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Abstract. We investigate a known plaintext attack on RC5 based on
correlations. Compared with the best previous known-plaintext attack
on RC5-32, a linear cryptanalysis by Borst, Preneel, and Vandewalle,
our attack applies to a larger number of rounds. RC5-32 with r rounds
can be broken with a success probability of 90% by using 26-147+2:27
plaintexts. Therefore, our attack can break RC5-32 with 10 rounds (20
half-rounds) with 2367 plaintexts with a probability of 90%. With a
success probability of 30%, our attack can break RC5-32 with 21 half-
rounds by using 2°%°7 plaintexts.

1 Introduction

RC5, designed by Rivest([11]), is a block cipher which is constructed by only
simple arithmetic such as an addition, a bit-wise exclusive-or(XOR), and a data
dependent rotation. Therefore, RC5 can be implemented efficiently by software
with small amount of memory. RC5-32/r means that two 32-bit-block plaintexts
are encrypted by r rounds, where one round consists of two half-rounds. Various
attacks against RC5 have been analyzed intensively([1,2,4-7]). The best chosen-
plaintext attack ([1]), up to the present, breaks RC5-32/12 by using (244, 254:5)
pairs of chosen plaintexts and known plaintexts. However, it requires many stored
plaintexts such as 25*°. Even in the case of RC5-32/10, it requires (236,250-5)
pairs of chosen plaintexts and known plaintexts with stored 2°0-® plaintexts. In
a realistic sense, it would be infeasible to employ such an algorithm on a modern
computer. On the other hand, a known plaintext attack can work more efficiently
and practically, even though it has not been reported far higher round like 12.
The best known-plaintext attack against RC5 is a linear cryptanalysis([2]).
They have reported that RC5-32 with 10 rounds is broken by 254 plaintexts under
the heuristic assumption, that is, RC5-32 with r rounds is broken with a success
probability of 90% by using 267+* plaintexts. However, their assumption seems
to be highly optimistic. Table 1 shows both their results and our results. In fact,
their experimental results report that RC5-32 with 3 or 4 rounds is broken with a
success probability of 81% or 82% if we use 222 or 22® plaintexts respectively. This
means that their estimation does not hold even in such lower rounds as 3 or 4. On
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the other hand, they also discussed the theoretical complexity of breaking RC5-
32 with r rounds: RC5-32 with r rounds can be broken with a success probability
of 90% by using 26-87+2:4 plaintexts. According to their theoretical assumption,
it requires 222-8 or 2%9-6 plaintexts in order to break RC5-32/3 or RC5-32/4 with
a success probability of 90%. Actually, it seems that the theoretical estimate
reflects their experimental results. Note that, under the theoretical assumption,
their known plaintext attack can break RC5-32/9 but not RC5-32/10 with a
success probability of 90%.

Table 1. Required plaintexts for attack on RC5

r — round estimation 2 rounds 3 rounds 4 rounds 5 rounds
theoretical(heuristic) [#texts| #keys |#texts | #keys |#texts | #keys |#texts | #keys
[2] [2°8F2T(25FY) 2'5 T92/100| 2% |[81/100| 2°® [82/100] 2** | 9/10
our |26-1%rF22T 215 1100/100] 2°* [100/100] 22% {99/100] 2°° [90/100
attack 2% 195/100| 2* |95/100| 2% [96/100| 23 |60/100

In this paper, we investigate a known plaintext attack by improving a cor-
relation attack against RC6([7]). RC6 is the next version of RC5, which has
almost the same construction as RC5: RC6 consists of a multiplication, an addi-
tion, XOR, and a data dependent rotation. While the input of RC5 consists of
2 words such as (Lo, Rp), that of RC6 consists of 4 words. This is why approach
of attacks on RC5 is similar to that on RC6, but a slight difference is needed.
Correlation attack makes use of correlations between an input and an output,
which is measured by the x? test: the specific rotation in both RC5 and RC6 is
considered to cause the correlations between the corresponding two 5-bit integer
values. In [7], correlation attacks against RC6-32 recover subkeys from the 1st
round to the r-th round by handling a plaintext in such a way that the y>-test
after one round becomes significantly higher value. Their main idea is to choose
such a plaintext that the least significant five bits in the first and third words are
constant after one-round encryption as follows: 1. the least significant five bits
in the first and third words are zero; 2. the fourth word is set to the values that
introduce a zero rotation in the 1st round. Their attack controls a plaintext in
two parts with 5 bits: 5 bits corresponding to the x2-test, and 5 bits in relation
to data dependent rotations. We apply their attack to RC5, where a plaintext is
represented by 2 words (Lo, Ro). According to their approach, it is necessary to
control a plaintext in each block with each 5 bits: 1. the least significant five bits
of Ly, lsbs(Lg), is 0; 2. lsbs(Ro) introduces a zero rotation in the 1st round. As
a result, available plaintexts are reduced by 2'°. Compared with RC6, available
plaintexts to attack RC5 are extremely fewer because the block size of RC5 is
just half of RC6. Therefore, it is critical to reduce available plaintexts of RC5
by 29 in order to break RC5 with a higher round. This is why their attack does
not work well on RC5 directly. In fact, they also report that their attacks do not
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work well on RC5 compared with the existing attack([1]). In [3], a correlation
attack is also applied to RC5. Their algorithm searches subkeys from the final
round to the 1st round by fixing both lsbs(Ro) and Isbs(Lg) to be 0. Therefore,
their attack also suffers from the same problem of fewer available plaintexts. The
important factor to target at RC5 is how to increase the available plaintexts.

