0.165
218 8| 63.076 |0.526| 0.122
219 16| 63.216 [0.531| 0.109
220 32| 63.492 |0.541| 0.107
22t 71| 64.049 [0.561| 0.102
222 99| 65.119 |0.597| 0.133
223 100| 67.321 [0.668| 0.218

Table 8. log, (#texts) required for recovering a key with the success probability 90%,
70%, and 30% in Algorithm 2(in 100 trials)

90%|70%|30%
log, (#text) |21.4|21.0|20.0

4.2 Algorithm 3

We improve the Algorithm 2 by making use of the results of Test2, that is, ease
the conditions on (Ap,Co) of plaintexts. The conditions on plaintexts in the
Algorithm 3 is: both By and Dy introduce zero rotation in the 1st round; and
both Isbs(Ap) and Isbs(Cop) are just fixed.

14 Atsuko Miyaji and Masao Nonaka

Algorithm 3 This algorithm recovers both lsb2(S>.) and lsb2(S2.41) of RCEW.

Set (Isb3(Br41),lsbs(Drt1)) = (yb,ya)s (Isb2(S2r),lsb2(S2r41)) = (sa,5c), and

(Isbs(F(Ars1)),1sb5(F(Cr41))) = (e, ®a), where z, or x. is the rotation amount

on A, or C, in the r-th round, respectively.

1. Choose a plaintext (Ao, Bo,Co, Do) with (Isbs(F(By)),lsbs(F(Dy)),1sbs(Co)) =
(0,0,0), set lsbs(Ao) =t, and encrypt it.

2. For each (Sa,Sc) (Sa,8c =0,1,2,3), set a 4-bit integer s = sal|sc,
S3,.,53.41 =0, and decrypt yq||ly, with the key (S3.|/sa,S3,11||5c) by 1 round.
The decryptions of yg4, Yy, are set to z,, 2:, which are also denoted by a
6-bit integer z = z.||zc.

3. For each value s, t, Ta, T, and z, we update each array by incrementing
count[s][t][za][zc][2] -

4. For each s, t, T, ., compute X2[S][t][$a][$c].

5. Compute the average ave[s] of {x’[s][t][xa][xc]} for each s, and output s with
the highest ave[s| as [sba(S2,)||lsb2(S2r+1)-

The number of available plaintexts in Algorithm 3 is 2!''3. Algorithm 3 uses
plaintexts with [sb5(Cp) = 0, but this condition is further eased by classifying
the value of Isb5(Cp). Then the number of available plaintexts becomes 218,

Table 9 shows the results for RC6W with 5 rounds: the success probability
among 100 trials, the average of y2-value of recovered keys, the level, and the
variance. Let us compare the results with that of Algorithm 2 in Table 7. In
Algorithm 3, the plaintexts computed on the x2-value is further classified to
each group by the value of Isbs(Ap). Since all plaintexts in our experiments
are randomly generated by m-sequences, plaintexts are roughly estimated to be
uniformly distributed to each group. Therefore, the y2-test of using 222 — 224
plaintexts in Algorithm 3 corresponds to that of 2'7 —2!? in Algorithm 2. In the
same way, the y2-test of using 222 — 224 plaintexts in Algorithm 3 corresponds
to that of 27 — 2 in the case of n = 3 of Test 3. We see the average of y2-value
by using 222, 223, or 224 in Table 9 is roughly equal to that by using 2'7, 28, or
219 in Table 7, and that by using 27, 2%, or 2? in Table 4, respectively. On the
other hand, the variance of x2-value by using 222, 223, or 224 in Table 9 is about
1/2% as much as that by using 2'7, 218, or 2% in Table 7, and about 1/2'® as
much as that by using 27, 28, or 2° in Table 4, respectively. Algorithm 3 keeps
the level of the average of x?-value with less variance of y2-value. As a result,
Algorithm 3 can recover a key with more low level by reducing the variance of
x2-value than Algorithm 2.

More precise experimental results are shown in Table 10. All experiments are
calculated to the first decimal place. From Table 10, the number of plaintexts
required for recovering a key in r rounds with the success probability of 90%,
logs (#text), is estimated,

loga(#text) = 8.1r — 16.6,

by using the bias computed in Section 3 . By substituting logs(#text) = 118,
Algorithm 2 can break RC6W with 16 rounds with 2'!3-0 plaintexts with a
probability of 90%. Algorithm 3 can work faster than an exhaustive key search
with 225 memory.

