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Characterization of Elliptic Curve Traces under

FR-reduction

Atsuko Miyaji, Masaki Nakabayashi, and Shunzo Takano

Japan Advanced Institute of Science and Technology
fmiyaji, manakabag@jaist.ac.jp

Abstract. Elliptic curve cryptosystems([19, 25]) are based on the ellip-
tic curve discrete logarithm problem(ECDLP). If elliptic curve cryptosys-
tems avoid FR-reduction([11, 17]) and anomalous elliptic curve over Fq
([34, 3, 36]), then with current knowledge we can construct elliptic curve
cryptosystems over a smaller de�nition �eld. ECDLP has an interest-
ing property that the security deeply depends on elliptic curve traces
rather than de�nition �elds, which does not occur in the case of the dis-
crete logarithm problem(DLP). Therefore it is important to characterize
elliptic curve traces explicitly from the security point of view. As for
FR-reduction, supersingular elliptic curves or elliptic curve E=Fq with
trace 2 have been reported to be vulnerable. However unfortunately these
have been only results that characterize elliptic curve traces explicitly for
FR- or MOV-reductions. More importantly, the secure trace against FR-
reduction has not been reported at all. Elliptic curves with the secure
trace means that the reduced extension degree is always higher than a
certain level.
In this paper, we aim at characterizing elliptic curve traces by FR-
reduction and investigate explicit conditions of traces vulnerable or se-
cure against FR-reduction. We show new explicit conditions of elliptic
curve traces for FR-reduction. We also present algorithms to construct
such elliptic curves, which have relation to famous number theory prob-
lems.

key words: elliptic curve cryptosystems, trace, FR-reduction, number theory

1 Introduction

Koblitz and Miller proposed independently a public key cryptosystem based
on an elliptic curve E de�ned over a �nite �eld Fq (q = pr)([19, 25]). If ellip-
tic curve cryptosystems satisfy so called FR-conditions ([24, 11, 17]) and avoid
anomalous elliptic curve over Fq ([34, 3, 36]), then the only known attacks are
the Pollard �-method ([27]) and the Pohlig-Hellman method ([26]). Hence with
current knowledge, we can construct elliptic curve cryptosystems over a smaller
de�nition �eld than the discrete logarithm problem (DLP)-based cryptosystems
like the ElGamal cryptosystems ([13]) or the DSA ([12]) and RSA cryptosystems
([28]). Elliptic curve cryptosystems with a 160-bit key are thus believed to have
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the same security as both the ElGamal cryptosystems and RSA cryptosystems
with a 1,024-bit key.

Recently some researches on comparing MOV and FR-reductions have been
reported in [15, 18]. These attacks imbed a subgroup < G > � E(Fq ) to F

�

qk

for an extension �eld Fqk and reduce ECDLP based on < G >� E(Fq ) to
DLP based on a subgroup of F�qk , where G 2 E(Fq ) is called a basepoint for
ECDLP. MOV-reduction reduces ECDLP to DLP by using the Weil pairing
([35]). Supersingular elliptic curves ([35]) have been reported to be vulnerable
against MOV-reduction, which can be easily recognized by the trace t of the
qth-power Frobenius endomorphism, t = q + 1 � #E(Fq ): an elliptic curve is
supersingular if and only if t � 0 (mod p). On the other hand, FR-reduction
reduces ECDLP to DLP by using the Tate pairing. FR-reduction can attack
elliptic curves with trace 2 in addition to supersingular elliptic curves. In fact,
these have been only results that characterize elliptic curve traces explicitly from
a point of view of FR- and MOV-reductions. It is interesting that in the case
of E=Fp over a prime �eld, dangerous elliptic curve traces happen to be equal
to 0 (supersingular), 1 (anomalous) and 2, which can be easily recognized from
other elliptic curves. Thus ECDLP has an interesting property that the security
deeply depends on elliptic curve traces rather than de�nition �elds, which does
not occur in the case of DLP. Therefore it is important to characterize elliptic
curve trace from the security point of view.

Balasubramanian and Koblitz investigate that extension degrees required to
apply both reductions for ECDLP on G 2 E(Fq ) with order n are the same
if n 6 jq � 1([4]). Therefore without loss of generality we deal with only FR-
reduction. By FR-reduction, ECDLP on G 2 E(Fq ) with order n is reduced
to DLP on F

�

qk if and only if njqk � 1. The probability that elliptic curves are
vulnerable against FR-reduction, i.e. the extension degree k is small, is shown to
be highly unlikely ([4]): FR-reduction is considered not to be threat in a realistic
sense. Nevertheless all but supersingular and trace 2 elliptic curves have not
been proved to be secure in a sense that they are strong against FR-reduction.
There might exist another trace of elliptic curves which is reduced to at most 6,
seriously low, degree extension �eld, whose trace might not be simple like 0 or
2. In fact, supersingular elliptic curves have rather special properties compared
with ordinary elliptic curves([35]), which is thought to cause such a weak factor.
However also in the case of ordinary elliptic curves, non-special elliptic curves,
there might exist elliptic curve traces with a weak factor.

