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A Second-price Sealed-bid Auction with

Veri�able Discriminant of p0-th Root?

Kazumasa Omote and Atsuko Miyaji

School of Information Science
Japan Advanced Institute of Science and Technology,

Asahidai 1-1, Tatsunokuchi, Nomi, Ishikawa, 923-1292 JAPAN
E-mail : fomote, miyajig@jaist.ac.jp

Abstract. A second-price sealed-bid auction is that a bidder who o�ers
the highest price gets a good in the second highest price. This style of
auction solves the problems of both an English auction and a �rst-price
sealed-bid auction. An electronic �rst-price sealed-bid auction cannot
directly be applied to a second-price sealed-bid auction which keeps the
highest bid secret. We propose the veri�able discriminant function of the
p0-th root. Our auction scheme satis�es public veri�ability of auction
results, and also does not have a single entity who knows the highest bid
value even after an auction. Furthermore the bidding cost of our scheme
is lower than that of the previous one.

Keywords: Proof of knowledge, Public veri�ability, Economics

1 Introduction

1.1 Background

A sealed-bid auction is that each bidder secretly submits a bid to auction manager
(AM) only once for an auction. Compared with English auction, a winner is
decided more eÆciently. In a �rst-price sealed-bid auction, a bidder who o�ers
the highest price gets a good in the highest price. However, a bidder does not
have the dominant strategy (optimal strategy) in this auction type, so a winning
bid may be much higher or much lower. There are many studies on an electronic
�rst-price sealed-bid auction[2, 5, 8{10, 12{18]. On the other hand, in a second-

price sealed-bid auction, a bidder who o�ers the highest price gets a good in the
second highest price. This style of auction has the incentive compatibility. The
dominant strategy for each bidder is to place a bid honestly her/his own true
value[19]. So it works the competition principle as well as English auction and a
winning bid reects a market price better than a �rst-price sealed-bid auction.
In our scheme, we electronically realize a second-price sealed-bid auction.

? This work has been supported by the Telecommunications Advancement Organiza-
tion of Japan under the grant for international joint research related to information-
communications.



An electronic second-price sealed-bid auction should satisfy the following
properties:

(a) Secrecy of the highest bid: The scheme should not disclose the exact
value of the highest bid. Furthermore, nobody can know the information
about the highest bid except that it is placed higher than the second highest
bid value. This property is desired for secrecy of winner's bid.

(b) Anonymity of the second highest bid: Nobody can identify a bidder
who places the second highest bid (Bsec). This property is desired because
the second highest bid is opened.

(c) Public veri�ability: Anyone can verify the correctness of an auction.
(d) Secrecy of loosing bids: The scheme should keep loosing bids secret. This

property is desired in order to keep loser's privacy for the auction managers.
(e) Robustness: Any malicious bid can be detected and removed justly by

authorities.
(f) Non-cancelability: A winner cannot deny that she/he submitted the high-

est bid after the winner decision procedure.

It is easy to apply a second-price sealed-bid auction to a �rst-price sealed-bid
auction. But a �rst-price sealed-bid auction cannot directly be applied to a
second-price sealed-bid auction which keeps the highest bid secret with public
veri�ability. This is why we need new techniques for a second-price sealed-bid
auction.

1.2 Related works

We discuss several studies[13, 7, 1] as a second-price sealed-bid auction. These
schemes set the bidding points discretely. [13] realizes some kinds of sealed-bid
auctions using two auction managers AM1 and AM2, which applies the oblivious
transfer. But this scheme requires the cut-and-choose technique in order to sat-
isfy public veri�ability. Kikuchi [7] also proposed the (M+1)st-price sealed-bid
auction using the veri�able secret sharing technique, where the bidding point
is represented by the degree of a polynomial shared by the number of AMs m.
In his scheme, there exist some drawbacks: (1) this scheme has a undesirable
condition that m is larger than the number of bidding points, so it is diÆcult
to set many bidding points; (2) anyone can anonymously disturb an auction by
submitting an invalid bid. These problems are solved in our scheme. Abe and
Suzuki [1] proposed the (M+1)st-price sealed-bid auction using homomorphic
encryption and mix and match technique[6]. Their scheme realizes public veri-
�ability of a winner and the winning bid. However, each bidder must compute
K+1 zero-knowledge proofs in bidding, where K is the number of bidding points.