We investigate how an output after h half-rounds, Ly, depends on a chosen
plaintext, and find experimentally the following features of RC5:

1. The x2-values for the least significant five bits on Lj; become significantly
high by simply setting such Ry that fixes a rotation amount in the 1st half-round.
Note that any rotation amount, even large one, outputs the higher x2-values.
2. Any consecutive five bits on Ly, 1 outputs similarly high y2-values by simply
setting such Ry that fixes a rotation amount in the 1st half-round.

Usually, we know that output of RC5 is highly unlikely to be uniformly dis-
tributed if a plaintext introduces small rotation amounts such as a zero in the
1st half-round([7]). However, from Feature 1, output of RC5 is also highly un-
likely to be uniformly distributed if only a rotation in the 1st half-round is fixed.
Apparently, a rotation in the 1st half-round is fixed if and only if the least signif-
icant five bits of Ry is fixed. This means that any given plaintext can be used for
correlation attack by classifying it in the same least significant five bits. In this
way, we can extend a chosen plaintext correlation attack to a known plaintext
attack without any cost. From Feature 2, any consecutive five bits on Ljy; can
be used to compute the x?-values in the similar success probability.

We improve a correlation attack as a known plaintext attack by taking full
advantage of the above features. The main points of our attack on RC5 are as
follows:

1. Use any plaintext by classifying it into the same least significant five bits;
2. Determine the parts, on which the y2-statistic is measured, according to the
ciphertexts.

We also present two algorithms to recover 31 bits of the final half-round key:
one recovers each 4 bits in serial, and the other recovers each 4 bits in parallel.
By employing our correlation attack, RC5-32 with r rounds(h half-rounds) can
be broken with a success probability of 90% by using 26-14r+2.27(23.07h+2.27)
plaintexts. As a result, our attack can break RC5-32/10 with 253-67 plaintexts in
a probability of 90%. In the case of success probability 30%, our attack can break
RC5-32 with r rounds(h half-rounds) by using 25-907+1:12(22.950+1.12) plaintexts.
Therefore, our attack can break RC5-32 with 21 half-rounds by using 263:07
plaintexts in a probability of 30%.

This paper is organized as follows. Section 2 summarizes some notations and
definitions in this paper. Section 3 applies Knudsen-Meier’s correlation attack to
RC5, and discusses the differences between RC5 and RC6. Section 4 describes
some experimental results including the above features of RC5. Section 5 presents
the chosen plaintext algorithm, Main algorithm. Section 6 discusses how to ex-
tend Main algorithm to the known plaintext algorithm, Extended algorithm.
Section 7 applies Extended algorithm to 31-bit key recovery in the final round.
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2 Preliminary

This section denotes some notations, definitions, and experimental remarks. First
we describe RC5 algorithm after defining the following notations.
[ (&): an addition(subtraction) mod 23%; @ : a bit-wise exclusive OR;
r : the number of rounds; h : the number of half-rounds (h = 2r);
a < b(a >>b): a cyclic rotation of a to the left(right) by b bits;
(Li, R;): an input of the i-th half-round, and (Lo, Rp) is a plaintext;
S; : the i-th subkey(S)+1 is a subkey of the h-th half-round);
Isb,(X) : the least significant n bits of X;
X' : denotes the i-th bit of X;
X531 denotes from the i-th bit to the j-th bit of X (i > j);
X : a bit-wise inversion of X.
We denote the least significant bit(LSB) to the 1st bit, and the most significant
bit(MSB) as the 32-th bit for any 32-bit element. RC5 encryption is defined as
follows: a plaintext (Lg, Rp) is encrypted to (Lpt1, Rp+1) by h half-rounds itera-
tions of a main loop, which is called one half-round. Two consecutive half-rounds
correspond to one round of RC5.

Algorithm 1 (Encryption with RC5)
1. L1 = Lo+ So; Ri=Ro+ 513
2. for i=1 to h do: Ljy1 = R;; Riy1 = ((Ll @Rz) K Rz) + Si+1).

We make use of the y2-tests for distinguishing a random sequence from non-
random sequence([5,7,8]). Let X = Xo,..., X,,—1 be a sequence with VX; €
{ao,- - ,am-1}. Let No;(X) be the number of X; which equals a;. The x2-
statistic of X, x?(X), estimates the difference between X and the uniform dis-
tribution as follows: y>(X) = 2 3" 1 (N, (X) — %)2 We use the threshold
for 31 degrees of freedom in Table 2. For example, (level, x?)=(0.95, 44.99) in
Table 2 means that the value of y2-statistic exceeds 44.99 in the probability of
5% if the observation X is uniform. Here, we set the level to 0.95 in order to
distinguish a sequence X from a random sequence.

