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Abstract. In this paper, we propose a multi-signature scheme, in which
each signer can express her intention associating with the message to
be signed. Signers’ intentions mean a kind of information which can be
newly attached to a signature in signers’ generating it. However, we have
never been introduced any multi-signature scheme dealing with inten-
tions without loss of its efficiency.
First, we consider a multi-signature scheme realizing the concept of
signers’ intentions by utilizing existing schemes, and name it primitive
method. After that, we introduce the proposed multi-signature scheme
which are more efficient in view of the computational cost for verification
and in view of the signature size than primitive method. The proposed
multi-signature scheme is shown to be secure even against adaptive cho-
sen message insider attacks.

1 Introduction

A multi-signature scheme, in which plural entities (signers) jointly sign an iden-
tical message, has advantage that it is efficient in view of the signature size
and in view of the computational cost for verification. Hence we can say that a
multi-signature scheme is quite useful in the following case:

– We often see a notice on a bulletin board on campus, which informs club
members of an event. A notice frequently requires members to write down
their names on it. It is very convenient for members to check who wants to
take part in the event.

Now, we suppose that a captain of the club wants to know whether or not each
member (e.g. Alice, Bob and etc.) wants to attend the event. If the name is
written by him/her on the notice, it is clear that he/she wants to take part
in the event. But the captain must fix that members who have never written
their names do not want, because it may happen that they have overlooked the



message. To make the matter sure, the captain should require members to write
down their names, and also Yes or No on the notice to avoid such a problem. It
is very good idea. For example, Alice may sign the notice adding the word No.
On the other hand, Bob may sign it adding the word Yes. Then, we call these
Yes or No signers’ intentions. A captain may prepare for the notice which has
two spaces for signing. One is a space for signers who express Yes. The other
is a space for signers who express No. The members put their name on one of
two spaces. Unfortunately, there has been no proposal of any multi-signature
schemes which efficiently handle the notice with Yes and No, namely signatures
with signers’ intentions.

To be sure that the captain can take countermeasure to meet such a situa-
tion by making each signer provide two secret-keys, one for expressing Yes, and
the other for expressing No, but it is far from a good way since each entity has
to manage more keys. As another countermeasure, the captain can provide two
messages to be signed, one for Yes, and the other for No. Accordingly, twice
verification is required for those two multi-signatures. But unlike in the first
countermeasure, each entity has only to manage one key. In the example given
above, signers’ possible intentions are only Yes and No, and we consider that
signers’, in general, have choices among I := {I1 . . . , IN}(N ≥ 2). Each possible
intention is denoted by some I�(� ∈ [1, N ]). (We can say that in the example
given above, Yes and No are denoted by I1 and I2, respectively.) Hereafter such
a multi-signature scheme in which plural message are provide and plural multi-
signature are generated like in the second countermeasure, is called primitive
method. The details of this method are discussed in Section3. In this paper, we
introduce a multi-signature scheme with signers’ intentions in which each signer
has only to manage one key, in which one message to be signed is provided, hence
in which only one multi-signature is generated, and furthermore in which only
each signer can add her intention with respect to the given massage. In a multi-
signature scheme along the first countermeasure, each signer has to manage N
keys, and in a multi-signature by the primitive method, the more the number N
of signers’ possible intentions gets, the more the signature size is and the more
verification cost is required. On the other hand, in a multi-signature scheme with
signers’ intentions, the signature size is independent of N , and hence the verifi-
cation cost is much smaller than that in. Hence a multi-signature scheme with
signers’ intentions can be more efficient than ones constructed along the counter-
measures given above. In that situation, the efficiency of the proposed scheme is
outstanding. We can take for example, distributing vacation time among office
workers. Now refer to the calendar (Figure 1). The calendar includes multi-
signatures with many varieties of signers’ intentions, as people put their name
on one of days. In the proposed scheme, verification for the calendar is needed
just once. Namely, the calendar can be verified by just one equation. The secu-
rity is shown with the strategy that we reduce the security of multi-signature
scheme to that of multi-round identification scheme in the random oracle model
[1]. To prove the security of multi-signature scheme with signers’ intentions,
we, for convenience’ sake, consider two multi-round identification schemes with
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Fig. 1. Calendar

(prover’s) intentions. We call those identification schemes ID- A and ID- B, re-
spectively. The proof for the security of a multi-signature scheme with signers’
intentions can be reduced to that for ID- A and ID- B. Concrete to say, if ID-
A is secure against any polynomial-time passive adversaries, and if ID- B has
zero-knowledge property, then multi-signature scheme with signers’ intentions
can be shown to be secure even against any polynomial-time active adversaries
by using ID-reduction technique introduced by [7].