1.3 Our result

Our second-price sealed-bid auction scheme uses two kinds of auction managers
(AM1 and AM2). AM1 treats the bidder registration. AM2 manages the bidding



phase in an auction. Only the cooperation of both AM1 and AM2 can decide
a winning bid, together with a winner. In the bidding phase, each bid can be
veri�ed by AM1 and AM2. In the opening phase, anyone can verify the auction
process and the results (a winning bid and a winner) by the techniques of the
discriminant function of the p0-th root, the veri�able w-th power mix, the veri�-
able ElGamal decryption, and the veri�able decryption mix. Our scheme satis�es
the above properties. Nobody can know the information about the highest bid
except that it is placed higher than the second highest bid value, but anybody
can publicly verify the auction results. There is no single entity who knows the
highest bid value, a bidder Bsec, and loosing bid values by himself. Furthermore,
each bidder does not have to compute the zero-knowledge proofs unlike [1]. So
the computational cost of bidder is lower.

The remaining of this paper is organized as follows. Section 2 discusses the
e�ect of a second-price sealed-bid auction from the viewpoints of economics.
Section 3 reviews the previous scheme[1] and describes its drawbacks. Section 4
describes our protocol in detail. Section 5 investigates the features of our scheme.

2 Economic Viewpoints

2.1 Advantages of a second-price sealed-bid auction

A second-price sealed-bid auction has been proposed by W. Vickrey in 1961[19],
who won the Nobel Economics Prize in 1996. A second-price sealed-bid auction
is that each bidder secretly submits a bid to Auctioneer only once, and a bidder
who o�ers the highest price gets a good in the second highest price. Here we
explain why a second-price sealed-bid auction is so outstanding by the following
example. Three bidders fB1;B2;B3g participate the car, BMW, auction and their
true values for it, which means the maximum value that each bidder can spend,
are as follows:

{ B1's true value : $66,000;
{ B2's true value : $64,400;
{ B3's true value : $60,900.

If a bidder can buy BMW cheaper than her/his true value, she/he will make
a pro�t. If she/he buys BMW higher than her/his true value, her/his purchase
will end in failure. So the true value means the boundary between losses and
gains for each bidder.

Suppose that they participate in a �rst-price sealed-bid auction under the
above situation. Then each bidder will never place her/his true value because
she/he wants to buy BMW as cheap as possible. In this case, it is often happened
for each bidder to tap other bids in order to estimate exactly her/his bid since
they can buy it as cheap as possible. If a winning bid is much higher than the
second highest price, a winner may want to cancel it. Even if a winner bought a
good, she/he will not agree with it.

However, suppose that they participate in a second-price sealed-bid auction.
Then each bidder will place her/his true value because she/he cannot reduce



her/his cost for BMW by her/his bid. Generally, it is said that a bidder has the
dominant strategy in a second-price sealed-bid auction. So it is useless for each
bidder to estimate other bids. A winner's bid is decided by other bids. A winner's
bid value is not a winning bid value but a datum line to decide a winner. So any
bidder will place her/his true value in a second-price sealed-bid auction, which
has the following property of incentive compatibility.

Incentive compatibility: Incentive compatibility means that the dominant
strategy for each bidder is to place a bid honestly her/his own true value[19].

Each bidder can place a bid through mutual agreement. As a result, a bidder
will not want to cancel her/his bid. Therefore a second-price sealed-bid auction
is superior to a �rst-price sealed-bid auction from the view points of economics.

