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Abstract. In 1999, Poupard and Stern proposed on the fly signature
scheme (PS-scheme), which aims at minimizing the on-line computa-
tional work for a signer. In this paper, we propose more efficient on the
fly signature schemes by improving the PS-scheme. In PS-scheme, the
size of secret-key is fixed by modulus n, so that this feature leads to
some drawbacks in terms of both the computational work and the com-
munication load. The main idea of our schemes is to reduce the size of
secret-key in PS-scheme by using a public element g which has a spe-
cific structure. Consequently, our schemes are improved with respect to
the computational work (which means the computational cost for “pre-
computation”, “(on-line) signature generation” and “verification”) and
the data size such as a secret-key and a signature.

1 Introduction

As well-known, a signature scheme is an important tool for secure communication
in an open network. Furthermore, a public-key infrastructure (PKI) actually
requires compact signature schemes. Compactness on both computational work
and data size, gives users’ convenience, and is acceptable for various application
to capacity limited devices such as a smart card.

Focus on the computational work in a generic digital signature scheme'. In
such a signature scheme, there are two kinds of computation to generate a sig-
nature, that is, it consists of pre-computation and (actual) signature generation.
To estimate the efficiency of a signature scheme, we should separately consider
the computational cost for pre-computation and that for signature generation.
The information generated at the pre-computation does not depend upon the
message to be signed. Therefore the pre-computation can be executed in off-line,
i.e. before a message to be signed is given. This means that such a computational
cost does not influence the processing time after a message is given.

On the other hand, the computational cost in the signature generation step,
does directly influence the processing time after being given a message. With

! As well as in [PS00], in this paper, a generic (digital) signature scheme means a
signature scheme which can be derived from a three-pass identification scheme by
using an appropriate hash function.



respect to a fast signature generation, Naccache et al. [NMVR94] proposed the
efficient technique: a trusted authority computes the information in off-line, and
treats those as coupons. In coupon based signature, the reduction of computation
work in on line is the very target for fast signature. Consequently, we can say
that it is a worthwhile work to make the computational cost small in signature
scheme.

In 1992, Girault [Gir92] modified Schnorr’s signature scheme [Sch91] in which
an RSA-modulus? is used instead of a prime modulus. This modification leads to
no modulo reduction in the signature generation. Therefore, in Girault’s scheme,
faster processing of the signature generation is possible than in Schnorr’s one.
In 1998, Poupard and Stern [PS98] investigated and gave provable security for
Girault’s scheme, and named that scheme GPS-scheme. In this paper, we call
a generic signature scheme in which modulo reduction is not necessary at the
(on-line) signature generation step, on the fly signature scheme.

In 1999, Poupard and Stern [PS99] proposed a generic signature scheme
(PS-scheme), whose security relies on the difficulty of integer factoring. In this
scheme, the size of the public-key is smaller than that in GPS-scheme. Conse-
quently, compared with GPS-scheme, the computational cost and the data size
can be decreased, and PS-scheme is seemed more secure under the one-key at-
tack scenario [PS99]. However, PS-scheme has some drawbacks. For instance, the
size of secret key is only dependent on modulus n, and considerably large (about
In|/2). This drawback leads to inefficient results in both communication work
and data size. Moreover, computational cost in the verification is very high.

In this paper, we improve PS-scheme and propose new “on the fly” signature
schemes (Scheme I and IT) which is based on integer factoring. In our schemes,
a public-key g has a specific structure. Consequently, in comparison with PS-
scheme, the size of secret-key is small (< |n|/2). In the following, our schemes
realize a compactness of signature. Especially, the computation work in verifica-
tion are much reduced by the changing n in z = g¥~"¢ mod n (PS-scheme) into
z in z = g¥ "% mod n (our schemes).

As for Scheme I, a public-key n is RSA modulus, which is the same as that in
PS-scheme. The performance in Scheme I is much superior to that in PS-scheme
and the security is as secure as integer factoring problem for modulus n (in the
random oracle model). To satisfy the security, Scheme I uses asymmetric basis
g in Z? which is a variant of [Po00],

As for Scheme II, a public-key n consists of three or more primes instead of
RSA modulus in Scheme I (or PS-scheme). In [Sil99], we can see several trials
to get faster computation for RSA cryptosystem [RSAT78] by the technique of
increasing the numbers of the factors of the modulus. Scheme II can make use of
the very technique. The security is as secure as specially defined mathematical
problem finding order problem (in the random oracle model), which is derived
from integer factoring .