More importantly, the secure trace against FR-reduction has not been re-
ported yet. Elliptic curves with the secure trace means that the reduced exten-
sion degree is always higher than a certain level. This means that the security
of ECDLP over E=Fq is guaranteed by the security of widely known DLP on
F
�

qk with higher k than a certain level since FR-reduction gives an isomorphism

between ECDLP over E=Fq and DLP based on a subgroup of F�qk ([20]). In an-
other light, the secure trace against FR-reduction is useful for construction of
elliptic curve cryptosystems. Let's consider the following requirements: it is de-
sirable that a domain parameter such as an elliptic curve or a basepoint should
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be chosen independently by each entity or by each application in order to keep
security high([1]), and that such an initialization could be done more easily over
lower CPU power or smaller memory like a smart card. In such requirements,
it would be certainly desirable that an elliptic curve is constructable at least
as easy as generating a prime number, which is a dominant step of RSA-key
generation([28]). This is why explicit conditions of secure elliptic-curve traces is
useful since we can construct easily an elliptic curve with a given speci�c trace.
Apparently SEA algorithm([30, 32, 7, 10]) is not suitable since it requires rather
large memory.

In this paper, we aim at characterizing elliptic curve traces by FR-reduction
and investigate explicit conditions of traces vulnerable or secure against FR-
reduction. Here we summarize our results on new explicit conditions of elliptic
curve traces against FR-reduction.

� Let E=Fq be an elliptic curve with prime order and the trace t.
Æ ECDLP on E=Fq is reduced to DLP on F�q3 by FR-reduction

, (i)(q; t) can be represented by q = 12l2 � 1 and t = �1� 6l (l 2 Z), or
(ii) (q; t) can be represented by q = pr (r is even) and t = �pq (i.e. supersin-
gular elliptic curves).

Æ ECDLP on E=Fq is reduced to DLP on F�q4 by FR-reduction

, (i) (q; t) can be represented by q = l2 + l + 1 and t = �l; l+ 1 (l 2 Z), or
(ii) (q; t) can be represented by q = 2r (r is odd) and t = �p2q (i.e. supersin-
gular elliptic curves).

Æ ECDLP on E=Fq is reduced to DLP on F�q6 by FR-reduction

, (i) (q; t) can be represented by q = 4l2 + 1 and t = 1� 2l (l 2 Z), or
(ii) (q; t) can be represented by q = 3r and t = �p3q (r is odd) (i.e. supersin-
gular elliptic curve).

Up to the present, it has not been reported whether there exist another ellip-
tic curve trace, except supersingular and trace 2, reduced to at most 6-degree
extension �eld or not. However, our explicit conditions mean that prime-order
elliptic curves are reduced to at most 6-degree extension �eld if and only if they
satisfy at least one of the above conditions.

� Let ECDLP on E(Fq ) with the trace t be reduced to DLP on F�qk .

Æ If t � 3, then the extension degree k satis�es

k � log q

log (t� 1)
� ";

where " is a real number such that 1
10 > " > 0.

Æ Let t = 3. Then the extension degree k satis�es

k > log q � ":

Theses are the �rst explicit elliptic-curve-trace conditions on which reduced ex-
tension degrees are always higher than a certain level. In the case of E=Fp , dan-



4

gerous elliptic curve traces happen to be equal to 0, 1 and 2. To the contrary,
our result shows that E=Fp with trace 3 is secure against FR-reduction.

Furthermore, we present an algorithm to construct elliptic curves with the
above conditions and present some examples.

This paper is organized as follows. Section 2 summarizes MOV- and FR-
reductions. Section 3 investigates the above new explicit conditions vulnerable
or secure against FR-reduction. Section 4 shows algorithms to construct elliptic
curves with new explicit conditions. Section 5 presents some examples.

2 MOV-reduction and FR-reduction

In this section, we summarize MOV- and FR-reductions against ECDLP on
G 2 E(Fq ) with order n. Here the n-torsion subgroup is denoted by E[n] =
fP 2 E j nP = Og.

We compare MOV-reduction with FR-reduction. In MOV-reduction, ECDLP
on G is reduced to DLP for the smallest integer k such that E[n] � E(Fqk ). Thus
supersingular elliptic curves can be eÆciently reduced to F�qk for k � 6. On the
other hand, in FR-reduction ECDLP on G is reduced to DLP for the smallest
integer k such that njqk�1. If E[n] � E(Fqk ), then njqk�1 ([31]). Therefore such
an elliptic curve vulnerable against MOV-reduction is also vulnerable against
FR-reduction. In fact FR-reduction works also for elliptic curves with trace 2
eÆciently in addition to supersingular elliptic curves.