We can see related work as follows: In [7, 10], we can see several kinds of
multi-signature schemes. In [2–5], we can see a multi-signature scheme which
guarantee also the signing order. The scheme given by [6] provides signing order
verifiability and message flexibility.

This paper is organized as follows: In Section 2, we give the notations we use
in this paper. In Sections 3, we propose the primitive method, a combination
scheme of conventional multi-signatures, in which signatures with signers’ inten-
tions can be dealt with. In Section 4, we propose a new multi-signature scheme
which we call a multi-signature scheme with signers’ intentions. In Section 5, we
give provable security for the proposed scheme. In Section 6, we evaluate the
performance of the primitive method and the proposed scheme. The conclusion
is given in Section 7.



2 Preliminaries

To denotes an n-tuple (a1, . . . , an), we often use the bold letter a. For an n-tuple
a(= (a1, . . . , an)) and for integer i, j ∈ [1, n] with (1 ≤ i < j ≤ n), a[i,j] denotes
the (j − i)-tuple (ai, . . . , aj).

2.1 Multi-signature scheme [7]

In a multi-signature scheme, plural signers (say, n signers) generate a signature
for an identical message. However, we can realize such a situation by applying
an ordinary (single) signature scheme n times. Then we shall extend a single
signature scheme to be a multi-signature scheme so that the obtained multi-
signature scheme shall satisfy the property that the signature size in the multi-
signature scheme should be less than nL where L is the signature size in the
single signature scheme.

In this paper, we use the multi-signature scheme, which is one-cycle type
and is so-called a generic multi-signature scheme [9] obtained by translating a
multi-round identification scheme.

In a multi-signature scheme, n signers P1, . . . , Pn participate and each signer
Pi publishes a public-key vi and keeps a secret-key si. In the following, we
describe the scheme, each Pi can query to the public random oracle function [1]
fi : {0, 1}∗→ Zq. Let P denotes the set {P1, . . . , Pn}.

System parameter: System parameters p, q, g are published, and satisfy the
following properties:
– A trusted center publishes two large primes p and q such that q|(p− 1).
– Element g ∈ Z∗

p of order q.
System parameters are common for all schemes. Then, we omit these in latter
schemes.

Key-generation step: Each signer Pi ∈ P provides a pair of a secret-key si ∈
Zq and the corresponding public-key vi, where vi := gsi (mod p)(i ∈ [1, n])
and n is the number of signers. In the registration, Pi is required to show
that she indeed has si.

Signature generation step: Suppose that a set of signers P generates a multi-
signature for a message m. The initial value y0 is 0. For each i ∈ [1, n], the
following is executed.

– Pi receives (x[1,i−1], yi−1), m from Pi−1. Pi picks up a random ri ∈ Zq

and computes (xi, ei, yi) as follows:

xi : = gri (mod p),
ei : = fi(x[1,i], m),
yi : = yi−1 + si + ri · ei (mod q).

Pi sends (x[1,i], yi), m to Pi+1. Also let Pn+1 := V .



Verification step: Suppose that the verifier V receives a multi-signature (x, yn)
for a message m. Then V computes ei := fi(x[1,i], m) for each i ∈ [1, n]. Also
the verifier V checks the following equations:

gyn
?≡

n∏
i=1

(xei

i · vi) (mod p)

3 Primitive method

In Section 1, we have intuitively mentioned how we can realize a multi-signature
scheme with signers’ intentions. Here we present a concrete scheme of the prim-
itive method. Suppose that each Pi is required her intention αi for a message m,
and that her possible intention is in a set I := {I1, . . . , IN}. For � ∈ [1, N ], let
m� be the message corresponding to the intention I� for m.