2 In this paper, we call a modulus to be a product of two distinct primes an RSA-
modulus.



Concrete to say, compared with PS-scheme, the size of a secret-key in Scheme
I (resp. Scheme IT) and a signature can be reduced by at least 69% and 47%
(resp. 63% and 43%), respectively. Furthermore, Scheme I (resp. Scheme II)
has an advantage that the computational cost can also be smaller. Compared
with PS-scheme, the computational cost in Scheme I (resp. Scheme II) for pre-
computation, signature generation and verification can be reduced by at least
38%, 69%, and 64% (resp. 54%, 63%, and 61%), respectively.

This paper is organized as follows. In Section 2, we will review PS-scheme
and will discuss it. In Section 3, we will introduce our proposed signature scheme
(Scheme I), will describe some features of ours, and will give provable security
for ours. In Section 4, we will introduce an optimized scheme (Scheme II) and
discuss in the same way as Section 3. In Section 5, we will discuss the security
consideration with respect to (1)the size of n and (2)the number of prime factors
with n in our schemes. In Section 6, we will evaluate the performance of our
schemes by comparing with those of several existing schemes. The conclusion
will be given in Section 7.

2 Previous Scheme

In this section, we review the signature scheme (PS-scheme) in [PS99]. This
scheme is a generic signature scheme which is derived from the identification
scheme. We first introduce some notation. The symbol ¢(+) denotes Euler totient
function, that is, ¢(n) is the number of the natural numbers less than n and
coprime to n. The symbol A(:) denotes so-called Carmichael function, that is,
A(n) is the greatest number among the possible orders of elements in Z}. The
order of an element g € Z7 is represented as Ord,(g).

2.1 Protocols

In PS-scheme, the following parameters exist: k and x are the security parameter
and the information leak parameter, respectively. The security parameter k is
|n|/2, and the information leak parameter « is assumed so that 2”-time computa-
tion is intractable. The parameters A and B satisfy A < n and |A| = k+k+|B].
Also B is assumed that B-time computation is intractable. We use an appropri-
ate hash function H : {0,1}* — {0, 1}/Z!

Key generation step: The signer picks up two same-size primes p and ¢, and
computes n = pq. After that, she picks up g € Z; satisfying Ord,(g) €
{A(n), A(n)/2} and computes s =n — ¢(n) (= p+ ¢ — 1). The secret-key is
defined by s. The corresponding public-key is (n, g).

Signature generation step: Imagine that the signer generates a signature for
a message m € {0,1}". The signer picks up a random number r € Zy4 to
compute x = g" mod n, e = H(z,m) and y = r + se. Note that y is the
very value of r + se on Z. The signature for a message m is (e, y).



Verification step: Given the public-key of the signer (n, g), a message m and
a signature (e,y), the verifier accepts the signature, if both y < A and
e = H(g¥ "¢ mod n, m) hold, and rejects it, otherwise.

2.2 Features and Drawbacks

A secret-key in PS-scheme is s = n — ¢(n) which depends only upon (a part of)
the public-key n. The two parameters n and s are congruent under the modulo
©(n), and the size of s is about a half of that of n.

Moreover, the computation of y is executed on Z, and the information on a
secret-key is protected by computing r + se with condition r > se. Therefore,
we can see that the size of r also depend upon that of se.

In the verification step, the size of y has to be explicitly verified whether the
condition y < A holds or not. This kind of verification cannot be seen in the
existing signature schemes [E1G85,NIST91,RSA78,Sch91], hence we can say that
such a verification indeed characterizes PS-scheme.

Unfortunately, PS-scheme has the following drawbacks.

High computational cost for verifier: In the verification step, y < ne holds
actually. And the order of g € Z7, is not open. Therefore, the computational
cost for a verifier is considerably large as |ne| increases. The verifier must
compute full exponentiation (|y—ne| bits) calculus such as z = g¥~"¢ mod n.