Table 1. Known explicit conditions for FR-reduction

Fq (q = pr) trace(E) extension degree

p 6� 1 (mod 4) if r is even 0 2

p 6� 1 (mod 3) if r is even �pq 3

p = 2 and r is odd �p2q 4

p = 3 and r is odd �p3q 6

r is even �2pq 1

8q 2 1

Balasubramanian and Koblitz ([4]) show that if n is a prime and n 6 jq � 1,
then

E[n] � E(Fqk ) , n j qk � 1:

As a result there is no di�erence between MOV-reduction and FR-reduction
except elliptic curves with trace 2. Without loss of generality, we deal with the
only FR-reduction in this paper.

Table 1 summarizes known explicit conditions of elliptic curve traces for FR-
reduction, where the extension degree k means that ECDLP on E(Fq ) is reduced
to DLP on a subgroup of F�pk .
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As for the probability such that ECDLP is reduced to the lower degree exten-
sion �eld by FR-reduction, Balasubramanian and Koblitz show the next theorem.

Theorem 1 ([4]). Let (p;E) be a randomly chosen pair of a prime p in the
interval M=2 � p � M and an elliptic curve E=Fp with prime order n. The
probability Pr of njpk � 1 for some k � (log p)2 satis�es

Pr < C
(logM)9(log logM)2

M

for C > 0.

Theorem 1 says that FR-reduction is highly unlikely to be eÆcient attack against
ECDLP. However we note that Theorem 1 does not describe whether there
might exist another explicit criterion of an elliptic curve trace vulnerable or
secure against FR-reduction or not. From Table 1, we see that such an explicit
condition that gives the extension degree higher than a certain level has not been
reported.

3 New explicit conditions for elliptic curve traces

In this section, we investigate new explicit conditions of elliptic curve traces for
FR-reduction. Table 2 shows our results, which will be discussed in the following
sections.

Table 2. New explicit conditions for FR-reduction

Fq (q = pr) t = trace(E) extension degree k

12l2 � 1 �1� 6l 3

l2 + l+ 1 �l; l + 1 4

4l2 + 1 1� 2l 6

8q t � 3 k � log q
log (t�1)

� "

3.1 New explicit conditions vulnerable against FR-reduction

In this section, we investigate new conditions of which ECDLP on E=Fq is re-
duced to DLP on seriously low extension �eld like Fq3 , Fq4 , and Fq6 , which just
occurs in the case of supersingular elliptic curves. Supersingular elliptic curves
have rather special properties compared with ordinary elliptic curves([35]), which
would no doubt cause such vulnerable factor. Here we show that there exist also
vulnerable conditions of traces in the case of ordinary elliptic curves.

Let E=Fq be an elliptic curve with order n = #E(Fq ) = q + 1 � t, where
t is the trace of E. Then we show the conditions of which ECDLP on E=Fq is
reduced to DLP on F�q3 by FR-reduction.
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Theorem 2. Let E=Fq be an elliptic curve with prime order n (q > 64). ECDLP
on E=Fq is reduced to DLP on F�q3 by FR-reduction if and only if one of the fol-
lowing conditions holds,

(i) (q; t) can be represented by q = 12l2 � 1 and t = �1� 6l (l 2 Z).
(ii) (q; t) can be represented by q = pr (r is even) and t = �pq (i.e. super-
singular elliptic curves).

proof: We assume that ECDLP on E=Fq with prime order n is reduced to DLP
on F

�

q3 by FR-reduction. From the condition of FR-reduction, n satis�es that

njq3�1 and n 6 jq�1 since n is a prime. Therefore there is an integer � such that
q2 + q+1 = �n. By setting n = q+1� t and q2 + q+1 = (q+1)2 � t2 + t2 � q,
we get the following equation,

(q + 1� t)(q + 1 + t� �) = q � t2: (1)

By Hasse's Theorem, the trace t satis�es jtj � 2
p
q. Hence, (1) satis�es

�3 � (1 +
1

q
� t

q
)(q + 1 + t� �) � 1: (2)

For the assumption of q; t 2 Z and q > 64, we conclude that (q; t) satis�es one
of the following equations,

q + 1+ t� � = �3;�2;�1; 0; 1 (3)

By substituting (3) to (1), we get that (q; t) satis�es the following equations,

t2 + 3t� 4q � 3 = 0; (4)

t2 + 2t� 3q � 2 = 0; (5)

t2 + t� 2q � 1 = 0; (6)

t2 � q = 0; (7)

t2 � t+ 1 = 0: (8)

By simple discussion on the existence of integer solutions for congruence equa-
tions, we get that (t; q) 2 Z�Z exists if and only if (t; q) satis�es (5) or (7).

In the case of (5), (t; q) is expressed by t = �1�6l and q = 12l2�1 for l 2 Z
since q = pr for a prime p, and t 2 Z satis�es

t = �1�
p
3(q + 1):

In the case of (7), (t; q) is expressed by t = �pq = �ppr for even integers r.
This is just a supersingular elliptic curve.

Conversely, if a prime-order elliptic curve E=Fq satis�es (i) or (ii) in Theo-
rem 2, then #E(Fq ) = n satis�es njq3�1. Therefore ECDLP on E=Fq is reduced
to DLP on F�q3 .