Table 2. y’-distribution with 31 degree of freedom

Level| 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999 0.9999
x> [30.34 32.35 34.60 37.36 41.42 44.99 52.19 61.10 69.11

In our experiments, all plaintexts are generated by using m-sequence([9]).
For example, Main or Extended algorithm uses 59-bit or 64-bit random num-
ber generated by m-sequence, respectively. The platforms are IBM RS/6000 SP
(PPC 604e/332MHz x 256) with memory of 32 GB.
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3 Applying Knudsen-Meier’s correlation attack to RC5

Knudsen and Meier([7]) proposed a key-recovery attack to RC6, which estimates
a subkey from the 1st round to the r-th round by handling a plaintext. Their
main idea is to choose such a plaintext that the least significant five bits in
the first and third words are constant after one-round encryption. Therefore
plaintexts in RC6 are chosen as follows: 1. the least significant five bits in the first
and third words are zero; 2. the fourth word is set to the values that introduce
a zero rotation in the 1st round. To sum up, their attack controls a plaintext in
two parts with 5 bits: 5 bits corresponding to the y2-test and 5 bits in relation
to data dependent rotations. Let us apply their idea to RC5 directly.

Algorithm 2 (Knudsen-Meier’s attack to RC5)

This algorithm recovers lsbs(S1). Set s =1sb5(S1), and Isbs(Rp) = .

1. For each s(s=0,1,---,31), set such an z that leads to a zero
rotation in the l-st half-round, that is, set z+s =0 (mod 32).

2. Choose plaintexts (Lg,Ry) with (Isbs(Lyg),lsbs(Rp)) = (0,2), and set

y = lsbs(Lpy1)

. For each (Lo, Ry), update each array by incrementing count[s][y].

4. For each s, compute the X2—va1ue X2[s], and output s with the
highest value x*[s] as Isb5(S1).

w

Table 3. Success probability of Algorithm 2(in 100 trials)

4 half-rounds 6 half-rounds 8 half-rounds
#texts|#keys| yZ-value™|#texts|#keys| x>-value™ |#texts|#keys|y -value™
210 25 530.12] 2% 20/ 139.59] 27 13 69.56
210 28| 256034.12| 2'° 31| 6639.60| 2! 26| 443.06
223 28(4097164.86| 223 32(105660.92| 22%¢ 29| 13303.08

* The average of the maximum x>-value in each trial.

Table 3 shows the experimental results of Algorithm 2. From Table 3, we see
that a correct key can not be efficiently recovered, even though the maximum
x2-value is enough high. Apparently, plaintexts with a zero rotation in the 1st
round outputs the high y2-value, but a small-absolute-value one such as +1, +2,
etc., also outputs the high y?-value. Since Algorithm 2 uses only plaintexts with
a zero rotation in the 1st round, it suffers from other high-x2-value plaintexts,
and thus cannot recover keys efficiently. Algorithm 2 is distinguishable, but un-
recoverable. Furthermore, Algorithm 2 can use only 2°* plaintexts. In general,
the number of plaintexts on RC5 is not so large as RC6. Another problem may
occur in recovering other bits of S; because the rotation in the 1st half-round
is determined only by Isbs(S1). In RC6, the rotation in the 1st half-round is
determined by all bits of Sy, and thus their algorithm can work well to recover
all bits of Sy. This is why it is not efficient to apply their attack to RC5.
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4 xZ2-statistic of RC5

In this section, we investigate how to reduce the constraint of plaintexts in order
to increase available plaintexts. In RC5, Isbs(Ro) determines the 1st half-round
data dependent rotation, so it would be desirable to handle Isbs(Rp) in some
way. On the other hand, the effect of Isbs(Lo) = 0 deeply depends on Isbs(Rp)
as follows: 1. if Isbs(Ryp) is fixed to a value that leads a zero rotation in the
1st half-round like Algorithm 2, then lsbs(Lo) = 0 can fix [sbs(R2), that is, fix
the rotation amount of the 2nd half-round, and can also fix Isbs(L3) for any
available plaintext; 2. if Isb5(Ryp) is fixed to just 0([3]), then Isbs(Lo) = 0 can
not fix Isbs(R2) (i.e. Isbs(L3)) for any available plaintext. We experimentally
compare the effect of Isbs(Lg) = 0, Isbs(Ro) = 0, or both. We also investigate
which parts output the higher x2-statistics. To observe these, we conduct the
following five experiments in each h half-round.

Test 1: x2-test on Isbs(Lp1) with Isbs(Ro) = lsbs(Lo) = 0.
Test 2: y2-test on Isbs(Lp1) with Isbs(Ry) = 0.

Test 3: XQ—tQSt on l8b5(Lh+1) with le5(L0) =0

Test 4: y2-test on Isbs(Lp1) with Isbs(Ro) =z (z = 0,1, ..., 31).
Test 5: x2-test on any consecutive 5bits of Ly with Isbs(Rp) = 0.

4.1 Test 1, 2, and 3

Table 4. #texts required for y*-value > 44.99 in Test 1, 2 and 3(on the average of
100 keys)

#half-rounds 4 5 6 7 8 9 10
Test 1(log, (#texts))| 9.08 11.77 14.92 18.05 20.03 24.36 26.98
Test 2(log, (#texts))|10.94 14.05 16.83 19.84 22.79 25.74 28.57
Test 3(log, (#tewts))|14.26 17.26 19.62 23.14 25.75 —  —

Here we show the experimental results of Test 1, 2, and 3 after discussing
the differences among these Tests. The condition of lsbs(Rp) = 0 means that
the rotation amount of the 1st half-round is fixed. The purpose of Tests 1 and
2 is to observe the effect of handling a plaintext in the part corresponding to
the y2-test: Test 1 handles it; and Test 2 does not handle it. On the other hand,
Test 3 sets only lsbs(Lg) = 0, so it cannot control the rotation amount of the
1st half-round at all.