Inefficiency by the increase of a secret-key size: If the size of a secret-key
s increase for the security reason, then this scheme shall get inefficient in view
of (1) the computational cost for pre-computation, signature generation and
verification, and (2) data size such as the size of signature.

Restriction for the structure of a public-key n: When we set up a public-
key n to be the product of three or more primes, the size of a secret-key
shall accordingly increase. For example, in case n is the product of three
primes, that is, p, ¢ and r, the secret-key s (= n — ¢(n)) turns out to be
n—p-1(q-1)(r—-1) (=pg+qr+rp— (p+q+r)+ 1), whose size is
about 3/2 times of that in case n is the product of two primes.

3 Proposed Scheme

In this section, we introduce our signature scheme (Scheme I). The main idea
of Scheme T is to reduce the size of secret-key by using element g which has
a specific structure. Furthermore, we wish to construct that Scheme I has the
same security of PS-scheme, so that the following basis is existed in Scheme I.

Definition 1 (Asymmetric basis) Let n be an RSA modulus such that n =
pg. Then we say that g is an asymmetric basis in Z7 if the multiplicity of 2 in
Ord,(g) is not equal to the multiplicity of 2 in Ord,(g). [ |

We can say that this definition is more relaxed in comparison with that of
[Po00].



Scheme 1 Scheme 11

n=pq n=1[li_pi (t>3)
Parameter : asymmetric basis g € Z;, element g € Z;

z €ERr Zae 2 €ER Lac

s = z mod Ord,(g) s = z mod Ord,(g)

Public-key: n, g, z
Secret-key: s

r €ER Loa

2= ¢ modn pre-compute (r, )

e ="H(z,m)
m, (e, y)

Yy =71+ se
Check:

?
ly <a+1 and

e = H(g?~*° mod n,m)

Fig. 1. Proposed signature schemes

3.1 Protocols

Scheme I has the parameters k, k, a, b and ¢, where k is the security parameter,
that is, the length of the secret-key, and k is the information leak parameter,
that is, 2"-time computation shall be intractable. Those parameters are assumed
to satisfying a > b+ k + k and ¢ > k + 2k. The detailed conditions on the
parameters are mentioned in Section 3.2. We use an appropriate hash function
H:{0,1}* — {0,1}°.

Key generation step: The signer picks up two same-size primes p and ¢, and
computes n = pq. After that, she chooses an element g € Z! which is
an asymmetric basis in Z*. She picks up a random number z € Zy. and
computes s = z mod ¢q, where Ord,,(g) = ¢. The secret-key is s and the
corresponding public-key is (n, g).

Signature generation step: Imagine that a signer having a public-key (n, g, z)
and the corresponding secret-key s, generates a signature for a message
m € {0,1}". Then she picks up a random number r € Zg. to compute
x = ¢g" mod n and e = H(x, m). She also computes y = r + se, where y is
the very value of r + se on Z. The signature for a message m is (e, y).



Verification step: Given the public-key of the signer (n,g,z), a message m
and a signature (e, y), the verifier accepts the signature, if both |y| < a +1
and e = H(g¥*¢ mod n, m) hold, and rejects it, otherwise.

3.2 Parameter Generation

We describe remarks on the parameters for the security of Scheme I. In case of
signature y = r + se, with |r| = a, |s| = k and |e| = b, the values of a, b, k, &
shall satisfy a > b+ k + & for its security.

If an adversary could figure out r € Z; from z (= g" mod n) generated by
the actual signer, then she could break the signature scheme. We can see the
algorithms to extract r, such as Pollard lambda method in [Po78] and the baby-
step giant-step method in [Knu98]. One may say that the former is better than
the latter since it has same computational complexity (exponential-time: O(,/q))
but does not need memory. The size of ¢ shall be set up not so that r can be
figured out with such an algorithm.

The information leak parameter s should be set up so that 2%-time compu-
tation should be intractable.

If y > ze were allowed, then an adversary could impersonate the signer to
easily compute y, along with the actual protocol, such that x = ¢g¥~*¢ mod n
holds. To keep off such an attack, the condition of ¢ > k + 2x shall be required
from c+b > a+k > b+ k+ 2k. Furthermore, if ¢ > 2° were satisfied, then s = z
would hold, that is, the secret-key would be disclosed. Hence also g < 27" shall
be required, and it is always held since g < 2F < 2672% < 9267+,

Next, we describe how to find p, ¢ and an asymmetric basis g in Z.