Note that possible order of elliptic curves is given by Deuring([9]) and Water-
house([17]). In the case of E=Fp , there exactly exists an elliptic curve of type (i)
in Theorem 2. In the case of F2r , there does not exist any elliptic curve of type
(i) in Theorem 2, but in the case of Fpr (p � 3) there exists.

We get the next corollary easily from Theorem 2.
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Corollary 1 Let E=Fq be an elliptic curve with trace t. If (q; t) can be repre-
sented by q = 12l2� 1 and t = �1� 6l(l 2 Z), then ECDLP on E(Fq ) is reduced
to DLP on F

�

q3 by FR-reduction.

proof: Here we set #E(Fq ) = n and let order of G 2 E(Fq ) be m. Thenm divides
n. From the assumption, n = 12l2� 6l+1. This yields 12l2 � �6l� 1 (mod n).
Then by using the relation of both 12l2 � �6l � 1 (mod n) and q = 12l2 � 1,
we get

q3 � 1 = (12l2 � 2)((12l2 � 1)2 + 12l2)
� (12l2 � 2)((�6l� 2)2 + (�6l � 1)) (mod n)
� (12l2 � 2)(36l2 � 18l+ 3) (mod n)
� 0 (mod n)
� 0 (mod m):

Therefore ECDLP on 8 < G >� E(Fq ) is reduced to DLP on F
�

q3 by FR-
reduction.

Next we show the conditions of which ECDLP on E=Fq is reduced to DLP
on F�q4 by FR-reduction.

Theorem 3. Let E=Fq be an elliptic curve with prime order n (q > 36). ECDLP
on E=Fq is reduced to DLP on F

�

q4 by FR-reduction if and only if one of the
following conditions holds,

(i) (q; t) can be represented by q = l2 + l + 1 and t = �l, l + 1 for l 2 Z.
(ii) (q; t) can be represented by q = 2r (r is odd) and t = �p2q (i.e. supersingular
elliptic curves).

proof: We assume that ECDLP on E=Fq with prime order n is reduced to DLP
on F

�

q4 by FR-reduction. From the condition of FR-reduction, n satis�es that

njq4 � 1 and n 6 jq2 � 1 since n is a prime. Therefore there is an integer � such
that q2+1 = �n. In the same way as Theorem 2, we get the following equation,

(q + 1� t)(q + 1 + t� �) = 2q � t2: (9)

From Hasse's Theorem, (9) satis�es that

�2 � (1 +
1

q
� t

q
)(q + 1 + t� �) � 2: (10)

In the same discussion as Theorem 2, we get that (t; q) 2 Z� Z exists if and
only if (t; q) satis�es

t2 � 2q = 0; (11)

t2 � t� q + 1 = 0: (12)

In the case of (11), t satis�es t = �p2q = �p2pr for p = 2 and an odd positive
integer r. This is just a supersingular elliptic curve. In the case of (12), (t; q) is
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expressed by t = �l; l+ 1 and q = l2 + l + 1 for l 2 Z since t 2 Z satis�es

t =
1�p4q � 3

2
:

Apparently if a prime-order elliptic curve E=Fq satis�es (i) or (ii) in Theorem 3,
then ECDLP on E=Fq is reduced to DLP on F�q4 .

The next corollary follows from Theorem 3.

Corollary 2 Let E=Fq be an elliptic curve with trace t. If (q; t) can be repre-
sented by q = l2 + l + 1 and t = �l, l + 1 for l 2 Z, then ECDLP on E(Fq ) is
reduced to DLP on F

�

q4 by FR-reduction.

In the same way as Theorems 2 and 3, the explicit conditions of which
ECDLP on E=Fq is reduced to DLP on F

�

q6 by FR-reduction are shown as
follows.

Theorem 4. Let E=Fq be an elliptic curve with prime order n. ECDLP on E=Fq
is reduced to DLP on F

�

q6 by FR-reduction if and only if one of the following
conditions holds,

(i) (q; t) can be represented by q = 4l2 + 1 and t = 1� 2l for l 2 Z.
(ii) (q; t) can be represented by q = 3r and t = �p3q for an odd integer r (i.e.
supersingular elliptic curve).

Corollary 3 Let E=Fq be an elliptic curve with trace t. If (q; t) can be repre-
sented by q = 4l2 +1 and t = 1� 2l for l 2 Z, then ECDLP on E=Fq is reduced
to DLP on F

�

q6 by FR-reduction.

Remark 1 Theorems 2, 3, and 4 use the fact that the k-th cyclotomic polyno-
mial is decomposed into at most 2-degree irreducible polynomials over Z in the
case of k = 3, 4, and 6, respectively. For other cases of k, the same discussion
might be used if the k-th cyclotomic polynomial is decomposed into irreducible
polynomials with rather small degrees over Z.