Cryptanalysis of the reduced-round RC6 15

Table 9. Success probability and the y?-value of Algorithm 3 (in 100 trials)

#texts|#keys| x2-value(63 degree)

Average|Level|Variance
222 21| 63.067 [0.526] 0.003
223 54| 63.135 0.528| 0.003
224 93| 63.267 |0.533| 0.005

Table 10. log, (#texts) required for recovering a key with the success probability 90%,
70%, and 30% in Algorithm 3 (in 100 trials)

90%|70%|30%
log, (#text) |23.9]23.3|22.5

5 A known plaintext correlation algorithm

In this section, we present another key recovery algorithm, Algorithm 4, which
applys Algorithm 3 in such a way that all plaintexts are available. We have
seen that it is very effective for key recovering to compute the y>2-value for each
appropriate group instead of computing the y2-value flatly for any plaintexts. We
introduce the idea to the results of Test 5 and 6 in Section 3. Algorithm 4 classifies
any plaintext (Ag, Bo, Co, Do) into the same Isb3((Ag ® F(By)) < F(Dyp)) and
le3((C() &b F(D())) K F(B()))

Algorithm 4 This algorithm recovers both lsb2(S>.) and lsb2(S2.41) of RCEW.

Set (lsb3(BT+1),le3(Dr+1)) = (yb,yd), (leQ(SQT),le2(527-+1)) = (sa,sc), and
(I1sbs(F(Ar+1)),1sb5(F(Cr41)) = (Tcy To), where T, or x. is the rotation amount

on A, or C, in the r-th round, respectively.

1. Given a plaintext (Ao, Bo,Co, Do), set lsbs((Ao ® F(Bo)) <« F(Do)) = ta,
lsb3((Co ® F(Do)) < F(Bp)) =t., and encrypt it.

2. For each (Sa,Sc) (Sa,8: =0,1,2,3), set s = sa|sc, SS’T,SS’MA =0, and decrypt
ya|lys with the key (S3,|/sa,S5,41|/Sc) by 1 round. The decryptions of yi, ¥s
are set to z,, 2., which are also denoted by z = zu||zc.

3. For each value s, t4, tc, Ta, Tc, and z, we update each array by incrementing
count[s][tallte][za]lr][2]-

4. For each s, tu, tc, Tas T, compute XQ[S][ta][tc][:Ba][:Bc].

5. Compute the average ave[s] of {x?[s][ta][tc][*a][zc]} for each s, and output s
with the highest ave[s] as Isb2(Sa,)||lsb2(S2r+1).

The number of available plaintexts in Algorithm 4 is 2'28. Algorithm 4 classifies
plaintexts by each 3 bit of (Ag@® F(By)) < F(Dy) and (Co ® F(Dy)) < F(By),
which may be enlarged to, for example, 5, like the conditions of Test 5 and 6.
However, the larger classified bit size is, the larger memory is required.

Table 11 show the results for RC6W with 5 rounds: the success probability
among 100 trials, the average of x2-value of recovered keys, the level, and the
variance. We see that, in Algorithm 4, the variance of y2-value is much more
reduced than Algorithm 2 and 3. As a result, Algorithm 4 can recover a key
more efficiently by reducing the variance of y2-value than Algorithm 2 and 3.

16 Atsuko Miyaji and Masao Nonaka

More precise experimental results are shown in Table 12. All experiments are
calculated to the first decimal place. From Table 12, the number of plaintexts
required for recovering a key in r rounds with the success probability of 90%,
logs (#text), is estimated,

loga(F#text) = 8.1r — 13.8,

by using the slope computed in Section 3 . By substituting logs(#text) = 128,
Algorithm 4 can break RC6W with 17 rounds by using 2'23 plaintexts in a
probability of 90%. Algorithm 4 can work faster than an exhaustive key search
with 226 memory.

Table 11. Success probability and the x?-value of Algorithm 4 (in 100 trials)

#texts|#keys| x”-value(63 degree)

Average|Level|Variance
2% 26| 63.057 [0.526] 0.0003
226 59| 63.108 |0.528| 0.0005
227 100| 63.230 |0.532| 0.0007

Table 12. # texts required for recovering a key with the success probability 90%, 70%,
and 30% in Algorithm 4(in 100 trials)

90%|70%|30%
log, (#text) |26.7|26.3|25.3

6 A key recovery algorithm against RC6-64

In [13], a two-register version for RC6 is also described, which is oriented to 64-
bit architecture. Here we call the two-register version for RC6 to simply RC6-64.
In this section, we apply the idea of Algorithm 4 to RC6-64, and discuss the
difference between RC6 and RC6-64 from a security point of view.

6.1 A two-register version for RC6

Here we present RC6-64. The round function of RC6-64 is almost the same
structure with that of RC6, but it consists of two units (A;, B;). An input of
the i-th round is denoted by (A;, B;), and (Ao, Bo) is a plaintexts, where each
A; and B; is 64 bits. The i-th subkey S; is also 64 bits. Here the function F' is
modified to Fg in a 64-bit-oriented manner,

Fe(X)=X(2X +1) (mod 2%) <« 6.