Table 4 shows the experimental results of Test 1, 2, and 3 which represent
the number of plaintexts required for y2-value exceeding 44.99. These tests are
computed to the second decimal place, and the y2-value is computed on the
average of 100 different keys. From Table 4, we see that the y2-value in Test 3
is much lower than that in Test 1, and also lower than that in Test 2. Test 3
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requires about 2°(2?%) times as many plaintexts as Test 1(Test 2) in order to get
the same effect as Test 1(Test 2). As a result, we see that fixing the rotation
amount of the 1st half-round, that is, Isbs(Ro) = 0, causes highly nonuniform
distribution, and that Test 3 has no advantage to both Tests 1 and 2.

Next we focus on the effect of Isbs (L) = 0 under Isbs(Ro) = 0. From Table 4,
we see that in each half-round, the x2-value in Test 1 is higher than that in Test
2, but that almost the same effect of Test 1 is expected in Test 2 if we use about
22 times plaintexts as many as Test 1. The number of plaintexts required for
x2-value exceeding 44.99 on h half-rounds, logs (#text), is estimated

logz (#text) = 3.03h — 3.21 (Test 1), loga(#text) = 2.93h — 0.73 (Test 2)

by using the least square method. On the other hand, the number of available
plaintexts in Test 1(Test 2) is 254(2%9). By substituting the number of available
plaintexts, we conclude that the case of Test 1, or Test 2 is estimated to be
distinguishable from a random sequence by 18 half-rounds, or 20 half-rounds,
respectively. As a result, Test 2 is more advantageous than Test 1.

4.2 Test 4 and 5

30 30
e e e e e e e e s e et T T T NN e
25 25
o™ e ™ > P
20 7x—>\/x—>\/<—><—x—x—>\/<—x—>\(_x_/\/x—x—x—xe\/<—x—x—>\/ 2
@ T o e g
F15 [ seesn sa _ssoa s e, =15 N
8 3
10 half-rounds 10 half-rounds
~4 =5 -4 =5
5 -6 <77 5 -6 7
8 -9 *8 =9
0 0
0 4 8 12 16 20 24 28 1 5 9 25 29

13 17 21
LSB5(R0) the first bit(i )

Fig. 1. #texts required for y?-value >
44.99 in each Isbs(Ro) (on the average of
100 keys)

Fig. 2. #texts required for y?-value >
44.99 in each consecutive 5 bits of Lj41
(on the average of 100 keys)

We observe the experimental results of Test 4 in Figure 1. As we have dis-
cussed the above, setting Isbs(Rp) = 0 means to fix the rotation amount in the
first round. Note that the rotation amount is not necessarily equal to 0. There-
fore, the same effect as lsbs(Ro) = 0 would be expected if only fixing Isbs(Ryg).
Test 4 examines the hypothesis. In Figure 1, the horizontal line corresponds to
the fixed value of Isbs(Rp) and the vertical line corresponds to the number of
plaintexts required for x?-value exceeding 44.99. From Figure 1, we see that any
Isbs(Rp) can be distinguished from a random sequence in almost the same way
as lsbs(Ro) = 0. To sum up, we do not have to set lsbs(Ro) = 0 in order to
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increase the y2-value. We can use any plaintext (Lo, Rg) with any Ry by just
classifying it into the same lsbs(Ryp).

In Test 5, we compute the y?-value in each consecutive 5 bits of Ly, and
how many plaintexts are required in order to exceed the threshold y2-value of
44.99. Figure 2 shows the experimental results. The horizontal line corresponds
to the first bit of consecutive 5 bits of L1, and each plot presents the number
of plaintexts required for y2-value exceeding 44.99 for each consecutive 5 bits.
For example, the case of i = 1, or i = 32 corresponds to LE?;_II], or {inl, LE?J_II]}.
From Figure 2, we see that any consecutive five bits can be distinguished from

. 5,1] .
a random sequence in almost the same way as L; ;. Correlations are observed
on any consecutive five bits of Lj41.

5 A chosen plaintext correlation algorithm

In this section, we present a key recovery algorithm, called Main algorithm. Main
algorithm is designed by making use of the results of tests in Section 4 as follows:

1. Only Isbs(Rp) is fixed to 0 (Test 1, 2);

2. The parts measured by y>-statistic are not fixed to [sbs(Lp11) (Test 5);

3. The y%-value is computed on z to which consecutive 5 bits, y, is exactly
decrypted by 1 half-round (see Figure 3);

4. The decrypted, z, is classified into 32 cases according to lsbs(Lp+1) = x, and
the x2-value is computed on each distribution of z for each lsbs(Ly41) = .

Algorithm 3 (Main algorithm)

This algorithm recovers lsbs(Shy1). Set (Isbs(Lpt1),Isbs(Rrt1)) = (2,y),

and lsby(Sp4+1) = s, where = is the rotation amount in the h-th half-round.