3.2 New explicit conditions secure against FR-reduction

In this section, from a secure point of view we investigate a new explicit condition
of elliptic curve traces on which the reduced extension degree is always higher
than a certain level. As for the known results on E=Fp , dangerous elliptic curves
happen to be small traces like 0, 1 and 2. However, on the contrary, our results
of Theorems 2, 3 and 4 suggest that the elliptic curve trace whose order is near
upper bound in Hasse's Theorem([35]) should be vulnerable. As a result, we
show that the extension degree is higher than a certain level when the positive
trace except for t = 0; 1 and 2 is small enough.
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Theorem 5. Let E=Fq be an elliptic curve with prime order n (q > 861),
ECDLP on E(Fq ) be reduced to DLP on F�qk , and t be the elliptic curve trace. If
t � 3, then the extension degree k satis�es

k � log q

log (t� 1)
� ";

where " is a real number such that 1
10 > " > 0.

proof: ECDLP on E(Fq ) is reduced to DLP on Fqk if and only if

qk � 1 (mod n): (13)

By substituting n = q + 1 � t to (13), we get that k is the smallest integer
satisfying

(t� 1)k � 1 (mod n): (14)

From the assumption and Hasse's theorem, t satis�es 3 � t � 2
p
q � q � n.

Therefore

1 < (t� 1)k < n < n+ 1

if 1 � k < logn
log(t�1) . Then it follows that the smallest integer k such that (t �

1)k � 1 (mod n) is greater than or equal to log n
log(t�1) . Furthermore by substituting

n = q + 1� t, we get that

k � log q

log (t� 1)
� ";

where " = � logt�1 (1� t�1
q ). By using the relation of 3 � t � 2

p
q, we get easily

that

0 < " < � logt�1 (1�
2p
q
+

1

q
) <

1

10
;

if q > 861. Apparently the larger q is, the smaller " is. Thus the lower bound of
extension degree is given by

k � log q

log (t� 1)
� ":

The above theorem gives a lower bound of extension degree k in the case of small
t � 3, which ensures the security of ECDLP over E=Fq by that of widely known
DLP on F�qk .

The next corollary easily follows from Theorem 5.
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Corollary 4 Let E=Fq be an prime order elliptic curve with t = 3 (q > 861)
and ECDLP on E(Fq ) be reduced to DLP on F

�

qk . Then the extension degree k
satis�es

k > log q � ";

where " is a real number such that 1
10 > " > 0.

Remark 2 The extension degree k < log q means that FR-reduction gives a
subexponential attack against ECDLP under the index calculus method([8]), which
runs over any �eld Fq in time Lq[1=2; c] = exp((c+O(1))(log q)1=2(log log q)1=2).
On the other hand, the extension degree k < (log q)2 means that FR-reduction
gives a subexponential attack against ECDLP under the number �eld sieve([14])
which runs over some �elds Fq in time

Lq[1=3; c] = exp((c+O(1))(log q)1=3(log log q)2=3):

Therefore in order to construct enough secure elliptic curve cryptosystems it
would be desirable that k � (log q)2. However the condition of k � log q in Corol-
lary 4 is not highly optimistic if we estimate under a rather realistic assumption
of the discrete logarithm algorithm for de�nition �elds of elliptic curves([29, 8]).

In the case of prime-order elliptic curves E=Fp with t = 3, we will easily see that
the following strict condition also holds: the extension degree is just exponential.

Corollary 5 Let E=Fp be a prime-order elliptic curve with t = 3 (i.e. #E(Fp ) =
p�2 is prime). If 2 is a primitive root in Fp�2 , then the extension degree k such
that ECDLP on E(Fp ) is reduced to DLP on F

�

pk satis�es k = p� 3.

4 Algorithm

In this section, we describe algorithms to construct elliptic curves vulnerable or
secure against FR-reduction in Section 3 and con�rm that such elliptic curves
exist in a realistic sense (i.e. constructable). From the point of view of theoretical
interest, each construction is deeply related to each famous number theory prob-
lem: the former is a problem of �nding integer solutions of Pell's equation([16]),
and the latter is a problem of �nding twin prime numbers.

4.1 Construction of elliptic curves reducible to lower extension
degree

Here we present an algorithm to construct elliptic curves over Fp in Corollary 1
since Theorem 2 is a special case of Corollary 1. By using the CM-method([2])1,

1 The procedure of the CM-method includes a step of computing the Hilbert class
polynomials([23]), Pd(x). The computation of the Hilbert class polynomials are not
so easy if the degree of the Hilbert class polynomial, deg(Pd(x)), namely the class
number is large. Therefore we usually �x d and so Pd(x) beforehand in order to
avoid the computation of Pd(x) as we will see in Algorithm 2. In another way, we
may make use of the recent researches([5, 6]) on the construction of the CM elliptic
curves by both the CM tests and liftings instead of the CM-method.
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the dominant step of construction of elliptic curves with both p = 12l2 � 1 and
t = �1� 6l(l 2 Z) is �nding integer solutions (l; y) of 12l2 � 12l � 5 = dy2 for
a given positive integer d � 3 (mod 4), which is easily transformed into �nding
integer solutions of an indeterminate equation

x2 � 3dy2 = 24: (15)