Cryptanalysis of the reduced-round RC6 17

Algorithm 5 (Encryption with RC6-64)

1. Ay = Ag; B1 = Bo + So;

2. for i=1 to r do: t=Fs(B;); Ai=((Aidt) K t)+ S;;
Aiv1=DB;;Biy1 = Aj;

3. Arjo=Ary1+Sr1s Bry2 =Bt

The part 1 and 3 of Algorithm 5 is called to pre-whitening and post-whitening,
respectively. We call the version of RC6-64 without either pre-whitening or post-
whitening to, simply, RC6-64W. As we see in Algorithm 5, RC6-64 is designed
by the same concept with RC6. Therefore, we might expect that, especially, the
security of round-function is almost the same with that of RC6. However, the
security of RC6-64 is rather lower than that of RC6, shown in the next section.

6.2 Key recovery algorithm to RC6-64W
We apply Algorithm 4 in Section 5 to RC6-64W.

Algorithm 6 (Algorithm to RC6-64W) This algorithm recovers Isbs(S,) of
RC6-64W. Set Isbs(B,+1) =y, lsba(S,) = s, and lsbs(Fs(Ar4+1)) = =, where z is
the rotation amount on A, in the r-th round.

1. Given a plaintext (Ao, Bg), set lsbs((Ao®Fs(Bo)) K Fs(Bo)) =t, and encrypt

it.
2. For each s (s=0,---,15), set S5 =0, and decrypt y with the key S7||s

by 1 round. We also set a decryption of y to z, which is a 5-bit integer.

3. For each value s, t, x, and z, we update each array by incrementing
count[s][t][z][z] .-

4. For each s, t, and =, compute Xz[s][t][a:]

5. Compute the average ave[s] of {x’[s][t][x]} for each s, and output s with the
highest ave[s] as Isbs(S,).

The number of available plaintexts in Algorithm 6 is 2!28. Table 13 show the
results for RC6-64W with 5 and 7 rounds: the success probability among 100
trials, the average of x2-value of recovered keys, the level, and the variance.
More precise experimental results are shown in Table 14. All experiments are
calculated to the first decimal place. From Table 14, the number of plaintexts
required for recovering a key in r rounds with the success probability of 90%,
logs (#text), is estimated,

log2(#text) = 5.0r — 8.2.

By substituting logs(#text) = 128, Algorithm 6 can break RC6-64W with 27
rounds with 2!26-® plaintexts with a probability of 90%. Algorithm 6 can work
faster than an exhaustive key search with 22° memory.

6.3 Further discussion

We discuss the difference between the round function of RC6 and that of RC6-64
from the security point of view. First we conduct the following Test 7 of RC6-64,

18 Atsuko Miyaji and Masao Nonaka

Table 13. Success probability and the x2-value of Algorithm 6 to RC6-64W with 5
and 7 rounds(in 100 trials)

5 rounds 7 rounds
#texts|#keys| x>-value(63 degree) ||#texts|#keys| x-value(63 degree)
Average|Level|Variance Average|Level|Variance
215 20| 31.214 [0.545] 0.0296 || 2%° 30] 31.278 [0.548] 0.0394
216 65| 31.504 |0.559| 0.0290 || 2% 53| 31.512 [0.559| 0.0302
217 96| 32.022 0.584| 0.0335 || 2%7 95| 32.050 [0.586| 0.0286

Table 14. log, (#texts) required for recovering a key with the success probability 90%,
70%, and 30% in Algorithm 6 to RC6-64W with 5 and 7 rounds(in 100 trials)

5 rounds 7 rounds
90%|70%30%|90%|70%|30%
log, (#text) [16.8]16.2[15.3][26.9[26.2]25.0

whose results are shown in Table 15.
Test 7: x2-test on Isbs(A4,41) in RC6-64 with r rounds in the case which By
introduces the zero rotation in the 1st round, and lsbs(Ag) =0

Let us compare each round function between RC6-64 and RC6 by using Table 15
and 2. The size of subkeys in RC6-64 is 64 bits. So, the security level of one
round in RC6-64, the size of subkeys of one round, is estimated to be equal to
that in RC6-32, which has two 32-bit subkeys in one round. Furthermore, the
round function of RC6-64 is almost the same structure as that of RC6. However,
the slope, defined in Section 3.6, of RC6-64 is apparently lower than that of RC6.
This means that the correlations between an input of round function and the
output in RC6-64 is kept more than that in RC6. The round function of RC6-64
mixes up data less than that of RC6. We often discuss that the weakpoint of RC5
exists in a data dependent rotation, which is defined by only 5 bits of subkey
and data. Although the weakness of data dependent rotation is improved in both
RC6 and RC6-64, RC6-64 is much weaker than RC6. The difference between
RC6-64 and RC6 exists in the data structure: RC6-64 consists of 2 units, and
RC6 consists of 4 units. Both RC6-64 and RC6 make use of modular-additions
in order to mix within the unit. Apparently, correlations are introduced by the
consecutiveness of modular-additions. From our results, we see that the structure
of RC6, 4-unit plaintexts, reduce correlations more efficiently than that of RC6-
64, 2-unit plaintexts.