1. Choose a plaintext (Lg,Rp) with lsbs;(Rp)=0, and encrypt it.

2. For each s(s=0,1,---,15), set 52+1 =0, and decrypt Rp41 by 1
half-round. Note that, from the rotation amount z in the h-th
half-round, we exactly know where y is decrypted by 1 half-round,
which is set to z.

3. For each value s, x, and z, we update each array by incrementing
count[s][z][z] -

4. For each s and x, compute x>[s][].

5. Compute the average ave[s] of {x?[s][z]} for each s, and output s
with the highest ave[s] as Isbs(Sh+1).

Main algorithm computes the y2-value on z, to which y is decrypted by the
final round subkey. Therefore, the y2-value in lsbs(S,41) = 1s is coincident with
that in [sb5(Sh+1) = 0s in the following reason. For s = lsbs(Sp+1), we set two
candidates of 1sbs(Sp+1), t = 1s and ' = 0s. So t = ¢' + 16 (mod 32). We also
set each decrypted value of y = Isb;(Ry+1) by using each key, t or ', to z or 2/,
respectively. Then 241 = 2! and 25 = 2 and thus » = 2/ + 16 (mod 32).
Two distribution of count[t][x][z] and count[t'][z][z'] in Algorithm 3 satisfy

count[t][z][z] = count[t'][z][z' + 16 (mod 32)].
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[ ] 00000]
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Fig. 3. Outline of Main algorithm

So, we get x?[t][z] = x*[t'][z] from the definition of y?-value. This is why the
x2-value in S ,{L5_;_11] = 1s is coincident with that in S ,{L5_;_11] = 0s for s = 5244_11]‘
Figure 4 and Table 5 show the success probability among 100 trials for RC5
with 4 — 10 half-rounds. More precise experimental results are shown in Table 6.
All experiments are calculated to the second decimal place. In our policy, we
design all experiments as precisely as possible in order to estimate the efficiency
of algorithm strictly. From Table 6, the number of plaintexts required for re-
covering a key in r rounds(h half-rounds) with the success probability of 90%,

loga (#ftext), is estimated®,
log2(#text) = 6.23r + 0.07, (log2(#text) = 3.12h + 0.07),

by using the least square method. In the case of success probability of 45%, the
number of required plaintexts is estimated as follows,

loga(Ftext) = 6.18r — 1.47 (loga (F#text) = 3.09h — 1.47).

! Our estimation is computed by using the results of 5-10 half-rounds except for 4
half-rounds because key recovery with 4 half-rounds depends deeply on the choice of
S0, and plaintexts Ro. The key recovery with 4 half-rounds examines a bias for dis-
tribution of consecutive 5 bits in L4, which is coincident with that in L2. A bias for
distribution of L2 depends only on the 2nd half-round operation, Sy, and plaintexts
Ry. In fact, the coefficient of determination([12]) for approximation polynomial in-
cluding the result of 4 half-rounds is worse than that for approximation polynomial
without the result of 4 half-rounds.
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By substituting logs(#text) = 59, Main algorithm can break RC5-32 with 18
rounds with 2°6-23 plaintexts with a probability of 90%. With a success proba-
bility of 30%, Main algorithm can break RC5-32 with 19 half-rounds by using
25724 plaintexts. From these results, we see that it is indispensable to increase
available plaintexts in order to break RC5 with higher round.

Y A A alvawa

ol S]]
W S]]

o S S S - -
% vk i
ol AT

8 10 12 14 16 18 20 22 24 26 28 30 32
texts(log)

Fig. 4. Success probability of Main algorithm(in 100 trials)

6 A known plaintext correlation algorithm

In this section, we present a key recovery algorithm, called Extended algorithm,
which applies Main algorithm to a known plaintext attack.

6.1 Extended algorithm

Extended algorithm classifies any plaintext (Lo, Ro) into the same lsbs(Ry), and
applies Main algorithm as follows.

Algorithm 4 (Extended algorithm)
This algorithm recovers lsbs(Spy1). Set s =1sbs(Shy1), and x =lsbs(Lpy1)
in the same way as Algorithm 3.

1. Given n known plaintexts (Lg,Rp), set | =1Isbs(Ry), and encrypt it.

2. For each [, compute x?[/][s][z] according to Step 2-4 in Algorithm 3.

3. Compute the average ave[l|[s] of {x?[l][s][z]}. for each s and each I.

4. Compute sumls] = Z?io ave[l][s] for each s, and output s with the
highest sum[s] as Isby(Sh+1).

Figure 5 and Table 7 show that the success probability among 100 trials for
RC5 with 4 — 10 half-rounds. More precise experimental results are shown in
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Fig. 5. Success probability of Extended algorithm(in 100 trials)

Table 8. From Table 8, the number of plaintexts required for recovering a key
on r rounds(h half-rounds) with the success probability of 90%, logs(F#text), is
estimated,

logz (#text) = 6.14r + 2.27 (logz(#text) = 3.07h + 2.27),

by using the least square method. By substituting logs (#text) = 64, we conclude
that our algorithm is estimated to recover a key on RC5 with 20 half-rounds
with 20367 plaintexts in the success probability of 90%. In the case of success
probability of 30%, the number of required plaintexts is estimated as follows,

logs (#text) = 5.90r + 1.12 (logs(#text) = 2.95h + 1.12).