From the elementary number theory([37]), all integer solutions (x; y) of (15) is
given by

x+ y
p
3d = (x1 + y1

p
3d)(t0 + u0

p
3d)n;

where (t0; u0) is the minimum positive integer solution on � = t0 + u0
p
3d > 0

of Pell's equation,

T 2 � 3dU2 = 1; (16)

and (x1; y1) is an integer solution of (15) in the following domain Dom,

Dom = f(x; y)jp24 � x < t0
p
24; 0 � x < u0

p
24g:

Here we call two integer solutions (x; y) and (x0; y0) of (15) are associated if

x+ y
p
3d = �(x0 + y0

p
3d)(t0 + u0

p
3d)n

for 9n 2 f0;�1;�2; � � � g.
After �nding an integer solution (x; y) of (15) in the above procedure, the

construction of elliptic curves E=Fp with the trace t easily follows the CM-
method. In order to �nd integer solutions eÆciently, we need some techniques
speci�c to (15). Here we show only speci�c techniques, all of which are proved by
simple discussion on the existence of integer solutions for congruence equations.

Lemma 1. If there exists an integer solution (l; y) of 12l2� 12l� 5 = dy2, then
d � 19 (mod 24).

proof: From dy2 = 12l2�12l�5 = 12l(l�1)�5 � 19 (mod 24), we get dy2 � 19
(mod 24). By using the fact of y2 � 0; 1; 4; 9; 12; 16 (mod 24), we get that d � 19
(mod 24) if there exists an integer solution of dy2 � 19 (mod 24).

Lemma 2. Let d 2 Z be d � 19 (mod 24). If there exists an integer solution
(x0; y0) of (15), then gcd(x0; y0) = 1.

proof: Let (x; y) be an integer solution of (15) and gcd(x; y) = g > 1. Then g = 2
since g2j24. So we can set x = 2x0 and y = 2y0 (x0; y0 2 Z) with gcd(x0; y0) = 1.

From the assumption of d � 19 (mod 24), (x0; y0) satis�es x02 + 3y02 � 6
(mod 12). This is contradictory because there does not exist any integer so-
lution (x; y) of x2 + 3y2 � 6 (mod 12).
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Corollary 6 Let d 2 Z be d � 19 (mod 24). If there exists an integer solution
(x0; y0) of (15), then both x0 and y0 are odd.

proof: This follows from Lemma 2.

Lemma 3. Let d 2 Z be d � 19 (mod 24) and (x0; y0) be a set of integer
solutions of (15). Then both (x0; y0) and (x0;�y0) are not associated.

proof: Two solutions (x; y) and (x0; y0) of (15) are associated if and only if
xy0 � x0y � 0 (mod 24) (see Section 34 in [37]). Therefore if both (x0; y0) and
(x0;�y0) are associated, then 2x0y0 � 0 (mod 24). This is contradictory to
Corollary 6.

Lemma 4. Let d 2 Z be d � 19 (mod 24). Then there are at most two integer
solutions in Dom for (15).

proof: From Lemma 2, there exist an integer solution s satisfying the following
conditions:

12d = s2 � 96m, gcd(24; s;m) = 1, s2 � 12d (mod 96), and �24 � s < 24,
if there exist an integer solution (x; y) in Dom for (15)(see Section 35 in [37]).
From the simple discussion on the existence of integer solutions for congruence
equations, there are at most two integer solutions s satisfying the above condi-
tions. Therefore there are at most two integer solutions in Dom for (15).
The next proposition follows from Lemmas 3 and 4.

Proposition 1 Let d 2 Z be d � 19 (mod 24). Then there exist just two sets of
integer solutions in Dom for (15) if there exist.

Here we give the algorithm as follows:

Algorithm 1 Given the upper bound UP > 0 on a prime p, this

algorithm outputs (p; d; l), or fail if such a (p; d; l) does not exist.

1. Choose a positive integer d such that d � 19 (mod 24).

2. Find the minimum positive integer solution (t0; u0) of (16).

3. Find an integer solution (x; y) 2 Dom of (15), if exists.

Otherwise, output fail and terminate the algorithm.

4. For n � 1, set xn, yn in such a way that

xn + yn
p
3d := (x+ y

p
3d)(t0 + u0

p
3d)n.

5. Set l1;n := (xn � 3)=6, l2;n := (xn + 3)=6, p1;n := 12l21;n � 1, and

p2;n = 12l22;n � 1.

6. If p1;n > UP and p2;n > UP, then output fail and terminate

the algorithm.

7. If p1;n or p2;n is prime, then output (p1;n; d; l1;n) or (p1;n; d; l2;n)
respectively, and terminate the algorithm. Otherwise goto 4.
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4.2 Construction of elliptic curves reducible to higher extension
degree

Here we present an algorithm to construct elliptic curves E=Fp with t = 3 in
Corollary 4, in which the CM-method is also used in the same way as Section 4.1.
By using the CM-method, the dominant steps of construction of prime-order
elliptic curves E=Fp with t = 3, namely #E(Fp ) = p � 2, are �nding a prime
number p = dl2+dl+ d+9

4 with l 2 Z for an given positive integer d � 3 (mod 4),
and checking p� 2 is also prime.