Both system parameter and key-generation step are done in the same way as
that of the multi-signature scheme in Section 2.

Signature generation step: Suppose that a set of signers P generates a multi-
signature for a set of message {m�} with signers’ intentions. Assume that
y
(I1)
0 , . . . , y

(IN)
0 are set up to be zero. For each i ∈ [1, n], the following is

executed.
– Pi receives (x[1,i−1], y

(I1)
i−1 , . . . , y

(IN )
i−1 ), {m�} and α[1,i−1] from Pi−1. Pi

chooses her intention αi ∈ I. Let αi = I�. Pi picks up a random ri ∈ Zq

and computes (xi, ei, yi) as follows:

xi : = gri (mod p),

ei : = fi(x
(I�)
[1,i], m),

y
(I�)
i : = y

(I�)
i−1 + si + ri · ei (mod q).

where x
(I�)
[1,i] is defined to be

⋃
j≤i,αj=I�

{xj}. For every I�′ ∈ I\{I�}, let

y
(I�′ )
i := y

(I�′ )
i−1 .

Pi sends (x[1,i], y
(I1)
i , . . . , y

(IN)
i ), {m�} and α[1,i] to Pi+1. Also let Pn+1 :=

V .
Verification step: Suppose that the verifier V receives a multi-signature

(x, y(I1)
n , . . . , y

(IN)
n ) for a set of message {m�} with signers’ intentions α.

Then V computes ei := fi(x
(I�)
[1,i], m�) for each i ∈ [1, n]. Also the verifier V

checks the following equations by the received (x, y(I1)
n , . . . , y

(IN)
n ).

gyn
(I�) ?≡

n∏
1≤i≤n
αi=I�

(
x

(I�)
i

ei · v(I�)
i

)
(mod p) (∀I� ∈ I)



The set of public-keys v(I�) is defined to be
⋃

αi=I�
{vi}, and where x(I�) and

e(I�) are defined as well as v(I�). As we can guess from the primitive method
given above, the total signature size in the primitive method turns out to be
n|p|+ N |q|, by (N − 1)|q| which is larger than the signature size in the scheme
[7].

4 Proposed scheme

The primitive method discussed in the previous section, needs much verification
cost in proportion to the number of the varieties of signers’ intentions. As seen in
the primitive method, as N increases, the scheme gets inefficient. Then we here
propose a new multi-signature scheme with signers’ intentions. In this scheme,
the total signature size is independent of N , and is the same with that in the
scheme [7]. The process of generating yi, a part of signature, is very unique. And
the proposed scheme is secure even against adaptive chosen message insider
attacks.

In the following, we describe the proposed scheme, in which each Pi can
query to the public random oracle function fi : {0, 1}∗ → Zq , and that anyone
can access the public random oracle function h : {0, 1}∗→ Zq.

Both system parameter and key-generation step are done in the same way as
that of the multi-signature scheme in Section 2.

Signature generation step: Suppose that a set of signers P generates a multi-
signature for a message m. The initial value y0 is 0. For each i ∈ [1, n], the
following is executed.
– Pi receives (x[1,i−1], yi−1), m and α[1,i−1] from Pi−1. Pi chooses her

intention αi ∈ I, and picks up a random ri ∈ Zq and computes (xi, ei, yi)
as follows:

xi : = gri (mod p),
ei : = fi(x[1,i], m,α[1,i]),
yi : = yi−1 + si · θi + ri · ei (mod q),

where θi := h(αi). Pi sends (x[1,i], yi), m and α[1,i] to Pi+1. Also let
Pn+1 := V .

Verification step: Suppose that the verifier V receives a multi-signature (x, yn)
for a message m with signers’ intentions α. Then V computes θi := h(αi)
and ei := fi(x[1,i], m,α[1,i]) for each i ∈ [1, n]. Also the verifier V checks the
following equations:

gyn
?≡

n∏
i=1

(xei

i · vθi

i ) (mod p)

5 Security Consideration

In this section, we prove that the proposed scheme is secure against adaptive
chosen message insider attacks.