Therefore, our algorithm can recover a key on RC5 until 21 half-rounds with
203.07 plaintexts in the success probability of 30%.

6.2 Further discussion

Here we discuss the difference between Extended algorithm and Main algorithm.
Extended algorithm requires about 22 times as many plaintexts as Main algo-
rithm in order to recover correct keys as we have seen in Table 7 and 5. Since all
plaintexts in our experiments are randomly generated by m-sequences, [sbs(Rp)
of plaintexts in Extended algorithm are roughly estimated to be uniformly dis-
tributed in {0,1,---,31}. As a result, the x?-value in Extended algorithm is
computed by using about 273 times as many plaintexts as Main algorithm be-
cause the y2-value in Extended algorithm is computed for each Isbs(Ry). We
investigate experimentally the relation between y2-value of correct keys and
that of wrong keys in both algorithms. Table 9 shows each average and vari-
ance in 100 keys. As for wrong keys, the highest y2-value among wrong keys is
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shown, which often causes to recover a wrong key. From Table 9, we see that the
average among x>2-value of correct keys in Extended algorithm is lower and the
variance is much lower than that in Main algorithm. We expect that Extended
algorithm reduces the variant of y?-value by using not specific Isbs(Ry) but all
Isbs(Ro), and recovers a key with the lower x2-value. Thus, Extended algorithm
can recover a key efficiently with the lower y2-value.

7 31-bit key recovery in the final round

Here discusses two algorithms that recover 31-bit-final-round subkey: the serial
key recovery algorithm, and the parallel key recovery algorithm.

7.1 The serial key recovery algorithm

(4,1]
hi1 tO
S ,{LQ_E’IQB] and S 23_&’128] by using Algorithm 4. For example, in the case of recovering
5[8,5] [4,1]
h+13 h+1
s = S,{Ls_i’_‘r’l] and y = R 1] As for the final 3 bits, S,[ﬁfg], we apply Algorithm 4

h+
[31,28] 31,28]

by using s = S;’ /" and recover S,[l 1 - After repeating the above procedures

by eight times, SE:{’II], that is, all bits of Sj, 41 except for MSB are recovered. The

experimental results of serial key recovery are shown in Figure 6. Compared with

[31,28] [8,5]
hil 0 Spiy

can be recovered with almost the same high probability as S i[L4-|’—11]' In the case of

The serial key recovery algorithm recovers each 4 bits sequentially from S

we set S; 7 to the value recovered before and apply Algorithm 4 by setting

Figure 6 and Table 7, we see that any key of any interval from S

4 half-rounds, 6 half-rounds, or 8 half-rounds, we can recover S?l’l], 5?1’1], or

S,£31’1] with a success probability of about 99%, 97%, and 92% by using about
215 221 or 227 plaintexts on the average, respectively.

7.2 The parallel key recovery algorithm

We have seen that the serial key recovery algorithm can recover the final half-
round key S,[f’i’ll] with the significantly high success probability. However, unfor-
tunately, the serial key recovery algorithm can not work in parallel. This section
investigates how to recover each subkey of S,[ﬁ’fg],..., S,[ﬁ’rll] in parallel. Before
showing our parallel key recovery algorithm, we conduct the next experiment.

Test 6: Apply Algorithm 4 to S)7*"' ™ (i = 0,1,---,6) or S’ by setting

h+1
lower bits of Sj41 than S}ﬁf“lHl] or 523_&’128] to 0. Compute the probability with

which a correct key can be recovered.

Figure 7 shows the experimental results in Test 6. The result of S ,{14411] in Test 6

is the same as that in Extended algorithm (Table 7). Figure 7 shows that Test 6
suffers completely from error bridging of lower bits. More importantly, the prob-
ability of Test 6 converges to about 50 %: however many plaintexts are used,
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Fig. 6. Success probability of serial key recovery(in 100 trials)
the probability has never become higher than an upper bound. From this, we

put forward a hypothesis that some specific keys are not recovered. In fact, we
see experimentally that, in the case of recovering keys of S5 G18A) with the

h+17 Pht1
lower bits 5244’_11] = 8,---,15 can not be almost recovered. Especially, any 5284’_51]
with Sgi’ll] =13,---,15 can not be recovered at all however many plaintexts are

used. The success probability of recovering keys in 5284’_51] deeply depends on the

lower bits Sgi’ll] .