In this case we can easily show the following condition of d.

Lemma 5. Let p 2 Z be p = dl2 + dl + d+9
4 with a positive integer d � 3

(mod 4). If both p and p� 2 are prime, then d � 19 (mod 24).

proof: For the assumption of d � 3 (mod 4), we set d = 3 + 4m (m 2 Z). Then

p = dl2 + dl +
d+ 9

4
= dl(l+ 1) + (m+ 3) (17)

� m+ 1 (mod 2): (18)

Since p is prime,m � 0 (mod 2) from (18). So we can set d = 3+8m0 (9m0 2 Z).
On the other hand, we get p � 1 (mod 6) since both p and p� 2 are prime and
also get easily l(l + 1) � 0; 2 (mod 6) for 8l 2 Z. If l(l + 1) � 0 (mod 6), then
m0 � 2 (mod 3) from (17). This yields d � 19 (mod 24). If l(l+1) � 2 (mod 6),
then this yields contradictory. In this way we get d � 19 (mod 24).
Here we give the algorithm as follows:

Algorithm 2 Given the upper bound UP > 0 on a prime p, this

algorithm outputs the prime-order elliptic curve E=Fp with t = 3,
or fail if such an E=Fp does not exist.

1. Choose a positive integer d such that d � 19 (mod 24).
2. Set p = dl(l + 1) + d+9

4 for Z3 l > 0 such that l � 0; 2 (mod 3).
3. If p > UP, then output fail and terminate the algorithm.

Otherwise goto step 4.
4. If both p and p� 2 are prime, then goto step 5.

Otherwise goto step 2 and try the next l.
5. Compute the Hilbert class polynomial Pd(x).
6. Solve a root j0 of Pd(x) � 0 (mod p).
7. Construct two elliptic curves Ej0 and E0

j0,

Ej0 : y
2 = x3 + aj0x+ bj0, E0

j0
: y2 = x3 + aj0c

2x+ bj0c
3;

where aj0 =
3j0

1728�j0
(mod p), bj0 =

2j0
1728�j0

(mod p),
and c is any quadratic non-residue in Fp.

8. Output E 2 fEj0 ; E
0

j0
g with #E(Fp ) = p� 2

and terminate the algorithm.

Note that the step 8 can be performed easily: output E such that (p� 2)G = O
for E(Fp ) 3 9G 6= O.
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5 Experimental results

In this section, we present some examples in both vulnerable and secure cases.

5.1 Elliptic curves reducible to lower extension degree

We present one example which satis�es the condition of Corollary 1. We searched
elliptic curves E=Fp in the range of 0 < p < 21000 by using Algorithm 1. Our
modulo arithmetic uses the GNU MP Library GMP([38]). The platform is an Al-
pha 21264(500 MHz/C Compiler for Digital UNIX). It took on the average 0.101
sec to �nd an elliptic curve E=Fp in the case of d = 19. We have also con�rmed
experimentally that vulnerable elliptic curves with new explicit conditions are
constructable systematically in the same way as supersingular or trace 2 elliptic
curves. This means that even in the case of ordinary elliptic curves, we must
check FR-conditions.

Recently some researches([21, 22]) on a protocol using an elliptic curve E=Fp
with the computable FR-reduction have been proposed, in which an elliptic curve
E=Fp reduced to Fpk with the computable lower extension degree is desired. Our
approach is also deeply related to their researches.

Example 1
E=Fp : x3 + ax+ b

p = 9 08761 00379 04279 08077 54895 57583 80356 67582 90265 31247 (170-bit),
a = 8 18416 34259 48882 91485 04408 88116 40789 05308 57899 75506,
b = 6 66070 44332 39783 49780 03588 18034 13282 86571 48420 57992,
t = �5 22138 20118 54029 93899 01413,

#E(Fp ) = 72 � 313 � n,
n = 59 25285 28258 73893 72612 30363 15589 78126 20544 05453 (156-bit).

5.2 Elliptic curves reducible to higher extension degree

We present experimental results and some examples of elliptic curves in Corol-
laries 4 and 5. We have con�rmed that secure elliptic curves with new explicit
conditions are constructible systematically. Table 3 shows numerical results of
twin primes (p; p� 2) with p = dl2 + dl + d+9

4 , which was searched in the range
of 276 � 220 � l � 276 + 220. Our modulo arithmetic uses the GNU MP Library
GMP([38]). The platform is an Alpha 21264(500 MHz/C Compiler for Digital
UNIX). It took on the average 0.053 sec to �nd a pair of (p; p� 2) in the case of
d = 163. For other cases of d, we could �nd such a pair of primes on the average
0.064 � 1.402 sec. Fig.1 shows the plot of Table 3 from the point of view of
deg(Pd(x)) and the size of d on Pd(x). From our experimental result, we have
found a heuristic property that the number of twin primes are closely related to
two factors, deg(Pd(x)) and the size of d on Pd(x). If we �x the size of d, then
the larger deg(Pd(x)) is, the less twin primes are found. If we �x deg(Pd(x)),
then the larger the size of d is, the more twin primes are found. s