5.1 Adversary model

For discussion of the security of multi-signature scheme with signers’ intentions,
we here present the adversary model for the scheme.

MS-α adversary Given the system parameter (p, q, g) and the public-keys v,
an MS-α adversary M which can query to the random oracle functions fi(i ∈
[1, n]), executes the following for each j ∈ [1, Q] with given Q:

(S1) An MS-α adversary M determine a message mj , a signer Pij , and the
signer’s intention αj ∈ In,

(S2) Generate a valid partial multi-signature (x[1,ij−1], e[1,ij−1], yij−1) by col-
luding with P\{Pij},

(S3) Send (x[1,ij−1], e[1,ij−1], yij−1,αj[1,ij−1]) and αj,ij to Pij . To make tha
adversary stronger, we assumeM can ask Pij ’s signature for Pij ’s intention
M chooses.

(S4) And get a valid partial multi-signature (x[1,ij], e[1,ij], yij ) and the singers’
intentions α[1,ij] from Pij .

After Q iterations of this step, the adversaryM computes a multi-signature for
a message m with signers’ intentions α, where for every j ∈ [1, Q], it must hold
at least one of m �= mj and αj[ij,ij] �= α[ij ,ij].
Here note that in the key-generation step, each signer is required to show that
she indeed has the corresponding secret-key, if Type II [7] is adopted. Hence we
don’t have to consider the key generation phase attacks given by [8].

5.2 Definition of the security for multi-signature scheme with
signers’ intentions

Here we define the security of the proposed multi-signature scheme with signers’
intentions

Definition 1. Suppose an MS-α adversary (probabilistic Turing machine) M
can ask Ri queries to fi for each i ∈ [1, n], and is allowed Q-time execution of
the steps from (S1) to (S4). If such an MS-α adversary M can forge a multi-
signature (x, e, yn) for a message m with signers’ intentions α in time at most
t with probability at least ε, then we say that M can (t, Q,R, ε) − break the
multi-signature scheme with signers’ intentions. Here, the probability is taken
over the coin flips of M, f1, . . . , fn and signing oracles P.

Definition 2. A multi-signature scheme with signers’ intentions is said to be
(t, Q,R, ε)− secure, if there is no MS-α adversary which can (t, Q,R, ε)-break
the scheme, and if for a message m, a multi-signature (x, e, yn) which is valid
for signers’ intentions α, is invalid for another signers’ intentions α′ with over-
whelming probability.



5.3 Identification schemes

As we can seen in [7], the security of the multi-signature scheme given by [7] can
be reduced to the security of multi-round identification scheme, from which the
multi-signature scheme is derived. That means if the multi-round identification
scheme is shown to be secure against polynomial-time adversaries, then it shall be
shown that by ID-reduction lemma, in the multi-signature scheme, any adaptive
chosen message insider polynomial-time adversary cannot existentially forge a
signature. Also for the proposed scheme, the security of the multi-signature
scheme with signers’ intentions can be reduced to the security of some kinds
of multi-round identification schemes. Before showing it, we first introduce two
kinds of multi-round identification schemes. Those are slightly different from
each other, and are necessary to prove the security of multi-signature scheme
with signers’ intentions.

Scheme ID-A:

The participating entities are the prover P and the verifier V , and both of them
can access the public random oracle function h : {0, 1}∗→ Zq.

System parameter is done in the same way as that of the multi-signature
scheme in Section 2.

Key-generation step: P provides n pair of a secret-keys si ∈ Zq and the
corresponding public-keys vi, where vi := gsi (mod p)(i ∈ [1, n]).

Identification step: P chooses her intentions α ∈ I with #α = n. First P
picks up n random ri ∈ Zq, and computes xi := gri (mod p)(i ∈ [1, n]).
Then the prover P and the verifier V execute the following step for i ∈ [1, n].

– P sends the commitment (xi, αi) to V , and V randomly picks up the
challenge ei ∈ Zq , and sends it to P .