100
./_
90 )I/— f/.’-
4 half-rounds / /
/ 6 half-rounds /

/8 half-rounds
[

A
10 —=—14bit -+ 58bit -4 9-12bit = 13-16bit
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0 e S
14 16 18
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texts(log)

Fig. 7. Success probability of Test 6(in 100 trials)
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For simplicity, let us investigate the case of recovering S,[ffl]. The same
discussion also holds in other cases of Sgﬁfs],--- ,Shlf’lg]. In Test 6, we set

lower 4 bits than S,[ff’l]
real value by 5244_11]’ and the assumed value by 3. In Tests 6, # = 0. For any

Rus1, (Rusr — Spe1)!?? is determined by S,[lgfl], Rffl], and the bridging on

(RE?_;_ll] -5 f[::,‘ll])’ which is estimated by (RE?_;_ll] — f3). This is why key recovering

Efjrll] — f3) is not coincident with that
[4.1] _

on (RE?_;_ll] - S,{f_;_ll]). The probability that bridging on (R}, — 8) is not coinci-

dent with that on (Rfjrll] - S,[li’ll]) is different for each S,[li’ll]. For example, in
11

the case of S,{L_i_1 = 0, a bridging on (RE?_;_ll] — 0) is apparently coincident with

that on (Rfjrll] - S,[fjrll]) for any Rﬁll]. Here, Rgfjrll is called an error-bridging for

S ,{L4_;_11] if the bridging on (RE?_;_ll] — f) is different with that on (RE?_;_ll] -8 f[::,‘ll])' For

[4,1]
h+1

to be 0. To make the discussion clear, we denote the

is failed if and only if the bridging on (R

each S,[li’ll], we compute R

probability,

that is an error-bridging, and the error-bridging

#{Rﬁfﬂ S t| tis an error-bridging. }
11 .
#{R}

Table 10 shows the results. From Table 10, in the case of SE:’_II] =8,---,15, a

bridging on (Rffl] — 0) is not coincident with that on (Rfjrll] - S,[fjrll]) with the
probability of 1/2 and over. In these keys, the x?-value is computed by using
invalid value with the probability of 1/2 and over. Therefore, it is expected that
recovering such keys is difficult even if many plaintexts are used. To observe this,
we conduct an experiment on the relation between the success probability of a
key recovering and the error-bridging probability. Table 11 shows the success
probability of keys with the error-bridging probability of less than 1/2, that of
1/2 or above, and that of 13/16 or above. In Table 11, we see that: 1. keys
with the error-bridging probability of less than 1/2 can be recovered correctly
by using enough many plaintexts; 2. keys with the error-bridging probability of
1/2 and over cannot almost be recovered correctly even if many plaintexts are
used; 3. any key with the error-bridging probability of 13/16 and over cannot
be recovered correctly. From these observation, we estimate the lower bound of
probability to recover a correct key, Pr(f), as the probability of keys with the
error-bridging-probability of less than 1/2,

#{S,[;i’ll] 5 t | the error-bridging probability of ¢t < 1/2}

#{Si)

We get Pr(0) = 1/2 = 0.50, which reflects the experimental results in Figure 7
and Table 11.

In order to improve the parallel attack, we have searched all available 5(0 <
S < 15) to find B with the maximum Pr(3). The maximum Pr(3) is 15/16 =

Pr(/3)
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0.9375, which is given by 8 = 7, 8. We have also investigated a type of two-valued
[ such as
g4 it RM <8,
11 otherwise.

However, even in this type, the maximum Pr(f3) is 15/16. There are total 256
kinds of 8 including two-valued, out of which 87 kinds give the maximum Pr(3).

We discuss the improved parallel attack by using § = 8, in which Pr(8) is just
15/16. Table 12 shows error-bridging Rgﬁ_ll] and the error-bridging probability for

each S,[ﬁ’rll]. Table 13 shows the success probability of keys with the error-bridging
probability of less than 1/2, and that of keys with the error-bridging probability
of 1/2. From Table 13, in the same way as § = 0, keys with the error-bridging
probability of less than 1/2 can be recovered correctly by using enough many
plaintexts. More precise experimental results are shown in Table 14 and Figure 8.
From Table 14, we see that the parallel algorithm can recover a 31-bit key with
the success probability of about 90% by using roughly the same plaintexts as
that of about 50% in Test 6, and about twice as many plaintexts as that of the
serial algorithm(Figure 6).

o 4 half-rounds
a50
@ 47" 6 half-rounds
840 i 4
830 K * 8 half-rounds
]

20 r

10 —=—1.4bit  -~+-58bit  -~a-9-12bit - 13-16bit ’7

- 17-20bit -~ 21-24bit --e-- 25-28bit --+-- 28-31bit
O L L L L L L L L L L L L L L L
14 16 18 20 22 24 26 28
texts(log)

Fig. 8. Success probability of improved parallel key recovery(in 100 trials)

8 Conclusions

In this paper, we have proposed a known plaintext correlation attack on RC5.
Our attack can break RC5-32/r with a success probability of 90% by using
20:14r+2.27 plaintexts. Therefore, our attack can break RC5-32 with 20 half-
rounds(10 rounds) by 2%3:67 plaintexts. In a success probability of 30%, our
attack can break RC5-32 with 21 half-rounds by using 2%%-°7 plaintexts.
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We have also shown a parallel key recovery algorithm which recover 31-bit

subkey of the final half-round on RC5. A parallel key recovery algorithm can
work in parallel, and recover 31-bit keys with the high success probability.
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Table 5. Success probability of Main algorithm(in 100 trials)

4 half-rounds |5 half-rounds |6 half-rounds
#texts|#keys|H#texts|#keys|H#texts|H#keys
210 31 oM 42 217 48
o 69 | 219 75 | 28 72
212 | 93 | 2'% | 99 | 2! | o4
7 half-rounds |8 half-rounds |9 half-rounds |10 half-rounds
Ftexts|#keys|#texts|H#keys|#texts|#keys|H#texts| #keys
270 46 273 41 270 35 279 44
272 88 | 2% 89 | 228 | 84 | 2% 88
223 1100 | 226 | 98 | 22° | 98 | 2® 99