Next we compare a second-price sealed-bid auction with an English auction.
A winning bid value in a second-price sealed-bid auction becomes the second
highest true value ($64,400) as mentioned above. On the other hand, in an
English auction, each bidder places a bid many times until their true value. As
a result, B1 gets BMW in $64,400+� (� ' 0) since B2 does not place a bid in
more than $64,400. Therefore a winning bid in a second-price sealed-bid auction
is almost the same value as one in an English auction. This means that a second-
price sealed-bid auction works the competition principle as well as an English
auction.

2.2 Disadvantages

We wonder if a second-price sealed-bid auction is superior to English auction.
Actually, however, an English auction is much more popular than a second-price
sealed-bid auction. We think two reasons why a second-price sealed-bid auction
is unpopular as follows:

1. A winning bid value is not winner's.
2. It is hard for each bidder to decide her/his true value in advance.

If the AM knows the highest bid value in the middle of auction, the AM
may place a little lower bid than the highest bid as a valid bidder. In this case, a
winning bid almost becomes winner's true value. Even a winner does not perceive
such AM's handling. As long as the AM knows the highest bid value in the middle
of auction, the bidder will not want to participate in the second-price sealed-
bid auction. Such AM's handling cannot be happen in English auction. This is
why secrecy of the highest bid is necessary for an authority in the second-price
sealed-bid auction.

In the case 2, a bidder must decide her/his true value for the dominant
strategy in advance. However, the bidder Bsec may change her/his true value in
the middle of the auction. The true value depends on bidder's mood whether the
bidder wants to buy the good. After an auction, Bsec's true value may be higher
than the winner's bid value. Then Bsec may regret her/his bid. In an English
auction, a bidder can raise her/his true value in the middle of auction.



3 Previous Scheme

Here we summarize a previous scheme[1] which uses homomorphic encryption
and mix and match technique.

3.1 Protocol

There are bidders B1; : : : ;BI , auction manager AM, and the trusted authority
TA. The TA generates a secret key and a public key of ElGamal cryptosystem
that each bidder uses in the bidding phase. The AM sets the bidding points
f1; : : : ;Kg. When a bidder places a bid, she/he generates a bid vector which
conceals the bid value by ElGamal encryption E. A bidder must send either
E(1) or E(r) as the element of bid vector. The TA can know any bidder's bid
value by decrypting the element. In order to conceal the bid values for the TA,
this scheme may share the secret key among plural authorities by using a secret
sharing technique.

In the opening phase, this scheme uses the following homomorphic property
for each bidding point:

I�bz }| {
E(1) � � �E(1)

bz }| {
E(r) � � �E(r) = E(rb);

where E is an ElGamal encryption and r is public number. Suppose that I is the
number of bidders and b is the bidding number in the bidding point k. The mix
and much technique can publicly show whether D�(E(r�)) 2 f1; r; r2; : : : ; rIg or
not, where D� is the veri�able ElGamal decryption. If D�(E(r�)) is rb, b bidders
place a bid in the bidding point k. The AM �nds the highest bidding point so
that D�(E(r�)) might be rM+1, where M is the number of winners. It becomes
the second highest bid (a winning bid value).

3.2 Drawbacks

Since a bidder must send either E(1) or E(r) as the element of bid vector, each
bidder must compute K+1 zero-knowledge proofs that each element in bid vector
is whether E(1) or E(r). So the computational cost for a bidder gets rather large.

4 Our Scheme

4.1 Goals

Our main goals are to realize the following three requirements in an electronic
second-price sealed-bid auction, where Bsec is a bidder who places the second
highest bid:

1. The highest bid value are not disclosed for any entity;
2. Anonymity of Bsec is satis�ed for any entity;



3. Anyone can publicly verify the auction process and results.

The �rst goal is desired even after winner's decision in order to satisfy a privacy
of winner. Our scheme does not disclose the highest bid value as well as the
partial range that the highest bid is placed for any entity including both auction
managers (AM1 and AM2). The second goal is important because Bsec's bid is
revealed as a winning bid. Our scheme realizes anonymity of Bsec without an
anonymous channel. The correspondence of each bid to each bidder is also kept
secret unless both AM1 and AM2 collude. The third goal ((c) Public veri�ability)
is important because our scheme secretly computes the auction results.