After this iteration, P computes the answer

y :=
n∑

i=1

(si · θi + ri · ei) (mod q).

where θi := h(αi). Then P sends y to V .
Receiving (x, y) and α, the verifier V figures out θi for each i ∈ [1, n]. V
checks (x, y) and α by following verification:

gy ?≡
n∏

i=1

(xei

i · vθi

i ) (mod p)

If this equality holds, then V accepts the identification, and rejects, otherwise.



Scheme ID-B:

ID-B is different from ID-A in terms of the timing when P declares. Namely in
ID-B P does before interaction between P and V .
Both system parameter and key-generation step follows that of Scheme ID-A.

Intention declaration step: The prover P publishes α ∈ I with #α = n.
(This distribution does not have to be uniform.)

Identification step: P picks up n random ri ∈ Zq, and computes xi := gri

(mod p)(i ∈ [1, n]). For the rest, the step is the same as the previous one.

First we define the security for multi-round identification schemes.

Definition 3. Suppose that an ID-adversary M which does not have s, can
pass the verification for some α in time at most t with probability at least ε.
Then we say that ID-adversaryM can (t, ε)−break the multi-round identification
schemes.

Definition 4. We say that a multi-round identification scheme is (t, ε)−secure ,
if there is no ID-adversary which can (t, ε)-break the scheme, (x, e, y) which can
pass the verification for intentions α ∈ I, does not pass the verification for
another (distinct) intentions α′ with overwhelming probability.

We define the zero-knowledge property for Scheme ID− B as follows:

Definition 5. Suppose that a polynomial-time machine S is given public-key
v and intentions α. Then we say the scheme has the perfect zero-knowledge
property, if

∑
κ, λ, µ

∣∣∣∣Pr[(κ,λ, µ) ← [P (s,α), V (v,α)]]− Pr[(κ,λ, µ)← S(v,α)]
∣∣∣∣ = 0

Then Scheme ID− B is shown to provide the perfect zero-knowledge property by
constructing a simulator S, as follows:

– Given v and α ∈ I, S picks up y ∈ Zq and e ∈ Zn
q to compute βi such that

y =
∑n

i=1(ei · βi) (mod q), and γi such that θi + ei · γi = 0 (mod q)(i ∈
[1, n]). Then S computes xi := gβivγi (mod p)(i ∈ [1, n]).

Such an (x, e, y) indeed passes the verification.

Lemma 1. Scheme ID-B has the perfect zero-knowledge property

Proof. We compute the following to probability of appearance of the (2n+ 1)-
tuple (x, e, y):

– The probability of appearance of the (2n+ 1)-tuple (x, e, y) which can pass
the verification for some α.



• Pr
[
(κ,λ, µ) ← [P (s,α), V (v,α)]

]
= 1/q2n

• Pr
[
(κ,λ, µ) ← S(v,α)]

]
= 1/q2n

– The probability of appearance of the (2n+1)-tuple (x, e, y) which can’t pass
the verification for some α.
• Pr

[
(κ,λ, µ) ← [P (s,α), V (v,α)]

]
= 0

• Pr
[
(κ,λ, µ) ← S(v,α)]

]
= 0

Thus we get that each distributions of probabilities are the same. So Scheme
ID-B has the perfect zero-knowledge property. ��

An adversary model for Scheme ID− A is given as follows.

ID-adversary

An ID-adversary M is a machine, which, on input v, executes Scheme ID− A
with V , and tries to pass the verification for some signers’ intentions α. The ID-
adversaryM is so-called a passive attacker, which cannot accomplish the attack
in the middle.

5.4 ID-reduction lemma

If Scheme ID− B provides the zero-knowledge property, we can obtain the fol-
lowing ID-reduction lemma.

Lemma 2. (i) If there exists an MS-α adversary which can (t, Q,R, ε)−break
the scheme, then there also exists an MS-α adversary which can (t, Q, 1, ε1)−
break the scheme, where 1 is the n-tuple (1, . . . , 1), and ε1 := an with a0 := ε

and ai :=
(
ai−1 − 1

q

)
/Ri.