— Pick up two primes p = 2p’p” +1 and g = 2¢'q¢” + 1 such that p’ and ¢’ are
also primes, and p” and ¢” are odd numbers.

— Choose a,, € Zj satisfying g, = ozép_l)/p, # 1mod p. In the same way,

choose a, € Zy satisfying a; # ¢ — 1 mod g, a((]q_l)/z # 1mod ¢ and g, =

oz((lq_l)/zq, # 1 mod gq.

— Compute n = pg and g = q(¢~* mod p)g, + p(p~*

mod ¢)g, mod n.

In the last step, g is computed by using the technique of Chinese Reminder
Theorem (CRT). Note that Ord,(g) = p’ and Ord,(g) = 2¢’. Therefore Ord,, (g) =
lem(p', 2¢") = 2p'q’.

Finally, we discuss secure hash algorithm which we should adopt. If H were
an ideal hash function, then the proposed signature scheme would be secure as
described in Section 3.3. Since such a random function does not exist in the
real world, in implementation, we are recommended SHA-1 by [NIST95] which
is designed so that the algorithm can be a collision intractable hash function
[Dam88].

3.3 Security Analysis

In this paper, we say that a signature scheme is secure, if no polynomial-time
adversary A can existentially forge a signature under the adaptive chosen mes-



sage attack. In this section, we show that Scheme I is secure, by using the forking
lemma in [PS00], and showing protocol in signature generation step (see Section
3.1) can be simulated by a polynomial-time machine in the random oracle model
[BR93]. To discuss the provable security, we regard the signature for message m
as (z,e,y).

As a strategy, we show that if there exists a polynomial-time adversary which
can existentially forge a signature under the strongest attack, that is, an adaptive
chosen-message attack, then we can construct a polynomial-time machine which
can compute the integer factoring.

We say that a positive function f(k) : N — R is said to be negligible, if for
any ¢, there exists a k. such that f(k) < k¢ for any k > k.. Otherwise f is said
to be non-negligible.

Lemma 2 Let n be an RSA modulus and g be an asymmetric basis in Z.
Assume that we find L > 0 such that ¢* = 1 mod n. Then we can construct
a Turing machine M which on input n,g and L outputs a factor of n in time
O(|L|[n[?)

Proof. (Sketch) This lemma is basically due to [Po00]. Hereafter, we describe
how to construct M.

At first, M extract the odd part b of L, such that L = 2%b. Since g is an
asymmetric basis in Z, it holds ¢?* = 1 mod p and ¢g** = 1 mod ¢, and also
holds ¢* = 1 mod p and g® = —1 mod g. Then we have the following results:
p|g®—1and ntg®— 1. Consequently, M can find a factor of n by computing
ged(g® — 1 mod n, n).

Note that modular exponentiation algorithm (resp. extended Euclidean al-
gorithm) has a running time of O(|L||n|?) (resp. O(|n|?)). Hence M can execute
the above steps in time O(|L||n|?). 1

Theorem 3 Let @ (resp. R) be the number of queries which a polynomial-time
adversary A can ask to the random oracle (resp. the actual signer). Assume
that 2°¢/2% and 1/2° are negligible. Also assume that, by executing adaptive
chosen-message attack, A can forge a signature with non-negligible probability
e > 10(R + 1)(R + q)/2°, and with the average running time 7. Then we can
construct a polynomial-time machine M which can factor n with non-negligible
probability in expected time O(QT /e + |n|9M).

Proof. (Sketch) We firstly show that the signatures in the proposed scheme can be
statistically simulated by a polynomial-time machine. This machine is simulated
according to the protocol like in [PS00].

We denote, by p(«, 5,7v) and p’(«, 3,7), the probabilities that («, 3,7) is
output by the signature algorithm and the simulator, respectively. We set ¢ =
(28 —1)(2% — 1), and let R : {0,1}* — {0,1}" be an ideal hash function (random
oracle) for a given message m € {0, 1}". For an integer A and a positive constant
A, N(R, A, A) is defined to be the number of pairs (e,y) € [0,2°) x [A, A+ A)



such that R(g¥*¢,m) = e. Then we have the following:

g7 * mod n = «a, g7 * mod n = «a,
X | Rla,m) =3, X | Rla,m) =3,
Y= Sﬁ € [07 2a> v e [¢7 2a)

p(aa677): and p/(a’677):

2a N (R, ¢,2% — ¢)

where for a predicate p, x(p) is the characteristic function of p, that is, x(p) = 1,
if p is true, and x(p) = 0, otherwise.