Furthermore, in our scheme, each bidder does not have to compute the zero-
knowledge proofs unlike [1]. To reduce the computational cost of bidder is one
of our goals.

4.2 Authorities

Our scheme uses two kinds of auction managers (AM1 and AM2) in order to
eliminate a strong single authority. The role of each auction managers is as
follows:

{ AM1:

� treats the bidder registration;

� publicly computes the winning bid, decides a winner, and show the va-
lidity of the results;

� manages AM1's bulletin board system (BBS) which publishes a list of
public keys and shows the validity of the results.

{ AM2:

� manages the bidding phase;

� veri�es a bid information;

� publicly multiplies each element in all bid vectors;

� manages AM2's BBS which publishes the computing process of bids.

4.3 Notations

Notations are de�ned as follows:



I : the number of bidders;
i : the index of bidders;
Bi : a bidder i (i = 1; : : : ; I);
Bsec : a bidder who places the second highest bid;
Vi : a bid vector of bidder i;
p0; p1 : small primes but greater in bit size than number of bidders, I

(e.g.100bit);
p; q; p0; q0 : large primes (p = 2p0p

0 + 1; q = 2p1q
0 + 1) which are secret except

for the AM1;
n : n = pq;
g : g 2R Zn whose order is ord(g) = 2p0p

0p1q
0 and has neither p0-th

nor p1-th root;
k : the index of bidding points (k = 1; : : : ;K);

t
(0)
i;k ; t

(1)
i;k : Bi's secret random numbers generated by the AM1;

xi : Bi's private key;
yi : Bi's public key (yi = gxi mod n);

s; w : AM2's private keys (w is relatively prime to p0 : gcd(w; p0) = 1);
Y : AM2's public key (Y = gs mod n) that has neither p0-th nor p1-

th root;
sigkey() : a signature by key;
Ey() : ElGamal encryption with public key g and y = gx such as

Ey(m) = (G = gr;M = myr);
D�() : the veri�able ElGamal decryption
M() : the discriminant function of the p0-th root, where M(y) is 1 or 0

whether y has the p0-th root in Zn or not, which can be computed
only by the AM1.

4.4 Building blocks

The ElGamal public-key cryptosystem over Zn is as secure as the DiÆe-Hellman
scheme described in [11]. In this scheme, we summarize some proofs of knowl-
edge[3] and their applications over Zn.

Proof of knowledge We present three kinds of signatures based on a proof of
knowledge.

{ SPK[(�) : y1 = g�1 ^ y2 = g�2 ](m): the proof of the equality of two discrete
logarithms.

{ SPK[(�; �) : y1 = g�1 _ y2 = g�2 ](m): the proof of the knowledge of one out
of two discrete logarithms.

{ SPK[(�; �) : (y1 = g�1 ^y3 = g�3 )_ (y2 = g�2 ^y3 = g�3 )](m): the proof of the
knowledge of one out of two discrete logarithms, which is equal to another
discrete logarithm of y3 to the base g3. This SPK is given by combining
above two SPKs.



The veri�able p0-th root

Lemma 1. For n = pq (p = 2p0p0 + 1; q = 2q0 + 1; p0; q0; p0 : di�erent primes >
2), z 2 Zn has the p0-th root if and only if z2p

0q0

= 1 (mod n).

Proof. If z has the p0-th root, there exists x such that z = xp0 . Therefore,
z2p

0q0

= x2p
0p0q

0

= 1 (mod n). Conversely, if z2p
0q0

= 1 (mod n), then there
exists x such that z2p

0q0

= x2p
0p0q

0

(mod n) (order of x is 2p0p0q
0). Therefore,

z = xp0 (mod n), see, z has the p0-th root. ut

M(z) can be computed by only the knowledge of p0 and q0. Therefore an
authority who knows order of g can publicly prove that z has the p0-th root by
showing

SPK[(�) : z� = 1 ^ (gp0)� = 1 ^ g� = r](m);

for a random number r 6= 1. Also, such an authority can publicly prove that z
does not have the p0-th root by showing

SPK[(�) : z� = r ^ (gp0)� = 1](m);

for random numbers r 6= 1. The above two SPKs mean that � is 2p0q0. Checking
whether z has the p0-th root or not satis�es public veri�ability.