(ii) If there exists an MS-α adversary which can (t, Q, 1, ε1)−break the scheme,
then there also exists an MS-α adversary which can (t+, 0, 1, εp)− break the
scheme, where t+ := t+ ΦS, ΦS is the simulation time of Q multi-signatures
and εp := ε1 − Q

q
.

(iii) If there exists an MS-α adversary which can (t+, 0, 1, εp)−break the scheme,
then there also exists an ID-adversary which can (t+, εp)− break the scheme.

Proof. (Sketch) The proof is also the same with that of Lemma 9 in [7]. ��
Lemma 3. Let εp ≥ 2n+1

qn . If there exists an ID-adversary which can (t+, εp)−
break the scheme, then there exists a machine M which can compute a linear
combination of s on input v in time t′ with success probability ε′. Here t′ and
ε′ are defined as follows:

t′ :=
t++

3εp

(
2(2n+1) + 1

)
+ ΦC ; ε′ :=

n−1∏
i=1

pi(εp).

Here p1(εp) :=
(
1− (1− εp) 1

ε

)
; pi(εp) :=

(
1
2

(
1−

(
1− εp

2i

) 2i

ε

))2(i−1)

(i ≥ 1);



where t++ := t+ + ΦV, ΦV is the verification time of identification protocol, ΦC

is the calculation time of s in the final stage of reduction.

Proof. (Sketch) Also for Scheme ID-A, we can obtain the Heavy row lemma like
[7]. Hence we can obtain 2n simultaneous equations with (2n +n−1) unknowns.
Among those unknowns, the n ones the secret-keys, and the rest are r compo-
nents. From these equations, we can get one linear combination on only s. The
required time and the probability can be obtained as well as in [7]. ��
By providing n linear combinations on s, we can find each si. Unfortunately, we
cannot evaluate the probability that those equations are linear independent. In
case n = 2, if the coefficients were uniform, then that probability would be at
least 1− 2

q .
Next we show one more property for security of multi-signature schemes with

signers’ intentions.

Lemma 4. Suppose that the tuple (x, e, y) passes the verification for signers’
intentions α ∈ I. Then the very tuple (x, e, y) is rejected for another signers’
intentions α′ with overwhelming probability.

Proof. (Sketch) It comes from the following:

Pr

[
(x, e, y,α)← [P (s), V (v)] : Ver(v,x, e, y,α′) = 1

∣∣∣∣Ver(v,x, e, y,α) = 1
]

≤ 1/q

holds for α,α′ ∈ I with α �= α′, where Ver is the verification equation. ��
Combining Lemmas 2, 3 and 4, we can obtain the following theorem.

Theorem 1. Let εp ≥ 2n+1

qn . If there is no machine which can, on input v,
compute a linear combination on s, in time t′ with success probability ε′, then the
proposed multi-signature scheme with signers’ intentions is (t, Q,R, ε)−secure.

Suppose that t and t′ are bounded by a polynomial on the security parameter
|q|. Then ε is non-negligible with respect to |q| if and only if so is ε′.

6 Efficiency Consideration

We evaluate the computational amount for verification in the proposed scheme
on the basis of the required number of modular-p multiplications, and also the
total size of signatures. In evaluating the computational cost, more important
is #(

⋃
i{αi}), which is the most variety of the intentions actually chosen by P,

rather than #I , which is the number of the intentions provided for the message.
The required number of modular-p multiplication is calculated by a simple

binary method. For (ga1
1 · ga2

2 · · ·gan
n ) where (|a1| = |a2| = · · · = |an| = |q|) and



(|g1| = |g2| = · · · = |gn| = |p|), the required number of modular-p multiplications
is
(

n
2 + 1

) |q|−1. In the computational amount for signing, there is no difference
between the proposed scheme and the primitive method. It will not be discussed
here. Table 1. summarizes the total size of signatures and the computational
amount for verification in the primitive method and the proposed scheme.