Therefore, the summation X = Zaﬂﬁ Ip(e, B,7) — (v, B,7)| , has a upper
bound of 8¢(2° — 1)/2%, because X = 2(1 — N'(R, ¢,2% — $#)/2%) holds similarly
with [PS98], because 2% — & < N(R, ¢,2* — ¢) holds, and because ¢ = (2° —
1)(2F — 1) < (2° — 1)2q follows from 28~1 < ¢ < 2k, If ¢/2% is negligible, then
so is 8¢(2” — 1)/2¢, and consequently, the output by real signer and that by the
simulator are statistically indistinguishable.

Next, by using the technique in [PS00], we can get a multiple of Ord,(g)
such that g% = 1 mod n. Here g is an asymmetric basis in Z7, therefore by the
result of Lemma 2 we can get a factor of n. ]

4 Optimized Scheme

In this section, we give an optimized scheme (Scheme II) whish is superior to
Scheme I in terms of computational work for a signer. The main feature in
Scheme 1II is that the modulus n consists of three or more primes instead of
using an RSA modulus in Scheme I. So a signer can make good use of the
technique of CRT more efficiently. For example, in Scheme II with n having
three prime factors, the computational cost for pre-computation x (= ¢g" mod n)
can be reduced to about 4/9 times of that in the Scheme I (or PS-scheme) with
RSA modulus n. A preprint version of Scheme II can be seen in [OTMO1]. In
this paper, we consider further concrete security in Scheme II.

4.1 Protocols

Key generation step: The signer determines the number of factors, that is,
t > 3, picks up same-size ¢ primes p; (1 < i <t) and computes n = szlpi.
After that, she chooses divisor ¢ of A\(n) and finds an order-q element g € Z.
Also she picks up a random number z € Zs. and compute s = z mod ¢q. The
secret-key is s and the corresponding public-key is (n, g).

The other steps are executed in the same way as Scheme I (see Section 3.1).

4.2 Description

The conditions of parameters such as k, k, a, b and ¢ are the same as those in
Scheme I (see Section 3.2). Furthermore, primes p; (1 <i <t) and g € Z} will
be generated under the line of work described in Section 3.2.



In [PS98,PS99] we can see the two types of attack: one key attack, an adver-
sary try to forge valid signatures for fixed public key, and possible key attack, an
adversary try to forge valid signatures for possible public keys, where possible
public key means any public key satisfying the condition of the parameter. The
security consideration under the one key attack scenario seems to be more strict
analysis of security than that under the possible key attack scenario.

We have seen that the security in Scheme I is based on integer factoring. On
the other hand, it is not unknown, under the one key attack scenario, whether
Scheme II is as secure as the problem or not. To estimate more concrete security,
we define the following problem.

Definition 4 (Finding order problem) This problem is as follows. Given
n € Ny and g € Z;, find L, where L is a multiple of Ord,(¢g) and |L]| is
bounded by a polynomial in |n|. [ |

In Scheme II, if we assume the intractability of finding order problem, same
result like Theorem 3 is obtained. Then the result (i.e. theorem) is proved, with-
out loss of generality, using in the proof of the Theorem 3.

5 Integer Factoring Problem

In this section, we consider the secure size of n, and also discuss secure number
of the prime factors for n in our schemes.

Of course, if the modulus n were factored, then the proposed signature
schemes would be broken. In [LLMP90], we can see the number field sieve method
for factorization, which is the most efficient algorithm ever proposed, and whose
running time depends upon the size of n. On the other hand, in [Len87], we
can see the elliptic curve method, which is also one of efficient algorithms for
factorization, and whose running time depends upon the size of factors of n.
Therefore, the faster one is determined according to the size of the input and
upon the number of the factors of n.