Veri�able w-th power mix A pair of (c; C = cw) is published, where w is
secret. Let (a; b) and (A;B) be input and output of the veri�able w-th power mix,
respectively, where A = aw and B = bw (A 6= B). We hide the correspondence
of an input to the output, but can show the validity of secret mix by proving
the equality of three discrete logarithms of A;B and C. The proof is given by
showing

SPK[(�) : (A = a� ^ B = b� ^ C = c�) _ (A = b� ^B = a� ^ C = c�)](m):

Veri�able ElGamal decryption We can prove that m = M=Gs is the de-
cryption of EY (m) = (G;M) without revealing s by showing

SPK[(�) :M=m = G� ^ Y = g�](m):

Veri�able decryption mix Let (EY (a); EY (b)) and (a; b) be input and output
of the veri�able decryption mix, respectively, where EY (a) = (Ga;Ma) and
EY (b) = (Gb;Mb). We hide the correspondence of an input to the output, but
can show the validity of secret mix. The proof is given by showing

SPK[(�) : (Ma=a = Ga
� ^Mb=b = Gb

� ^ Y = g�)

_(Ma=b = Ga
� ^Mb=a = Gb

� ^ Y = g�)](m):



4.5 Procedure

[Initialization:] The AM1 selects g; p0; p1; p
0; q0; p and q, computes a prod-

uct n = pq, and then publishes (g; p0; p1; n) but keeps (p
0; q0; p; q) secret. The

AM1 also sets the number K of bidding points for a good. The AM2 computes
Y = gs (mod n) and publishes Y . Note that s is AM2's secret and that both
gcd(s; p0) = 1 and gcd(s; p1) = 1 hold. The AM1 checks that Y has neither the
p0-th nor p1-th root and that order of Y is 2p0p

0p1q
0.

[Bidder registration:]

When Alice (Bi) participates an auction, she sends her public key yi with the
signature sigxi

(yi) to the AM1 as a bidder registration. After the AM1 receives
her values, he publishes her public key yi.

[Auction preparation:] The AM1 chooses her values t
(0)
i;1 ; : : : ; t

(0)
i;K ; t

(1)
i;1 ; : : : t

(1)
i;K 2

Zn, all of which have the p0-th root, and then secretly sends ft
(0)
i;k � g

p0g and

ft
(1)
i;k � g

p1g to Bi. The AM1 shu�es two values in every bidding point:�
H(t

(0)
i;1 � g

p0);H(t
(1)
i;1 � g

p1)
�
; : : : ;

�
H(t

(0)
i;K � gp0);H(t

(1)
i;K � gp1)

�
;

for i = 1; : : : ; I , and places them into AM1's public database. By checking AM1's

public database, Bi can con�rm whether her values t
(0)
i;1 �g

p0 ; : : : ; t
(0)
i;K �gp0 ; t

(1)
i;1 �

gp1 ; : : : ; t
(1)
i;K � gp1 are exactly registered. We assume that: nobody except the

AM1 knows the correspondence of a bidder to her/his two values; anybody can
refer to the data in his public database; but that only the AM1 can alter them.

[Bidding:] When Alice places a bid at a bidding point ki 2 f1; : : : ;Kg, she
generates her bid vector Vi as follows:

Vi = [EY (vi;K); : : : ; EY (vi;1)] ;

where

vi;k =

(
t
(1)
i;k � g

p1 (mod n) (k = ki);

t
(0)
i;k � g

p0 (mod n) (k 6= ki):

She sends Vi to the AM2. Note that she also sends her reverse bid vector V0

i =�
EY (v

0

i;K); : : : ; EY (v
0

i;1)
�
, see, if vi;k = t

(0)
i;k � g

p0 , then v0i;k = t
(1)
i;k � g

p1 .