Table 1. Comparison of schemes

total size of signatures # of modular-p multiplications for verification

Primitive method n|p|+#(⋃
i
{αi})|q|

{
n+3#

(⋃
i
{αi}
)

2

}
|q| −#(⋃

i
{αi}) + n

Proposed scheme n|p|+ |q|
(

2n+3
2

)
|q| − 1

In the primitive method, the required number of modular-p multiplications
is related to # (

⋃
i{αi}). In other words, the primitive method loses its merit in

proportion to the increase of # (
⋃

i{αi}), because # (
⋃

i{αi}) multi-signatures
are verified in the primitive method. On the other hand, the proposed scheme is
very unique. The proposed scheme has two properties simultaneously.

– One is the property as a multi-signature scheme, which is suited to plural
signers.

– The other is the property, which is suited to plural signers’ intentions.

Roughly speaking, the former property makes the gap of the required number
of modular-p multiplications between the single-signature scheme and the pro-
posed (multi-signature) scheme. Second property, in the primitive method, the
number of equations for verification (or the number of signatures) depends on
the number of varieties of signers’ intentions. Finally, in the proposed scheme,
the number of equations for verification (or the number of signatures) do not
depend on the number of signers or the number of varieties of signers’ intentions.

7 Conclusion

We have proposed an idea of signers’ intentions for multi-signature scheme, and
have given the multi-signature scheme with signers’ intentions . Then, we have
shown that the proposed scheme has a computational advantage for verification,
compared to the primitive method. The proposed scheme is proved to be secure
against adaptive chosen message insider adversaries, by reducing it to that of
two kind of multi-round identification schemes. This approach is also applicable
to various multi-signature schemes such as two-cycle multi-signature schemes.



Acknowledgement

The authors would like to thank Mr. Takeshi Okamoto of JAIST for his invalu-
able advice and useful comments.

References

[1] M. Bellare and P. Rogaway: “Random oracles are practical: A paradigm for de-
signing efficient protocols”, Proceedings of the 1st Conference on Computer and
Communications Security, ACM, 1993.

[2] M. Burmester, Y. Desmedt, H. Doi, M. Mambo, E. Okamoto, M. Tada and Y.
Yoshifuji: “A Structured ElGamal-Type Multisignature Scheme”, Lecture Notes in
Computer Science 1751, Third International Workshop on Practice and Theory in
Public Key Cryptosystems - PKC2000, Springer-Verlag, pp.466-483, 2000.

[3] H. Doi, M. Mambo and E. Okamoto: “On the Security of the RSA-Based Multisig-
nature Scheme for Various Group Structures”, Lecture Notes in Computer Science
1841, 5th Australasian Conference - ACISP2000, Springer-Verlag, pp.352-367, 2000.

[4] H. Doi, E. Okamoto and M. Mambo: “Multisignature Schemes for Various Group
Structures”, The 36-th Annual Allerton Conference on Communication, Control and
Computing, pp.713-722, 1999.

[5] H. Doi, E. Okamoto, M. Mambo and T. Uematsu: “Multisignature Scheme with
Specified Order”, Proc. of the 1994 Symposium on Cryptography and Information
security, SCIS94-2A, January 27-29, 1994.

[6] S. Mitomi and A. Miyaji: “A multisignature Scheme with Message Flexibility, Order
Flexibility and Order Verifiability”, Lecture Notes in Computer Science 1841, 5th
Australasian Conference - ACISP2000, Springer-Verlag, pp.298-312, 2000.

[7] K. Ohta and T. Okamoto: “Multi-Signature Schemes Secure against Active Insider
Attacks”, IEICE transactions of fundamentals, vol. E-82-A. No.1, 1999.

[8] K. Ohta and T. Okamoto: “Generic Construction Method of Multi-Signature
Schemes”, Proc. of The 2001 Symposium on Cryptography and Information Se-
curity, SCIS01-2B, January 23-26, 2001.

[9] D. Pointcheval and J. Stern: “Security arguments for digital signatures and blind
signatures”, Journal of Cryptology, Volume 13, Number 3. pp.361-396, Springer-
Verlag, 2000.

[10] A. Shimbo: “Design of a modified ElGamal Signature Scheme”, Proc. of The
1996 Workshop on Design and Evaluation of Cryptographic Algorithms, pp.37-44,
November 27, 1996.