Table 6. # texts required for recovering a key with the success probability 90% and
45% in Main algorithm

#half-rounds

4 5 6 7

8 9 10

log, (#text) (90%)

11.89 15.43 18.78 22.07 25.15 28.28 30.92

log, (#text) (45%)

10.76 13.94 17.23 19.96 23.22 26.59 29.30

Table 7. Success probability of Extended algorithm (in 100 trials)

4 half-rounds |5 half-rounds |6 half-rounds
#texts|#keys|H#texts|#keys|H#texts|#keys
213 1 43 | 2% | 30 | 2" | 30
2 195 | 2T | 65 | 220 | 71
215 | 100 | 2'% | 94 | 2% 95
7 half-rounds |8 half-rounds |9 half-rounds |10 half-rounds
Ftexts|#keys|H#texts|#keys|#texts|#keys|#texts| #keys
272 41 275 27 | 278 | 35 | 2% 37
273 72 | 2% 57 | 230 | 88 | 232 60
224 | 96 | 227 | 96 | 23" | 99 | 2%° 90

Table 8. # texts required for recovering a key with the success probability 90%, 45%,
and 30% in Extended algorithm

#half-rounds

4 5 6 7 8

9 10

log, (#text) (90%)

13.96 17.73 20.63 23.71 26.64 30.01 33.00

log, (#text) (45%)

13.09 16.39 19.41 22.14 25.62 28.43 31.52

log, (#text) (30%)

12.53 15.94 18.81 21.63 25.07 27.53 30.70

Table 9. The x2-value of correct keys and wrong keys in 4 half-rounds (in 100 trials)

Key recovering| Correct keys Wrong keys*

# texts| probability |Average |VariancelAverage |Variance
Main algorithm 212 93% 40.50 3.69 38.42 2.41
Extended algorithm| 2'* 95% 32.31 0.10 32.08 0.09

* The highest y>-value among wrong keys is used for each trial.
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Table 10. Error-bridging R&ffl] and the probability for S,[L4+’11] (B=0)

Sin of 1] 2]3] 4 5 6 7
error-bridging R;>'/[-| 0 [ 0,1 [0,1,2]0,--- 3]0 410 5(0
Probability  |0|1/16]2/16]3/16] 4/16

6

5/16 | 6/16 | 7/16

8 9 10 11 12 13 14 15
0,---,700,---,8[0,---,9l0,- -, 10[0,--- , 11]0,--- ,12[0,--- ,13[0,--- , 14
1/2 | 9/16 | 10/16 | 11/16 | 12/16 | 13/16 | 14/16 | 15/16

Table 11. Success probability of each key recovering in S,[L8+’51] with each error-bridging

probability (8 =0, in 100 keys)

Error-bridging 4 half-rounds 6 half-rounds 8 half-rounds
probability S UL U] 1T 920] % 92 %] %[ ¥ %
<1/2 0,---,7|33/55|55/55|55/55/30/51|51/51|51/51{31/51|50/51|51/51
>1/2 8,---,15| 7/45| 4/45| 5/45| 4/49| 3/49| 2/49|10/49| 3/49| 2/49

>13/16  |13,---,15| 0/13| 0/13| 0/13| 0/23| 0/23| 0/23| 0/22| 0/22| 0/22

Table 12. Error-bridging Rgl_;’_ll] and the probability for 5[4’1](ﬁ =38)

h+41
st 0 1 2 3 4 5 |67
error-bridging RL:J[0, -, 7[1,--- 7|2, 7|3, 7|4, 7[5, 6,7]6, 7] 7
Probability 1/2 | 7/16 | 6/16 | 5/16 | 4/16 | 3/16 |2/16|1/16
8[ 9 10| 11 12 13 14 15
8 [8,9]8,9,108,---,11|8,---,12[8,---,13]8 14

)

0[1/16[2/16] 3/16 | 4/16 | 5/16 | 6/16 | 7/16

Table 13. Success probability of each key recovering in S gg_fl] with each error-bridging
probability (3 = 8, in 100 keys)

Error-bridging 4 half-rounds 6 half-rounds 8 half-rounds
probability St 2T 2] 2] 2] 2%] 92| 9% 92] 9%
<1/2 1,---,15[55/92(92/92(92/92|37/92|90/92|91/92|40/95|93/95|95/95
1/2 0 4/8| 3/8| 4/8| 3/8| 4/8| 3/8| 1/5| 4/5| 5/5

Table 14. Success probability of improved parallel key recovery (the average of 7100
trials of S}L?i’lzg], S}ff’lzs], e ,S}fjrsl] (100 trials an interval))

4 half-rounds| 6 half-rounds |8 half-rounds
Ftexts|#keys|#texts|#keys|#texts|#keys
23 1301 ] 2™ [ 181 ] 2% | 20.7
2 | 59.1 | 220 | 40.7 | 2% | 424
215 1 88.6 | 22t | 773 | 227 | 71.6
216 | 957 | 222 | 93.1 | 2% |90.9
217 1971 | 2% | 971 | 22° | 953