[Checking a bid vector:] The validity of Vi is checked as follows: (1) The
AM2 decrypts fE(vi;k); E(v

0

i;k)g by using the veri�able decryption mix; (2) The
AM2 computes both H(vi;k) and H(v0i;k) and checks whether or not both values
exist in AM1's public database; (3) The AM2 computes

�1i =
1

gp1
D�

 
KY
k=1

EY (vi;k)

!
and �2i =

1

gKp1

KY
k=1

vi;kv
0

i;k (i = 1; : : : ; I)



by using the veri�able decryption D�; (4) The AM1 publicly shows that both
�1i and �2i have the p0-th root. Thanks to this con�rmation, any malicious
bid vector can be detected by the cooperation of AM1 and AM2. Note that the
AM2 does not know whether vi;k and v0i;k have the p0-th root or not.

[Opening a winning bid:] First, a winning bid is decided, then a winner is
decided by the cooperation of both AM1 and AM2.

Step 1 The AM2 publicly computes the following values for Bi:

EY (zi;K); EY (zi;K�1); : : : ; EY (zi;1) = EY (vi;K); EY (vi;Kvi;K�1); : : : ; EY (

KY
k=1

vi;k):

for i = 1; : : : ; I , and then puts them in AM2's BBS.
Step 2 The AM2 publicly computes the following two kinds of values by

multiplying EY (zi;k) of all bidders for a bidding point k,

EY (Zk) =

IY
i=1

EY (zi;k) =

 
gR;

 
IY

i=1

zi;k

!
� Y R

!
= (Gk;Mk);

EY (Z
0

k) =

 
gR;

1

gp1

 
IY
i=1

zi;k

!
� Y R

!
= (Gk;M

0

k) k 2 f1; : : : ;Kg;

where R is the sum of all bidder's random numbers in ElGamal encryption.
Step 3 The AM2 mixes (EY (Zk); EY (Z

0

k)) into ((EY (Zk))
w; (EY (Z

0

k))
w) using

w relatively prime to p0 and the technique of the veri�able w-th power mix,
and then publishes the following values:

(EY (Zk))
w = EY (Zk

w) = (Gk
w;Mk

w);

(EY (Z
0

k))
w = EY (Z

0

k

w
) = (Gk

w;M 0

k

w
):

The AM1 can publicly show that w is relatively prime to p0 by using the
veri�able w-th power mix in 4.4.

Step 4 The AM2 decrypts EY (Zk
w) and EY (Z

0

k

w
) into Xk = Zk

w and Yk =
Z 0

k

w
using the technique of the veri�able decryption, and publishes (Xk;Yk).

Step 5 The AM1 computes M(Xk) and M(Yk), and publishes a tuple of
(Xk ;Yk;M(Xk);M(Yk)). A winning bid value is given by the highest bidding
point with both M(Xk) = 0 and M(Yk) = 0.

Since the values ft
(0)
i;k ; t

(1)
i;kg have the p0-th root, g has neither p0-th nor p1-th

root, and gcd(w; p0) = 1 holds, the following three cases are occurred for the
values of M(Xk) and M(Yk) in Figure 1:

1. If no bidder places a bid equal to or higher than the bidding point k, then
(M(Xk); M(Yk)) = (1; 0).

2. If only one bidder places a bid equal to or higher than the bidding point k,
then (M(Xk); M(Yk)) = (0; 1).
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8     1    1    1    1    1        (1,0)
7     1    1    1    0    1        (0,1)
6     1    1    1    0    1        (0,1)
5     1    0    1    0    1        (0,0)
4     0    0    1    0    1        (0,0)
3     0    0    0    0    0        (0,0)
2     0    0    0    0    0        (0,0)
1     0    0    0    0    0        (0,0)

B1   B2   B3   B4   B5
Bidder

(M(Xk), M(Yk))

1 : if z has the p0-th root
0 : otherwise

Fig. 1. Opening Example

3. If more than two bidders place a bid equal to or higher than the bidding
point k, then (M(Xk); M(Yk)) = (0; 0).

Note that we cannot distinguish between case 1 and case 2 because the AM2
uses the technique of the veri�able w-th power mix for Xk and Yk.