To make a comparison to RSA key generation, we have compared twin-prime-
generation times and RSA-prime-generation times. From the point of view of the
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Table 3. The number of twin primes (p; p� 2)

d deg(Pd(x)) # twin primes times (sec)

19 1 190 0.550
43 1 1,157 0.094
67 1 1,902 0.064
91 2 450 0.365
115 2 1,036 0.209
139 3 139 0.323
163 1 5,158 0.053
187 2 1,402 0.107
211 3 292 1.401
235 2 2,523 0.089
259 4 247 0.348
283 3 645 0.234
307 3 696 0.134
331 3 1,458 0.103
355 4 635 0.261
379 3 1,583 0.074
403 2 3,392 0.069

p = dl2 + dl+ d+9
4

(276 � 220 � l � 276 + 220)

same security level, we consider the following three conditions of bit size on (el-
liptic curve cryptosystem, RSA): (160, 1024), (224, 2,048) and (256, 3,072)([33]).
Table 4 shows both of twin-prime-generation times and RSA-prime-generation
times, where the size of RSA-prime is just half size of the above security level. As
for the twin-prime generation, we dealt with four cases of d = 163; 427; 907; 1555
that correspond to deg(Pd(x))=1, 2, 3, 4 respectively. These characters are also
used in Table 4 and Fig 2. We searched for 1,000 twin primes by Algorithm 2
and computed the average times. As for the RSA-prime generation, we searched
for 1,000 RSA primes by simply performing a primality test among odd num-
bers, and computed the average times. The platform is also an Alpha 21264 (500
MHz / C compiler for Digital UNIX). For the primality test, we made use of
Miller-Rabin's probablistic test in GNU MP Library GMP. Fig 2 shows the plot
of Table 4. Note that the vertical axis is represented in logarithm. We can easily
see that the generation of twin primes is faster than that of RSA primes in any
case.

We present E=Fp : y2 = x3+ax+b with t = 3 in the following. In Examples 2
� 4, 2 is a primitive root in Fp�2 .

Example 2
E1=Fp : y2 = x3 + a1x+ b1, (jpj = 159 � bit)

p = 519 51816 01449 69382 38659 23754 49686 02163 04833 66071,

n = 519 51816 01449 69382 38659 23754 49686 02163 04833 66069,

a1 = 35 29380 82819 03345 16798 59515 21747 57876 817006 32697,

b1 = 408 46477 52610 12095 24877 04686 28212 53233 12948 77155,
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Fig. 1. Relations between # twin primes and Pd(x)

Example 3
E1=Fp : y2 = x3 + a1x+ b1, (jpj = 159 � bit)

p = 793 54971 71445 13671 92705 06772 26939 83458 80422 30471,
n = 793 54971 71445 13671 92705 06772 26939 83458 80422 30469,

a1 = 622 32433 75781 36504 38145 80347 56708 57012 73203 93428,

b1 = 679 39946 41002 62226 89665 55822 46785 65828 08943 39109,

Example 4
E=Fp : y2 = x3 + ax+ b, (jpj = 240 � bit)

p = 112 49846 54526 86189 73518 65205 55113 42541 99281 27068 83806 23265
87119 55023 07023,

n = 112 49846 54526 86189 73518 65205 55113 42541 99281 27068 83806 23265
87119 55023 07021,

a = 52 37381 80880 77183 56601 62811 25609 08710 91667 71974 15904 90057
09224 69377 60775,

b = 34 91587 87253 84789 04401 08540 83739 39140 61111 81316 10603 26704

72816 46251 73850.

Example 5
E1=Fp : y2 = x3 + a1x+ b1, (jpj = 240 � bit)

Table 4. Times of twin-prime generation and RSA-prime generation (sec)

bit size (twin primes, RSA) (160, 1024) (224, 2048) (256, 3072)

RSA 0.098 0.826 16.274

1 0.047 0.130 0.242
Twin primes 2 0.058 0.164 0.265

3 0.057 0.274 0.401
4 0.057 0.175 0.272
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Fig. 2. Times of twin-prime generation and RSA-prime generation

p = 145 62684 79172 80895 91487 33486 94032 72646 08218 46342 12380 03553
12226 43548 52871,

n = 145 62684 79172 80895 91487 33486 94032 72646 08218 46342 12380 03553
12226 43548 52869,

a1 = 144 44371 02824 33267 37769 11780 11326 91187 09134 83450 79361 18648
91066 43377 85210,

b1 = 50 11979 94855 57136 68786 73438 08285 32827 34850 99302 48151 81056

65622 14743 74505,

6 Conclusion

In this paper, we have shown some new explicit conditions of elliptic curve traces
vulnerable or secure against FR-reduction. We have also presented algorithms
to construct elliptic curves with our new explicit conditions. Especially our new
secure elliptic curve realizes rather light initialization, which sets up a pair of
elliptic curve and basepoint.
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