7 Conclusions

In this paper, we have proposed an efficient and feasible known plaintext correla-
tion attack on RC6W. Our attack can break RC6W /r with a success probability
of 90% by using 28177138 plaintexts. Therefore, our attack can break RC6W
with 17 rounds by using 2123 plaintexts. We have also analyzed that the secu-

Cryptanalysis of the reduced-round RC6

19

Table 15. The X2-value on Isbs(Ar+1) in Test 7(the average of 100 keys, the level and

the variance)

4 rounds

texts

26.9

28.7

29.5

The x’-value

Average Level Variance

Average Level Variance

Average Level Variance

34.600 0.700 86.071

40.893 0.890 126.840

51.261 0.988 188.444

6 rounds

texts

21().5

217.5

218.9

The y*-value

Average Level Variance

Average Level Variance

Average Level Variance

33.966 0.674 73.204

37.666 0.809 112.739

45.193 0.952 131.131

rity of the round function of RC6 is enhanced by: not only the data-dependent
rotation depends on all bits of the input unit; but also the consecutiveness of
modular additions is broken by dividing data into 4 units.

References

1. A. Biryukov, and E. Kushilevitz, “Improved Cryptanalysis of RC5”, Advances in
Cryptology-Proceedings of EUROCRYPT’98, Lecture Notes in Computer Science,
1403(1998), Springer-Verlag, 85-99.

. J. Borst, B. Preneel, and J. Vandewalle, ” Linear Cryptanalysis of RC5 and RC6”,
Proceedings of Fast Software Encryption, Lecture Notes in Computer Science,
1636(1999), Springer-Verlag, 16-30.

. S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “Improved analysis of some sim-
plified variants of RC6”, Proceedings of Fast Software Encryption, Lecture Notes
in Computer Science, 1636(1999), Springer-Verlag, 1-15.

. J. Hayakawa, T. Shimoyama, and K. Takeuchi, ” Correlation Attack to the Block
Cipher RC5 and the Simplified Variants of RC6”, submitted paper in Third AES
Candidate Conference, April 2000.

. B. Kaliski, and Y. Lin, “On Differential and Linear Cryptanalysis of the RC5 En-
cryption Algorithm”, Advances in Cryptology-Proceedings of CRYPTO’95, Lecture
Notes in Computer Science, 963(1995), Springer-Verlag, 171-184.

. J. Kelsey, B. Schneier, and D. Wagner, “Mod n Cryptanalysis, with applications
against RC5P and M6”, Proceedings of Fast Software Encryption, Lecture Notes
in Computer Science, 1636(1999), Springer-Verlag, 139-155.

. L. Knudsen, and W. Meier, “Improved Differential Attacks on RC5”, Advances
in Cryptology-Proceedings of CRYPTO’96, Lecture Notes in Computer Science,
1109(1996), Springer-Verlag, 216-228.

. L. Knudsen, and W. Meier, “Correlations in RC6 with a reduced number of
rounds”, Proceedings of Fast Software Encryption, Lecture Notes in Computer Sci-
ence, 1978(2001), Springer-Verlag, 94-108.

. D. Knuth, The art of computer programming, vol. 2, Seminumerical Algorithms,
2nd ed., Addison-Wesley, Reading, Mass. 1981.

20

10

11.

12.
13.

14.

15.

16.

Atsuko Miyaji and Masao Nonaka

A. Menezes, P. C. Oorschot and S. Vanstone, Handbook of applied cryptography,
CRC Press, Inc., 1996.

A. Miyaji, M. Nonaka and Y. Takii, “Improved Correlation Attack on RC5,“ IEICE
Trans., Fundamentals., vol. E85-A, No.1(2002), 44-57.

http://cryptonessie.org

R. Rivest, M. Robshaw, R. Sidney and Y. Yin, “The RC6 Block Cipher. v1.17,
1998.

R. Rivest, “The RC5 Encryption Algorithm”, Proceedings of Fast Software En-
cryption, Lecture Notes in Computer Science, 1008(1995), Springer-Verlag, 86-96.
S. Shirohata, An introduction of statistical analysis, Kyouritu Syuppan, 1992, (in
Japanese).

T. Shimoyama, M. Takenaka, and T. Koshiba, ” Multiple linear cryptanalysis of a
reduced round RC6”, Proceedings of Fast Software Encryption, Lecture Notes in
Computer Science, Springer-Verlag, to appear.