Public veri�ability of a winning bid: The AM1 may rig a winning bid be-
cause only the AM1 computesM(Xk) andM(Yk). In order to avoid rigging,
the AM1 shows the following SPK:

SPK[(�) : X�
k = r1 ^ Y

�
k = r2 ^ X

�
k+1 = r3 ^ Y

�
k+1 = 1](m)

for given random numbers r1; r2 and r3 (r1; r2; r3 6= 1). This SPK means
that only Yk+1 has the p0-th root.

Furthermore, the cost of opening bids is O(logK) by adopting the technique
introduced in [5, 7]: (1) For a set of bidding points f1; : : : ;Kg, set k1 = 1; k2 = K
and k0 = bk1+k22 c; (2) If k0 = k1 or k

0 = k2, then output k2 as the second highest

bid value; (3) IfM(Xk0 ) = 0 andM(Yk0 ) = 0, then set k1 = k0 and k0 = bk2+k
0

2 c,

and go to (2). Otherwise set k2 = k0 and k0 = bk1+k
0

2 c, and go to (2).

[Winner decision:] After a winning bid value k (the second highest bid) is
decided, the AM2 decrypts all the values vi;k+1 (i = 1; : : : ; I) using the technique
of the veri�able decryption. Anyone can con�rm whether or not these values
vi;k+1 (i = 1; : : : ; I) exist in AM1's BBS.

Public veri�ability of a winner: In order to decide a winner Bj , the AM1
shows the following SPK:

SPK[(�) : (gp0)� = 1 ^ (vj;k+1)
�
= r1](m)



Table 1. The communicational costs

A bidder (B) AM
Bidding Preparation Opening � Round #AM

[AS02] O(K) { O(1)� dlogKe 2

Ours O(K) O(IK) O(1)� dlogKe 2

for given random number r1 (r1 6= 1). This SPK means that vj;k+1 does not
have the p0-th root. A winner Bj 's bid is never revealed. If no bidder places a
bidding point k+1, more than two winners place a bid at the bidding point
k. This means that a winning bid is also k. The AM1 shows the following
SPK:

SPK[(�) : g� = r2 ^ (v1;k+1)
� = 1 ^ � � � ^ (vI;k+1)

� = 1](m)

for given random number r2 (r2 6= 1). This SPK means that all values
vi;k+1 (i = 1; : : : ; I) have the p0-th root. Note that g does not have the p0-th
root.

5 Consideration

5.1 Features

We discuss the following properties in our protocol.

(a) Secrecy of the highest bid:Our scheme keeps the highest bid secret unless
both the AMs collude. Nobody can know the information about the highest
bid except that it is placed higher than the second highest bid value. Each
element vi;k (zi;k) has information about whether it has the p0-th root or
not. So only AM1 who knows the products of n realizes the bid values from
the values vi;k (zi;k). However, such a bid value is encrypted by ElGamal
encryption of AM2, and the values vi;k (zi;k) themselves are never revealed
in the auction procedure. Therefore, AM1 cannot know bid values as long
as the ElGamal encryption is secure. Also, AM2 cannot realize bid values
because she/he does not know the products of n, even if AM2 knows the
values vi;k (zi;k). By applying the veri�able w-th power mix to step 3 of
the opening phase, the highest bid value can be hidden. Since the AM1 can
publicly show that w is relatively prime to p0, the highest bid value remains
correct.