As for Scheme II, referring to [Sil99] for computational cost of algorithms, in
case that |n| = 1024 and that n has three prime factors, the number field sieve
method is faster, whereas in case n has four prime factors, the other is faster.
Hence supposing that |n| is 1024 and ¢ is 3 in the proposed scheme, and that
|n| is 1024 in PS-scheme, we can say that the number field sieve method is the
faster (and fastest) algorithm to factor n in the respective schemes, and that the
respective computational cost for factoring n can be almost the same.

6 Performance

In this section, we evaluate the efficiency of our schemes by comparing existing
schemes. The parameters in the proposed Scheme I (resp. Scheme II) are set up
to be |n| = 1024, k = 160 by taking x = 80, b = 80 and a = ¢ = 320 (resp.
|n| = 1024, t = 3, k = 192 by taking x = 80, b = 80 and a = ¢ = 352).



CPC CVF | SPK | SSK | SSig
Scheme P (xM) cse (xM) | (bits) | (bits) | (bits)

Scheme 1

In| = 1024, a = 320, f;ﬁgfﬁg 240 |80 x 160 | 600 | 2048 | 160 | 400

k=80

Scheme 11 Findin

In| = 1024, a = 352 :;derg 176 |80 x 192 648 | 2048 | 192 | 432

t=3, k=80

PS-scheme Integer

[PS99] factofing 384 |80 x 512 | 1656 | 1024 | 513 | 752

In|=1024, | A] =672

GPS-scheme Discrete lo

[PS98] e ng' 384 |80 x 1024| 1796 | 3072 | 1024 | 1264

In| = 1024

Table 1. Performance of signature schemes

Table 1 gives the performance of various signature schemes including ours.
Here, a primitive arithmetic of binary methods [Knu81] is used. For all schemes in
the table, we set up the parameter under the line of the one key attack scenario.
Hence the size of secret-key in GPS-scheme is 1024 bits. For more discussion on
it, we refer to [Po00].

UMP means the underlying mathematical problem that the signature scheme
relies on for its security. The terms CPC, CSG and CVF mean the computational
cost for pre-computation, signature generation and verification, respectively. The
terms SPK, SSK and SSig means the size of a public-key, a secret-key and a
signature, respectively.

In CPC, the signer uses the technique of CRT if it is possible. In SPK with
our schemes, the size of public-key is optimized: we regard actual public-key
as (n,g), and z is computed by z = H'(n,g), where H' is a hash function
H':{0,1}" — {0, 1}".

For respective computational cost, the unit M represents the computational
cost for one multiplication under a 1024-bit modulus, a x § represents the com-

putational cost for multiplication of an a-bit number and a B-bit number on
Z.

Since PS-scheme is intended to be used with a modulus product of two strong
primes, g = 2 is a correct basis and do not have to be included in the public key.
Consequently, we set SPC = 1024 for PS-scheme. Therefore, one may say that
PS-scheme is more efficient than our schemes in terms of size of public key.

We can say that the proposed signature scheme is quite efficient one in view
of both the computational cost and the data size. Concrete to say, Scheme I
(resp. Scheme II) enables the computational cost to be reduced by 38% (resp.
54%) for pre-computation, by 69% (resp. 63%) for signature generation, and by
64% (resp. 61%) for verification, comparing with PS-scheme. For the data size,



the secret-key size in ours is 69% (resp. 63%) of that in PS-scheme, and the
signature size is 47% (resp. 43%) of that in PS-scheme.

By Table 1, we can say that the proposed signature scheme is efficient, and
requires a relatively weak computational assumption for its security.

7 Conclusion

In this paper, we have proposed efficient signature schemes, which are derived
from a three-pass identification scheme, and which are constructed by improv-
ing PS-scheme in terms of a compactness of signature. As well as PS-scheme
(or GPS-scheme), the proposed schemes are so-called “on the fly” signature
schemes, that is, it does not require modulo reduction in the signature genera-
tion step. We have shown that our schemes are existentially unforgeable against
any polynomial-time adversaries that can execute adaptive chosen message at-
tack in the random oracle model. Furthermore, the underlying computational
problem in ours is the integer factoring problem in Scheme I and mathemati-
cally well defined problem (i.e. finding order problem) in Scheme II, respectively.
We also have shown that ours are more efficient than PS-scheme in view of the
computational cost and also in view of the size of a secret-key and a signature.
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