(b) Anonymity of the second highest bid: Unless both of the AMs collude,
nobody can identify the bidder Bsec even if an anonymous channel is not
used. Since all bid vectors are multiplied together before the opening phase,
the bidder Bsec is never disclosed. If all bid values are disclosed in the bidding
phase, the bidder Bsec is easily decided. As described in (a), each bid value



is protected by both hardness of the discriminant of the p0-th root and the
ElGamal encryption. So the identity of Bsec can be protected without using
an anonymous channel.

(c) Public veri�ability: Anyone can publicly verify the correctness of an auc-
tion. An auction uses some tools based on the proof of knowledge in order to
satisfy public veri�ability. As long as the proofs of knowledges are secure, an
auction process can be collect. As a result, both a winning bid and a winner
become valid.

(d) Secrecy of loosing bids: Our scheme keeps loosing bids secret unless both
of AMs collude. This feature can be discussed similar to (a).

(e) Robustness: Any malicious bid vector can be detected by AM1 and AM2.
Unless a bidder uses the valid vi;k and v0i;k, anybody notices that H(vi;k) or
H(v0i;k) does not exist in AM1's database. Also, unless a bidder generates
the valid Vi, the AM1 notices that �1i and �2i do not have the p0-th root
after the AM2 computes them. So no bidder can disturb the auction system
by the malicious bid.

(f) Non-cancelability: A winner cannot deny that she/he has submitted the
highest bid after the winner decision procedure as long as both (c) and (e) are
satis�ed. Since the AM1 publicly shows the SPK(s) for the winner decision,
a winner is certainly identi�ed.

(g) Two independent AM's powers: Our scheme is based on both RSA
and ElGamal cryptosystems. Only the AM1 knows the prime factors of n,
while only the AM2 knows the secret key of ElGamal encryption. Thanks to
separation of two kinds of the cryptosystems, neither AM1 nor AM2 knows
the highest bid value, a bidder Bsec, and loosing bid values.

5.2 EÆciency

We compare our scheme with the previous scheme[1] from the viewpoints of
the communicational and computational costs in Table 1, 2 and 3. Here let the
number of bidding points and bidders be K and I , respectively.

Table 1 shows the communicational amount of bidding and between the AMs.
In both [1] and our scheme, only dlogKe rounds of communication are required
in the opening phase because of binary search. In the auction preparation of our
scheme, the AM1 must send K ElGamal encryption data to each bidder.

Table 2 and 3 show the computational complexity. In [1], each bidder requires
the K + 1 proofs to avoid the malicious bidding. In our scheme, each bidder
does not need to make such proofs, but the AM2 generates K + 1 proofs for I
bidders. In [1], the AM needs the bid checking of the cost O(IK) in order to
verify the proofs. In our scheme, the AM2 needs the bid checking of the cost only
O(I) because it uses the sum of all bid vectors. The AM1 needs IK ElGamal
encryptions for an auction preparation. As for the number of decryption, our
scheme requires 2IK times in generating proofs, I times in the bid checking,
2dlogKe times in the opening phase, and I times in the winner decision phase.

If [1] applies the secret sharing technique for the sake of the TA distribution,
both communicational and computational costs becomes larger.



Table 2. The computational costs (bidder)

#Enc #Proof

[AS02] K K + 1

Ours 2K {

Table 3. The computational costs (AM)

#Enc #Proof #Multiplication Bid check #Dec

[AS02] { { IK + IdlogKe O(IK) 2dlogKe+ I

Ours IK I(K + 1) 2(IK + IdlogKe) O(I) 2dlogKe+ 2I(K + 1)

6 Conclusion

We have proposed an electronic second-price sealed-bid auction which mainly
satis�es (a) Secrecy of the highest bid, (b) Anonymity of the second-price bid, (c)
Public veri�ability, and (g) Two independent AM's powers. In our scheme, there
is no single entity who knows the highest bid value, a bidder Bsec, and loosing bid
values. Also, each bidder does not have to compute the zero-knowledge proofs,
but the AM computes such proofs. So the computational cost of bidder is lower.
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